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Abstract. In this paper, we derive two stabilized discontinuous finite element formu-
lations, symmetric and nonsymmetric, for the Stokes equations and the equations of
the linear elasticity for almost incompressible materials. These methods are derived via
stabilization of a saddle point system where the continuity of the normal and tangential
components of the velocity/displacements are imposed in a weak sense via Lagrange mul-
tipliers. For both methods, almost all reasonable pair of discontinuous finite elements
spaces can be used to approximate the velocity and the pressure. Optimal error estimate
for the approximation of both the velocity of the symmetric formulation and pressure in
L2 norm are obtained, as well as one in a mesh dependent norm for the velocity in both
symmetric and nonsymmetric formulations.

1. Introduction

We consider the Stokes system

− ∆u + ∇p = f in Ω,(1.1)

∇ · u + γp = 0 in Ω,(1.2)

u = 0 on ∂Ω,(1.3)

where u = (u1, . . . , ud) is a vector function, Ω is a bounded, open subset in Rd (d = 2 or 3)
with Lipschitz boundary ∂Ω. The symbols ∆, ∇, and ∇· denote the Laplacian, gradient,
and divergence operators respectively, and f(x) is the properly scaled external volumetric
force. For γ = 0 we get the Stokes system (of steady flow of very viscous fluid) for the
velocity u and the pressure p that is rescaled by the viscosity. For γ = 1 − 2ν, where
ν ∈ (0, 1

2
] is the Poisson’s ratio, we get the equations of the linear elasticity (constant

coefficients case) for the displacement u and the pressure p including the incompressible
limit ν = 1

2
.

These two problems are quite similar in regard to their stability. Namely, one can prove
the following a priori estimate for the solution of (1.1) – (1.3)

(1.4) ‖u‖H1 + ‖p‖L2 ≤ C‖f‖H−1

with a constant C independent of γ ≥ 0. The above stability relies on the fundamental
inf-sup condition of Ladyzhenskaya, Babuška, and Brezzi, see e.g. [7], [19], [29].

In order to get stable finite element approximation of this problem we need to have
similar property for the finite element spaces for u and p, correspondingly. Namely, we
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need a stable pair of finite element spaces, i.e. that satisfies the inf-sup condition. The
finite element analysis has produced a large number of stable pair of spaces. However,
various simple elements, for example, spaces using P1 - P0 polynomials on triangles and
Q1 - P0 polynomials on quadrilaterals are not stable.

To satisfy the inf-sup condition easier (even trivially) various stabilization techniques
have been proposed and studied. Perhaps among the very first stabilized finite element for-
mulation for the Stokes equations is the scheme proposed by Hughes, Franca and Balestra
[26], which allows use of simpler and more natural finite element spaces. Improvements of
the stabilized finite element formulation in [26] were made further by Hughes and Franca
[27]. Douglas and Wang [18] proposed an absolutely stabilized finite element formulation
for the Stokes problem in which solvability and convergence of the method do not de-
pend on the stability constant. Kechkar and Silvester [28] introduced a local stabilization
method in which the jump term of pressure on the All these stabilized finite element meth-
ods are designed for conforming elements for the velocity, i.e. velocity is approximated
by piecewise polynomial functions in H1(Ω).

Discontinuous Galerkin method, though more expensive, allows natural adaptive proce-
dures, constructions that are more flexible, and produce stable approximations. These are
some of the reasons that have made the Discontinuous Galerkin method an active research
area in recent years (see, e.g. [1, 3, 4, 5, 12, 11, 15, 13, 17, 23, 24]). Relaxing the continuity
of approximate functions across element boundary (required in standard finite element
methods) gives the discontinuous Galerkin method more localization and flexibility which
lead to easier and more natural h− p mesh adaptiation. Recently, Cockburn, Kanschat,
Schotzau and Schwab [11] studied a local discontinuous Galerkin method for the Stokes
and Navier-Stokes systems in mixed form. They showed that the local discontinuous
Galerkin methods in this case can easily handle meshes with hanging nodes, elements of
general shapes, local spaces of different types and weakly enforce the conservation of mass
element by element. Hansbo and Larson [24] introduced stabilized discontinuous Galerkin
method for the equations of the linear elasticity in the incompressible and nearly incom-
pressible case without using pressure variable and proved optimal rate of convergence in
certain mesh dependent norm.

The drawback of all discontinuous Galerkin approximations is a substantial increase
of the number of degrees of freedom, which leads to a much larger algebraic systems.
Attempts to reduce the number of the degrees of freedom has led to constructions using
Crouzeix-Raviart nonconforming finite elements (see, e.g. [23] and [21]) or spaces having
continuous normal component but discontinuous tangential component across the finite
element boundaries (see, e.g. [31]).

In this paper, following the point of view of Douglas and Wang [18] we derive and study
discontinuous Galerkin approximations of the Stokes equations and the equations of the
linear elasticity in the incompressible limit as stabilization schemes of a certain saddle
point problem. First we introduce as new variables the traces on the interfaces of the
tangential component of the velocity and the derivative of the normal component of the
velocity in normal direction to the finite element faces. To enforce the continuity of the
velocity along the interfaces we use Lagrange multipliers. This results to a new saddle
point problem which is approximated by finite elements method. This point of view, used
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exclusively by the mortar finite element method in the context of domain decomposi-
tion algorithms, allows to look at the discontinuous Galerkin method as a stabilization
technique for approximations of saddle point problems. Then the constructions of Wang
and Ye [31], Girault, Rivière and Wheeler [21] are particular choices of the discontinuous
spaces. The point here is that to avoid the necessity of choosing stable pairs of spaces we
stabilize this saddle point system, which is in general unstable, by adding “small” stabi-
lization terms. These allow to formally eliminate the Lagrange multipliers ending up with
a system that involves the velocity and the pressure only. We study two discretizations,
one that leads to a symmetric problem and second that produces a nonsymetric linear
system. Both methods share the advantages of local discontinuous Galerkin methods in
[11, 14] by using discontinuous functions but our method has less unknowns since we
do not introduce additional variables. The proposed discretization uses almost arbitrary
finite element spaces of discontinuous functions that satisfy only quite mild restriction
(4.6) and have optimal convergence rate.

This paper is organized as follows. In Section 2, preliminaries and notations are intro-
duced. In Section 3, we derive two stabilized discontinuous finite element formulations for
the Stokes equations. In Section 4 we analize the stability of the discontinuous Galerkin
methods and finally in Section 5 we study the error.

