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Abstract. Friedrichs’ theory of symmetric positive systems of first-order PDE’s
is revisited so as to avoid invoking traces at the boundary. Two intrinsic geo-
metric conditions are introduced to characterize admissible boundary condi-
tions. It is shown that the space in which admissible boundary conditions
can be enforced is maximal in a positive cone associated with the differential
operator. The equivalence with a formalism based on boundary operators is
investigated and practical means to construct these boundary operators are
presented. Finally, the link with Friedrichs’ formalism and applications to
various PDE’s are discussed.

1. Introduction

The notion of symmetric positive systems of first-order PDE’s has been intro-
duced by Friedrichs in 1958 [4] in an effort to go beyond the traditional classifica-
tion of PDE’s into elliptic, parabolic, and hyperbolic types. Friedrichs wanted to
handle PDE’s which are partly elliptic and partly hyperbolic using a single func-
tional framework. He introduced a very clever technique to characterize admissi-
ble boundary conditions. This technique involves a nonuniquely defined, positive
matrix-valued boundary field having peculiar algebraic properties. One difficulty
we see in the theory developed by Friedrichs is that it is not intrinsic since the
matrix-valued boundary field used to enforce boundary conditions is not uniquely
defined. Moreover, the theory involves boundary values of the solution to the PDE
whose meaning is not clear. Still, many advances have been reported in the lit-
erature to clarify the meaning of traces in Friedrichs’ systems; see, among others,
[5, 6, 8, 9].

The goal of the present paper is to revisit Friedrichs’ theory and to reformulate
it so as to avoid invoking traces at the boundary and to remove the arbitrariness
referred to above. The theory is expressed in an intrinsic way which does not involve
any ad hoc matrix-valued boundary field. Furthermore, the theory goes beyond the
realm of PDE’s since it is formulated in terms of operators acting in abstract Hilbert
spaces. As such, it provides sufficient conditions for Hilbert operators to be bijective
which are of independent interest.

The paper is organized as follows. In §2 we introduce the notation and we define
the problem under consideration. In §3 we present the so-called cone formalism.
It consists of a set of geometric conditions that are sufficient to guarantee that
the linear Hilbert operator under consideration and its formal adjoint are bijective.
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The main results of this section are the set of conditions (v1)-(v2) together with
Theorems 3.1 and 3.3. In §4 we investigate a different formalism that ensures the
bijectivity of the linear operator and its formal adjoint. This formalism, which
is closely related to the approach followed by Friedrichs in [4] to enforce suitable
boundary conditions for systems of first-order PDE’s, is based on a boundary op-
erator endowed with ad hoc algebraic properties. The main results of this section
are the set of conditions (m1)–(m2) together with Theorems 4.2 and 4.3 where the
equivalence between the cone formalism and the boundary operator formalism is
investigated. Finally, in §5 we show how our formalism relates to that of Friedrichs
and we present some applications to systems of first-order PDE’s.

2. The setting

2.1. Definitions and basic properties. Let L be a Hilbert space equipped with
the scalar product (·, ·)L and the corresponding norm ‖ · ‖L. Let D be a dense
subspace of L. We identify L and its dual; that is, we take L as a pivot space. We
assume that we have at hand two linear operators T : D→ L and T̃ : D→ L such
that

∀(ϕ,ψ) ∈ D×D, (Tϕ, ψ)L = (ϕ, T̃ψ)L,(t1)

∃c, ∀ϕ ∈ D, ‖(T + T̃ )ϕ‖L ≤ c‖ϕ‖L.(t2)

In the context of first-order PDE’s, property (t2) has nontrivial consequences since
it implies the symmetry of the coefficients of the differential operator; see the proof
of Proposition 5.1 and property (a2).

Remark 2.1. One may think of D as being the set of smooth functions compactly
supported in a domain of Rd. One may think of L as being the set of Lebesgue
measurable functions whose square is integrable. One may think of T as being a
differential operator and of T̃ as being the formal adjoint of T . We do not use the
notation T ∗ to avoid confusion with true adjoints.

Let W0 be the completion of D with respect to the scalar product (·, ·)L +
(T ·, T ·)L. Then, owing to (t1), one can show that, modulo injections, the following
identifications can be done:

(2.1) D ⊂W0 ⊂ L ≡ L′ ⊂W ′
0 ⊂ D′,

where D′ is the algebraic dual of D and L′ and W ′
0 are topological duals. Observe

that owing to (t2), the completion of D with respect to the scalar product (·, ·)L +
(T̃ ·, T̃ ·)L is also W0. We henceforth abuse the notation by identifying the unique
extensions of T and T̃ to W0 with T and T̃ , respectively. Following the terminology
of Aubin [1, §5.5], we say that W0 is the minimal domain of T and T̃ . Let us now
observe that the true adjoint of T̃ , say (T̃ )∗ : L −→W ′

0, is the unique extension of
T : W0 −→ L. We then again abuse the notation by setting T = (T̃ )∗ ∈ L(L;W ′

0).
Likewise the true adjoint T ∗ : L −→ W ′

0 is the unique extension of T̃ : W0 −→ L

and we abuse the notation by setting T̃ = T ∗ ∈ L(L;W ′
0). Since L ⊂ W ′

0 it now
makes sense to define

(2.2) W = {v ∈ L; Tv ∈ L}.

Clearly, W0 ⊂W .
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Lemma 2.1. Assume (t1). Then, W equipped with the so-called graph norm
‖v‖W = ‖v‖L + ‖Tv‖L is a Hilbert space.

Proof. Let (vn) be a Cauchy sequence in W . Hence, vn and Tvn are Cauchy
sequences in L. Let v and w be the corresponding limits in L. Observe that for all
ψ ∈W0, property (t1) implies (vn, T̃ψ)L = (Tvn, ψ)L. Hence,

〈Tv, ψ〉W ′
0,W0 = (v, T̃ψ)L ← (vn, T̃ψ)L = (Tvn, ψ)L → (w,ψ)L.

This shows that Tv ∈ L and that Tv = w. �

W is called the maximal domain of T and is also sometimes referred to as the
graph space. The scalar product in W is (u, v)W = (u, v)L + (Tu, Tv)L. Note that
owing to property (t2) we also have the following characterization:

(2.3) W = {v ∈ L; T̃ v ∈ L}.

Lemma 2.2. Assume (t1)–(t2). Then, T + T̃ ∈ L(L;L) and T + T̃ is self-adjoint
on L, i.e.,

(2.4) ∀(u, v) ∈ L× L, ((T + T̃ )u, v)L = ((T + T̃ )v, u)L.

Proof. That T+T̃ ∈ L(L;L) is a consequence of (t2) together with our extending T
to L(L;W ′

0) and T̃ to L(L;W ′
0). To prove the second part of the statement consider

(u, v) ∈ L × L. Since D is dense in L, there exist sequences (un) and (vn) in D

converging to u and v in L, respectively. Owing to (t1), ((T + T̃ )un, vn)L = ((T +
T̃ )vn, un)L. Letting n→∞ and using the fact that T+T̃ ∈ L(L;L) yields (2.4). �

2.2. The boundary operator D. Let us now introduce the operatorD ∈ L(W ;W ′)
such that

(2.5) ∀(u, v) ∈W ×W, 〈Du, v〉W ′,W = (Tu, v)L − (u, T̃ v)L.

Observe that this definition makes sense since both T and T̃ are in L(W ;L).

Lemma 2.3. Assume (t1)–(t2). Then, D is self-adjoint, i.e.,

(2.6) ∀(u, v) ∈W ×W, 〈Du, v〉W ′,W = 〈Dv, u〉W ′,W .

Proof. Let (u, v) ∈W ×W . Then,

〈Du, v〉W ′,W − 〈Dv, u〉W ′,W = (Tu, v)L − (u, T̃ v)L − (Tv, u)L + (v, T̃ u)L

= ((T + T̃ )u, v)L − ((T + T̃ )v, u)L = 0,

owing to (2.4). �

For all subsets X ⊂ W , we denote by X⊥ the polar set of X, i.e., the set of
the continuous linear forms in W ′ that are zero on X. Similarly, for all subsets
Y ⊂ W ′, we denote by Y ⊥ the polar set of Y , i.e., the set of the continuous linear
forms in W ′′ ≡W that are zero on Y . A very important result is the following

Lemma 2.4. Assume (t1)–(t2). Then,

(2.7) Ker(D) = W0 and Im(D) = W⊥
0 .

