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Abstract

We analyze the semidiscrete mixed finite element methods for parabolic integro-differential
equations which arise in the modeling of nonlocal reactive flows in porous media. A priori L

2

error estimates for pressure and velocity are obtained with both smooth and nonsmooth initial
data. More precisely, a mixed Ritz-Volterra projection, introduced earlier by Ewing et. al. in
[SIAM J. Numer. Anal., 40 (2002), pp.1538-1560], is used to derive optimal L

2-error estimates
for problems with initial data in H

2
∩ H

1

0 . In addition, for homogeneous equations we derive
optimal L

2-error estimates for initial data just in L
2. Here we use elementary energy technique

and duality argument.

Key words. Parabolic integro-differential equation, mixed finite element method, semidiscrete,
optimal error estimate, smooth and nonsmooth initial data.
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1 Introduction

In this paper, we consider mixed finite element approximations to the following initial-boundary
value problem of the form

ut −∇ · (A∇u) = −

∫ t

0

∇ · (B(t, s)∇u(s))ds+ f(x, t) in Ω × J,

u = 0 on ∂Ω × J, (1.1)

u(·, 0) = u0 in Ω,

where Ω is a bounded domain in R
d (d = 2, 3) with smooth boundary ∂Ω, J = (0, T ], T < ∞

and ut = ∂u/∂t, A = {aij(x)} and B(t, s) = {bij(x; t, s)} are two d × d matrices with smooth
coefficients. Here, by ∇u we denote the gradient of a scalar function u and by ∇ · σ we denote the
divergence of the vector function σ. Further, we assume that A is positive definite uniformly in Ω.
The nonhomogeneous term f = f(x, t) is assumed to be smooth. Equations of the above type arise
naturally in many applications, such as in nonlocal reactive flows in porous media (cf. Cushman
and Glinn [6] and Dagan [7]) and heat conduction through materials with memory (cf. Renardy et
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al. [19]). Flows of this type, called NonFickian flows (cf. Ewing et al. [10]), exhibit mixing length
growth.

Now we give brief summary of the works regarding numerical methods for this type of problem
using finite elements. Finite element approximation schemes of the problem (1.1) with smooth
and nonsmooth initial data have been developed and studied quite intensively in the last decade
(cf. [3, 4, 13, 15, 16, 17, 21]). The construction and the analysis of the proposed schemes use the
standard tools of the finite element method and the Ritz-Volterra projection, introduced by Cannon
and Lin in [3].

In [21], Thomeé and Zhang have studied this type of problem for both smooth and nonsmooth
initial data. In particular, for a homogeneous equation with nonsmooth initial data, an optimal-
order L2-error estimate is proved via a semigroup theoretic approach. Subsequently, using energy
method for the homogeneous equation Pani and Peterson in [16] showed convergence of the finite
element approximations of order O(t−1h2) in L2-norm and O

(

t−1h2 log( 1

h )
)

in L∞-norm, when the
initial data u0 is in H1

0 (Ω)∩H2(Ω). Recently, in [17], Pani and Sinha have carried over the analysis
of Luskin and Rannacher [14] for parabolic equations (i.e. equation (1.1) with B(t, s) = 0) to finite
element approximations of time dependent integro-differential equation of parabolic type. They
have proved optimal-order error estimates by an energy technique and a duality argument for the
homogeneous equation with both smooth and nonsmooth initial data.

Often the problem (1.1) is reformulated by introducing a new dependent varialbe

σ(t) = A∇u−

∫ t

0

B(t, s)∇u(s)ds, (1.2)

which in flow in porous media has a meaning of velocity field (or if properly scaled, mass flux). Then
the equation ut − ∇ · σ = f expresses a mass balance in any subdomain of Ω. The finite element
method for this setting, called mixed formulation, gives direct approximation of the velocity field
and the pressure at the same time, while maintaining the underlying local mass conservation. This
property makes the mixed formulation more favorable for certain applications. In recent years,
the analysis of mixed finite element method for such problems has been investigated in [9, 12, 10].
While the authors of [9] have discussed the general setting of the problem, the formulation and
analysis described in [12] are valid for only a special case, namely, when the operator B(t, s) is
proportional to the operator A. More recently, Ewing et al. [10] have studied the problem (1.1)
with when A depends on time and have derived sharp error estimates in L2-norm for the velocity
field and pressure. The analysis uses Ritz-Volterra projection instead of the mixed Ritz projection
used earlier in [9]. In addition, local L2 superconvergence for the velocity along the Gauss lines and
for the pressure at the Gauss point are also derived for the mixed finite element method. In all these
papers error estimates are obtained assuming high regularity on the solution which in turn demands
high regularity on the initial function and the boundary of the domain.

It is well known that the solutions of a homogeneous linear parabolic equation have the so-
called smoothing property (cf. [20]). That is, the solution is sufficiently smooth for positive time
t, even when the initial data are not. Optimal error estimates for the pressure and the velocity
by mixed finite element method of parabolic problems for smooth and nonsmooth initial data were
derived in [5]. The results in [5] use the smoothing property of the parabolic equation to obtaine
also superconvergence results for mixed finite element methods with nonsmooth data. Unfortu-
nately, unlike parabolic equations, parabolic integro-differential equations have a limited smoothing
property; e.g., when u0 ∈ L2(Ω) the solution can not have higher regularity than H2(Ω), a fact
established by Thomeé and Zhang in [21]. Further, the mathematical difficulty associated with the
analysis of numerical approximations to the solution of (1.1) lies on the integral term when added
to standard parabolic equations. Since (1.1) is an integral perturbation of a parabolic equations, it
is natural to examine how far the mixed methods for parabolic problems [5] can be extended to the
integro-differential equations.
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The aim of this paper is to study the convergence of the approximate solutions of (1.1) by mixed
finite element methods. First, we establish an optimal rate O(h2) in L2-norm for the “smooth” case,
namely, when the initial function u0 ∈ H2(Ω)∩H1

0
(Ω). These results rely on a mixed Ritz-Volterra

projection introduced in [10] (instead of the standard Ritz projection). Here we were able to improve
the results of [10] by reducing the smoothness of the initial data u0 from H3 to H2.

The main goal of the paper, optimal estimates for nonsmooth data, namely, u0 ∈ L2(Ω), are
considered in the last section of the paper. The first new result is the estimate (5.1) where we
establish and optimal O(ht−1) convergence rate of the velocity field and the same convergence
rate for the pressure as well (see, Remark 5.2). However the convergence rate in the pressure is
suboptimal. Unlike [5], our analysis does not use semigroup theoretic approach and is based only on
relatively simple energy technique and duality argument. Unfortunately, we were not able to derive
optimal estimate for the pressure in the generality of problem (1.1).

An optimal error estimate for the pressure is established for a class of problems when A = a(t)I
and B = b(t)I and a and b are independent of the spacial variable x. In this case, we were able to
apply duality argument and to show optimal convergence rate O(h2t−1) for the pressure.

The paper is organized as follows. In Section 2, we give the mixed setting of the problem (1.1)
and prove some a priori estimates for the solution needed further in our analysis. The estimates
related to mixed Ritz-Volterra projection are carried out in Section 3. Section 4 is devoted to
the error estimates for smooth initial data. Finally, Section 5 deals with the error estimates with
nonsmooth initial data.

2 Mixed finite element formulation and some a priori estimates

In this section, we introduce the mixed form of the problem (1.1) and prove some useful a priori
estimates. In addition, we recall some known basic estimates for the solution.

To describe the weak mixed formulation, let W = L2(Ω) be the L2 space on Ω with standard
inner product (·, ·) and norm ‖ · ‖. Let

V = H(div,Ω) = {σ ∈ (L2(Ω))d : ∇ · σ ∈ L2(Ω)}

be the Hilbert space equipped with the norm ‖σ‖ = (‖σ‖2 + ‖∇ · σ‖2)
1

2 .

Following [9], we now recall the weak mixed formulation of (1.1) as follows: Find (u, σ) ∈W ×V
such that

(ut, w) − (∇ · σ,w) = (f, w) ∀w ∈ W, (2.1)

(ασ, v) +

∫ t

0

(M(t, s)σ(s), v)ds + (∇ · v, u) = 0 ∀v ∈ V. (2.2)

with u(x, 0) = u0(x). Here, α = A−1, M(t, s) = R(t, s)A−1, and R(t, s) is the resolvent of the matrix
A−1B(t, s) and is given by

R(s, t) = A−1B(t, s) +

∫ t

s

A−1B(t, τ)R(τ, s)dτ, t > s ≥ 0.