2. Preliminaries and Notations

Let D be a bounded domain in Rd. We use standard definitions for the Sobolev spaces
Hs(D) and the associated inner products (·, ·)s,D, norms ‖ · ‖s,D, and seminorms | · |s,D for
s ≥ 0. More precisely, for any integer s ≥ 0, the seminorm | · |s,D and norm ‖ · ‖s,D given
by

|v|s,D =





∑

|α|=s

∫

D

|∂αv|2dD





1

2

, ‖v‖m,D =

(

m
∑

s=0

|v|2s,D

)
1

2

with the usual notation α = (α1, . . . , αd), |α| = α1 + · · · + αd, ∂
α = ∂α1

1 . . . ∂αd

d . Sobolev
spaces of fractional order are defined by real method of interpolation and spaces of negative
order by duality.

The space H0(D) coincides with L2(D), for which the norm and the inner product are
denoted by ‖ · ‖D and (·, ·)D, respectively. When D = Ω we shall drop the subscript D in
the norm and inner product notation. We also use L2

0(Ω) to denote the subspace of L2(Ω)
of functions with mean value zero.

As we mentioned above the boundary value problem (1.1) – (1.3) has unique solution
u ∈ H1

0 (Ω) and p ∈ L2
0(Ω) that satisfy the a priori estimate (1.4). For γ 6= 0 the pressure

p will be in the space L2
0(Ω) for u satisfying homogeneous Dirichlet boundary conditions,

while for other boundary conditions this might not be valid. If γ = 0 the pressure is
determined up to an additive constant which could be chosen so that p ∈ L2

0(Ω).
Further, we partition Ω into a finite number of open non-overlapping subdomains K

such that Ω = ∪K. The set of all subdomains is denoted by T . The intersection of two
subdomains that has positive measure in Rd−1 will be called interface (an edge in two
dimensions) and is denoted by e. The set of all interfaces (edges) will be denoted by
E0. We add to all such interfaces the intersections of a subdomain K and ∂Ω that have
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positive measure in Rd−1 and denote this set by E . The diameters of K and e are denoted
by hK and he, respectively. Further, we use the following notations for functions defined
on Ω, possibly discontinuous across the boundaries between two adjacent subdomains:

V =
{

v ∈ L2(Ω)d : v|K ∈ H1(K)d, ∆v|K ∈ L2(K)d, K ∈ T
}

,

Q = {q ∈ L2
0(Ω) : q|K ∈ H1(K), K ∈ T }.

Multiplying the equations (1.1) and (1.2) by test functions v ∈ V and q ∈ Q, respectively,
and integrating over a subdomain K by parts we get

(∇u, ∇v)K − (∇ · v, p)K −

∫

∂K

(∇u n) · vds+

∫

∂K

v · npds = (f , v)K,(2.1)

(∇ · u + γp, q)K = 0.(2.2)

Here n is the unit vector normal to ∂K and pointing outward to K. Note, that in the
above formula ∇u is a matrix with i-th row ∇ui and ∇u n = ∂nu is a vector with i-th
component ∇ui ·n. Since on the boundary, every vector field v can be decomposed in the
form

v|∂K = (v · n)n + n × (v × n),

we obtain

(∇u n) · v ≡ ∂nu · v = (∂nu · n)v · n + (∂nu × n) · (v × n).

Now we use this identity to give (2.1) an equivalent form:

(∇u, ∇v)K−(∇·v, p)K +

∫

∂K

(p−∂nu ·n)v · n ds−

∫

∂K

(∂nu ×n) ·(v × n) ds = (f , v)K.

Next, we introduce as Lagrange multipliers the following traces on e ∈ E

(2.3) µ = p− ∂nu · n, λ = −∂nu × n.

Obviously, if p ∈ Q and u ∈ V then the traces exist and we can rewrite the above identity
in the form

(2.4) (∇u, ∇v)K − (∇ · v, p)K + 〈µ,v · n〉∂K + 〈λ,v × n〉∂K = (f , v)K.

We have replaced the integrals
∫

∂K
µv · n ds and

∫

∂K
λ · (v × n)ds by 〈µ,v · n〉∂K and

〈λ,v × n〉∂K , respectively. Loosely, here 〈µ,v · n〉∂K could be interpreted also as duality
pairing between µ ∈ H−1/2(∂K) and v ∈ V . Similarly, 〈λ,v × n〉∂K could be interpreted
also as duality pairing for λ ∈ H−1/2(∂K)d and v ∈ V . We shall use these expressions for
smooth functions only. For the precise Sobolev spaces that take into account the Dirichlet
data on ∂Ω we refer to the literature on mortar finite element approximations of second
order elliptic problems (see, e.g. [6]).

Now summing over all K ∈ T we get

(2.5) (∇T u, ∇T v) − (∇T · v, p) +
∑

K∈T

〈µ,v · n〉∂K +
∑

K∈T

〈λ,v × n〉∂K = (f , v).

Here and further ∇T v, ∇T · v, and ∆T u are the functions whose restriction to each
subdomain K ∈ T is equal to ∇v, ∇ · v, and ∆u, respectively. Also, we define hT ≡
hT (x) = hK for x ∈ K ∈ T and hE(x) ≡ hE = he for x ∈ e ∈ E .
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Let e = ∂K1 ∩ ∂K2 be the common boundary (interface) between two subdomains K1

and K2 in T , and n1 and n2 be unit normal vectors to e pointing to the exterior of K1

and K2, respectively. We define the average {·} and the jump [·] on e ∈ E0 for scalar q,
vector v, and matrix τ , respectively:

(2.6)

{q} = 1
2
(q|∂K1∩e + q|∂K2∩e),

{v} = 1
2
(v|∂K1∩e + v|∂K2∩e),

{τ} = 1
2
(τ |∂K1∩e + τ |∂K2∩e),

[q] = q|∂K1∩e − q|∂K2∩e,

[v · n] = v|∂K1∩e · n1 + v|∂K2∩e · n2,

[n × (v × n)] = n1 × (v|∂K1∩e × n1) − n2 × (v|∂K2∩e × n2),

[τ n] = τ |∂K1∩e n1 + τ |∂K2∩e n2.

If e is part of the boundary ∂Ω then some of the above quantities are defined in the
following way:

{q} = q|∂Ω∩e, {v} = v|∂Ω∩e, {τ} = τ |∂Ω∩e

and

[v · n] = v|∂Ω∩e · n, [n × (v × n)] = n × (v|∂Ω∩e × n), [τ n] = τ |∂Ω∩e n.