In particular, D(W ) is closed.
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Proof. (1) Let us first prove that W0 ⊂ Ker(D). Let ψ ∈W0 and let v ∈W . Using
the fact that the true adjoint of the operator T : W0 −→ L, say T ∗ : L −→ W ′

0, is
the unique extension of T̃ : W0 −→ L, we infer

〈Dψ, v〉W ′,W = (Tψ, v)L − (ψ, T̃ v)L = (Tψ, v)L − 〈ψ, T ∗v〉W0,W ′
0

= 0,

i.e., 〈Dψ, v〉W ′,W = 0 for all v ∈W ; as a result, W0 ⊂ Ker(D).
(2) Let us now prove that W⊥

0 ⊂ Im(D). Let x ∈ W⊥
0 . Owing to the Riesz

representation theorem, there is z ∈W such that for all w ∈W ,

(z, w)L + (Tz, Tw)L = 〈x,w〉W ′,W .

For all v ∈W0, it is inferred that

〈T̃ T z, v〉W ′
0,W0 = (Tz, Tv)L = −(z, v)L + 〈x, v〉W ′,W = −(z, v)L,

since x ∈ W⊥
0 . In other words, T̃ T z is in L, meaning that Tz is in W (see (2.3))

and
T̃ T z = −z in L.

Let us set u = Tz ∈W . Then observing that T̃ u = −z, we infer that for all w ∈W ,

〈Du,w〉W ′,W = 〈Dw, u〉W ′,W = (Tw, u)L − (w, T̃u)L

= (Tw, Tz)L + (w, z)L = 〈x,w〉W ′,W .

That is to say Du = x, i.e., x ∈ Im(D).
(3) Owing to Steps 1 and 2, it is inferred that

Im(D) ⊂W⊥
0 ⊂ Im(D),

whence (2.7) is easily deduced. �

Remark 2.2. Since Ker(D) = W0, one may henceforth think of D as a boundary
operator. One may also think of the formula

(Tu, v)L = (u, T̃ v)L + 〈Du, v〉W ′,W ,

as an integration by parts.

3. The cone formalism

Let V and V ∗ be two subspaces of W . The purpose of this section is to identify
sufficient conditions on V and V ∗ so that the restricted operators T : V → L and
T̃ : V ∗ → L are isomorphisms.

3.1. The two key assumptions. Let us introduce the following cones:

C+ = {w ∈W ; 〈Dw,w〉W ′,W ≥ 0},(3.1)

C− = {w ∈W ; 〈Dw,w〉W ′,W ≤ 0},(3.2)

C0 = C+ ∩ C− = {w ∈W ; 〈Dw,w〉W ′,W = 0}.(3.3)

The two key assumptions on which the cone formalism is based are the following:

V ⊂ C+ and V ∗ ⊂ C−,(v1)

V = D(V ∗)⊥ and V ∗ = D(V )⊥.(v2)

It is straightforward to verify the following
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Lemma 3.1. Assume (v2). Then,

V and V ∗ are closed in W,(3.4)

Ker(D) = W0 ⊂ V ∩ V ∗.(3.5)

Remark 3.1. In the context of PDE’s, assumption (v1) is usually easy to verify
since it relies on algebraic properties of the differential operator and its formal
adjoint. The inclusions V ⊂ D(V ∗)⊥ and V ∗ ⊂ D(V )⊥ are also straightforward
to establish. The converse inclusions are non-trivial since they usually rely on the
surjectivity of trace operators; see the examples discussed in §5 for more details.

3.2. The well–posedness result. We henceforth solely focus our attention on
the class of operators T that are endowed with the following positivity property:
There exists µ0 > 0 such that

(t3) ∀w ∈ L, ((T + T̃ )w,w)L ≥ 2µ0‖w‖2L.
In other words, T + T̃ is L-coercive on L. In the sequel, an operator T satisfying
(t1)–(t2)–(t3) is called a Friedrichs’ operator.

A first important consequence of the above hypotheses is the following

Lemma 3.2. Assume (t1)–(t2)–(t3) and (v1)–(v2). Then, T is L-coercive on
V and T̃ is L-coercive on V ∗.

Proof. It is clear that (2.5) implies for all w ∈W ,

(Tw,w)L = 1
2 ((T + T̃ )w,w)L + 1

2 〈Dw,w〉W ′,W ,

(T̃w, w)L = 1
2 ((T + T̃ )w,w)L − 1

2 〈Dw,w〉W ′,W .

Hence, owing to property (t3), for all w ∈W ,

(Tw,w)L ≥ µ0‖w‖2L + 1
2 〈Dw,w〉W ′,W ,(3.6)

(T̃w, w)L ≥ µ0‖w‖2L − 1
2 〈Dw,w〉W ′,W .(3.7)

Conclude using the fact that V ⊂ C+ and V ∗ ⊂ C−. �

The main result of this section is the following

Theorem 3.1. Assume (t1)–(t2)–(t3) and (v1)–(v2). Then, the restricted op-
erators T : V → L and T̃ : V ∗ → L are isomorphisms.

Proof. (1) Let us prove that T : V → L is an isomorphism. Owing to (3.4), V is
a Hilbert space when equipped with the graph norm ‖ · ‖W . Hence, showing that
T : V → L is an isomorphism amounts to proving statement (ii) in Theorem 3.2
below; see [2] for further aspects of this theorem.
(1.a) Proof of (3.8). The L-coercivity of T on V (see Lemma 3.2) implies that
supv∈L\{0}

(Tu,v)L

‖v‖L
≥ µ0‖u‖L. Hence,(

1 +
1
µ0

)
sup

v∈L\{0}

(Tu, v)L

‖v‖L
≥ ‖Tu‖L + ‖u‖L ≥ ‖u‖W .

(1.b) Proof of (3.9). Assume that v ∈ L is such that (Tu, v)L = 0 for all u ∈ V .
Then (Tz, v)L = 〈z, T̃ v〉W0,W ′

0
= 0 for all z ∈ W0 since W0 ⊂ V . Hence T̃ v = 0

in W ′
0, i.e., T̃ v = 0 in L owing to the density of W0 in L. Using (2.3), this yields

v ∈W . The definition of D then implies

∀u ∈ V, 〈Du, v〉W ′,W = 0− 0 = 0,
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i.e., v ∈ D(V )⊥. Hence, v ∈ V ∗ owing to (v2). Since T̃ is L-coercive on V ∗ and
T̃ v = 0, one readily deduces v = 0.
(2) Proceed similarly to prove that T̃ : V ∗ → L is an isomorphism. �

Theorem 3.2 (Banach–Nečas–Babuška (BNB)). Let V be a Banach space and let
L be a reflexive Banach space. The following statements are equivalent:

(i) T ∈ L(V ;L) is bijective.
(ii) There exists a constant α > 0 such that

∀u ∈ V, sup
v∈L\{0}

(Tu, v)L

‖v‖L
≥ α‖u‖V ,(3.8)

∀v ∈ L, ((Tu, v)L = 0, ∀u ∈ V ) =⇒ (v = 0).(3.9)

Corollary 3.1. Assume (t1)–(t2)–(t3) and (v1)–(v2). Let f ∈ L. Then, the
following problems are well-posed:

(i) Seek u ∈ V such that Tu = f in L.
(ii) Seek u∗ ∈ V ∗ such that T̃ u∗ = f in L.

Remark 3.2.
(i) The important consequence of Theorem 3.1 is that (v1)–(v2) are sufficient

conditions for Friedrichs’ operators to be bijective. These two conditions account
for admissible boundary conditions. The novelty of our approach with respect to
that of Friedrichs (see §5.1) is that we have exhibited an intrinsic characterization
of admissible boundary conditions.

(ii) When one is interested in proving the bijectivity of the operator T only, then
conditions (v1)–(v2) can be checked by first choosing a space V ⊂ C+, setting
V ∗ = D(V )⊥, and then verifying that V ∗ ⊂ C− and that V = D(V ∗)⊥. In
the above presentation V and V ∗ play symmetric roles to emphasize the fact that
the bijectivity of T goes hand in hand with that of T̃ , as already pointed out by
Friedrichs.