Since the matrix A is positive definite then obviously there exist positive constants C1 and C2

such that

C1‖σ‖ ≤ ‖σ‖2

A−1 ≤ C2‖σ‖, where ‖σ‖2

A−1 := (A−1σ, σ). (2.3)

Below, we shall prove some a priori estimates for u and σ satisfying (2.1) and (2.2). These
estimates will be useful in our subsequent analysis.
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Lemma 2.1 Let (u, σ) satisfy (2.1)-(2.2) with f = 0 and let 0 ≤ i, j ≤ 2.
If 0 ≤ 2j − i ≤ 2, then

ti
∥

∥

∥

∥

∂ju

∂tj
(t)

∥

∥

∥

∥

2

≤ C‖u0‖
2

2j−i and

∫ t

0

si

∥

∥

∥

∥

∂jσ

∂sj
(s)

∥

∥

∥

∥

2

ds ≤ C‖u0‖
2

2j−i. (2.4)

Further, if 0 ≤ 2j − i− 1 ≤ 2, then

ti
∥

∥

∥

∥

∂jσ

∂tj
(t)

∥

∥

∥

∥

2

≤ C‖u0‖
2

2j−i−1 and

∫ t

0

si

∥

∥

∥

∥

∂ju

∂sj
(s)

∥

∥

∥

∥

2

ds ≤ C‖u0‖
2

2j−i−1. (2.5)

Proof. For brevity, we shall refer to the first and second inequalities in (2.4) as F1(u; i, j) and
F2(σ; i, j), respectively. Similarly, the first and second inequalities of (2.5) be denoted by S1(u; i, j)
and S2(σ; i, j), respectively. Choose w = u and v = σ in (2.1) and (2.2), respectively. Then we
obtain from their sum

1

2

d

dt
‖u‖2 + ‖σ‖2

A−1 ≤ C

(
∫ t

0

‖σ‖ds

)

‖σ‖.

Integrate from 0 to t. Then use (2.3) to get

‖u(t)‖2 +

∫ t

0

‖σ(s)‖2ds ≤ C

(

‖u0‖
2 +

∫ t

0

∫ s

0

‖σ(τ)‖2dτds

)

.

An application of Gronwall’s lemma leads to the estimates F1(u; 0, 0) and F2(σ; 0, 0). Differentiate
(2.2) with respect to time to have

(ασt, v) + (M(t, t)σ(t) +

∫ t

0

Mt(t, s)σ(s), v)ds + (∇ · v, ut) = 0, ∀v ∈ V. (2.6)

Here, Mt(t, s) is obtained by differentiating M(t, s) with respect to t. Taking w = ut and v = σ
in (2.1) and (2.6), respectively and noting the fact that ‖σ(0)‖ ≤ C‖∇u0‖ ≤ C‖u0‖1 we obtain
S1(σ; 0, 0) and S2(u; 0, 1). Similarly, the choice w = tut and v = tσ in (2.1) and (2.6), respectively
will lead to the estimates S1(σ; 1, 0) and S2(u; 1, 1). Next, differentiating (2.1) with respect to t we
obtain for f = 0

(utt, w) − (∇ · σt, w) = 0. (2.7)

Taking w = t2ut and v = t2σt in (2.7) and (2.6), respectively we obtain from their sum

1

2

d

dt
{t2‖ut‖

2} + t2‖σt‖
2

A−1 ≤ Ct2
(

‖σ(t)‖ +

∫ t

0

‖σ(s)‖ds

)

‖σt‖ + t‖ut‖
2.

Integration from 0 to t and a standard kickback argument leads to

t2‖ut‖
2 +

∫ t

0

s2‖σs‖
2 ≤ C

(

t2‖σ(t)‖2 +

∫ t

0

{‖σ‖2 + s‖us‖
2}ds

)

.

Use previously proved estimates S1(σ; 1, 0), F2(σ; 0, 0) and S2(u; 1, 1) to obtain F1(u; 2, 1) and
F2(σ; 2, 1). The remaining cases will not be discussed in details, but the following table summerizes
the necessary techniques: That is, the equations and the choice of w and v that would lead to the
desired estimate.
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Equations w v Estimates
(2.1), (2.2) u σ F1(u; 0, 0), F2(σ; 0, 0)
(2.1), (2.2)1 ut σ S1(σ; 0, 0), S2(u; 0, 1)
(2.1), (2.2)1 tut tσt S1(σ; 1, 0), S2(u; 1, 1)
(2.1)1, (2.2)1 t2ut t2σt F1(u; 2, 1), F2(σ; 2, 1)
(2.1)1, (2.2)1 tut tσt F1(u; 1, 1), F2(σ; 1, 1)
(2.1)1, (2.2)2 tutt tσt S1(σ; 1, 1), S2(u; 1, 2)
(2.1)1, (2.2)2 t2utt t2σt S1(σ; 2, 1), S2(u; 2, 2)
(2.1)2, (2.2)2 t2utt t2σtt F1(u; 2, 2), F2(σ; 2, 2)

Note that ( · )k is obtained by k times differentiating equation ( · ) with respect to t.

Lemma 2.2 Let u satisfy (1.1) with f = 0. If u0 ∈ H2(Ω) ∩H1

0
(Ω), then

‖u(t)‖2

2
+ t2‖ut‖

2

2
≤ C‖u0‖

2

2
.

Further, if u0 ∈ L2(Ω), we have

t2‖u(t)‖2

2 + t4‖ut‖
2

2 ≤ C‖u0‖
2, t ∈ J.

Proof. For a proof, see [17] and [21].

Let Th be a quasiuniform triangulation of Ω. Let Vh ×Wh denote a pair of finite element spaces
satisfying the follwing conditions:
(i) ∇ · Vh ⊂Wh, and
(ii) there exists a linear operator Πh : V → Vh such that ∇ · Πh = Ph∇,
where Ph : W →Wh is the L2-projection defined by

(φ− Phφ,wh) = 0, ∀wh ∈ Wh, φ ∈W.

Further, we shall assume that the finite element spaces satisfy the following approximation proper-
ties:

‖σ − Πhσ‖ ≤ Ch‖σ‖1, (2.8)

‖u− Phu‖ ≤ Chr‖u‖r, r = 1, 2. (2.9)

For examples of such finite element spaces, we refer to Raviart-Thomas [18], Brezzi, Douglas and
Marini [1] and Brezzi and Fortin [2]. Note that Πh and Ph satisfy

(∇ · (σ − Πhσ), wh) = 0, wh ∈Wh; (u− Phu,∇ · vh) = 0, vh ∈ Vh. (2.10)

Then the corresponding semidiscrete mixed finite element approximation is defined as follows:
Find a pair (uh, σh) ∈Wh × Vh such that

(uh,t, wh) − (∇ · σh, wh) = (f, wh) ∀wh ∈ Wh, (2.11)

(ασh, vh) +

∫ t

0

(M(s, t)σh(s), vh)ds+ (∇ · vh, uh) = 0 ∀vh ∈ Vh, (2.12)

with uh(x, 0) = u0,h(x), where u0,h is a suitable approximation of the initial function u0(x) to be
defined later. The pair (uh, σh) is a semidiscrete approximation of the true solution of (1.1) in the
finite element space Wh × Vh, where σh(x, 0) is chosen to satisfy (2.12) with t = 0 and it is related
to u0,h as follows:

(ασh(0), vh) + (u0,h,∇ · vh) = 0.