We rewrite (2.5) so that the solution u ∈ H2(Ω)d, p ∈ L2
0(Ω)∩H1(Ω) of the problem (1.1)

- (1.3) and the Lagrange multipliers µ and λ satisfy the following equations for piece-wise
smooth functions

(2.7)

a0(u,v) + b(v, p) + m(µ,v) + l(λ,v) = (f ,v), ∀v,

b(u, q) − c(p, q) = 0, ∀q,

m(ψ,u) = 0, ∀ψ,

l(φ,u) = 0, ∀φ,

where

(2.8)

a0(u,v) = (∇T u, ∇T v),

b(v, q) = −(∇T · v, q),

c(p, q) = γ(p, q),

l(λ,v) = 〈λ, [v × n]〉E ,

m(µ,v) = 〈µ, [v · n]〉E .

Here v ∈ V and for µ and q smooth functions, 〈µ, q〉E denotes the integration over the
sum of all interfaces between the subdomains and on the boundary ∂Ω, i.e.

〈µ, q〉E =
∑

e∈E

∫

e

µqds.
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This is a typical saddle point problem in which the terms l(φ,u) and m(ψ,u) impose
weakly the continuity of the solution u across E and the homogeneous Dirichlet boundary
condition on ∂Ω.

Further we shall write (2.7) in the following concise form:

(2.9) a0(u,v)+ b(v, p)− b(u, q)+ l(λ,v)− l(φ,u)+m(µ,v)−m(ψ,u)+ c(p, q) = (f ,v).

Remark 2.1. The above formulation is quite suitable for other types of boundary condi-
tions. Consider the following two cases (various other boundary conditions could be found
in [19], pp. 179–183): on part Γ1 ⊂ ∂Ω we specify u × n = 0 and p− ∂nu · n = g1 and
on another part Γ2 ⊂ ∂Ω we have u · n = 0 and ∂nu ×n = g2. Then one needs to modify
the right hand side of (2.9) by adding the term

∫

Γ1

g1v · n ds+

∫

Γ2

g2 · (v × n) ds

and to modify the bilinear forms l(λ,v) and m(µ,v) to

m(µ,v) = 〈µ, [v · n]〉E1
, l(λ,v) = 〈λ, [v × n]〉E2

.

Here E1 ⊂ E goes not include edges (faces) on Γ1 and E2 ⊂ E goes not include edges
(faces) on Γ2.

Remark 2.2. In the case of linear elastic deformations of non homogeneous media the
above approach is not very suitable since in this case the equations are written in the form
−∇ · σ(u) = f , where

σ(u) =
νE

(1 + ν)(1 − 2ν)
∇ · u I +

E

1 + ν
(∇u + (∇u)T )

is the stress tensor and the Young’s modulus E and the Poisson’s ratio ν depend on x ∈ Ω.
A discontinuous Galerkin method for these equations was studied by Hansbo and Larson
in [23].

Here we shall avoid the delicate question of exact Sobolev spaces for the solution and
test functions u,v, µ, ψ, and λ,φ. As we shall see later, this is not relevant for the method
we derive. The interested reader can find quite complete discussion for the case of two
dimension in the work by Girault, Rivière, and Wheeler [21]. However, functions that are
smooth on each subdomain K the above identities makes sense.

Remark 2.3. Obviously, if u ∈ H(div; Ω), then [u · n] = 0 and the above system sim-
plifies, by omitting the terms with m(·, ·) in the left hand side of (2.9). Similarly, if
u ∈ H(curl; Ω) then we get different simplification by omitting the terms l(·, ·) in (2.9).

3. Finite element discretization

Here we shall introduce finite element discretization of the above saddle point problem
using finite element spaces of discontinuous functions.
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3.1. First attempt. Following [18] we shall derive our discontinuous finite element ap-
proximation by stabilizing a discretization that is usually unstable for the whole range of
the parameter γ ≥ 0. Assume that T is a partition of the domain Ω into finite elements K
(triangles, tetrahedra, rectangles, bricks, quadrilaterals, etc) with mesh size hK , so that
the partition T is quasi-uniform, i.e. it is regular and satisfies the inverse assumption (see
[10]).

Define the finite element space Vh for the velocity by

Vh = {v ∈ L2(Ω)d : v|K ∈ V(K)d, ∀K ∈ T }

and the finite element space Qh for the pressure by

Qh = {q ∈ L2
0(Ω) : q|K ∈ Q(K), ∀K ∈ T }.

Further, the finite elements spaces Λh and Mh for the Lagrange multipliers λ and µ

Λh = {λ ∈ L2(E)d−1 : λ|e ∈ L(e)d−1, e is a common edge of two finite elements },

Mh = {µ ∈ L2(E) : µ|e ∈ M(e), e is a common edge of two finite elements}.

Here the local spaces V(K), P(K), L(e), and M(e) consist of polynomials that will
be specified later. Further, we shall use also the notation V (h) = Vh + H l+1(Ω)d and
Q(h) = Qh +Hm+1(Ω)∩L2

0(Ω), where l ≥ 1 and m ≥ 0. The finite element discretization
of (2.9) is: find uh ∈ Vh, p ∈ Qh, λh ∈ Λh, and µh ∈Mh such that

(3.10)

a0(uh,v) + b(v, ph) − b(uh, q) + l(λh,v) − l(φ,uh)

+m(µh,v) −m(ψ,uh) + c(ph, q) = (f ,v),

∀v ∈ Vh, ∀q ∈ Qh, ∀φ ∈ Λh, ∀ψ ∈Mh.

Without proper alignment of the finite dimensional spaces Vh, Qh, Λh, and Mh (they
need to satisfy appropriate inf-sup condition) the above saddle point problem is in general
unstable.

In the past various stabilization procedures for the saddle point problem (3.10) have
been proposed and studied (see, e.g. [9], [18], [26], [28], [30]). As we mentioned earlier,
if Vh ⊂ H1(Ω), then the forms m(·, ·) ≡ 0 and l(·, ·) ≡ 0 so the problem is reduced
to a0(uh,v) + b(v, ph) − b(uh, q) = (f ,v). For various stabilization procedures of this
problem we refer to [9], [18], [26], [27], [28], [30]. In general, the stabilization is achieved
by adding “small” term to the left hand side. For example, Brezzi and Pitkäranta [9]
add the term (h2

T ∇T ph, ∇T q). However, this term does not vanish at the solution so it
yield only a first order scheme. Hughes, Franca, and Balestra [26] use a stabilization term
δ(∇T ph − ∆T u − f , h2

T ∇T q) and prove that for 0 < δ the method is stable and has an
optimal order of convergence when the space Vh and Qh contain piece-wise polynomials
of the same order. Finally, for discontinuous pressure spaces Kecher and Sylvester [28]
use a stabilization term δ〈hE [ph], [q]〉E , which produces a stable method for δ > 0 that is
convergent of first order.