3.3. The maximality of V . Let V and V ∗ be two spaces satisfying (v1)–(v2).
We address in this section the issue of the maximality of V in the positive cone C+

and that of V ∗ in the negative cone C−. We prove that whenever two spaces V
and V ∗ satisfy (v1)–(v2), then V and V ∗ cannot be extended in the positive and
negative cones, respectively. This result is related to the proposal made by Lax to
enforce “maximal” boundary conditions for dissipative symmetric linear differential
operators; see, e.g., Lax and Phillips [7, p. 428] and Friedrichs [4, p. 355].

Before stating the main theorem, we prove some preliminary results.

Lemma 3.3. Let V and V ∗ be two spaces satisfying (v1)–(v2). Then,

(3.10) V ∩ C0 = V ∗ ∩ C0 = V ∩ V ∗.

Proof. (1) Let v ∈ V ∩ C0. Since V is a vector space, for all u ∈ V and for all
λ ∈ R, λv + u ∈ V . Moreover, V ⊂ C+ implies 〈D(λv + u), (λv + u)〉W ′,W ≥ 0.
Developing and using the fact that v ∈ C0 and that D is self-adjoint yields

2λ〈Du, v〉W ′,W + 〈Du, u〉W ′,W ≥ 0.

Since λ ∈ R is arbitrary, we infer that 〈Du, v〉W ′,W = 0 for all u ∈ V , i.e., v ∈
D(V )⊥ = V ∗ owing to (v2). Hence, v ∈ V ∗ ∩ C0. As a result, V ∩ C0 ⊂ V ∗ ∩ C0.
(2) Let v ∈ V ∗ ∩ C0. Proceeding as before, we infer that v ∈ D(V ∗)⊥ = V owing
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to (v2). Hence, V ∗ ∩ C0 ⊂ V ∩ V ∗.
(3) Let v ∈ V ∩ V ∗. Then, it is clear that v ∈ C0. Hence, V ∩ V ∗ ⊂ V ∩ C0. �

Let us now introduce the operator DV : V −→ V ′ such that

(3.11) ∀u, v ∈ V, 〈DV u, v〉V ′,V = 〈Du, v〉W ′,W .

Clearly DV is bounded and self-adjoint.

Lemma 3.4. Let V and V ∗ be two spaces satisfying (v1)–(v2). Then,

(3.12) Ker(DV ) = V ∩ V ∗.

Proof. (1) Let v be in Ker(DV ) ⊂ V . Then 〈DV v, w〉V ′,V = 〈v,Dw〉W,W ′ = 0 for
all w in V , that is v is in V ∗; hence, v ∈ V ∗ ∩ V . This proves Ker(DV ) ⊂ V ∗ ∩ V .
(2) Let v be in V ∗ ∩ V . Then, 〈v,Dw〉W,W ′ = 〈DV v, w〉V ′,V = 0 for all w in V ,
meaning that DV v = 0, i.e., v is in Ker(DV ). Hence, V ∗ ∩ V ⊂ Ker(DV ). �

Lemma 3.5. Im(DV ) and Im(DV ∗) are closed.

Proof. Proceed as in step 2 of the proof of Lemma 2.4. The two key arguments are
that V and V ∗ are closed subspaces of W (see (3.4)), i.e., V and V ∗ equipped with
the scalar product (·, ·)W are Hilbert spaces, and W0 ⊂ V ∩ V ∗ (see (3.5)). �

For all x ∈ W , we set Vx = V + span(x). Similarly, for y ∈ W , we set V ∗y =
V ∗ + span(y). We are now in a position to state the main result of this section.

Theorem 3.3. Let V and V ∗ be two spaces satisfying (v1)–(v2). Then, V is
maximal in C+ (i.e., there is no x ∈ W such that Vx ⊂ C+ and V is a proper
subspace of Vx) and V ∗ is maximal in C− (i.e., there is no y ∈ W such that
V ∗y ⊂ C− and V ∗ is a proper subspace of V ∗y ).

Proof. We only prove the first statement, the proof of the second one being similar.
The proof proceeds by contradiction. Assume that there is x ∈ W such that
Vx ⊂ C+ and V is a proper subspace of Vx, that is x 6∈ V .
(1) For all v ∈ V ∩ V ∗ ⊂ C0 and all λ ∈ R, x+ λv ∈ Vx ⊂ C+ since Vx is a vector
space; that is

〈D(x+ λv), x+ λv〉W ′,W = 〈Dx, x〉W ′,W + 2λ〈Dx, v〉W ′,W ≥ 0.

This is possible only if 〈Dx, v〉W ′,W = 0 for all v ∈ V ∩ V ∗. Let us define φx ∈ V ′
such that 〈φx, v〉V ′,V = 〈Dx, v〉W ′,W for all v ∈ V . Then, owing to Lemma 3.4

〈φx, v〉V ′,V = 0, ∀v ∈ V ∩ V ∗ = Ker(DV ),

i.e., φx ∈ Ker(DV )⊥V . Here, for a subset X ⊂ V , X⊥V denotes the set of the
continuous linear forms in V ′ that are zero on X.
(2) Since Im(DV ) is closed (see Lemma 3.5) and DV is self-adjoint, Banach’s Closed
Range Theorem implies φx ∈ Ker(DV )⊥V = Im(D∗

V ) = Im(DV ). In other words,
there is vx ∈ V such that φx = DV vx. This immediately implies for all w ∈ V ,

0 = 〈φx −DV vx, w〉V ′,V = 〈Dx−Dvx, w〉W ′,W = 〈x− vx, Dw〉W ′,W .

In other words, x − vx ∈ D(V )⊥ = V ∗ ⊂ C−. Since x − vx ∈ Vx ⊂ C+, we infer
x− vx ∈ C0.
(3) Let us set z = x−vx. Clearly Vz = Vx and z ∈ C0, but z 6∈ V since x 6∈ V . Since
Vz is a vector space, for all v ∈ V and for all λ ∈ R, λz+v ∈ Vz. Then, owing to the
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fact that z ∈ C0 and D is self-adjoint, we infer that 〈D(λz+ v), (λz+ v)〉W ′,W ≥ 0,
implying

2λ〈Dv, z〉W ′,W + 〈Dv, v〉W ′,W ≥ 0.
Since λ ∈ R is arbitrary, we deduce that 〈Dv, z〉W ′,W = 0 for all v ∈ V , i.e.,
z ∈ D(V )⊥ = V ∗. Hence, z ∈ V ∗ ∩ C0, which owing to Lemma 3.3 implies
z ∈ V ∩ V ∗, thereby contradicting the fact that V is a proper subspace of Vz. �

4. The boundary operator M

The purpose of this section is to investigate an alternative way to enforce bound-
ary conditions, namely to define the space V as the kernel of an operator (D−M)
where M is a suitably chosen boundary operator. This approach has close links
with that proposed originally by Friedrichs to study PDE’s; see §5.1 for further
details.

4.1. Properties of the boundary operator M . We assume that there exists an
operator M ∈ L(W ;W ′) such that

M is positive, i.e., 〈Mw,w〉W ′,W ≥ 0 for all w in W,(m1)

W = Ker(D −M) + Ker(D +M).(m2)

Let M∗ ∈ L(W ;W ′) denote the adjoint operator of M defined as follows: for all
(u, v) ∈W ×W , 〈M∗u, v〉W ′,W = 〈Mv, u〉W ′,W .

The main motivation for introducing the above assumptions is the following

Theorem 4.1. Assume (m1)–(m2). Then the restricted operators T : Ker(D −
M)→ L and T̃ : Ker(D +M∗)→ L are isomorphisms.

Proof. This is a corollary of Theorem 3.1 together with Theorem 4.2. �

We now want to investigate the relation existing between the two sets of hypothe-
ses (m1)–(m2) and (v1)–(v2). To this end we derive properties of the boundary
operator M that will be used in the next section.

Lemma 4.1. Assume (m1)–(m2). Then,

Ker(D) = Ker(M) = Ker(M∗),(4.1)

Im(D) = Im(M) = Im(M∗).(4.2)

Proof. (1) Let us first verify that (m1) implies Ker(M) = Ker(M∗). Let x ∈
Ker(M). Then, for all y ∈W and all λ ∈ R,

〈M(y + λx), (y + λx)〉W ′,W = 〈My, y〉W ′,W + λ〈My, x〉W ′,W ≥ 0.