Throughout this paper C denotes a generic positive constant which does not depend on the mesh
parameter h but may depend on T .
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3 Mixed Ritz-Volterra projection and its properties

Following [10], we now define mixed Ritz-Volterra projection as the pair (ũh, σ̃h) : [0, T ] →Wh ×Vh

such that

(α(σ − σ̃h, vh)) +

∫ t

0

(M(t, s)(σ − σ̃h)(s), vh)ds+ (∇ · vh, u− ũh) = 0, vh ∈ Vh, (3.1)

(∇ · (σ − σ̃h), wh) = 0, wh ∈Wh. (3.2)

Set ρ = (u− ũh) and η = (σ − σ̃h). We now rewrite the equations (3.1)-(3.2) as

(αη, vh) +

∫ t

0

(M(t, s)η(s), vh) ds+ (∇ · vh, ρ) = 0, vh ∈ Vh, (3.3)

(∇ · η, wh) = 0, wh ∈ Wh. (3.4)

From [10] (see, Theorems 2.5-2.6), we now recall the following estimates of ρ and η

‖ρ(t)‖ + h‖η(t)‖ ≤ Ch2

(

‖u(t)‖2 +

∫ t

0

‖u(s)‖2ds

)

(3.5)

and

‖ρt‖ ≤ Ch2

(

‖u‖2 + ‖ut‖2 +

∫ t

0

(‖u(s)‖2 + ‖ut(s)‖2)ds

)

. (3.6)

Note that the estimate of ρt contains a term ‖ut‖2 under the integral sign. However, an inspection
of the proof (cf. [10]) shows that it is not necessary. The elimination of this term is very crucial for
the nonsmooth data error estimates. In order to analyze this we need the following result which is
a particular case of [8] (cf. Lemma 3.1).

Lemma 3.1 Let the index of Vh ×Wh be at least one. Assume that Ω is 2-regular [8]. Let η ∈ V ,
g ∈ L2(Ω) and f = {f0, f1} with f0 ∈ (L2(Ω))2, f1 ∈ L2(Ω) and

f(v) = (f0, v) + (f1,∇ · v), v ∈ V.

If z ∈ Wh satisfies the relations

(αη, vh) + (∇ · vh, z) = f(vh), vh ∈ Vh,

(∇ · η, wh) + (cz, wh) = g(wh), wh ∈Wh,

then there exists h0 > 0 sufficiently small such that, for all 0 < h ≤ h0,

‖z‖ ≤ C
(

h‖η‖+ h2‖∇ · η‖ + ‖f0‖−1 + h‖f0‖ + ‖f1‖ + ‖g‖−2 + h2‖g‖
)

.

Instead of (3.6) we prove the following result.

Lemma 3.2 Let (ũh, σ̃h) be the mixed Ritz-Volterra projection of (u, σ) ∈W × V defined by (3.1)-
(3.2). Then, for small h, there is a positive constant C independent of h such that

‖(u− ũh)t‖ ≡ ‖ρt(t)‖ ≤ Ch2

(

‖u(t)‖2 + ‖ut(t)‖2 +

∫ t

0

‖u(s)‖2ds

)

.
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Proof. We borrow the proof technique from [10]. We first split ρt as

ρt = (ut − Phut) + τh,t, (3.7)

where τh = (Phu− ũh). We now estimate ‖τh,t‖. Differentiating (3.3)-(3.4) with respect to time t
to have

(αηt, vh) + (∇ · vh, ρt) = −

(

M(t, t)η(t) +

∫ t

0

Mt(t, s)η(s)ds, vh

)

, vh ∈ Vh, (3.8)

(∇ · ηt, wh) = 0, wh ∈Wh. (3.9)

We now apply Lemma 3.1 to (3.8)-(3.9) with c ≡ 0, f1 ≡ 0,

f(vh) = −

(

M(t, t)η(t) +

∫ t

0

Mt(s, t)η(s)ds, vh

)

, and g ≡ 0.

Since

‖f‖ ≤ C

(

‖η‖+

∫ t

0

‖η‖ds

)

and ‖f‖−1 ≤ C

(

‖η‖−1 +

∫ t

0

‖η‖−1ds

)

,

we obtain

‖τh,t‖ ≤ C
{

h‖ηt‖ + h2‖∇ · ηt‖ + ‖f‖−1 + h‖f‖
}

≤ C

{

h‖ηt‖ + h2‖∇ · ηt‖ + (‖η‖−1 + h‖η‖) +

∫ t

0

(‖η‖−1 + h‖η‖)ds

}

. (3.10)

It follows from ( [10, p.1544]) that

‖η‖−1 ≤ C

{

‖ρ‖ + Ch(‖η‖ +

∫ t

0

‖η(s)‖ds)

}

. (3.11)

A substitution of (3.11) into (3.10) yields

‖τh,t‖ ≤ C

{

h‖ηt‖ + h(‖η‖ +

∫ t

0

‖η(s)‖ds) + h2‖∇ · ηt‖ + ‖ρ(t)‖ +

∫ t

0

‖ρ(s)‖ds

}

,

which together with (3.7), the triangle inequality, and the estimate of ‖ρ‖ leads to

‖ρt(t)‖ ≤ Ch

{

‖ηt‖ + ‖η‖ +

∫ t

0

‖η(s)‖ds+ h‖∇ · ηt‖ + h(‖u‖2 +

∫ t

0

‖u‖2ds)

}

. (3.12)

Since the estimate of ‖η‖ is already known, it remains to estimate the terms ‖∇ · ηt‖ and ‖ηt‖. In
view of (2.10), (3.2) and (3.9), it is easy to see that

‖∇ · ηt‖
2 = (∇ · (σt − σ̃h,t),∇ · (σt − σ̃h,t))

= (∇ · (σt − σ̃h,t),∇ · (σt − Πhσt)) ≤ C‖∇ · σt‖‖∇ · ηt‖,

so we get
‖∇ · ηt‖ ≤ C‖σt‖1. (3.13)

Next, to estimate ‖ηt‖, we note that

‖ηt‖ ≤ ‖Πhσt − σ̃h,t‖ + ‖Πhσt − σt‖ ≤ C(‖ψh,t‖ + h‖σt‖1). (3.14)
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where ψh = Πhσ − σ̃h. For the estimation of ‖ψh,t‖, we first differentiate (3.1) with respect to t to
get

(

αψh,t +M(t, t)ψh +

∫ t

0

Mt(t, s)ψh(s)ds, ψh,t

)

=

(

αηt +M(t, t)ηh +

∫ t

0

Mt(t, s)ηh(s)ds, ψh,t

)

+

(

α(Πhσt − σt) +M(t, t)(Πhσ − σ) +

∫ t

0

Mt(t, s)(Πhσ − σ)(s)ds, ψh,t

)

= −(∇ · ψh,t, ρt) +

(

α(Πhσt − σt) +M(t, t)(Πhσ − σ) +

∫ t

0

Mt(t, s)(Πhσ − σ)(s)ds, ψh,t

)

.

Then we apply Cauchy-Schwarz inequality to have

‖ψh,t‖
2 ≤ C

(

‖ψh‖ +

∫ t

0

‖ψh‖ds

)

‖ψh,t‖ + ‖∇ · ψh,t‖‖ρt‖

+C

(

‖Πhσt − σt‖ + ‖(Πhσ − σ)‖ +

∫ t

0

‖(Πhσ − σ)(s)‖ds

)

‖ψh,t‖.

Kickback ‖ψh,t‖ to obtain

‖ψh,t‖ ≤ C

(

‖ψh‖ +

∫ t

0

‖ψh‖ds+ ‖∇ · ψh,t‖ + ‖ρt‖

)

+C

(

‖Πhσt − σt‖ + ‖(Πhσ − σ)‖ +

∫ t

0

‖(Πhσ − σ)(s)‖ds

)

. (3.15)

Note that ‖∇ · ψh,t‖ = 0 and it follows from [10] (see, page 1545) that

‖ψh‖ ≤ C(‖ρ‖ + h(‖σ‖1 +

∫ t

0

‖σ‖1ds)). (3.16)

Putting (3.16) into (3.15) we have

‖ψh,t‖ ≤ C

{

‖ρ‖ + ‖ρt‖ + h

(

‖σt‖1 + ‖σ‖1 +

∫ t

0

‖σ‖1ds

)}

,

and this combined with (3.14) yields

‖ηt‖ ≤ C

{

‖ρ‖ + ‖ρt‖ + h(‖σt‖1 + ‖σ‖1 +

∫ t

0

‖σ‖1ds)

}

. (3.17)

Finally, using (3.17), (3.13) and the estimate of ‖η‖ in (3.12), for small h we obtain

‖ρt‖ ≤ Ch2

{

‖u‖2 + ‖ut‖2 +

∫ t

0

‖u‖2 +

(

‖σt‖1 + ‖σ‖1 +

∫ t

0

‖σ‖1ds

)}

,

which completes the proof. �

4 L2-error estimates with smooth initial data

In this section, we shall derive optimal L2-error estimates for the solutions u and σ assuming the
initial function u0 ∈ H2(Ω) ∩ H1

0
(Ω). Using the mixed Ritz-Volterra projection (ũh, σ̃h) we first
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write the errors as

e1(t) := u− uh = (u− ũh) + (ũh − uh) := ρ+ ρh, (4.1)

e2(t) := σ − σh = (σ − σ̃h) + (σ̃h − σh) := η + θh. (4.2)

Since the estimates of ρ and η are already known it is enough to have estimates for ρh and θh.
Using (2.1), (2.2), (2.11), (2.12), (3.1) and (3.2), we note that (ρh, θh) satisfies the following error
equations

(αθh, vh) +

∫ t

0

(M(t, s)θh(s), vh)ds) + (∇ · vh, ρh) = 0, vh ∈ Vh, (4.3)

(ρh,t, wh) − (∇ · θh, wh) = −(ρt, wh), wh ∈ Wh. (4.4)

For a function φ defined on [0, T ], we define φ̂(t) as

φ̂(t) =

∫ t

0

φ(τ)dτ.