Stabilization of the problem (3.10) for spaces Vh that contain discontinuous functions
could be achieved by adding a “small” term ε〈λh,φ〉+δ〈[ph], [q]〉E . By formally eliminating
the Lagrange multiplier λh we get a system for uh and ph. However, this system is
inconsistent, since the added term does not vanish on the exact solution. Such “penalty”
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formulation, leading to a low order approximation, has been studied in the past (see, e.g.
Quarteroni and Valli in [30], p. 312).

3.2. Motivation for a stabilized approximation. Now we consider the case of fully
discontinuous finite element spaces. The terms b(uh, q) l(φ,uh) and m(ψ,uh) in (3.10)
could be considered as constraints and therefore to have a well-posed problem we need
three appropriate inf-sup condition. However, we can stabilize (3.10) by adding three
stabilization terms

(3.11)

〈δ[ph], [q]〉E ,

〈ε(λh + {∂n(uh × n) }),φ〉E ,

〈ε(µh − {ph} + {∂n(uh · n) }), ψ〉E .

Here ε > 0 and δ > 0 are small parameters, in fact these are functions on E , which will
be defined later. These three terms are supposed to stabilize the problem so that each
is assumed to avoid the necessary inf-sup condition for the form b(·, ·), l(·, ·), and m(·, ·),
correspondingly. This allows us to formally eliminate both Lagrange multipliers µh and
λh and get

a0
h(uh,v) + bh(v, ph) − b(uh, q) + ch(ph, q) = (f , v), ∀v ∈ Vh, ∀q ∈Mh,

where

(3.12)

a0
h(uh,v) = (∇T uh, ∇T v) + 〈ε−1[uh × n], [v × n]〉E + 〈ε−1[uh · n], [v · n]〉E

−〈{∂nuh × n}, [v × n]〉E − 〈{∂nuh · n}, [v · n]〉E ,

bh(v, ph) = −(∇T · v, ph) + 〈{ph}, [v · n]〉E ,

ch(ph, q) = γ(ph, q) + 〈δ[ph], [q]〉E0
.

The bilinear form a0
h(·, ·) is nonsymmetric so if we want to get a symmetric form we should

use symmetric stabilization terms. namely, we can replace the last two terms of (3.11) by

(3.13)
〈ε(λh + {∂nuh × n}),φ + {∂nv × n}〉E ,

〈ε(µh − {ph} + {∂nuh · n}), ψ − {q} + {∂nv · n}〉E .

Again after formally eliminating λh and µh we get the problem

(3.14) as
h(uh,v) + bh(v, ph) − bh(uh, q) + ch(ph, q) = (f , v), ∀v ∈ Vh, ∀q ∈ Mh,

where

(3.15)

as
h(uh,v) = (∇T uh, ∇T v) + 〈ε−1[uh × n], [v × n]〉E + 〈ε−1[uh · n], [v · n]〉E

−〈{∂nuh × n}, [v × n]〉E − 〈{∂nv × n}, [uh × n]〉E

−〈{∂nuh · n}, [v · n]〉E − 〈{∂nv · n}, [uh · n]〉E .

is a symmetric bilinear from on Vh × Vh, which will produce IP (interior penalty) DG
method for the Stokes system.

Similarly, we can get a problem with a skew-symmetric nonsymmetric part if we add

〈ε(λh + {∂nuh × n}),φ − {∂nv × n}〉E
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〈ε(µh − {ph} + {∂nuh · n}), ψ + {q} − {∂nv · n}〉E .

Again after elimination of λh and µh we get a problem

(3.16) ans
h (uh,v) + bh(v, ph) − bh(uh, q) + ch(ph, q) = (f , v), ∀v ∈ Vh, ∀q ∈Mh,

where

(3.17)

ans
h (uh,v) = (∇T uh, ∇T v) + 〈ε−1[uh × n], [v × n]〉E + 〈ε−1[uh · n], [v · n]〉E

−〈{∂nuh × n}, [v × n]〉E + 〈{∂nv × n}, [uh × n]〉E

−〈{∂nuh · n}, [v · n]〉E + 〈{∂nv · n}, [uh · n]〉E .

The bilinear from ans
h (·, ·) has a skew-symmetric nonsymmetric part and is coercive on

Vh × Vh for any ε > 0. This form in fact will produce the NIP (nonsymmetric interior
penalty) discontinuous Galerkin method for the Stokes system.

Remark 3.1. The case Vh ⊂ H(div; Ω) will simplify the bilinear forms ans
h or as

h and bh
so that we get the problem

(3.18) a∓div(uh,v) + b(v, ph) − b(uh, q) + ch(ph, q) = (f , v), ∀v ∈ Vh, ∀q ∈Mh,

where a∓div(uh,v) is defined by

(3.19)
a∓div(uh,v) = (∇T uh, ∇T v) + 〈ε−1[uh × n], [v × n]〉E

−〈{∂nuh × n}, [v × n]〉E ∓ 〈[uh × n], {∂nv × n}〉E .

Both systems were analysed by Wang and Ye in [31] for ε = αh−1
E and δ = 0 and for

appropriate choice of the finite element spaces Vh and Mh. In [31] it was shown that
the bilinear form a−div(uh,v) is symmetric and coercive for sufficiently large α, while the
bilinear form a+

div(uh,v) has skew-symmetric nonsymmetric part and is coercive for any
α > 0.

Remark 3.2. The case Vh ⊂ H(curl; Ω) will lead to another simplification of the bilinear
forms ans

h , as
h and bh so that we get the problem

(3.20) a∓curl(uh,v) + bh(v, ph) − bh(uh, q) + ch(ph, q) = (f , v), ∀v ∈ Vh, ∀q ∈Mh,

where a∓curl(uh,v) is defined by

(3.21)
a∓curl(uh,v) = (∇T uh, ∇T v) + 〈ε−1[uh · n], [v · n]〉E

−〈{∂nuh · n}, [v · n]〉E ∓ 〈[uh · n], {∂nv · n}〉E .

Remark 3.3. Note that the discrete problems (3.14) or (3.16) do not require u = 0 on
the boundary ∂Ω. This boundary condition is imposed in a weak sense by the penalty term

〈ε−1[uh × n], [v × n]〉E + 〈ε−1[uh · n], [v · n]〉E .