This implies that 〈My, x〉W ′,W = 0 for all y ∈W , i.e., x ∈ Ker(M∗). Similarly, one
proves Ker(M∗) ⊂ Ker(M).
(2) Let us now verify that (m2) implies Im(D) = Im(M). Let x ∈ Im(D). Then,
there is y ∈W such that x = Dy. Let y = y− + y+ with y± ∈ Ker(D±M). Then,
x = D(y− + y+) = M(y− − y+), showing that x ∈ Im(M). Similarly, one proves
Im(M) ⊂ Im(D).
(3) Taking the polar sets of Im(D) and Im(M) and using the self-adjointness of D,
it is inferred that Ker(D) = Ker(M∗), and (4.1) then follows from step 1.
(4) Since Im(D) is closed owing to Lemma 2.4, so is Im(M); hence, the Closed
Range Theorem implies that Im(M∗) is closed. Finally, taking the polar sets of
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Ker(D) and Ker(M), it is inferred that Im(D) = Im(M∗), thus completing the
proof. �

Remark 4.1. Owing to (4.1), W0 ⊂ Ker(M), i.e., M is indeed a boundary operator.

Lemma 4.2. Assume (m1). Then, (m2) holds if, and only if,

(m3) W = Ker(D −M∗) + Ker(D +M∗).

Proof. Assume (m1)–(m2). Let w ∈W and set w = w+ + w− with w± ∈ Ker(D ±
M). Observing that D(w−+w+) = M(w−−w+), it is deduced that D(w−+w+) ∈
Im(M). Owing to (4.2), there is z ∈ W such that D(w− + w+) = M∗z. Using
Lemma 4.3 below yields Dz = M∗(w− + w+). Set w∗± = 1

2 (w− + w+ ± z). Then,
it is easily verified that w∗± ∈ Ker(D ±M∗) and that w = w∗− + w∗+. Hence, (m3)
holds. Proceed similarly to prove the converse statement, namely that (m1) and
(m3) imply (m2). �

Lemma 4.3. Assume (m1)–(m2). Then, for all (x, y) ∈ W ×W , Dx = M∗y if,
and only if, M∗x = Dy.

Proof. Taking polar sets in (m2) yields

(4.3) Im(D −M∗) ∩ Im(D +M∗) = {0}.
Let (x, y) ∈W ×W be such that Dx = M∗y. Since

M∗x−Dy = (D +M∗)(x− y) = (M∗ −D)(x+ y),

it is inferred from (4.3) that M∗x = Dy. Proceed similarly to prove the converse
statement. �

Remark 4.2. Lemma 4.2 shows that the operators M and M∗ play symmetric roles.

4.2. Equivalence with the cone formalism. The goal of this section is to show
that the formalism based on the operator M , namely (m1)–(m2), is somewhat
equivalent to the cone formalism introduced in §3, namely (v1)–(v2).

Theorem 4.2. Assume that M ∈ L(W ;W ′) satisfies (m1)–(m2) and set

V = Ker(D −M),(4.4)

V ∗ = Ker(D +M∗).(4.5)

Then, V and V ∗ satisfy (v1)–(v2).

Proof. (1) For all v ∈ V , 〈Dv, v〉W ′,W = 〈Mv, v〉W ′,W ≥ 0 owing to (m1). Hence,
V ⊂ C+. Similarly, V ∗ ⊂ C−. Hence, (v1) holds.
(2) The proof of (v2) is given in [3]. It is restated here for completeness.
(2.a) Let us prove that D(V )⊥ ⊂ V ∗. Let w ∈ D(V )⊥ and let z ∈ W . Owing to
(m2), z can be decomposed into z = z+ + z− with z± ∈ Ker(D ±M). Then,

〈(D +M∗)w, z〉W ′,W = 〈(D +M∗)w, z+〉W ′,W + 〈(D +M∗)w, z−〉W ′,W

= 〈(D +M)z−, w〉W ′,W = 2〈Dz−, w〉W ′,W = 0,

since z− ∈ V and w ∈ D(V )⊥. As a result, w ∈ Ker(D+M∗). Hence, D(V )⊥ ⊂ V ∗.
(2.b) Conversely, let w ∈ V ∗. Let v ∈ V . Using the fact that Dv = Mv yields

〈Dv,w〉W ′,W = 1
2 〈(D +M)v, w〉W ′,W = 1

2 〈(D +M∗)w, v〉W ′,W = 0,

i.e., w ∈ D(V )⊥. Hence, V ∗ ⊂ D(V )⊥.
(2.c) Proceed similarly to prove D(V ∗)⊥ = V . �
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We now investigate the converse of Theorem 4.2.

Theorem 4.3. Let V and V ∗ be two spaces satisfying (v1)–(v2). Assume that
there exist P ∈ L(W ;V ) and Q ∈ L(W ;V ∗) such that

D(v − Pv) = 0, ∀v ∈ V,(4.6)

D(v −Qv) = 0, ∀v ∈ V ∗,(4.7)

DPQ = DQP.(4.8)

Define M ∈ L(W ;W ′) by setting for all (u, v) ∈W ×W ,

(4.9)
〈Mu, v〉W ′,W = 〈DPu, Pv〉W ′,W − 〈DQu,Qv〉W ′,W

+ 〈D(P +Q− PQ)u, v〉W ′,W − 〈Du, (P +Q− PQ)v〉W ′,W .

Then, V = Ker(D −M), V ∗ = Ker(D +M∗), and M satisfies (m1)–(m2).

Proof. The proof of Theorem 4.3, which is closely inspired from that presented by
Friedrichs [4] in finite dimension, is detailed in the appendix. The key differences are
that we need to verify that D(V ) is closed and that the existence of the operators
P and Q cannot be taken for granted. �

Remark 4.3.
(i) Observe that the first two terms in the right-hand side of (4.9) are the sym-

metric part of M and that the last two terms are its skew-symmetric part.
(ii) The operator M satisfying (m1)–(m2) and such that (4.4) and (4.5) hold is

not necessarily unique. Equation (4.9) provides just one means to construct one
operator M explicitly.

Lemma 4.4. Assume that V +V ∗ is closed. Then, there exist projectors P : W →
V and Q : W → V ∗ such that PQ = QP , and M ∈ L(W ;W ′) can be constructed
by using (4.9).

Proof. Since W is a Hilbert space and V + V ∗ is closed, there exists a closed
subspace S of W such that W = (V + V ∗)⊕ S. Furthermore, let V1 (resp., V2) be
the orthogonal complement of V ∩ V ∗ in V (resp., V ∗) with respect to the scalar
product associated with the graph norm, i.e., (·, ·)L + (T ·, T ·)L. Then, it is clear
that V + V ∗ = V1 ⊕ V2 ⊕ (V ∩ V ∗). As a result,

(4.10) W = V1 ⊕ V2 ⊕ (V ∩ V ∗)⊕ S.

For w ∈W , we denote by w = w1 +w2 +w3 +w4 the decomposition of w induced
by (4.10). Then, define for all w ∈W ,

(4.11) Pw = w1 + w3 and Qw = w2 + w3.

It is clear that P and Q are projectors onto V and V ∗, respectively, and that
PQ = QP . Hence, hypotheses (4.6)-(4.7)-(4.8) in Theorem 4.3 hold, showing that
the projectors P and Q can be employed to construct M according to (4.9). �

It is not yet clear to us whether properties (v1)–(v2) or properties (m1)–(m2)
actually imply that V +V ∗ is closed inW . Two simple instances where this situation
occurs are (1) the case whereW = V +V ∗ and (2) the case where V = V ∗. Although
these situations might seem at first glance somewhat simplistic, it turns out that
they are relevant to important PDE applications; see §5. These situations are
treated in the following
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Corollary 4.1. Assume that V +V ∗ is closed and let M ∈ L(W ;W ′) be constructed
as in Lemma 4.4.

(i) If W = V + V ∗, then M is self-adjoint, i.e., M = M∗.
(ii) If V = V ∗, then M is skew-symmetric, i.e., M = −M∗.

