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Abstract. This paper contains construction and analysis a finite element ap-
proximation for convection dominated diffusion problems with full coefficient
matrix on general simplicial partitions in �

d , d ≥ 2. This construction is quite
close to the scheme of Xu and Zikatanov [22] where a diagonal coefficient matrix
has been considered. The scheme is of the class of exponentially fitted methods
that does not use upwind or checking the flow direction. It is stable for suffi-
ciently small discretization step-size assuming that the boundary value problem
for the convection-diffusion equation is uniquely solvable. Further, it is shown
that, under certain conditions on the mesh the scheme is monotone. Convergence
of first order is derived under minimal smoothness of the solution.

1. Introduction

We consider the following convection-diffusion-reaction problem: Find u = u(x)
such that

(1.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lu ≡ −∇ · (D∇u+ bu) + γu = f in Ω,

u = 0 on ΓD,

−D(∇u+ bu) · n = g on ΓinN ,

D∇u · n = 0 on ΓoutN .

Here Ω is a bounded polygonal domain in �d , d = 2, 3,D = D(x) is d×d symmetric,
bounded and uniformly positive definite matrix in Ω, bt = (b1(x), . . . , bd(x)) is
a given vector function, n is the unit outer vector normal to ∂Ω, and f is a
given source function. We have also used the notation ∇u for the gradient of
a scalar function u and ∇ · b for the divergence of a vector function b in �d .
The boundary of Ω, ∂Ω, is split into Dirichlet, ΓD, and Neumann, ΓN , parts.
Further, the Neumann boundary is divided into two parts: ΓN = ΓinN ∪ΓoutN , where
ΓinN = {x ∈ ΓN : n(x) · b(x) > 0} and ΓoutN = {x ∈ ΓN : n(x) · b(x) ≤ 0}. We
assume that ΓD has positive surface measure. The case D(x) = εI, where I is the
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identity matrix in �d and ε > 0 is a small parameter, corresponds to the important
and difficult class of isotropic singularly perturbed convection-diffusion problems.

Various generalizations have wide practical applications. For example, γu could
be replaced by nonlinear reaction term γ(u) or the linear convective flux bu could
be replaced by a nonlinear advection flux b(u). Finally, u could be a vector function
describing the concentration of various chemicals or biological components so that
(1.1) is a system of equations coupled through the absorption/reaction term. Now
γ is a matrix that models the chemical reactions or the biological interaction of
the components. All these cases give rise to mathematical problems of convection
dominated processes with possibly anisotropic diffusion.

Our study of numerical method for solving (1.1) is motivated by the fact that
the above problem is the simplest model of transport and dispersion of a pas-
sive contaminant in porous media. If the pressure p(x) in the aquifer is known
(or already has been computed by solving a standard diffusion problem) then the
pressure gradient forces the ground water to flow. The transport of a contami-
nant dissolved in the water, is described by the dispersion-reaction equation (1.1),
where u(x) represents the contaminant concentration, b = v = A∇p is the Darcy
velocity (up to a sign), A is the permeability of the porous media, γ is the bio-
degradation/absorption rate, and D(x) is the diffusion-dispersion matrix given by

(1.2) D(x) = kdI + ktbbt/|b| + kl(|b|I − bbt/|b|).

Here kd, kt, and kl are coefficients of diffusion, transverse dispersion, and longitu-
dinal dispersions, respectively (cf. [8]). In dispersive underground flows kt > kl
which implies that D(x) is positive definite matrix, but possibly ill-conditioned.
This problem exhibits all difficulties associated with this class: monotione so-
lutions that are highly localized due to internal and boundary layers, material
heterogeneities and orthotropy, complex geometry, etc.

Among the deficiencies of the standard finite element, finite volume, and finite
difference approximations are loss of monotonicity, so that the numerical solution
often exhibits nonphysical oscillations, loss of solvability of the resulting algebraic
problem, poor local resolution, fast dissipation of the energy, etc. A.A. Samarskii
was one of the first to encounter the difficulties that arise in the numerical solu-
tion of such problems. In the early 60-ies A.A. Samarskii addressed most of the
issues for one-dimensional problems that resulted in a new scheme described in his
monograph [14, Chapter 4].