Remark 3.4. If in (3.11) δ = 0, then Vh and Qh need to satisfy an appropriate inf-sup
condition. Such approach for 2-D Stokes equations has been studied by Girault, Rivière,
and Wheeler in [21].
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Now we shall get a more concise form of the bilinear forms (3.15) and (3.17) by intro-
ducing a new notation. Following [11], for vectors v and n, let v ⊗ n denote the matrix
whose ij-th element is vinj. For a vector w we define a matrix valued jump [[ · ]] as

[[w]] = w|∂K1
⊗ n1 + w|∂K2

⊗ n2

where e ∈ E is an edge (face) shared by two adjacent finite elements K and Kj. If e ∈ E
is an edge on the boundary ∂Ω, define [[w]] = w ⊗ n. Further, for two matrix valued
variable σ and τ we use

σ : τ =
d
∑

i,j=1

σijτij, σ, τ ∈ Rd×d.

Using these concise notations we can show that

〈{∂nuh × n}, [v × n]〉E + 〈{∂nuh · n}, [v · n]〉E = 〈{∇u} : [[v]]〉E

and

〈ε−1[uh × n], [v × n]〉E + 〈ε−1[uh · n], [v · n]〉E = 〈ε−1[[uh]] : [[v]]〉E .

Thus, the bilinear forms defined in (3.15) and (3.17) could be written in the form

(3.22) as
h(uh,v) = a0

h(uh,v) − 〈{∇v} : [[uh]]〉E

and

(3.23) ans
h (uh,v) = a0

h(uh,v) + 〈{∇v} : [[uh]]〉E

where

(3.24) a0
h(uh,v) = (∇T uh, ∇T v) − 〈{∇uh} : [[v]]〉E + 〈ε−1[[uh]] : [[v]]〉E

Using these new notations we can rewrite the problems (3.14) and (3.16) as: find
uh ∈ Vh and ph ∈ Qh such that

(3.25) A(uh, ph; v, q) = (f , v) ∀v ∈ Vh, ∀q ∈ Qh,

where

(3.26) A(v, q; w, r) = ah(v, w) + bh(w, q) − bh(v, r) + ch(q, r).

Here and further ah(v, w) is either as
h(v, w) or ans

h (v, w). Thus, (3.25) incorporates
two methods, one involving the symmetric bilinear form as

h(v,w) and another with a
nonsymmetric form ans

h (v,w).
The sufficiently smooth solution u, p of the problem (1.1) – (1.3) satisfies the identity

A(u, p; v, q) = (f , v) ∀v ∈ Vh, ∀q ∈ Qh

so that subtracting this from (3.25) we get

(3.27) A(u − uh, p− ph; v, q) = 0 ∀v ∈ Vh, ∀q ∈ Qh.

This Galerkin orthogonality condition implies that both methods, the symmetric and the
nonsymmetric, are consistent.
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4. Stabilized finite element approximation for fully discontinuous spaces

Our goal of this section is to choose the parameters ε and δ and the spaces Vh and Qh

in (3.25) so that the method is stable and converges with optimal order.
First, we shall specify the finite element spaces. Let Pk(K) be the set of all polynomials

on K of degree less than or equal to k. We will assume that Pl(K) ⊂ V(K) and Pm(K) ⊂
Q(K) with l ≥ 1 and m ≥ 0.

For K ∈ T let ΠK
1 : H l+1(K)d → V(K)d be the orthogonal L2 projection. Since

Pl(K) ⊂ V(K) it is well known that for a w ∈ H l+1(K)d

|w − ΠK
1 w|s,K ≤ Chl+1−s

K ‖w‖l+1,K s = 0, 1, 2,(4.1)

‖w − ΠK
1 w‖∂K ≤ Ch

l+ 1

2

K ‖w‖l+1,K,(4.2)

where the constant C depends on l and the minimum angle of the finite element K. In a
similar manner we define the orthogonal projection ΠK

2 : Hm+1(K) → Q(K) so that

|ψ − ΠK
2 ψ|s,K ≤ Chm+1−s

K ‖ψ‖m+1,K s = 0, 1, 2(4.3)

‖ψ − ΠK
2 ψ‖∂K ≤ Ch

m+ 1

2

K ‖ψ‖m+1,K .(4.4)

When dealing with fully discontinuous spaces we can define the global L2 orthogonal
projection operators Π1 : V (h) → Vh and Π2 : Q(h) → Qh as

Π1v(x) = ΠK
1 v(x), Π2q(x) = ΠK

2 q(x), x ∈ K, K ∈ T .

Next, we specify the “small” parameters ε and δ. Namely, we choose

(4.5) ε = ε(x) = α−1
1 he, δ = δ(x) = α2he for x ∈ e ∈ E

where he is the length of the edge e for d = 2 and the diameter of the face e for d = 3.
The positive numbers α1, α2 will be determined later.

Now we formulate two essential assumptions under which we shall carry our analysis.

Assumption 4.1. The local polynomial spaces Q(K) and V(K) satisfy the inclusion

(4.6) ∇Q(K) ⊂ V(K)d.

Assumption 4.2. If ah(·, ·) = ans
h (·, ·) then α1 > 0 is any fixed constant, if ah(·, ·) =

as
h(·, ·) then α1 > 0 is sufficiently large, and α2 is any positive constant.

Note, that in order to achieve optimal error approximation the polynomial spaces for
the velocity should be one degree higher than the spaces for the pressure. Therefore,
assumption 4.1 represents a very mild restriction on the local polynomial spaces. In
addition to (4.6) in [11] the inclusion ∇ · V(K) ⊂ Q(K) is required as well. This implies
that here we have more freedom in choosing the finite element spaces.

For v ∈ V (h) we introduce two norms ||| · |||1 and ||| · |||∗

(4.7) |||v|||21 = (∇T v,∇T v) + 〈h−1
e [[v]], [[v]]〉E := ‖∇T v‖2 +

∑

e∈E

h−1
e ‖[[v]]‖2

e,

(4.8) |||v|||2∗ = |||v|||21 +
∑

K∈T

h2
K‖∆v‖2

K := |||v|||21 + (hT ∆T v, hT ∆T v) := |||v|||21 + ‖hT ∆T v‖2.
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Also, for q ∈ Q(h) we shall use the following notation

(4.9) |||q|||2∗ = γ‖q‖2 +
∑

e∈E0

he‖[q]‖
2
e.

Note that if γ > 0, then (4.9) is a norm, while if γ = 0 it is a semi-norm. Since 0 ≤ γ ≤ C
it is easy to see that

|||q|||2∗ ≤ C‖q‖, ∀q ∈ Qh.

Let K ∈ T has an edge e. It is well-known that there exists a constant C such that for
any function g ∈ H1(K),

(4.10) ‖g‖2
e ≤ C

(

h−1
K ‖g‖2

K + hK‖∇g‖2
K

)

.