Clearly, φ̂(0) = 0 and φ̂t(t) = φ(t). Integrate (3.3) and (3.4) from 0 to t to get

(αη̂, vh) +

∫ t

0

(M(s, s)η̂(s), vh) −

∫ t

0

∫ s

0

(Mτ (s, τ)η̂(τ), vh)dτds + (∇ · vh, ρ̂) = 0, (4.5)

(∇ · η̂, wh) = 0, (4.6)

satisfied for vh ∈ Vh and wh ∈ Wh, respectively Similarly, integrate equations (2.1), (2.2), (2.11)
and (2.12) from 0 to t. Then using the resulting equations, (4.5), (4.6) and uh(0) = Phu0, it is easy

to verify that (ρ̂h, θ̂h) satisfies the following equations

(αθ̂h, vh) +

∫ t

0

(M(s, s)θ̂h(s), vh)ds−

∫ t

0

∫ s

0

(Mτ (s, τ)θ̂h(τ), vh)dτ + (∇ · vh, ρ̂h) = 0, (4.7)

(ρ̂h,t, wh) − (∇ · θ̂h, wh) = −(ρ, wh) (4.8)

with vh ∈ Vh and wh ∈Wh.

Now we state the main results of this section.

Theorem 4.1 Let (u, σ) and (uh, σh) be the solutions of (2.1)-(2.2) and (2.11)-(2.12), respectively
with f = 0. Further, let u0 ∈ H2(Ω) ∩ H1

0 (Ω) and uh(0) = Phu0. Then there is a positive generic
constant C independent of h such that

‖u(t) − uh(t)‖ ≤ Ch2‖u0‖2, (4.9)

and

‖σ(t) − σh(t)‖ ≤ Ct−1/2h‖u0‖2, t ∈ J (4.10)

hold true.

The proof requires some preparatory results that are established below in a sequence of lemmas.

Lemma 4.1 Let (ρ̂h, θ̂h) satisfy (4.7)-(4.8) and uh(0) = Phu0. Then there is a positive constant C
independent of h such that

‖ρ̂h‖
2 +

∫ t

0

‖θ̂h‖
2ds ≤ C

∫ t

0

‖ρ‖2ds.
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Proof. Set wh = ρ̂h and vh = θ̂h in (4.7) and (4.8), respectively. Then sum the resulting equations
to have

1

2

d

dt
‖ρ̂h‖

2 + ‖θ̂h‖
2

A−1 = −

(
∫ t

0

M(s, s)θ̂h(s)ds−

∫ t

0

∫ s

0

Mτ (s, τ)θ̂h(τ)dτ, θ̂h

)

− (ρ, ρ̂h)

≤ C

(
∫ t

0

{‖θ̂h(s)‖ +

∫ s

0

‖θ̂h(τ)‖dτ}ds

)

‖θ̂‖ + ‖ρ‖‖ρ̂h‖.

In view of (2.3) we obtain

1

2

d

dt
‖ρ̂h‖

2 +
C1

2
‖θ̂h‖

2 ≤ C

(

‖ρ̂h‖
2 + ‖ρ‖2 +

∫ t

0

‖θ̂h(s)‖2ds

)

Integrating from 0 to t, we have

‖ρ̂h‖
2 +

∫ t

0

‖θ̂h‖
2ds ≤ C

(
∫ t

0

{‖ρ̂h‖
2 +

∫ s

0

‖θ̂h(τ)‖2dτ}ds+ C

∫ t

0

‖ρ‖2ds

)

An application of Gronwall’s lemma completes the rest of the proof. �

Lemma 4.2 Let the hypotheses in Lemma 4.1 hold true. Then there is a positive constant C
independent of h such that

‖θ̂h(t)‖2 +

∫ t

0

‖ρh(s)‖2ds ≤ C

∫ t

0

‖ρ(s)‖2ds.

Proof. Setting wh = ρh and vh = θ̂h in (4.8) and (4.3), respectively. Then we obtain from their
sum

‖ρh‖
2 +

1

2

d

dt
‖θ̂h‖

2

A−1 = −

(

M(t, t)θ̂h(t) −

∫ t

0

Ms(t, s)θ̂h(s)ds, θ̂h

)

− (ρ, ρh)

≤ C

(

‖θ̂h(t)‖ +

∫ t

0

‖θ̂h(s)‖ds

)

‖θ̂‖ + ‖ρ‖‖ρh‖.

Kickback the term ‖ρh‖ to have

‖ρh‖
2 +

1

2

d

ds
‖θ̂h‖

2

A−1 ≤ C

(

‖θ̂h(t)‖2 +

∫ t

0

‖θ̂h(s)‖2ds

)

+ C‖ρ‖2.

Integrating from 0 to t and further using (2.3) and Lemma 4.1 the desired estimate is easily obtained.
This completes the rest of the proof. �

Lemma 4.3 Let (ρh, θh) satisfy (4.3), (4.4) and uh(0) = Phu0. Then there is a positive constant
C independent of h such that

t‖ρh‖
2 +

∫ t

0

s‖θh‖
2ds ≤ C

∫ t

0

(‖ρ(s)‖2 + s2‖ρs(s)‖
2)ds.

Proof. Choose wh = tρh and vh = tθh in (4.4) and (4.3), respectively. Then sum the resulting
equations to have

1

2

d

dt
{t‖ρh‖

2} + t‖θh‖
2

A−1 = −

(

M(t, t)θ̂h(t) −

∫ t

0

Ms(t, s)θ̂h(s)ds, tθh

)

− t(ρt, ρh)

≤ C

(

‖θ̂h(s)‖ +

∫ t

0

‖θ̂h(s)‖ds

)

t‖θh‖ + t‖ρt‖‖ρh‖.
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By (2.3) and kicking back t‖θh‖ it now follows that

d

dt
{t‖ρh‖

2} + t‖θh‖
2 ≤ C

(

‖ρh‖
2 + ‖θ̂h(t)‖2 +

∫ t

0

‖θ̂h(s)‖2ds+ t2‖ρt‖
2

)

.

Integration from 0 to t leads to

t‖ρ̂h‖
2 +

∫ t

0

s‖θh‖
2ds ≤ C

(
∫ t

0

{‖ρh‖
2 + s2‖ρs‖

2 + ‖θ̂h‖
2 +

∫ s

0

‖θ̂h(τ)‖2dτ}ds

)

.

An application of Lemma 4.1 and Lemma 4.2 completes the rest of the proof. �

In order to obtain an estimate for θh we differentiate (4.3) with respect to t to have

(αθh,t, vh) + (M(t, t)θh, vh) +

∫ t

0

(Mt(t, s)θh(s), vh)ds,+(∇ · vh, ρh,t) = 0, vh ∈ Vh. (4.11)

Lemma 4.4 Let the hypotheses in Lemma 4.3 hold true. Then there is a positive constant C
independent of h such that

∫ t

0

s2‖ρh,s‖
2ds+ t2‖θh(t)‖2 ≤ C

∫ t

0

(‖ρ‖2 + s2‖ρs‖
2)ds.

Proof. Setting vh = t2θh in (4.11) and wh = t2ρh,t in (4.4). Then we obtain from their sum

t2‖ρh,t‖
2 +

1

2

d

dt
{t2‖θh‖

2

A−1} = −t2(M(t, t)θh, θh) + (Mt(t, t)θ̂(t), θh)

−

∫ t

0

(Mts(t, s)θ̂h(s), θh)ds+ t‖θh‖
2

A−1 − t2(ρt, ρh,t).