In the past 40 years many special approximation techniques have been developed
for multidimensional problems, for structured and unstructured grids, for general
second order elliptic operators, etc. These techniques include monotone and up-
wind finite difference, finite volume, and finite element methods (e.g. [2], [6], [9],
[14], [15], [16], [17], and [21]), streamline diffusion stabilization of the finite ele-
ment method (e.g. [1], [3], [4], [11], and [12]), and special functional spaces setting
(e.g. [5] and [18]). For more information regarding numerical methods and analyt-
ical techniques in solving and studying convection-diffusion equations, especially
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convection dominated problems, we refer to the monograph of Ross, Stynes and
Tobiska [13].

On a continuous level many convection-diffusion satisfy maximum principle.
This is a desirable property of the solution of the resulting discrete problem as
well. Scheme that satisfies maximum principle is often called monotone scheme.
Among the several aforementioned schemes, upwind schemes are often monotone
provided that the coefficient matrix D(x) is diagonal. In the recent works [15], [16]
Samarskii and his co-workers were able to derive monotone schemes on rectangular
meshes for the problem (1.1) when D(x) is a full matrix. These schemes are second
order accurate on uniform meshes and solution in C3.

The idea of construction of monotone schemes for singularly perturbed convection-
diffusion problem goes back to the work by Scharfetter and Gummel [19], where
the monotonicity has been a very desired property in numerical semiconductor
device modeling. Exponentially fitted scheme for a general convection-diffusion
problem with diagonal matrix D(x) on an arbitrary simplicial mesh was derived
and studied in [22], [24], and successfully used in [25] for semiconductor device
simulation. Under mild conditions on the mesh, the partition has to satisfy cer-
tain angle condition, it has been shown that the scheme is monotone. Further,
in [22] it was proved that the scheme converges with first order provided that the
solution u ∈ W 1,p and the flux D(x)∇u + b(x)u ∈ (W 1,p)d for p > d. Note, that
these are very mild conditions on smoothness of the solution of problem (1.1).

The aim of this note is to construct an exponentially fitted finite element ap-
proximation of (1.1) on general simplicial partitions, for symmetric positive def-
inite matrices D(x), and for arbitrary vector-functions b. The proposed scheme
is a generalization of the discretization derived in [22], [24] for problems with di-
agonal matrices D(x). Important role in the construction and the analysis plays
the expansion of a constant over each element vector-flux using the lowest order
Nedeleč basis for simplicial finite elements. This allows to present the bilinear form
through differences of the vertex values of the test functions and the exponentially
weighted local solution. This representation ensures the consistence of the method.

The scheme has several interesting features. It is a finite element scheme with a
standard variational formulation (but with a modified bilinear form); it does not
use explicitly the standard upwind techniques, such as checking the flow directions;
it can be applied to very general unstructured grid in any spatial dimension. It
would be difficult to expect that in such generality the scheme will be monotone.
Nevertheless, we were able to find conditions that involve the geometry of the finite
elements in a metric associated with D so that the scheme is monotone. Further,
for sufficiently small step-size of the finite element partition we prove existence and
uniqueness of the solution of the discrete problem by using a fundamental result
of Schatz [20].

The paper is organized as follows. In Section 2 we introduce the necessary nota-
tions for Sobolev spaces, finite element partition and the discrete space. Section 3
contains the main results of the paper. In Subsection 3.1 we present the rationale
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used in derivation of exponentially fitting finite element scheme. An important
concept here is the edge based interpolation of the total flux that uses an ordinary
differential equation along the edge. In Subsection 3.2 we present the scheme itself
as a consequence of this special interpolation. The main result here is contained
in Lemma 3.1 where certain properties of the discrete bilinear form are obtained.
Finally, in Subsection 3.3 we prove the stability of the scheme for sufficiently small
mesh-size and derive an estimate for the error under minimal smoothness of the
solution.

2. Notations

In this section, we introduce the necessary notation and describe some basic
properties of finite element partitions and finite element spaces.