In particular, for any v ∈ Vh, we have

he‖∇v|K‖2
e ≤ C

(

‖∇v‖2
K + h2

K‖∆v‖2
K

)

and the standard inverse inequality yields

hK‖∆v‖2
K ≤ C‖∇v‖2

K ∀v ∈ Vh.

Therefore, there are positive constants c, C independent of h such that

(4.11) c|||v|||1 ≤ |||v|||∗ ≤ C|||v|||1 , ∀v ∈ Vh.

The following lemma provides the estimates for |||v − Π1v|||1 and |||q − Π2q|||.

Lemma 4.1. For any q ∈ Hm+1(Ω) and v ∈ H l+1(Ω)d, one has

|||v − Π1v|||∗ ≤ Chl‖v‖l+1(4.12)

|||q − Π2q|||∗ ≤ Chm+1‖q‖m+1.(4.13)

Proof. Using the definition of Π1, Π2 and (4.1), (4.2), we first show the estimates

|∇T (v − Π1v)|2 ≤ Ch2l‖v‖2
l+1,(4.14)

∑

e∈E

h−1
e ‖[[v − Π1v]]‖2

e ≤ Ch2l‖v‖2
l+1,(4.15)

‖q − Π2q‖
2 ≤ Ch2(m+1)‖q‖2

m+1,(4.16)

∑

e∈E0

he‖[q − Π2q]‖
2
e ≤ Ch2(m+1)‖q‖2

m+1.(4.17)

Then (4.10) and (4.1) imply

(4.18)
∑

e∈E

h−1
e ‖[[v − Π1v]]‖2

e ≤ C
∑

K∈T

(|v − Π1v|
2
1,K + h2

K |v − Π1v|
2
2,K) ≤ Ch2l‖v‖2

l+1.

We complete the proof by taking into account the definitions of |||v|||∗ and |||q|||∗, and the
estimates (4.14)-(4.18). �
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Theorem 4.1. Let the assumptions 4.1 and 4.2 hold. Then the bilinear form A(v, q; w, r)
satisfies the inf-sup condition

(4.19) c0(|||v|||1 + ‖q‖) ≤ sup
w∈Vh, r∈Qh

A(v, q; w, r)

|||w|||1 + ‖r‖
, ∀(v, q) ∈ Vh ×Qh

with a constant c0 > 0 independent of h and γ.
For (v, q) ∈ V (h) ×Q(h) the bilinear form A(v, q; w, r) is continuous so that

(4.20) A(v, q; w, r) ≤ c1(|||v|||∗ + ‖q‖)(|||w|||1 + ‖r‖), ∀(w, r) ∈ Vh ×Qh

with constants c1 > 0 independent of h.

The proof will be based on several lemmas we shall prove below.
First, we show the coercivity of the bilinear form as

h(·, ·) in |||v|||1-norm.

Lemma 4.2. Assume that α1 > 0. In addition, if ah(v,v) = as
h(v,v), we assume that

α1 is sufficiently large. Then there exists a constant α0 independent of h, such that

(4.21) ah(v,v) ≥ α0|||v|||
2
1, ∀v ∈ Vh.

Proof. The inequality (4.21) follows immediately for ah(·, ·) = ans
h (·, ·), since

(4.22) ans
h (v,v) = (∇T v,∇T v) + α1

∑

e∈E

h−1
e ‖[[v]]‖2

e ≥ α0|||v|||
2
1

with a constant α0 = min{1, α1}.
Now we consider the case of symmetric form ah(·, ·). It follows from the Cauchy-Schwarz

inequality, (4.10), and (4.10) that for an edge (face) e ∈ E0 between the elements K1 and
K2

(4.23)

∣

∣

∣

∣

∫

e

{∇w} : [[v]]ds

∣

∣

∣

∣

≤ C (he‖∇w|K1
‖2

e + he‖∇w|K2
‖2

e)
1

2 h
− 1

2

e ‖[[v]]‖e

≤ C
(

‖∇T w‖2
K1∪K2

+ h2
e‖∇

2
T w‖2

K1∪K2

)
1

2 h
− 1

2

e ‖[[v]]‖e

≤ C‖∇T w‖K1∪K2
h
− 1

2

e ‖[[v]]‖e.

Similarly, if e ⊂ ∂Ω in and edge (face) of K then
∣

∣

∣

∣

∫

e

{∇w} : [[v]]ds

∣

∣

∣

∣

≤ C
(

he‖∇w|K‖
2
e

)
1

2 h
− 1

2

e ‖[[v]]‖e

≤ C‖∇w‖Kh
− 1

2

e ‖[[v]]‖e.

After summing over K ∈ T and taking into account the above inequalities we get

|〈{∇w} : [[v]]〉E | ≤ C‖∇T w‖

(

∑

e∈E

h−1
e ‖[[v]]‖2

e

)
1

2

≤
1

4
‖∇T w‖2 + C

∑

e∈E

h−1
e ‖[[v]]‖2

e.
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Thus, we obtain

as
h(v,v) = (∇T v,∇T v) + α1

∑

e∈E

h−1
e ‖[[v]]‖2

e − 2
∑

e∈E

∫

e

{∇v} : [[v]]ds

≥ ‖∇T v‖2 + α1

∑

e∈E

h−1
e ‖[[v]]‖2

e −
1

2
‖∇T v‖2 − C

∑

e∈E

h−1
e ‖[[v]]‖2

e

=
1

2
‖∇T v‖2 + (α1 − C)

∑

e∈E

h−1
e ‖[[v]]‖2

e ≥ α0|||v|||
2
1,

with α0 = min(1
2
, α1 − C). By choosing α1 large enough such that α1 ≥ C + 1

2
, we see

that the estimate (4.21) holds true with α0 = 1
2
. �

Next we show that the bilinear forms as
h(·, ·) and ans

h (·, ·) are bounded in ||| · |||∗-norm.

Lemma 4.3. There exists a constant βa independent of h such that

(4.24) |ah(w,v)| ≤ βa|||w|||∗|||v|||∗ ∀w,v ∈ V (h),

where ah(·, ·) = as
h(·, ·) or ah(·, ·) = as

h(·, ·).