Integrating from 0 to t and use standard kickback argument to have

∫ t

0

s‖ρh,s‖
2ds+ t2‖θh(t)‖2 ≤ C

(
∫ t

0

s‖θh‖
2ds+

∫ t

0

∫ s

0

‖θ̂h(s)‖2dτds

)

+C

∫ t

0

s2‖ρs‖
2ds+ C

∫ t

0

s2‖θh(s)‖2ds.

Finally, use Lemma 4.1, Lemma 4.3 and Gronwall’s lemma to complete the rest of the proof. �

Proof of Theorem 4.1. By triangle inequality, we have

‖u(t) − uh(t)‖ := ‖e1(t)‖ ≤ ‖ρ(t)‖ + ‖ρh‖.

For the first term on the right of the above inequality, we use (3.5) and Lemma 2.2 to have

‖ρ(t)‖ ≤ Ch2

(

‖u‖2 +

∫ t

0

‖u‖2ds

)

≤ Ch2‖u0‖2.

Using Lemma 4.3, Lemma 3.2, (3.5) and Lemma 2.2, it now follows that

t‖ρh‖
2 ≤ C

(
∫ t

0

{‖ρ‖2 + s2‖ρs‖
2}

)

≤ Ch4

(
∫ t

0

{‖u‖2

2 + s2‖us‖
2

2}

)

≤ Ch4t‖u0‖
2

2.

Altogether these estimates proves the first statement of the theorem. Combining (3.5), Lemma 3.2,
Lemma 4.4 and Lemma 2.2, the second statement is easily obtained and this completes the proof.

�
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Remark 4.1. (i) Note that Theorem 4.1 yields optimal order of convergence assuming u0 ∈
H2(Ω) ∩H1

0 (Ω). Compared to [10](see, Theorem 3.1) the results presented in Theorem 4.1 require
less regularity assumption on the initial function u0. In [10], one requires u0 to be atleast in H3(Ω).

(ii) In contrast to [10], we do not require the assumptions

‖Phu0 − uh(0)‖ ≤ Ch2‖u0‖2 and ‖Πhσ(0) − σh(0)‖ ≤ Ch‖u0‖2

but uh(0) = Phu0 suffices for the present analysis.

5 L2-error estimates with nonsmooth initial data

This section is devoted to the error estimates for the semidiscrete Galerkin method for the homoge-
neous equation (1.1) with nonsmooth initial data. In particular, for homogeneous equations, optimal
order error estimates for the solutions are shown to hold assuming u0 ∈ L2(Ω). First objective of
this section is to prove the following theorem.

Theorem 5.1 Let (u, σ) and (uh, σh) be the solutions of (2.1), (2.2) and (2.11), (2.12), respectively
with f = 0. Assume that u0 ∈ L2(Ω). Then

‖σ(t) − σh(t)‖ ≤ Ct−1h‖u0‖, t ∈ J. (5.1)

The proof of the above theorem require some preparations. For this purpose we shall first establish
a sequence of lemmas which will lead to the desired result. Using (2.1), (2.2), (2.11) and (2.12), we
obtain the following error equations

(e1,t, wh) − (∇ · e2, wh) = 0, ∀wh ∈ Wh, (5.2)

(αe2, vh) +

∫ t

0

(M(t, s)e2(s), vh)ds+ (∇ · vh, e1) = 0, ∀vh ∈ Vh. (5.3)

Lemma 5.1 Assume that u0 ∈ L2(Ω) and uh(0) = Phu0. Then we have

‖Phû− ûh‖
2 +

∫ t

0

‖Πhσ̂ − σ̂h‖
2 ≤ Cth2‖u0‖

2.

Proof. Integrating (5.2), (5.3) with respect to t and using the fact that uh(0) = Phu0, we get

(e1, wh) − (∇ · ê2, wh) = 0, (5.4)

(αê2, vh) +

∫ t

0

(M(s, s)ê2(s), vh)ds −

∫ t

0

∫ s

0

(Mτ (s, τ)ê2(τ), vh)dτds,+(∇ · vh, ê1) = 0.(5.5)

Choose wh = Phû− ûh and vh = Πhσ̂− σ̂h in (5.4) and (5.5), respectively and add these equalities.
Then using (2.10) we obtain

1

2

d

dt
{‖Phû− ûh‖

2} + ‖Πhσ̂ − σ̂h‖
2

A−1 ≤ C‖σ̂ − Πhσ̂‖‖Πhσ̂ − σ̂h‖

+C

(
∫ t

0

(σ̂ − ‖Πhσ̂‖ +

∫ s

0

‖σ̂ − Πhσ̂‖dτ)ds

)

‖Πhσ̂ − σ̂h‖

+C

(
∫ t

0

(‖Πhσ̂ − σ̂h‖ +

∫ s

0

‖Πhσ̂ − σ̂h‖dτ)ds

)

‖Πhσ̂ − σ̂h‖.
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Apply (2.3), kickback ‖‖Πhσ̂ − σ̂h‖ and then integrate from 0 to t to get

‖Phû− ûh‖
2 +

∫ t

0

‖Πhσ̂ − σ̂h‖
2ds ≤ C

∫ t

0

‖σ̂ − Πhσ̂‖
2ds+ C

∫ t

0

∫ s

0

‖Πhσ̂ − σ̂h‖
2dτds.

With an aid of (2.8) and Gronwall’s lemma, it follows that

‖Phû− ûh‖
2 +

∫ t

0

‖Πhσ̂ − σ̂h‖
2ds ≤ Ch2

∫ t

0

‖σ̂‖2

1
ds. (5.6)

Now it remains to estimate ‖σ̂‖1. Integrating (1.2) by parts we have

σ(t) = A∇u−

∫ t

0

B(t, s)∇ûs(s)ds = A∇u−B(t, t)û+

∫ t

0

Bs(t, s)∇û(s)ds,

and hence

‖σ̂‖1 ≤ C

(

‖û(t)‖2 +

∫ t

0

‖û(s)‖2ds

)

. (5.7)

From (1.1) with f = 0, we have

−∇ · (A∇u) = −ut −

∫ t

0

∇ · (B(t, s)∇ûs(s))ds

= −ut −∇ · (B(t, t)∇û(t)) +

∫ t

0

∇ · (Bs(t, s)∇û(s))ds.

Integrating from 0 to t and then using elliptic regularity and Lemma 2.1 we obtain

‖û‖2 ≤ ‖u0‖ + ‖u(t)‖ + C

∫ t

0

‖û‖2ds ≤ C‖u0‖ + C

∫ t

0

‖û‖2ds.

Now application of Gronwall’s lemma yields

‖û‖2 ≤ C‖u0‖. (5.8)

Now combine (5.6), (5.7) and (5.8) to complete the proof. �

Lemma 5.2 Assume that u0 ∈ L2(Ω) and uh(0) = Phu0. Then we have

t‖Πhσ̂ − σ̂h‖
2 +

∫ t

0

s‖Phu− uh‖
2ds ≤ Cth2‖u0‖

2.

Proof. Taking wh = t(Phu− uh) and vh = t(Πhσ̂ − σ̂h) in (5.4) and (5.3), respectively. Then using
(2.10) we obtain from their sum

t‖Phu− uh‖
2 +

1

2

d

dt
{t‖Πhσ̂ − σ̂h‖

2

A−1} ≤ Ct‖σ − Πhσ‖‖Πhσ̂ − σ̂h‖ +
1

2
‖Πhσ̂ − σ̂h‖

2

A−1

+C

(

‖σ̂ − Πhσ̂‖ +

∫ t

0

‖σ̂ − Πhσ̂‖ds

)

(t‖Πhσ̂ − σ̂h‖)

+C

(

‖Πhσ̂ − σ̂h‖ +

∫ t

0

‖Πhσ̂ − σ̂h‖ds

)

(t‖Πhσ̂ − σ̂h‖).
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Again use of (2.3) and integration from 0 to t now leads to

t‖Πhσ̂ − σ̂h‖
2 +

∫ t

0

s‖Phu− uh‖
2ds ≤ C

(
∫ t

0

s2‖σ − Πhσ‖
2ds+

∫ t

0

‖Πhσ̂ − σ̂‖2ds

)

+C

∫ t

0

‖Πhσ̂ − σ̂h‖
2ds.