We denote by Lp(K), 1 ≤ p ≤ ∞ the space of p-integrable real-valued functions
over K ⊂ Ω (with the usual modification for p = ∞), by (·, ·)K and || · ||K ,
respectively, the inner product and the norm in L2(K). Further |·|1,p,K and ||·||1,p,K,
respectively denote the semi-norm and norm of the Sobolev space W 1,p(K). For
p = 2 we use H1(K) := W 1,2(K) and if K = Ω often we suppress the index K so
that (·, ·)Ω := (·, ·) and ‖ · ‖Ω := ‖ · ‖, and ‖ · ‖1,Ω := ‖ · ‖1. Further, we use the
Hilbert space

H1
D(Ω) = {v ∈ H1(Ω) : v|ΓD

= 0}.
We introduce the bilinear form a(·, ·) defined on H1

D(Ω) ×H1
D(Ω):

(2.1) a(u, v) := (D∇u+ bu,∇v) + (γu, v) −
∫

Γout
N

b · n u v ds.

Then (1.1) has the following weak form: Find u ∈ H1
D(Ω) such that

(2.2) a(u, v) = F (v) := (f, v) +

∫
Γin

N

gv ds for all v ∈ H1
D(Ω).

Further in the paper we assume that the following inf-sup condition is valid: there
is a constant c0 > 0, such that

(2.3) sup
v∈H1

D(Ω)

a(w, v)

‖v‖1

≥ c0‖w‖1, ∀w ∈ H1
D(Ω).

We shall also assume that the bilinear form a(w, v) is bounded on H1
D(Ω) and the

lienar form F (v) is continuous in H1
D(Ω). Then the above problem has unique

solution (cf. [10]).

Remark 2.1. A sufficient condition for (2.3) and continuity of a(u, v) and F (v) are,
for example, γ(x) + 0.5∇ · b(x) ≥ 0 for all x ∈ Ω, boundedness of the coefficients
D(x), b(x), and γ(x) in Ω.

Let Th be a family of simplicial finite element triangulations of Ω that are shape
regular and satisfy the usual conditions (see [7, Chapter 2]). For simplicity of the
exposition, we assume that the triangulation covers Ω exactly. Associated with
each Th, let Vh ⊂ H1

D(Ω) be the finite element space of piece-wise linear functions.
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By vI ∈ Vh we denote the standard finite element Lagrange interpolant which
assumes the values of v ∈ C0 at the vertexes in the partition Th.

Given T ∈ Th, we introduce the following notation. By qj, j = 1, . . . , 4 we denote
the vertices of T , E is the edge connecting two vertices qi and qj , δEφ = φ(qi)−φ(qj)
for any continuous function φ on E, and τE = δE x = qi− qj is a directional vector
of E (not assumed unitary).

3. Exponential fitting scheme for general convection-diffusion

equations

3.1. Preliminaries. Introduce a notation for the scaled flux

(3.1) J(u) = ∇u+ β(x)u, β = D−1b.

We will assume further that J(u) ∈ [W 1,p(Ω)]d, p > n, D, D−1 ∈ [W 1,∞(Ω)]d×d and
b ∈ W 1,∞(Ω). These assumptions on the coefficients smoothness can be relaxed
to hold element-wise (i.e. for each T ∈ Th) and the considerations below will still
hold with changes of some of the norms used in the error estimate to be taken
element-wise as well.

The basic idea which we use in the construction of the exponentially fitted
scheme is to approximate the flux vector J(u) with a constant vector field JT (u)
on each element T of the partition Th. Apparently, if JT (u) is a constant on each
simplex, then we can expand it using the Nedeleč basis as follows:

JT =
∑
E∈T

JT · τE ϕE(x).

Here ϕE are the Nedeleč basis functions, which in terms of the barycentric coordi-
nates λi are given by

ϕE := λi∇λj − λj∇λi, E = (qi, qj).

The goal then is to write out JT (u) · τE in terms of u, for all edges E and thus
determine the approximation. To find the moments of the tangential flux, we use
the same technique as in [22]. Let u ∈ H1

0 (Ω) ∩ C0(Ω̄). Consider an edge E ⊂ T .
Taking the Euclidean inner product with τE we obtain

(∇u · τE) + (β · τE)u = (J(u) · τE).

A change of variables in this ordinary differential equation then gives:

(3.2) e−ψE∂E(eψEu) =
1

|τE|
(J(u) · τE), where ∂EψE =

1

|τE|
(β · τE)

and ∂Ev := ∇v · τE/|τE| is the directional derivative along the edge E. After
integration over E we obtain that

δE(eψEu) =
1

|τE|

∫
E

eψE(J(u) · τE)ds.
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Let HE(β) be the harmonic average of eψE over E defined as follows:

(3.3) HE(β) =

[
1

|τE|

∫
E

eψEds

]−1

.