Proof. By the definition of ah(w,v) and using (4.23) and Schwarz inequality, we see that
there exists a constant C such that

|ah(w,v)| ≤ C {‖∇T w‖‖∇T v‖

+
(

‖∇T w‖2 + ‖hT ∆T w‖2
) 1

2

(

∑

e∈E

h−1
e ‖[[v]]‖2

e

)
1

2

+
(

‖∇T v‖2 + ‖hT ∆T v‖2
)

1

2

(

∑

e∈E

h−1
e ‖[[w]]‖2

e

)
1

2

+

(

∑

e∈E

h−1
e ‖[[w[]‖2

e

)
1

2

(

∑

e∈E

h−1
e ‖[[v[]‖2

e

)
1

2







≤ βa|||w|||∗|||v|||∗,

which proves the desired boundness. �

The following lemma provides a upper bound for the bilinear form bh(·, ·).

Lemma 4.4. For (v, q) ∈ V (h) ×Q(h)

(4.25) bh(v, q) ≤ C|||v|||1

(

‖q‖ + (
∑

K∈T

h2
K |q|21,K)

1

2

)

.

Further, if (v, q) ∈ Vh ×Qh then

|bh(v, q)| ≤ C|||v|||1‖q‖.
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Proof. By the definition of bh(v, q), the Schwarz inequality, and (4.10) we have

|bh(v, q)| ≤ C







‖∇T v‖‖q‖ +

(

∑

e∈E

he‖q‖
2
e

)
1

2

(

∑

e∈E

h−1
e ‖[[v]]‖2

e

)
1

2







≤ C|||v|||1

(

‖q‖ + (
∑

K∈Th

h2
K|q|21,K)

1

2

)

.

�

Finally, we prove

Lemma 4.5. There is a constant βA independent of h such that

(4.26) A(v, q;v, q) ≤ βA(|||v|||21 + |||q|||2∗) ∀ (v, q) ∈ Vh ×Qh.

Proof. First, we note that A(v, q;v, q) = ah(v,v) + ch(q, q). Then the inequality follows
immediately from (4.24) with βA = max{1, α2}, if ah(·, ·) is nonsymmetric and from (4.22)
with βA = max{βa, α2}, if ah(·, ·) is symmetric. �

Proof. (of Theorem 4.1). Obviously the boundness of the form A(·; ·) follows immediately
from Lemmas 4.3 and 4.4.

To prove the inequality (4.19) we shall use the fact that the differential problem (1.1)
– (1.3) has unique solution that is stable in H1

0 (Ω)d × L2
0(Ω). For a given q ∈ L2

0(Ω) let
ξ ∈ H1

0 (Ω)d and θ ∈ L2
0(Ω) be the solution to the problem

−∆ξ + ∇θ = 0, ∇ · ξ = −q, x ∈ Ω.

The solution exists and satisfies the a priori estimate

(4.27) ‖ξ‖1 + ‖θ‖ ≤ β‖q‖,

where the constant β depend only on the domain Ω. Take w = Π1ξ ∈ Vh and use (4.11)
and (4.2) to get

|||Π1ξ|||
2
1 = |||w|||21 = ‖∇T w‖2 +

∑

e∈E

h−1
e ‖[[w]]‖2

e(4.28)

≤ ‖∇Π1ξ‖
2 +

∑

e∈E

h−1
e ‖[[ξ − Π1ξ]]‖2

e ≤ C‖ξ‖2
1.

Next,

(4.29)

A(v, q; Π1ξ, 0) = ah(v,Π1ξ) + bh(Π1ξ, q)

= ah(v,Π1ξ) + bh(ξ, q) + bh(Π1ξ − ξ, q)

= −(q,∇ · ξ) + ah(v,Π1ξ) + bh(Π1ξ − ξ, q)

≥ ‖q‖2 − C|||v|||1|||ξ|||1 + bh(Π1ξ − ξ, q)

≥ ‖q‖2 − C1|||v|||1‖q‖ + bh(Π1ξ − ξ, q).
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Using integration by part, (4.6), (4.2), we transform the term bh(Π1ξ − ξ, q) as follows:

bh(Π1ξ − ξ, q) = (Π1ξ − ξ,∇T q) −
∑

K∈T

∫

∂K

(Π1ξ − ξ) · nq ds+ 〈{q}, [(Π1ξ − ξ) · n]〉E .

Now, using the relation (4.6) and since Π1ξ is a local orthogonal L2-projection we get
that (Π1ξ − ξ,∇T q) = 0. Further, using the identity

(4.30)
∑

K∈T

∫

∂K

qv · n ds = 〈[q], {v · n}〉E0
+ 〈{q}, [v · n]〉E

we transform the last two terms to get

(4.31)

bh(Π1ξ − ξ, q) = −〈[q], {(Π1ξ − ξ) · n}〉E0

≥ −

(

∑

e∈E0

h−1
e ‖{(Π1ξ − ξ) · n}‖2

e

)
1

2

(

∑

e∈E0

he‖[q]‖
2
e

)
1

2

≥ −C‖ξ‖1|||q|||∗ ≥ −C2‖q‖|||q|||∗

Combining all these and choosing β1 = max{C1, C2} we get

A(v, q; Π1ξ, 0) ≥
1

2
‖q‖2 − β1(|||v|||

2 + |||q|||2∗).

Let β2 = βA/(1 + 2β1) > 0. Then

A(v, q;v + 2β2Π1ξ, q) = A(v, q;v, q) + 2β2A(v, q; Π1ξ, 0)

≥ βA(|||v|||21 + |||q|||2∗) + β2‖q‖
2 − 2β2β1(|||v|||

2
1 + |||q|||2∗)

= β2(‖q‖
2 + |||v|||21).

The inequality (4.19) follows easily by using the stability of the projection Π1ξ in ||| · |||1,
established in (4.28), and the a priori estimate (4.27)

sup
w∈Vh,r∈Qh

A(v, q;w, r)

|||w|||1 + ‖r‖
≥

A(v, q;v + 2β2Π1ξ, q)

|||v + β2Π1ξ|||1 + ‖q‖

≥
β2(‖q‖

2 + |||v|||21)

|||v|||1 + β2|||Π1ξ|||1 + ‖q‖

≥
β2(‖q‖

2 + |||v|||21)

|||v|||1 + C‖q‖

≥ c0(‖q‖ + |||v|||1).

This completes the proof of the Theorem 4.1. �

5. Error estimates

Here we establish an optimal error estimate for the finite element solution. First, we
shall establish estimates for |||u − uh|||1 and ‖p− ph‖.
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Theorem 5.1. Let the assumptions 4.1 and 4.2 hold. If u ∈ H l+1(Ω)d and p ∈ hm+1(Ω),
then

(5.1) ‖p− ph‖ + |||u − uh|||∗ ≤ C(hl‖u‖l+1 + hm+1‖p‖m+1).