Here it is important to emphasize that the multiplication by s2 is very crucial for the estimation of
the first term of the above inequality. We apply Lemma 5.1, (2.8), a priori estimate in Lemma 2.2
and (5.8) to complete the rest of the proof. �

Lemma 5.3 Assume that u0 ∈ L2(Ω) and uh(0) = Phu0. Then there is a positive constant C
independent of h such that

t2‖Phu− uh‖
2 +

∫ t

0

s2‖Πhσ − σh‖
2ds ≤ Cth2‖u0‖

2.

Proof. Setting wh = t2(Phu − uh) and vh = t2(Πhσ − σh) in (5.2) and (5.3), respectively. Then
using (2.10) we obtain from their sum

1

2

d

dt
{t2‖Phu− uh‖

2} + t2‖Πhσ − σh‖
2

A−1 ≤ Ct2‖σ − Πhσ‖‖Πhσ − σh‖ + t‖Phu− uh‖
2

+C

(

‖σ̂ − Πhσ̂‖ +

∫ t

0

‖σ̂ − Πhσ̂‖ds

)

(t2‖Πhσ − σh‖)

+C

(

‖Πhσ̂ − σ̂h‖ +

∫ t

0

‖Πhσ̂ − σ̂h‖ds

)

(t2‖Πhσ − σh‖).

Integrate from 0 to t and then use standard kickback argument to have

t2‖Phu− uh‖
2 +

∫ t

0

s2‖Πhσ − σh‖
2ds ≤ C

(
∫ t

0

s2‖σ − Πhσ‖
2ds

+

∫ t

0

s‖Phu− uh‖
2ds+

∫ t

0

‖Πhσ̂ − σ̂‖2ds

)

.

An application of (2.8), Lemmas 5.1-5.2, a priori estimates in Lemma 2.2 and (5.8) yield the desired
estimate and this completes the proof. �

Lemma 5.4 With u0 ∈ L2(Ω) and uh(0) = Phu0, we have

t3‖Πhσ − σh‖
2 +

∫ t

0

s3‖Phut − uh,t‖
2ds ≤ Cth2‖u0‖

2.

Proof. Differentiate (5.3) with respect to t to have

(αe2,t(t), vh) + (M(t, t)e2(t), vh) +

∫ t

0

(Mt(t, s)e2(s), vh)ds+ (∇ · vh, e1,t(t)) = 0. (5.9)
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Setting wh = t3(Phut −uh,t) and vh = t3(Πhσ−σh) in (5.2) and (5.9), respectively and using (2.10)
we obtain from their sum

t3‖Phut − uh,t‖
2 +

1

2

d

dt
{t3‖Πhσ − σh‖

2

A−1} ≤ Ct3‖σt − Πhσt‖‖Πhσ − σh‖ +
3

2
t2‖Πhσ − σh‖

2

A−1

+Ct3‖σ − Πhσ‖‖Πhσ − σh‖ + Ct3‖Πhσ − σh‖
2

+C

(

‖σ̂ − Πhσ̂‖ +

∫ t

0

‖σ̂ − Πhσ̂‖ds

)

(t3‖Πhσ − σh‖)

+C

(

‖Πhσ̂ − σ̂h‖ +

∫ t

0

‖Πhσ̂ − σ̂h‖ds

)

(t3‖Πhσ − σh‖).

Here, we have used the identity

∫ t

0

(Mt(t, s)e2(s), vh)ds = (Mt(t, t)ê2(t), vh) −

∫ t

0

Mts(t, s)ê2(s), vh)ds.

and use the same argument as in Lemma 5.3 to get

t3‖Πhσ − σh‖
2 +

∫ t

0

s3‖Phut − uh,t‖
2ds ≤ C

(
∫ t

0

s4‖σt − Πhσt‖
2ds

+

∫ t

0

s2‖Πhσ − σh‖
2ds+

∫ t

0

s3‖σ − Πhσ‖
2ds

+

∫ t

0

‖Πhσ̂ − σ̂‖2ds

)

+ C

∫ t

0

s3‖Πhσ − σh‖
2ds.

Apply (2.8), Lemma 5.1, Lemma 5.3, a priori estimates in Lemma 2.2 and (5.8) to obtain

t3‖Πhσ − σh‖
2 +

∫ t

0

s3‖Phu− uh,t‖
2ds ≤ Cth2‖u0‖

2 + C

∫ t

0

s3‖Πhσ − σh‖
2ds.

Finally, an application of Gronwall’s lemma completes the rest of the proof. �

Lemma 5.5 Assume that u0 ∈ L2(Ω) and uh(0) = Phu0. Then there is a positive constant C
independent of h such that

t4‖Phut − uh,t‖
2 +

∫ t

0

s4‖Πhσ − σh‖
2ds ≤ Cth2‖u0‖

2.

Proof. Differentiate (5.2) with respect to t and set wh = t4(Phut − uh,t) in the resulting equation
and vh = t4(Πhσt − σh,t) in (5.9). A similar argument as before now leads to

1

2

d

dt
{t4‖Phut − uh,t‖

2} + t4‖Πhσt − σh,t‖
2

A−1 ≤ Ct4‖σt − Πhσt‖‖Πhσt − σh,t‖

+2t3‖Phut − uh,t‖
2 + C{‖σ − Πhσ‖ + ‖Πhσ − σh‖}(t

4‖Πhσt − σh,t‖)

+C

(

‖σ̂ − Πhσ̂‖ +

∫ t

0

‖σ̂ − Πhσ̂‖ds

)

(t4‖Πhσt − σh,t‖)

+C

(

‖Πhσ̂ − σ̂h‖ +

∫ t

0

‖Πhσ̂ − σ̂h‖ds

)

(t4‖Πhσt − σh,t‖).
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Integrate from 0 to t and then use standard kickback argument to have

t4‖Phut − uh,t‖
2 +

∫ t

0

s4‖Πhσt − σh,t‖
2ds ≤ C

(
∫ t

0

s4‖σt − Πhσt‖
2ds

+

∫ t

0

s3‖Phut − uh,t‖
2ds+

∫ t

0

s4‖σ − Πhσ‖
2ds

∫ t

0

s4‖Πhσ − σh‖
2ds+

∫ t

0

‖Πhσ̂ − σ̂‖2ds

)

.

Application of (2.8), Lemma 5.1, Lemma 5.3, Lemma 5.4, a priori estimates in Lemma 2.2 and (5.8)
to obtain desired result and this completes the rest of the proof. �

Remark 5.1. Note that Lemma 5.3 and Lemma 5.5 yield the following estimates

‖Phu− uh‖ ≤ Cht−1/2‖u0‖ (5.10)

and

‖Phut − uh,t‖ ≤ Cht−3/2‖u0‖. (5.11)

In case of purely parabolic problem (i.e., B(t, s) = 0), similar estimates are derived in [cf. Lemmas
7-8, 5] via semigroup theoretic approach. In contrast to [5], the present analysis uses only elementary
energy technique.

Define ê2(t) =
∫ t

0
e2(s)ds. In order to derive optimal L2-error estimate for e2, we first prove the

following result.

Lemma 5.6 Assume that u0 ∈ L2(Ω). Then there is a positive constant C such that

‖ê2(t)‖ ≤ Ch‖u0‖.

Proof. By triangle inequality, we have

‖ê2(t)‖ ≤ ‖σ̂ − Πhσ̂‖ + ‖Πhσ̂ − σ̂h‖.

Now use Lemma 5.2, (2.8) and (5.8) to obtain the desired estimate which completes the proof.
�

Proof of Theorem 5.1. With vh = Πhe2 ≡ Πhσ − σh, we obtain using (5.3)

(αe2, e2) = (αe2, e2 − Πhe2) + (αe2,Πhe2)

= (αe2, e2 − Πhe2) −

∫ t

0

(M(t, s)e2(s),Πhe2 − e2)ds− (e1,∇ · (Πhe2 − e2))

−

∫ t

0

(M(t, s)e2(s), e2)ds− (e1,∇ · e2)

= (αe2, σ − Πhσ) −

∫ t

0

(M(t, s)e2(s),Πhσ − σ)ds− (e1,∇ · (Πhσ − σ))

−

∫ t

0

(M(t, s)e2(s), e2)ds− (e1,∇ · e2). (5.12)

Using the definition of Ph, we note that

−{(e1,∇ · (Πhσ − σ)) + (e1,∇ · e2)} = −(u− uh,∇ · (Πhσ − σh))

= −(Phu− uh,∇ · (Πhσ − σh)).
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and hence, using (2.1) and (2.11), we obtain

(Phu− uh,∇ · (Πhσ − σh)) = (Phu− uh,∇ · (Πhσ − σ)) + (Phu− uh,∇ · e2)

= (ut − uh,t, Phu− uh).