Proof. (1) Assume that W = V +V ∗. Then, the space S considered in the proof of
Lemma 4.4 is trivial, and hence P +Q − PQ is the identity in W . Therefore, the
last two terms in (4.9) cancel, yielding

(4.12) 〈Mu, v〉W ′,W = 〈DPu, Pv〉W ′,W − 〈DQu,Qv〉W ′,W ,

i.e., M = M∗.
(2) Assume that V = V ∗. Then, P = Q so that the first two terms in (4.9) cancel.
Since P +Q−QP = P in this case, this yields

(4.13) 〈Mu, v〉W ′,W = 〈DPu, v〉W ′,W − 〈DPv, u〉W ′,W ,

i.e., M = −M∗. �

Remark 4.4.
(i) In the case where V = V ∗, the decomposition (4.10) reduces to W = V ⊕ S

and P : W → V is the projector such that for all w ∈W , Pw is the unique solution
in V of

(T (Pw − w), T v)L + (Pw − w, v)L = 0, ∀v ∈ V.

(ii) We stress the fact that the conclusions of Corollary 4.1 hold only for the
particular operator M that is constructed in Lemma 4.4. Since the operator M ∈
L(W ;W ′) satisfying (m1)–(m2) is not necessarily unique, it is sometimes possible
to construct boundary operators that satisfy (m1)–(m2), but that do not satisfy
the conclusions of Corollary 4.1; see Remark 5.3 for an example.

5. Application to PDE’s

This section presents some applications of the present theory to PDE’s, and
in particular to the systems of first-order PDE’s considered by Friedrichs in [4].
As particular examples, we consider a scalar hyperbolic PDE (e.g., a transport
equation), a scalar elliptic PDE (e.g., the Laplacian), and a system of coupled
PDE’s associated with the Maxwell equations in the diffusive regime.

5.1. Friedrichs’ formalism. Let Ω be a bounded, open, and connected Lipschitz
domain in Rd. Let D(Ω) be the space of C∞ scalar-valued functions that are
compactly supported in Ω. Let m be a positive integer. Set L = [L2(Ω)]m and
D = [D(Ω)]m. Clearly, D is dense in L.

Let K ∈ L(L;L) be a bounded linear operator mapping L to L. Let {Ak}1≤k≤d

be a family of d locally integrable functions on Ω with values in Rm,m. We denote
by ∇·A : D −→ D′ the operator such that ∇·A(v) = (

∑d
k=1 ∂kAk)v for all v ∈ D.

We henceforth assume that

∀k ∈ {1, . . . , d}, Ak ∈ [L∞(Ω)]m,m and ∇·A ∈ L(L;L),(a1)

∀k ∈ {1, . . . , d}, Ak = (Ak)t a.e. in Ω.(a2)

∃µ0 > 0, K +K∗ −∇·A ≥ µ0I,(a3)

where I is the identity operator in L.
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We define an operator T as follows:

(5.1) T : D 3 ψ 7−→ Kψ +
d∑

k=1

Ak∂kψ ∈ L.

LetK∗ ∈ L(L;L) be the adjoint operator ofK, i.e., for all (u, v) ∈ L×L, (Ku, v)L =
(K∗v, u)L. Then the formal adjoint of T is given by

(5.2) T̃ : D 3 ψ 7−→ (K∗ − (∇·A)∗)ψ −
d∑

k=1

(Ak)t∂kψ ∈ L.

We purposely did not use the symmetry property (a2) in (5.2) to emphasize the
role it plays in the following

Proposition 5.1. Assume (a1)–(a2)–(a3). Let T and T̃ be defined by (5.1)
and (5.2), respectively. Then, (t1)–(t2)–(t3) hold.

Proof. (1) Property (t1) simply results from an integration by parts.
(2) To prove property (t2) observe that

∀ψ ∈ D, (T + T̃ )ψ = (K +K∗ − (∇·A)∗)ψ +
d∑

k=1

(
Ak − (Ak)t

)
∂kψ

= (K +K∗ −∇·A)ψ,

owing to the symmetry property (a2). Hence, T + T̃ is bounded on L.
(3) (t3) follows from the above equation and (a3). �

The space W is characterized by

W = {v ∈ L;
∑d

k=1Ak∂kv ∈ L}.
Using (a1), one easily verifies that [H1(Ω)]m is a subspace of W .

Let n = (n1, . . . , nd)t be the unit outward normal to ∂Ω. The usual way of
presenting Friedrichs’ systems consists of assuming that the fields {Ak}1≤k≤d are
smooth enough so that the matrix

(5.3) D =
d∑

k=1

nkAk,

is meaningful at the boundary. Provided [C1(Ω)]m is dense in [H1(Ω)]m and in W ,
it can be shown that Du ∈ [H− 1

2 (∂Ω)]m. Further characterization and regularity
results on Du can be found in [8, 9]; see also [5] and [6]. Also observe that owing
to (a2), the following representation of D in terms of D holds

〈Du, v〉W ′,W =
∫

∂Ω

d∑
k=1

vtnkAku =
∫

∂Ω

vtDu,

whenever u and v and smooth functions.
The key hypothesis introduced by Friedrichs consists of assuming that there

exists a matrix-valued field at the boundary, sayM : ∂Ω −→ Rm,m, such that, a.e.
on ∂Ω,

M is positive, i.e., (Mξ, ξ)Rm ≥ 0 for all ξ in Rm,(5.4)

Rm = Ker(D −M) + Ker(D +M).(5.5)
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Let f ∈ L. Following the terminology of Friedrichs [3], a solution to the PDE
system Tu = f supplemented with the boundary condition (D −M)u|∂Ω = 0 is
said to be strong if

(5.6) u ∈ [C1(Ω)]m, Tu = f, (D −M)u|∂Ω = 0.

Likewise, u is said to be a weak solution if

(5.7) u ∈ L, (u, T̃ v)L = (f, v)L ∀v ∈ [C1(Ω)]m s.t. (D +Mt)v|∂Ω = 0.

Friedrichs proved the uniqueness of strong solutions and the existence of weak
solutions; see [8] for more details and further results. That with the above formalism
it is difficult to obtain existence and uniqueness simultaneously is a consequence of
the boundary conditions being expressed explicitly. This observation is one of the
reasons that led us to introduce the boundary conditions in the abstract fashion
(v1)-(v2).

Remark 5.1. Observe that the definition of T , (5.1), and the hypothesis (a2) are
somewhat restrictive. It is possible to consider more general forms for the differen-
tial operators T and T̃ within the framework of the present theory. Let {Ak}1≤k≤d

and {Bk}1≤k≤d be two families of smooth functions with values in Rm,m. Let
K ∈ L(L;L). Consider the differential operators

T : D 3 ψ 7−→ Kψ +
∑d

k=1Ak∂k(Bkψ) ∈ L,

T̃ : D 3 ψ 7−→ K∗ψ −
∑d

k=1(Bk)t∂k((Ak)tψ) ∈ L,

and define the operator

(5.8) {{A,B}} : L 3 v 7−→ (
∑d

k=1Ak∂kBk − (Bk)t∂k(Ak)t)v ∈ L.

Then,
(T + T̃ )ψ = (K +K∗ − {{A,B}})ψ +

∑d
k=1(Ck − (Ck)t)∂kψ,

with Ck = AkBk. Hence, property (t2) holds provided the matrix Ck is symmetric
a.e. in Ω. (t3) holds if there is µ0 > 0 such that K+K∗−{{A,B}} ≥ µ0I. Moreover,
if there is µ0 > 0 such that K +K∗ ≥ µ0I, property (t3) holds independently of
the smoothness of the two families {Ak}1≤k≤d and {Bk}1≤k≤d when {{A,B}} = 0,
which is the case, for instance, if either Ak = (Bk)t or Ak = −(Bk)t a.e. in Ω.

5.2. Scalar hyperbolic PDE’s. Let β be a vector field in Rd such that β ∈
[L∞(Ω)]d and ∇·β ∈ L∞(Ω). Define the inflow boundary ∂Ω− and the outflow
boundary ∂Ω+ as follows:

(5.9) ∂Ω− = {x ∈ ∂Ω; β(x)·n(x) < 0}, ∂Ω+ = {x ∈ ∂Ω; β(x)·n(x) > 0}.