The constant approximation JT is then obtained by using the mean value theorem
J∗ · τE

∫
E
eψE ds =

∫
E
J · τEeψE ds, and the definition then is

JT (u) · τE := J∗ · τE = HE(β)δE(eψEu).

3.2. Discrete problem. We now have all the ingredients needed to define the
discrete approximation to (2.2). Based on the above considerations, we shall define
two approximate bilinear forms. The first one is used in the formulation of the
discrete problem and the second is used in an intermediate step needed to prove
the error estimate.

On a fixed element T ⊂ Th, we first introduce

(3.4) ah,T (uh, vh) =
∑
E⊂T

ωTE(D)HE(β)δE(eψEuh)δEvh,

where

ωTE(D) = −
∫
T

D∇λi · ∇λj dx, E = (qi, qj).

Note, that ωTE(D) give the element stiffness matrix for the diffusion part of the
differential equation, −∇ · (D(x)∇u).

Next, we use the expansion via the Nedeleč basis functions, to define

(3.5) bh,T (uh, vh) =
∑
E⊂T

HE(β)δE(eψEuh)

∫
T

DϕE · ∇vh dx.

The global bilinear form is then obtained by summing over all elements of the
triangulation the local forms (3.4) and adding the contributions from the boundary
ΓoutN , as follows:

(3.6) ah(uh, vh) =
∑
T∈Th

ah,T (uh, vh) +

∫
Ω

γuhvhdx−
∑

E⊂Γout
N

∫
E

b · n uhvhds.

Finally, the finite element approximation of the problem (1.1) reads as follows:
Find uh ∈ Vh such that

(3.7) ah(uh, vh) = F (vh), for all vh ∈ Vh.

The following lemma is the main tool used in the analysis of the above scheme.

Lemma 3.1. The following relations hold for any vh ∈ Vh:

1. If w ∈ C(T ) then

(3.8) bh,T (wI , vh) =
∑
E⊂T

[
HE(β)

|τE|

∫
E

eψEJ(w) · τEds
] ∫

T

DϕE · ∇vh;
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2. If JT is a constant vector on T , then for any vh ∈ Vh

(3.9)
∑
E⊂T

JT · τE
∫
T

DϕE · ∇vh dx =
∑
E⊂T

ωTE(D)JT · τEδEvh;

3. If w ∈ C(T ) and J(w) ∈ [W 1,p(T )]n, p > d, then the following inequality
holds for every vh ∈ Vh and T ∈ Th

(3.10) |aT (w, vh) − ah,T (wI , vh)| ≤ Ch|J(w)|1,p,T‖vh‖1,T .

where

aT (w, vh) =

∫
T

(D∇w + bw) · ∇vh dx.

Proof. The proof of 1. follows directly from the derivation.
The proof of 2. can be done as follows: Consider Φ := JT · x for x ∈ T (here x

is treated as a vector). It is obvious that Φ is linear and that ∇Φ · τE = JT · τE. A
simple computation, using the fact that the Nedeleč projection

ΠNJT =
∑
E∈T

(JT · τE)ϕE

satisfies the commutativity property ΠN∇Φ = ∇ΦI = ∇Φ, completes the proof
of 2.

To prove 3. we use (3.8) and split the difference in the following way

(3.11) aT (w, vh) − ah,T (wI , vh) = E1(J(w), vh) + E2(J(w), vh)

where

E1(J(w), vh) = aT (w, vh) − bh,T (wI , vh),

and

E2(J(w), vh) = bh,T (wI , vh) − ah,T (wI , vh).