The remaining terms in (5.12) are discussed below. Further, integrating by parts we have

−

∫ t

0

(M(t, s)e2(s),Πhσ − σ)ds = −

∫ t

0

(M(t, s)ê2,s(s),Πhσ − σ)ds

= −(M(t, t)ê2(t),Πhσ − σ) +

∫ t

0

(Ms(t, s)ê2(s),Πhσ − σ)ds.

Similarly,

−

∫ t

0

(M(t, s)e2(s), e2)ds = −(M(t, t)ê2(t), e2) +

∫ t

0

(Ms(t, s)ê2(s), e2)ds.

Putting these together and using (2.3), we get from (5.12)

‖e2‖
2 ≤ C

(

‖e2‖ +

∫ t

0

‖ê2(s)‖ds

)

‖σ − Πhσ‖ + C

(

‖ê2‖ +

∫ t

0

‖ê2(s)‖ds

)

‖e2‖

+‖ut − uh,t‖‖Phu− uh‖.

Kicking back ‖e2‖ and using Lemma 5.6 we get

‖e2(t)‖
2 ≤ C

(

‖σ − Πhσ‖
2 + ‖Phu− uh‖‖ut − uh,t‖ + h2‖u0‖

2
)

.

Finally, an use of (2.8), (2.9), a priori estimates in Lemmas 2.1 -2.2, (5.10) and (5.11) completes the
rest of the proof. �

Remark 5.2. As a consequence of (5.10), (2.9) and Lemma 2.1 it is easy to obtain

‖u(t) − uh(t)‖ ≤ Cht−1/2‖u0‖, t ∈ J. (5.13)

Note that the estimate (5.13) is not optimal with respect to the approximation property. One
should expect O(h2t−1) order of convergence. However, under certain assumptions on the coefficient
matrices it is possible to obtain optimal order of convergence with u0 ∈ L2(Ω). For this purpose we
now consider the following backward problem: For fixed t > 0, find (p(s), ζ(s)) ∈ W × V such that

(ps, w) + (∇ · ζ, w) = 0 ∀w ∈ W, s < t, (5.14)

(αζ, v) +

∫ t

s

(M∗(τ, s)ζ(τ), v)dτ + (∇ · v, p) = 0 ∀v ∈ V, s < t, (5.15)

p(t) = g.

Here,

ζ(s) = A∇p(s) −

∫ t

s

B∗(τ, s)∇p(τ)dτ,

α = A−1. The matricesM∗(τ, s) and B∗(τ, s) denote transposed ofM(τ, s) and B(τ, s), respectively.

The corresponding semidiscrete version seeks a pair (ph(s), ζh(s)) ∈Wh × Vh such that

(ph,s, wh) + (∇ · ζh, wh) = 0 ∀wh ∈ Wh, s < t, (5.16)

(αζh, vh) +

∫ t

s

(M∗(τ, s)ζh(τ), vh)dτ + (∇ · vh, ph) = 0 ∀vh ∈ Vh, s < t, (5.17)

ph(t) = Phg.
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Using (2.1), (2.2), (2.11), (2.12) with f = 0 and (5.14)-(5.17) we obtain

d

ds
{(u, p) − (uh, ph)} = {(∇ · σ, p) − (∇ · ζ, u)} − {(∇ · σh, ph) − (∇ · ζh, uh)}

= −

∫ t

s

(M∗(τ, s)ζ(τ), σ(s))dτ +

∫ s

0

(M(s, τ)σ(τ), ζ(s))dτ

+

∫ t

s

(M∗(τ, s)ζh(τ), σh(s)dτ −

∫ s

0

(M(s, τ)σh(τ), ζh(s))dτ (5.18)

The following two lemmas are proved to be convenient for error estimates with nonsmooth initial
data. In the lemma below, we first establish the negative norm estimate for e1 = u− uh.

Lemma 5.7 Let (u, σ) and (uh, σh) be the solutions of (2.1)-(2.2) and (2.11)-(2.12), respectively
with f = 0 . Assume that u0 ∈ L2(Ω). Then

‖u(t) − uh(t)‖−2 ≤ Ch2‖u0‖.

Proof. Integrate the identity (5.18) from 0 to t. Using the fact that

∫ t

0

∫ s

0

(M(s, τ)φ(τ), ψ(s))dτds =

∫ t

0

∫ t

s

(M∗(τ, s)ψ(τ), φ(s))dτds,

we get

(u(t), p(t)) − (uh(t), ph(t)) = (u0, p(0)) − (uh(0), ph(0)).

With uh(0) = Phu0 and gh = Phg, we have

(e1(t), g) = (u0, (p− ph)(0)).

Applying estimate (4.9) of Theorem 4.1 to the backward problem with g ∈ H2(Ω)∩H1

0
(Ω) we obtain

(e1(t), g) ≤ ‖u0‖‖(p− ph)(0)‖ ≤ Ch2‖u0‖‖g‖2,

and this completes the proof. �

We now state our second main result of this section in the following theorem.

Theorem 5.2 Let (u, σ) and (uh, σh) be the solutions of (2.1)-(2.2) and (2.11)-(2.12), respectively
with f = 0. Further, assume that u0 ∈ L2(Ω) and

A = aI and B = b(t, s)I,

where a is a positive constant and b(t, s) is a scalar function of s and t. Then the following estimate

‖u(t) − uh(t)‖ ≤ Ct−1h2‖u0‖, t ∈ J,

holds true.

Proof. For a function ψ(s) defined on [s, t], we set

ψ̃(s) = −

∫ t

s

ψ(τ)dτ, s ≤ t.
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Note that ψ̃(t) = 0 and ψ̃s(s) = ψ(s). Analogous to estimate (5.8) it is easy to show that the
solution p(s) of the backward problem (5.14)-(5.15) satisfies

‖p̃(s)‖2 ≤ C‖g‖. (5.19)

With ē1(s) = p(s) − ph(s) and ē2(s) = ζ(s) − ζh(s), integrate (5.18) from t
2

to t to obtain

(e1(t), g) = (e1(t/2), p(t/2))− (e1(t/2), ē1(t/2)) + (u(t/2), ē1(t/2))

+

∫ t

2

0

∫ t

t

2

(M(τ, s)e2(s), ζ(τ))dτds −

∫ t

2

0

∫ t

t

2

(M(τ, s)e2(s), ē2(τ))dτds

+

∫ t

2

0

∫ t

t

2

(M(τ, s)σ(s), ē2(τ))dτds

=: I1 + I2 + I3 + I4 + I5 + I6.

We now proceed to estimate each term separately. For the term I1, apply Lemma 5.7 and a priori
estimates for the backward problem to have

|I1| = |(e1(t/2), p(t/2))| ≤ ‖e1(t/2)‖
−2

‖p(t/2)‖
2
≤ Ch2t−1‖u0‖‖g‖.

Apply (5.13) to the backward error ē1 to have

‖ē1(s)‖ ≤ Ch(t− s)−1/2‖g‖. (5.20)

Using (5.13) and (5.20), I2 can be estimated as

|I2| = |(e1(t/2), ē1(t/2))| ≤ ‖e(t/2)‖‖ē1(t/2)‖ ≤ Ch2t−1‖u0‖‖g‖.

For I3, we apply Lemma 5.7 to the backward problem to obtain

‖ē1(s)‖−2 ≤ Ch2‖g‖. (5.21)

Thus, using (5.21) and Lemma 2.2 it now follows that

|I3| = |(u(t/2), ē1(t/2))| ≤ ‖u(t/2)‖
2
‖ē1(t/2)‖

−2
≤ Ch2t−1‖u0‖‖g‖.