Let µ be a function in L∞(Ω) and assume there exists µ0 > 0 such that

(5.10) µ(x)− 1
2∇·β(x) ≥ µ0 > 0 a.e. in Ω.

Consider the advection–reaction equation

(5.11) µu+ β·∇u = f,

with given data f ∈ L2(Ω). This PDE falls into the framework of §5.1 by setting
Kv = µv for all v ∈ L2(Ω), and Ak = βk for k ∈ {1, . . . , d}. It is clear that
(a1)–(a2)–(a3) hold with m = 1. The graph space is

(5.12) W = {w ∈ L2(Ω); β·∇w ∈ L2(Ω)}.
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To derive a simple representation of the boundary operator D, we make the
following assumptions:

C1(Ω) is dense in W,(5.13)

∂Ω− and ∂Ω+ are well-separated, i.e., dist(∂Ω−, ∂Ω+) > 0.(5.14)

Note that (5.13) is a regularity hypothesis on Ω; it can be shown to hold if Ω is
Lipschitz. Let L2(∂Ω; |β·n|) be the space of real-valued functions that are square
integrable with respect to the measure |β·n|dx where dx is the Lebesgue measure
on ∂Ω.

Lemma 5.1. Provided (5.13)–(5.14) hold, the trace operator γ : C1(Ω) 3 v −→
v ∈ L2(∂Ω; |β·n|) extends uniquely to a continuous operator on W . Moreover, the
operator D has the following representation:

(5.15) ∀(u, v) ∈W ×W, 〈Du, v〉W ′,W =
∫

∂Ω

uv(β·n).

For brevity, the proof, which is given in [3], is not repeated here. It relies on the
fact that there exist two non-negative functions ψ− and ψ+ in C1(Ω) such that

(5.16) ψ− + ψ+ = 1 on Ω, ψ−|∂Ω+ = 0, ψ+|∂Ω− = 0.

Remark 5.2. The hypothesis (5.14), i.e., ∂Ω− and ∂Ω+ are well-separated, is nec-
essary for Lemma 5.1 to hold as shown by the following counterexample. Consider
the triangular domain Ω = {(x, y) ∈ R2; |x| < y < 1} and define the vector field
β = (yα, 0) where α > 0. Clearly ∂Ω− = {(x, y) ∈ R2; 0 < y = −x < 1} and
∂Ω+ = {(x, y) ∈ R2; 0 < y = x < 1}, i.e., dist(∂Ω−, ∂Ω+) = 0. It is proved in [6]
that if α ∈ (0, 1), the trace operator γ defined in Lemma 5.1 cannot be extended
to a continuous operator on the graph space W with codomain L2(∂Ω; |β·n|). This
means in particular that D cannot have an integral representation, i.e., (5.15) does
not hold.

To enforce boundary conditions, set

V = {v ∈W ; v|∂Ω− = 0},(5.17)

V ∗ = {v ∈W ; v|∂Ω+ = 0}.(5.18)

Lemma 5.2. Let V and V ∗ be defined by (5.17) and (5.18), respectively. Then,
(v1)–(v2) hold.

Proof. The fact that V ⊂ C+ and V ∗ ⊂ C− directly results from (5.15) and the
definition of ∂Ω− and ∂Ω+. Let us now prove that V = D(V ∗)⊥. Let v ∈ V and
let v∗ ∈ V ∗. Then,

〈Dv∗, v〉W ′,W =
∫

∂Ω

vv∗(β·n) = 0,

since v|∂Ω− = 0, v∗|∂Ω+ = 0, and β·n vanishes on the rest of the boundary. Hence,
v ∈ D(V ∗)⊥, i.e., V ⊂ D(V ∗)⊥. Conversely, let v ∈ D(V ∗)⊥. Using the fact that
ψ−v ∈ V ∗ yields

0 = 〈D(ψ−v), v〉W ′,W =
∫

∂Ω

ψ−v2(β·n) =
∫

∂Ω−
v2(β·n).

As a result, v|∂Ω− = 0, i.e., v ∈ V ; hence, D(V ∗)⊥ ⊂ V . Proceed similarly to
establish that D(V )⊥ = V ∗. �
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We now construct the boundary operator M using the techniques presented in
§4.2. To illustrate the fact that there exist many possibilities to construct a suitable
operator M , we present two techniques, one inspired from Theorem 4.3 and one
inspired from Lemma 4.4.

We first apply Theorem 4.3. Consider the partition of unity defined in (5.16)
and define the operators

(5.19) P : W 3 w 7−→ ψ+w ∈ V and Q : W 3 w 7−→ ψ−w ∈ V ∗.

Using the representation (5.15), it is straightforward to check that (4.6)-(4.7)-(4.8)
hold. Hence, (4.12) yields the following representation: For all (u, v) ∈W ×W ,

〈Mu, v〉W ′,W =
∫

∂Ω

PuPv(β·n)−
∫

∂Ω

QuQv(β·n)

=
∫

∂Ω

(ψ+)2uv(β·n)−
∫

∂Ω

(ψ−)2uv(β·n)

=
∫

∂Ω+
uv(β·n)−

∫
∂Ω−

uv(β·n) =
∫

∂Ω

uv|β·n|.

We now apply Lemma 4.4. Using the partition of unity defined in (5.16), it is
clear that for all w ∈ W , w = (ψ+ + ψ−)w = ψ+w + ψ−w with ψ+w ∈ V and
ψ−w ∈ V ∗. Hence, W = V + V ∗; that is to say, we can use the projectors defined
in (4.11). For all (u, v) ∈ W ×W , let u = u1 + u2 + u3 and v = v1 + v2 + v3 be
the decompositions induced by (4.10) (observe that S = {0} since W = V + V ∗).
Then, (4.12) yields the following representation: For all (u, v) ∈W ×W ,

〈Mu, v〉W ′,W =
∫

∂Ω

(u1 + u3)(v1 + v3)(β·n)−
∫

∂Ω

(u2 + u3)(v2 + v3)(β·n)

=
∫

∂Ω−
u1v1(β·n)−

∫
∂Ω+

u2v2(β·n)

=
∫

∂Ω+
uv(β·n)−

∫
∂Ω−

uv(β·n) =
∫

∂Ω

uv|β·n|.

In this example, both approaches yield the same boundary operator M , and M is
self-adjoint in accordance with Corollary 4.1.

5.3. Scalar elliptic PDE’s. Let µ be a positive function in L∞(Ω) uniformly
bounded away from zero and consider the PDE

(5.20) −∆u+ µu = f,

with given data f ∈ L2(Ω). This equation can be written as a system of first-order
PDE’s by setting

(5.21)
{
σ +∇u = 0,
µu+∇·σ = f.

This system of PDE’s fits into the framework of §5.1 by setting m = d + 1, L =
[L2(Ω)]m, K(σ, u) = (σ, µu)t for all (σ, u) ∈ L and for all k ∈ {1, . . . , d},

(5.22) Ak =

[
0 ek

(ek)t 0

]
,
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where ek is the k-th vector in the canonical basis of Rd. It is easily checked that
(a1)–(a2)–(a3) hold. The graph space is

(5.23) W = H(div; Ω)×H1(Ω).

Since functions in H1(Ω) have traces in H
1
2 (∂Ω) and vector fields in H(div; Ω) have

normal traces in H− 1
2 (∂Ω), the boundary operator D has the following representa-

tion: For all ((σ, u), (τ, v)) ∈W ×W ,

(5.24) 〈D(σ, u), (τ, v)〉W ′,W = 〈σ·n, v〉− 1
2 , 1

2
+ 〈τ ·n, u〉− 1

2 , 1
2
,

where 〈, 〉− 1
2 , 1

2
denotes the duality pairing between H− 1

2 (∂Ω) and H
1
2 (∂Ω).

To enforce boundary conditions, one possible choice consists of setting

(5.25) V = V ∗ = H(div; Ω)×H1
0 (Ω) = {(σ, u) ∈W ; u|∂Ω = 0}.

This choice corresponds to Dirichlet boundary conditions; Neumann and Robin
boundary conditions can be considered as well.

Lemma 5.3. Let V and V ∗ be defined by (5.25). Then, (v1)–(v2) hold.