From the relations and item 1. we can expand the forms aT (w, vh), ah,T (wI , vh)
and bh,T (wI , vh) to get that

(3.12)

E1(J(w), vh) =

∫
T

J(w) · ∇vhdx

−
∑
E⊂T

[
HE(β)

|τE|

∫
E

eψEJ(w) · τEds
] ∫

T

DϕE · ∇vh dx

and

(3.13)

E2(J(w), vh) =
∑
E⊂T

[
HE(β)

|τE|

∫
E

eψEJ(w) · τEds
] ∫

T

DϕE · ∇vh dx

−
∑
E⊂T

ωTE(D)

[
HE(β)

|τE|

∫
E

eψEJ(w) · τEds
]
δEvh.
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A change of variable from the standard reference element T̂ (of unit size) to T :
x = Bx̂+ b0 and w(x) = ŵ(x̂) gives the following scaled bilinear forms

aT (w, vh) = |detB|
∫
T̂

(B−1D̂�J(w) · ∇v̂h) dx̂

ah,T (w, vh) =
∑
Ê⊂T̂

ωTE(D)

[
HE(β)

|τÊ|

∫
Ê

e
�ψE(�J(w) · τÊ)dŝ

]
δEv̂h

bT,h(w, vh) = |detB|
∑
Ê⊂T̂

[
HE(β)

|τÊ|

∫
Ê

e
�ψE(�J(w) · τÊ)dŝ

]

×
∫
T̂

(B−1D̂ϕ̂Ê · ∇v̂h) dx̂.

By our assumptions on the smoothness of J(w), the corresponding error functionals

Êi(�J(w), v̂h), i = 1, 2, can be appropriately bounded:

(3.14) Êi(�J(w), v̂h) ≤ Ci‖�J(w)‖0,∞,T̂‖v̂h‖1,T̂ ,

where Ci might depend on D, but do not depend on β. By the Sobolev inequality
we have that

‖�J(w)‖0,∞,T̂ ≤ C‖�J(w)‖1,p,T̂ , p > d.

We observe that from (3.8) and (3.9), it follows that Ei(J(w), vh) = 0 if J(w) is a

constant on T . By applying the Bramble-Hilbert Lemma on T̂ , and scaling back
to T we obtain the desired result:

(3.15) |Ei(J(w), vh)| ≤ Ch|J(w)|1,p,T |vh|1,T , i = 1, 2.

�

3.3. Solvability of the discrete problem and error estimate. In this para-
graph we state two lemmas related to the solvability of the problem and then
a result related to the error bound. The first result, the proof of which follows
straightforward from the definition, is related to the monotonicity of the scheme
(i.e. discrete maximum principle). This amounts to a condition on the geometry
of the mesh associated with the matrix D.

Lemma 3.2. The stiffness matrix corresponding to the bilinear form (3.7) is an
M-matrix for any continuous function β if and only if the following inequality
holds for all edges E in the triangulation

(3.16)
∑
T⊃E

ωTE ≥ 0

One may check out easily that if D is a constant matrix and d = 2 (two spatial
dimensions) this is equivalent to the statement that the triangulation is Delaunay
in the metric introduced by D. Namely, instead of Euclidean inner product b · n
of the vectors b and n in �d we need to use the inner product Db · n (recall that
D is a symmetric and positive definite matrix). In this case the global stiffness
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matrix of the finite element system is nonsingular and therefore the scheme (3.7)
has unique solution.

Next result is about solvability of the discrete problem for sufficiently small
characteristic mesh size h. Let us first consider an auxiliary discrete problem with
a(·, ·) in place of ah(·, ·) in (3.7). The latter problem is solvable, and a convincing
(but not rigorous) argument to prove this claim is that the convection term is
one order lower than the diffusion term and hence, decreasing h will make the
diffusion term dominating and the problem weakly coercive. Some more detailed
considerations and a rigorous arguments can be found in Schatz [20] or Xu [23].

Lemma 3.3. For sufficiently small h the following inf-sup condition holds

(3.17) sup
vh∈Vh

ah(wh, vh)

‖vh‖1,Ω
≥ c1‖wh‖1,Ω ∀wh ∈ Vh

with a constant c1 > 0 independent of mesh-size h.

Proof. As we have pointed out, when the original bilinear form a(·, ·) is used in
(3.7), the discrete problem is uniquely solvable (for sufficiently small h). Hence,
there exists a constant c2 such that

(3.18) sup
vh∈Vh

a(wh, vh)

‖vh‖1,Ω
≥ c2‖wh‖1,Ω, ∀wh ∈ Vh.

Let vh, wh ∈ Vh. Then obviously

ah(wh, vh) = a(wh, vh) + [ah(wh, vh) − a(wh, vh)] .