Proof. By first Strang’s lemma we have

‖p− ph‖ + |||u − uh|||∗ ≤ ‖p− Π2p‖ + |||u − Π1u|||∗

+
1

c0
sup

v∈Vh,q∈Qh

A(uh − Π1u, ph − Π2p;v, q)

|||v|||1 + ‖q‖

≤ ‖p− Π2p‖ + |||u − Π1u|||∗

+
1

c0
sup

v∈Vh,q∈Qh

A(u − Π1u, p− Π2p;v, q)

|||v|||1 + ‖q‖

≤ C(‖p− Π2p‖ +
∑

e∈E0
he‖[p− Π2p]‖

2
e + |||u − Π1u|||∗).

Here we have applied (4.19) and the Galerkin orthogonality (3.27). Then the result
follows from the approximation properties of the projections Π1 and Π2 established in
(4.1) – (4.4). �

The rest of the section is devoted to the error analysis in the L2-norm for the velocity
approximation. We shall use a standard argument by considering the dual problem which
seeks (w; r) ∈ H1

0 (Ω)d × L2
0(Ω) satisfying (in a weak sense)

− ∆w + ∇r = uh − u, ∇ · w = 0 in Ω.(5.2)

To gain an additional power in h for the error ‖u−uh‖ we need an assumption regarding
the regularity of the solution of (5.2). Namely, we assume that (5.2) has full regularity in
the sense that (w, r) ∈ H2(Ω)d ×H1(Ω) and the following a priori estimate holds true:

‖w‖2 + ‖r‖1 ≤ C‖u − uh‖.

This assumption is known to hold for Ω a convex polygonal domain in two dimensions.
The situation in 3-D is more complicated (for more comments, see [19], p. 185 and the
references cited there).

First notice that

as
h(w, v) = as

h(v, w)

ans
h (w, v) = ans

h (v, w) + 2〈{∇v} : [[w[]〉E − 2〈{∇w} : [[v[]〉E .

Then if ah(·, ·) = as
h(·, ·), we have

(5.3) A(v, q; w, r) = A(−w, r; −v, q).

If ah(·, ·) = ans
n (·, ·), we have

A(v, q; w, r) = A(−w, r; −v, q) + 2〈{∇w} : [[v[]〉E − 2〈{∇v} : [[w[]〉E .(5.4)

It is not hard to see that for any (v, q) ∈ V (h) ×Q(h), the solution (w, r) satisfies

(5.5) A(w, r; v, q) = (uh − u, v).
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We assume that the Stokes problem has full regularity in the sense that (w, r) ∈ H2(Ω)d×
H1(Ω) and the following a priori estimate holds true:

(5.6) ‖w‖2 + ‖r‖1 ≤ C‖u − uh‖.

With the above regularity, it is not hard to establish the following estimate:

(5.7) |||w − Π1w|||∗ + ‖r − Π2r‖ ≤ Ch‖u − uh‖.

Theorem 5.2. Let (uh, ph) ∈ Vh×Qh and (u, p) ∈ (H l+1(Ω)∩H1
0 (Ω))d×Hm+1(Ω)∩L2

0(Ω)
be the solutions of (3.25) and (1.1)-(1.3), respectively. Then there exists a constant C
independent of h such that if ah(·, ·) = as

h(·, ·), then

(5.8) ‖u − uh‖ ≤ C
(

hl+1‖u‖l+1 + hm+2‖p‖m+1

)

,

and if ah(·, ·) = ans
h (·, ·), then

(5.9) ‖u − uh‖ ≤ C
(

hl‖u‖l+1 + hm+1‖p‖m+1

)

.

Proof. Let v = uh − u and q = p− ph in (5.5). Using (5.4), (5.3), (3.27) and [w] = 0 on
e ∈ E , we have

‖u − uh‖
2 = A(w, r; uh − u, p− ph)

= A(u − uh, p− ph; −w, r) + θ
∑

e∈E

∫

e

{∇w} : [[u − uh[]ds(5.10)

= A(u − uh, p− ph; −w + Π1w, r − Π2r) + θ
∑

e∈E

∫

e

{∇w} : [[u − uh[]ds,

where θ = 0 if ah(·, ·) = as
h(·, ·) and θ = 2 if ah(·, ·) = ans

h (·, ·). We will obtain the bound
for ‖u− uh‖ by estimating each term in the right hand side of (5.10). Using (4.24), (5.6)
and (5.1) we get

|ah(u − uh, Π1w − w)| ≤ C|||u − uh|||∗|||w − Π1w|||∗

≤ Ch
(

hl‖u‖l+1 + hm+1‖p‖m+1

)

‖u − uh‖.

Using integration by part, assumption (4.6), (5.1), (5.6) and (4.15), we have

|bh(Π1w − w, p− ph)| ≤ |
∑

K

∫

K

∇(p− ph) · (Π1w − w)dx|

+|
∑

e∈E0

∫

e

{(Π1w − w) · n}[p− ph]ds|

≤ |
∑

K∈T

∫

K

∇(p− Π2p) · (Π1w − w)dx|

+

(

∑

e∈E0

h−1
e ‖Π1w − w‖2

e

)
1

2

(

∑

e∈E0

he‖[p− ph]‖
2
e

)
1

2

≤ Ch
(

hl|u|l+1 + hm+1‖p‖m+1

)

‖u − uh‖.
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Then (4.25), (5.1) and (5.6) imply

|bh(u − uh, r − Π2r)| = C|||u − uh|||∗

(

‖r − Π2r‖ + (
∑

K∈T

h2
K |r − Π2r|

2
1,K)

1

2

)

≤ Ch
(

hl‖u‖l+1 + hm+1‖p‖m+1

)

‖u − uh‖.

It follows from (5.1), (4.17) and (5.6)

|ch(p− ph, r − Π2r)| ≤ γ(p− ph, r − Π2r)

+α2

(

∑

e∈E0

he‖[p− ph]‖
2
e

)
1

2

(

∑

e∈E0

he‖[r − Π2r]‖
2
e

)
1

2

≤ Ch(hl‖u‖l+1 + hm+1‖p‖m+1)‖u − uh‖.

Schwarz inequality, (4.10), (5.1) and (5.6) imply

∑

e∈E

∫

e

{∇w} : [[u − uh[]ds ≤ C

(

∑

e∈E

he‖∇w‖2
e

)
1

2

(

∑

e∈E

h−1
e ‖[[u − uh[]‖

2
e

)
1

2

≤ C(hl‖u‖l+1 + hm+1‖p‖m+1)‖u − uh‖.

Combining above estimates and (5.10), we prove the theorem. �
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