Proof. It is readily seen from (5.24) that V ⊂ C0; hence, (v1) holds. Let us now
prove that V = D(V )⊥. Let (σ, u) ∈ V . Then, for all (τ, v) ∈ V ,

〈D(σ, u), (τ, v)〉W ′,W = 〈σ·n, v〉− 1
2 , 1

2
+ 〈τ ·n, u〉− 1

2 , 1
2

= 0,

since u|∂Ω = 0 and v|∂Ω = 0. Hence, V ⊂ D(V )⊥. Conversely, let (σ, u) ∈ D(V )⊥.
Let θ ∈ H− 1

2 (∂Ω). There exists τθ ∈ H(div; Ω) such that τθ·n = θ in H− 1
2 (∂Ω).

Since (τθ, 0) ∈ V and (σ, u) ∈ D(V )⊥, it is inferred that

0 = 〈D(τθ, 0), (σ, u)〉W ′,W = 〈θ, u〉− 1
2 , 1

2
.

Since θ is arbitrary in H− 1
2 (∂Ω), this yields u|∂Ω = 0, i.e., u ∈ V . �

We now construct the boundary operator M using the technique of Lemma 4.4.
Since V = V ∗, it is inferred from Corollary 4.1 that M is skew-symmetric. Let
π : H1(Ω)→ H1

0 (Ω) be the projector such that for all u ∈ H1(Ω), πu is the unique
solution in H1

0 (Ω) of

(5.26) (∇(πu− u),∇v)L2(Ω) + (πu− u, v)L2(Ω) = 0, ∀v ∈ H1
0 (Ω).

Let

(5.27) P : W 3 (σ, u) 7−→ (σ, πu) ∈ V.
Then, (4.13) yields

(5.28)
〈M(σ, u), (τ, v)〉W ′,W = 〈D(σ, πu), (τ, v)〉W ′,W − 〈D(τ, πv), (σ, u)〉W ′,W

= 〈σ·n, v〉− 1
2 , 1

2
− 〈τ ·n, u〉− 1

2 , 1
2
,

since (πu)|∂Ω = (πv)|∂Ω = 0.

Remark 5.3.
(i) Other suitable boundary operators M can be easily designed. For instance,

〈M(σ, u), (τ, v)〉W ′,W = 〈σ·n, v〉− 1
2 , 1

2
− 〈τ ·n, u〉− 1

2 , 1
2

+ α

∫
∂Ω

uv,

where α is an arbitrary nonnegative real, is a suitable choice to enforce Dirichlet
boundary conditions. Observe that M 6= −M∗ whenever α 6= 0.



englishBIJECTIVE HILBERT OPERATORS RELATED TO FRIEDRICHS’ SYSTEMS 17

(ii) Diffusion equations with non-constant tensor-valued diffusion can be han-
dled by using the formalism alluded to in Remark 5.1. Let κ = (κkl)1≤k,l≤d be a
bounded positive definite matrix-valued field defined on Ω whose lowest eigenvalue
is uniformly bounded away from zero. Consider the PDE

(5.29) −∇·(κtκ∇u) + µu = f.

Here, κ is the square root of the diffusion tensor. The natural way to write this
PDE in mixed form consists of setting

(5.30)

{
σ + κ∇u = 0,

µu+∇·(κtσ) = f.

This system fits the framework described in Remark 5.1 if we set

(5.31) Ak =
[
κ 0
0 1

]
, Bk =

[
0 ek

(κk)t 0

]
,

where κ1, . . . , κd are the columns of κ. We observe that for all k ∈ {1, . . . , d},
AkBk = (AkBk)t and

{{
Ak,Bk

}}
= 0, i.e., (t1)–(t2) hold. Note also that without

constructing the matrices Ak and Bk, k ∈ {1, . . . , d}, it is clear that (t2) holds by
working directly with T and T̃ .

5.4. Maxwell’s equations in the diffusive regime. Let us consider a simplified
form of Maxwell’s equations in R3 in the diffusive regime, i.e., when displacement
currents are negligible. One interesting difference with the two previous examples is
that the boundary operator D does not admit in general a representation involving
quantities defined only at the boundary.

Let σ and µ be two positive functions in L∞(Ω) uniformly bounded away from
zero, and consider the system of PDE’s

(5.32)
{
µH +∇×E = f,

σE −∇×H = g,

with given data (f, g) ∈ [L2(Ω)]3 × [L2(Ω)]3. This system of PDE’s fits into the
framework of §5.1 by setting m = 6, L = [L2(Ω)]3×[L2(Ω)]3, K(H,E) = (µH, σE)t

for all (H,E) ∈ L and by introducing for k ∈ {1, 2, 3} the matrices Ak ∈ R6,6 given
by

(5.33) Ak =

[
0 Rk

(Rk)t 0

]
.

The entries of the matrices Rk ∈ R3,3 are those of the Levi-Civita permutation
tensor, i.e., Rk

ij = εikj for 1 ≤ i, j, k ≤ 3. It is easily checked that (a1)–(a2)–(a3)
hold. Moreover, the graph space is

(5.34) W = H(curl; Ω)×H(curl; Ω).

We assume that Ω is smooth enough so that

(5.35) [H1(Ω)]3 is dense in H(curl; Ω).

Since vector fields in H(curl; Ω) have tangential traces in [H− 1
2 (∂Ω)]3, the following

formula holds for all h ∈ [H1(Ω)]3 and all e ∈ H(curl; Ω),

(∇×e, h)[L2(Ω)]3 − (e,∇×h)[L2(Ω)]3 = 〈(n×e), h〉− 1
2 , 1

2
.
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The boundary operator D is defined for all ((H,E), (h, e)) ∈W×W as follows:

(5.36)
〈D(H,E), (h, e)〉W ′,W = (∇×E, h)[L2(Ω)]3 − (E,∇×h)[L2(Ω)]3

+ (H,∇×e)[L2(Ω)]3 − (∇×H, e)[L2(Ω)]3 .

When H and E are smooth, the right-hand side of (5.36) can be interpreted as the
boundary integral

∫
∂Ω

(n×E)·h+ (n×e)·H.
Let us now define acceptable boundary conditions for (5.32). One possibility

(among many others) consists of setting

(5.37) V = V ∗ = H(curl; Ω)×H0(curl; Ω).

Since vector fields in H(curl; Ω) have tangential traces in [H− 1
2 (∂Ω)]3, couples

(H,E) ∈W are in V whenever E×n|∂Ω = 0.

Lemma 5.4. For all e ∈ H0(curl; Ω) and all h ∈ H(curl; Ω), (h,∇×e)[L2(Ω)]3 −
(∇×h, e)[L2(Ω)]3 = 0.

Proof. Let (hn) be a sequence in [H1(Ω)]3 converging to h in H(curl; Ω). Then

(∇×E, hn)[L2(Ω)]3 − (E,∇×hn)[L2(Ω)]3 = 〈(n×E), hn〉− 1
2 , 1

2
= 0.

We obtain the desired result by passing to the limit. �

Lemma 5.5. Let V and V ∗ be defined by (5.37). Then, (v1)–(v2) hold.

Proof. Let (H,E) ∈ V . Lemma 5.4 implies

〈D(H,E), (H,E)〉W ′,W = 0,

i.e., (H,E) ∈ C0. Hence, V = V ∗ ⊂ C0 showing that (v1) holds. Let us now prove
that V = D(V )⊥. Using Lemma 5.4, it is clear that V ⊂ D(V )⊥. Conversely, let
(h, e) ∈ D(V )⊥. Let (H,E) be in [H1(Ω)]3×H0(curl; Ω) ⊂ V . Then

0 = 〈D(H,E), (h, e)〉W ′,W = (H,∇×e)[L2(Ω)]3−(∇×H, e)[L2(Ω)]3 = 〈(e×n),H〉− 1
2 , 1

2
.