The first term is estimated using the condition (3.18). To estimate the second term
we use (3.10) from lemma 3.1, sum up over all T and apply the Schwarz inequality
to obtain that

|a(wh, vh) − ah(wh, vh)| ≤ Ch

{ ∑
T∈Th

|J(wh)|21,p,T

}1/2

‖vh‖1,Ω.

Observing that |wh|2,T = 0 for any wh ∈ Vh, T ∈ Th we get

|J(wh)|1,p,T ≤ C‖β‖1,∞,T‖wh‖1,T .

Summing over all the elements of the partition we have

(3.19) |a(wh, vh) − ah(wh, vh)| ≤ C h max
T∈Th

‖β‖1,∞,T‖wh‖1,Ω‖vh‖1,Ω,

and for h satisfying

h ≤ h0 ≡ C

[
max
T∈Th

‖β‖1,∞,T

]−1

the discrete problem has a unique solution. �

As a consequence of Lemma 3.1, Lemma 3.3 we get the following convergence
result.
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Theorem 3.4. Let u be the solution of the problem (2.2). Assume that for all

T ∈ Th, D ∈ (W 1,∞(T ))
d×d

, β ∈ [W 1,∞(T )]d, u ∈ W 1,p(T ), γ ∈ C(T ), and

J(u) ≡ ∇u + β(x)u ∈ (W 1,p(T ))
d
, p > d. Then for sufficiently small h, the

following estimate holds:

(3.20) ‖uI − uh‖1,Ω ≤ Ch

{∑
T∈Th

|J(u)|21,p,T +
∑
T∈Th

|u|21,p,T

}1/2

Remark 3.5. There are also other possibilities for expressing the flux J(u). For
example, instead of the flux (3.1) one can write

D(x)∇u+ bu = D(x)α(x)−1
(
α(x)∇(u) + α(x)D−1(x)bu)

)
:= D̃(x) (α(x)∇(u) + βu)) ,

where
β = α(x)D−1(x)b, D̃(x) = D(x)α(x)−1

with α(x) a suitable positive function (or a positive diagonal matrix). Then define

J(u) = α(x)∇(u) + βu.

For such a choice of J(u) the derivation and the analysis of an exponentially fitting
scheme are essentially the same with some changes occurring in the harmonic
averages used to define the discrete problem.

For example, one may choose

α(x) = (λmin(D(x)) + λmax(D(x))/2,

where λmin(D(x)) and λmax(D(x)) are the minimum and maximum eigenvalues of

D(x). For such choice D̃−1 = αD−1 is better conditioned. For example, problem
(1.1), (1.2) with data such as kd = 0.0001, kt = 21, and kl = 2.1, used in [6], might
require such modification.

Remark 3.6. As we have pointed out in the introduction, in many cases D(x) takes
the form (1.2). Then introducing the orthogonal projection πb = bbt/|b|2 along
the vector b(x) we can rewrite D(x) in the form

D(x) = kdI + kt|b|πb + kl|b|(I − πb).

Now one easily finds that D−1b = (kd + kt|b|)−1b, i.e. the evaluation of D−1b is
just a multiplication of b by a scalar.

Acknowledgment.
This paper is dedicated to the 85-th birthday of Academician Alexander Andree-

vich Samarskii – a pioneer in numerical analysis and computational mathematics
and computational physics. Under his longstanding leadership the Keldysh Insti-
tute of Applied Mathematics at the Russian Academy of Sciences and the Depart-
ment of Computational Mathematics and Cybernetics at Moscow State University



EXPONENTIAL FITTING SCHEME 11

had played fundamental role in establishing Mathematical Modeling as a dynamic
branch of contemporary mathematics. We are pleased to acknowledge the vision,
the dedication, and the seminal contributions of Acad. A.A. Samarskii to this
important research area, which has become a the main link between science and
engineering on the basis of mathematics and computer information technologies.

References

[1] R. Bank, J. Bürger, W. Fichtner, and R. Smith. Some up-winding techniques for finite
element approximations of convection diffusion equations. Numer. Math., 58:185–202, 1974.

[2] R. Bank and D. Rose. Some error estimates for the box method. SIAM J. Numer. Anal.,
24:777–787, 1987.