To estimate the remaining terms we first note the following: Since the matrices A = aI and B(t, s) =
b(t, s)I are independent of x, we set ζ(s) = ∇w(s), so that

w(s) = Ap(s) −

∫ t

s

B(τ, s)p(τ)dτ

= Ap(s) +B(s, s)p̃(s) +

∫ t

s

Bτ (τ, s)p̃(τ)dτ,

where p̃(s) = −
∫ t

s p(τ)dτ . Using (5.19) it is easy to verify that

‖w̃(s)‖2 ≤ C

(

‖p̃(s)‖2 +

∫ t

s

‖p̃(τ)‖2dτ

)

≤ C‖g‖. (5.22)
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Now to estimate I4, we first rewrite it as (recall that ζ(s) = ∇w(s) and M(t, s) is a scalar function)

I4 = −

∫ t

2

0

∫ t

t

2

(M(τ, s)∇ · (σ − σh)(s), w(τ))dτds

= −

∫ t

2

0

∫ t

t

2

(∇ · (σ − σh)(s),M(τ, s)(w − Phw)(τ))dτds

−

∫ t

2

0

∫ t

t

2

(∇ · (σ − σh)(s),M(τ, s)Phw(τ))dτds

= −

∫ t

2

0

∫ t

t

2

(∇ · (σ − σh)(s),M(τ, s)(w − Phw)(τ))dτds

−

∫ t

2

0

∫ t

t

2

(e1,s(s),M(τ, s)(Phw − w)(τ))dτds −

∫ t

2

0

∫ t

t

2

(e1,s(s),M(τ, s)w(τ))dτds

=: I1

4 + I2

4 + I3

4 .

Here in the last step we have used (5.2). We now proceed to estimate each term separately. For I 1

4 ,
we use the definition of Ph operator and integration by parts formula to have

I1

4 = −

∫ t

2

0

∫ t

t

2

(∇ · (σ̂ − Πhσ̂)s(s),M(τ, s)(w̃ − Phw̃)τ (τ))dτds

=

∫ t

2

0

(∇ · (σ̂ − Πhσ̂)s(s),M(t/2, s)(w̃ − Phw̃)(t/2))ds

+

∫ t

2

0

∫ t

t

2

(∇ · (σ̂ − Πhσ̂)s(s),Mτ (τ, s)(w̃ − Phw̃)(τ))dτds

= (∇ · (σ̂ − Πhσ̂)(
t

2
),M(t/2, t/2)(w̃ − Phw̃)(t/2))

−

∫ t

2

0

(∇ · (σ̂ − Πhσ̂)(s),Ms(t/2, s)(w̃ − Phw̃)(t/2))ds

+

∫ t

t

2

(∇ · (σ̂ − Πhσ̂)(t/2),Mτ (τ, t/2)(w̃ − Phw̃)(τ))dτ

−

∫ t

2

0

∫ t

t

2

(∇ · (σ̂ − Πhσ̂)(s),Mτ,s(τ, s)(w̃ − Phw̃)(τ))dτds.

Here, we have used to fact that σ̂(0) = 0 and w̃(t) = 0. Using (2.9), a priori estimates (5.7), (5.8)
and (5.22) it now follows that

|I1

4
| ≤ Ch2

(

‖σ̂(t/2)‖1‖w̃(t/2)‖2 +

∫ t

2

0

‖σ̂(s)‖1‖w̃(t/2)‖2ds

∫ t

t

2

‖σ̂(t/2)‖1‖w̃(τ)‖2dτ +

∫ t

2

0

∫ t

t

2

‖σ̂(s)‖1‖w̃(τ)‖2dτds

)

≤ Ch2‖u0‖‖g‖.
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Similarly, for I2

4
, integration by parts formula leads to

I2

4
= −

∫ t

2

0

∫ t

t

2

(e1,s(s),M(τ, s)(w̃ − Phw̃)τ (τ))dτds

=

∫ t

2

0

(e1,s(s),M(t/2, s)(w̃ − Phw̃)(t/2))ds+

∫ t

2

0

∫ t

t

2

(e1,s(s),Mτ (τ, s)(w̃ − Phw̃)(τ))dτds

= (e1(t/2),M(t/2, t/2)(w̃− Phw̃)(t/2)) − (e1(0),M(t/2, 0)(w̃ − Phw̃)(t/2))

−

∫ t

2

0

(e1(s),Ms(t/2, s)(w̃ − Phw̃)(t/2))ds+

∫ t

t

2

(e1(t/2),Mτ (τ, t/2)(w̃ − Phw̃)(τ))dτ

−

∫ t

t

2

(e1(0),Mτ (τ, 0)(w̃ − Phw̃)(τ))dτ −

∫ t

2

0

∫ t

t

2

(e1(s),Mτ,s(τ, s)(w̃ − Phw̃)(τ))dτds.

Using the fact that uh(0) = Phu0 and applying (2.9), Lemma 2.1 and (5.22) we obtain

|I2

4 | ≤ Ch2

(

{‖e1(t/2)‖ + ‖e1(0)‖}‖w̃(t/2)‖2 +

∫ t

2

0

‖e1(s)‖‖‖w̃(t/2)‖2ds

+

∫ t

t

2

{‖e1(t/2)‖+ ‖e1(0)‖}‖w̃(τ)‖2dτ +

∫ t

2

0

∫ t

t

2

‖e1(s)‖‖w̃(τ)‖2dτds

)

.

≤ Ch2‖u0‖‖g‖.

As before integrating by parts we rewrite the term I3

4
as

I3

4 = −

∫ t

2

0

∫ t

t

2

(e1,s(s),M(τ, s)w̃τ (τ))dτds

=

∫ t

2

0

(e1,s(s),M(t/2, s)w̃(t/2))ds+

∫ t

2

0

∫ t

t

2

(e1,s(s),Mτ (τ, s)w̃(τ))dτds

= (e1(t/2),M(t/2, t/2)w̃(t/2)) − (e1(0),M(t/2, 0)(w̃ − Phw̃)(t/2))

−

∫ t

2

0

(e1(s),Ms(t/2, s)w̃(t/2))ds+

∫ t

t

2

(e1(t/2),Mτ(τ, t/2)w̃(τ))dτ

−

∫ t

t

2

(e1(0),Mτ (τ, 0)(w̃ − Phw̃)(τ))dτ −

∫ t

2

0

∫ t

t

2

(e1(s),Mτ,s(τ, s)w̃(τ))dτds.

Here, in the last step we have used the definition of Ph operator. Now using Lemma 5.7 and a priori
estimate in (5.22) we obtain

|I3

4
| ≤ C

(

{‖e1(t/2)‖−2 + h2‖u0‖}‖w̃(t/2)‖2 +

∫ t

2

0

‖e1(s)‖−2‖w̃(t/2)‖2ds

+

∫ t

t

2

{‖e1(t/2)‖−2 + h2‖u0‖}‖w̃(τ)‖2dτ +

∫ t

2

0

∫ t

t

2

‖e1(s)‖−2‖w̃(τ)‖2dτds

)

.

≤ Ch2‖u0‖‖g‖.

Hence,

|I4| ≤ Ch2‖u0‖‖g‖.
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The term I6 is estimated in a manner similar to I4 and hence, we get

|I6| ≤ Ch2‖u0‖‖g‖.

Finally, it remains to estimate the term I5. Again integtating by parts we obtain

I5 = −

∫ t

2

0

∫ t

t

2

(M(τ, s)ê2,s(s), ˜̄e2,τ (τ))dτds

=

∫ t

2

0

(M(t/2, s)ê2,s(s), ˜̄e2(t/2))ds+

∫ t

2

0

∫ t

t

2

(Mτ (τ, s)ê2,s(s), ˜̄e2(τ))dτds

= (M(t/2, t/2)ê2(t/2), ˜̄e2(t/2)) −

∫ t

2

0

(Ms(t/2, s)ê2(s), ˜̄e2(t/2))ds

+

∫ t

t

2

(Mτ (τ, t/2)ê2(t/2), ˜̄e2(τ))dτ −

∫ t

2

0

∫ t

t

2

(Mτ,s(τ, s)ê2(s), ˜̄e2(τ))dτds.

Before estimating the term I5 we note the following. Analogous to Lemma 5.6, we obtain (with time
reverse)

‖˜̄e2(s)‖ ≤ Ch‖g‖. (5.23)

Applying Lemma 5.6 and (5.23) it now follows that

|I5| ≤ C

(

‖ê2(t/2)‖‖˜̄e2(t/2)‖ +

∫ t

2

0

‖ê2(s)‖‖˜̄e2(t/2)‖ds

+

∫ t

t

2

‖ê2(t/2)‖‖˜̄e2(τ)‖dτ +

∫ t

2

0

∫ t

t

2

‖ê2(s)‖˜̄e2(τ)‖dτds.

)

≤ Ch2‖u0‖‖g‖.

Altogether these estimates yield the desired result and this completes the proof. �
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