Since H is arbitrary and the traces of vectors fields in [H1(Ω)]3 span [H
1
2 (∂Ω)]3,

we conclude that (e×n)|∂Ω = 0, i.e., (h, e) ∈ V . This proves D(V )⊥ ⊂ V . �

We now construct the boundary operator M using the technique of Lemma 4.4.
Since V = V ∗, it is inferred from Corollary 4.1 that M is skew-symmetric. Let
π̂ : H(curl; Ω) −→ H0(curl; Ω) be the projector such that for all e ∈ H(curl; Ω), π̂e
is the unique solution in H0(curl; Ω) of

(5.38) (∇×(π̂e− e),∇×E)[L2(Ω)]3 + (π̂e− e,E)[L2(Ω)]3 = 0, ∀E ∈ H0(curl; Ω).

Let

(5.39) P : W 3 (h, e) 7−→ (h, π̂e) ∈ V.

Then, the operator M defined in (4.13) is such that for all ((H,E), (h, e)) ∈W×W ,

(5.40) 〈M(H,E), (h, e)〉W ′,W = 〈D(H, π̂E), (h, e)〉W ′,W−〈D(h, π̂e), (H,E)〉W ′,W .

Observe that

(5.41) 〈D(H, π̂E), (h, e)〉W ′,W = (H,∇×e)[L2(Ω)]3 − (∇×H, e)[L2(Ω)]3 ,

since (∇×(π̂E), h)[L2(Ω)]3 − (π̂E,∇×h)[L2(Ω)]3 = 0 owing to Lemma 5.4. Similarly,

(5.42) 〈D(h, π̂e), (H,E)〉W ′,W = (h,∇×E)[L2(Ω)]3 − (∇×h,E)[L2(Ω)]3 .
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As a result, it is finally inferred that

(5.43)
〈M(H,E), (h, e)〉W ′,W = − (∇×E, h)[L2(Ω)]3 + (E,∇×h)[L2(Ω)]3

+ (H,∇×e)[L2(Ω)]3 − (∇×H, e)[L2(Ω)]3 .

6. Appendix: proof of Theorem 4.3

(1) We first prove that V and V ∗ are characterized by the following:

(〈Dv,Qw〉W ′,W = 0, ∀w ∈ V ∗)⇐⇒ (v ∈ V ),(6.1)

(〈Dv, Pw〉W ′,W = 0, ∀w ∈ V )⇐⇒ (v ∈ V ∗).(6.2)

Indeed, let v ∈ W be such that 〈Dv,Qw〉W ′,W = 0, ∀w ∈ V ∗. Owing to (4.7) and
the self-adjointness of D, this implies

〈v,Dw〉W ′,W = 〈v,D(w −Qw)〉W ′,W + 〈Dv,Qw〉W ′,W = 0.

Hence, v ∈ D(V ∗)⊥ = V owing to (v2). The converse is evident. The proof of (6.2)
is similar.
(2) Since Pv ∈ V and Qw ∈ V ∗ = D(V )⊥ for all (v, w) ∈ W ×W , the following
identities hold:

〈DPv,Qw〉W ′,W = 0, ∀(v, w) ∈W×W,(6.3)

D(I − P )P = 0,(6.4)

D(I −Q)Q = 0.(6.5)

(3) Let us now verify that Ker(D) ⊂ Ker(M). Let u ∈ Ker(D), then u ∈ V ∩ V ∗
owing to (3.5). Using (4.6) and (4.7) yields DPu = DQu = Du = 0 in W ′. In
addition, since Qu is in Ker(D) ⊂ V , (4.6) implies DPQu = DQu = 0. As a result,
all the terms in the right-hand side of (4.9) vanish, i.e., u ∈ Ker(M).
(4) Let us prove V = Ker(D −M).
(4.a) Let v ∈ V and let us show that (D − M)v = 0. Observe first that (4.6)
implies v − Pv ∈ Ker(D). Hence, v − Pv ∈ Ker(M) owing to Step 1. This yields
(D−M)v = (D−M)Pv. Let us prove that (D−M)Pv = 0 in W ′. The definition
of M implies that for all w ∈W , the following holds:

〈(D−M)Pv,w〉W ′,W = 〈DPv,w〉W ′,W −〈DPPv, Pw〉W ′,W + 〈DQPv,Qw〉W ′,W

− 〈D(P +Q− PQ)Pv,w〉W ′,W + 〈DPv, (P +Q− PQ)w〉W ′,W .

The second term in the right-hand side is equal to 〈DPv, Pw〉W ′,W owing to (6.4);
the third vanishes owing to (4.8) and (6.3); for the fourth term observe that 〈D(Q−
PQ)Pv,w〉W ′,W = 〈DQ(I − P )Pv,w〉W ′,W and since v′ = (I − P )Pv ∈ Ker(D) ⊂
V ∗ owing to (6.4), it comes that DQv′ = Dv′ owing to (4.7), then Dv′ = D(I −
P )Pv = 0 owing to (6.4) again; finally, the fifth term is equal to 〈DPv, Pw〉W ′,W

since 〈DPv, (Q − PQ)w〉W ′,W = 〈Pv,DQ(I − P )w〉W ′,W = 0 owing to (4.8) and
(6.3). Hence,

〈(D −M)Pv,w〉W ′,W = 〈DPv,w〉W ′,W − 〈DPv, Pw〉W ′,W

− 〈DPv,w〉W ′,W + 〈DPv, Pw〉W ′,W = 0.

Therefore, (D − M)v = 0 in W ′, i.e., v ∈ Ker(D − M). This shows that V ⊂
Ker(D −M).



20 englishA. ERN, J.-L. GUERMOND, AND G. CAPLAIN

(4.b) Let us show the converse. Let v ∈ Ker(D −M) and let us prove that v ∈ V .
Let w ∈ V ∗. A direct calculation yields

〈(D−M)v,Qw〉W ′,W = 〈Dv,Qw〉W ′,W −〈DPv, PQw〉W ′,W +〈DQv,QQw〉W ′,W

− 〈D(P +Q− PQ)v,Qw〉W ′,W + 〈Dv, (P +Q− PQ)Qw〉W ′,W .

By using arguments similar to those that have been used in step 4.a, we in-
fer that the second term in the right-hand side vanishes; the third is equal to
〈DQv,Qw〉W ′,W ; the fourth reduces to 〈DQv,Qw〉W ′,W ; and the fifth is equal to
〈Dv,Qw〉W ′,W . Hence,

〈(D −M)v,Qw〉W ′,W = 2〈Dv,Qw〉W ′,W .

Since v ∈ Ker(D−M), the above equation yields that 〈Dv,Qw〉W ′,W = 0, ∀w ∈ V ∗.
Hence, the characterization (6.1) yields v ∈ V . Therefore, Ker(D −M) ⊂ V .
(5) The proof of V ∗ = Ker(D+M∗) is similar to that of V = Ker(D−M). We do
not repeat the arguments.
(6) Proof of (m1). For all w ∈W , (4.9) yields

〈Mw,w〉W ′,W = 〈DPw,Pw〉W ′,W − 〈DQw,Qw〉W ′,W ≥ 0,

since V ⊂ C+ and V ∗ ⊂ C− owing to (v1).
(7) Proof of (m2). Observe first that (D + M)(W ) ⊂ (V ∗)⊥. Indeed, for all
(w, v) ∈W × V ∗,

〈(D +M)w, v〉W ′,W = 〈(D +M∗)v, w〉W ′,W = 0,

since V ∗ = Ker(D +M∗). Furthermore, D(V ) is closed (see step 8 below); hence,
D(V ) = (V ∗)⊥ owing to (v2). As a result, (D + M)(W ) ⊂ D(V ). Let w ∈ W .
Owing to the above inclusion, there exists vw ∈ V such that Dvw = 1

2 (D +M)w.
To conclude, observe that w = vw + (w − vw), vw ∈ Ker(D −M), and w − vw ∈
Ker(D +M) since

(D +M)(w − vw) = 2Dvw − (D +M)vw = 2Dvw − 2Dvw = 0.

(8) To complete the proof, we need to prove that D(V ) is closed. Let (vn) be a se-
quence in V such that Dvn is Cauchy in W ′. Since D(W ) is closed (see Lemma 2.4)
there is v in W such that Dvn → Dv in W ′. Let w ∈ V ∗, then

〈Dw, v〉W ′,W = 〈Dv,w〉W ′,W = lim
n→+∞

〈Dvn, w〉W ′,W = lim
n→+∞

〈vn, Dw〉W ′,W = 0.

Hence v is in D(V ∗)⊥ = V .
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