[3] F Brezzi and A. Russo. Choosing bubbles for advection-diffusion problems. Math. Models
Methods Appl. Sci., 32(1-3):571–587, 1994.

[4] A. Brooks and T.H. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection
dominated flows with particular emphasis on the incompressible Navier-Stokes equations.
Comp. Meth. in Appl. Mech. Eng., 32:199–259, 1982.

[5] C. Canuto and A. Tabacco. An anisotropic functional setting for convection-diffusion prob-
lems. East-West J. Numer. Math., 9(3):199–231, 2001.

[6] C. Carstensen, R.D. Lazarov, and S.T. Tomov. Explicit and averaging a posteriori error
estimates for adaptive finite volume methods. SIAM J. Numer. Anal., 42(6):to appear,
2004.

[7] P. Ciarlet. The Finite Element Method for Elliptic Problems, volume 4 of Studies in Math-
ematics and its Applications. North-Holland Publishing Co., Amsterdam, 1978. Studies in
Mathematics and its Applications, Vol. 4.

[8] G. Dagan. Flow and Transport in Porous Formations. Springer-Verlag, Berlin-Heidelberg,
1989.

[9] L. Durlofsky, B. Engquist, and S. Osher. Triangle based adaptive stencils for the solution of
hyperbolic conservation laws. J. Compt. Phys., 98(1):199–259, 1992.

[10] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order, vol-
ume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1983.

[11] T.H. Hughes. Greens functions, the Dirichlet-to-Neumann formulation, subgrid scale models,
bubles and the origins of stabilized methods. Comp. Meth. in Appl. Mech. Eng., 127:387–401,
1995.

[12] C. Johnson. Numerical solution of partial differential equations by the finite element method.
Cambridge University Press, Cambridge, 1987.

[13] H.-O. Ross, M. Stynes, and L. Tobiska. Numerical Methods for Singularly Perturbed Differ-
ential Equations. Studies in Mathematics and its Applications. Springer, 1996.

[14] A.A. Samarskii. Theory of Difference Schemes. Nauka, Moscow, 1977.
[15] A.A. Samarskii, P.P. Matus, V.I. Mazhukin, and I.E. Mozolevski. Monotone difference

schemes for equations with mixed derivatives. Computers & mathematics with applications,
44(3-4):501–510, 2002.

[16] A.A. Samarskii and P.N. Vabishchevich. Monotone difference schemes for the transport
equation. Doklady Academii Nauk, Russia, 361(1):21–23, 1998.

[17] A.A. Samarskii and P.N. Vabishchevich. Monotone difference schemes on triangular grids.
Doklady Academii Nauk, Russia, 371(6):742–746, 2000.

[18] G. Sangalli. Analysis of the advection-diffusion operator. Numer. Math., 97(5):779–796,
2004.



12 R. D. LAZAROV AND L. T. ZIKATANOV

[19] D. Scharfetter and H. Gummel. Large-signal analysis of a silicon read diod oscilator. IEEE
Trans. Electron Devices, ED-16(205):959–962, 1969.

[20] A. H. Schatz. An observation concerning Ritz-Galerkin methods with indefinite bilinear
forms. Math. Comp., 28(205):952–962, 1974.

[21] M. Tabata. A finite element approximation corresponding to upwind finite differencing. mem.
Numer. math.., 4:47–63, 1977.

[22] J. Xu and L. Zikatanov. A monotone finite element scheme for convection-diffusion equations.
Math. Comp., 68(228):1429–1446, 1999.

[23] Jinchao Xu. Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J.
Numer. Anal., 33(5):1759–1777, 1996.

[24] L. T. Zikatanov. A modified Galerkin-Petrov method for modeling semiconductor devices
on the basis of the finite element method. Mat. Model., 4(5):85–99, 1992. In Russian.

[25] L. T. Zikatanov and M. S. Kaschiev. Finite element method for semiconductor device mod-
eling. Technical Report R11-91-371, Communications of the Joint Institute for Nuclear Re-
search, Dubna, 1991. In Russian.

Department of Mathematics, Texas A & M University, College Station, TX

77843, U.S.A.

E-mail address: lazarov@math.tamu.edu

Department of Mathematics, Pennsylvania State University, University Park,

PA 16802, U.S.A.

E-mail address: ltz@math.psu.edu


