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Abstract This paper derives upper and lower bounds for the �p-
condition number of the stiffness matrix resulting from the finite
element approximation of a linear, abstract model problem. Sharp
estimates in terms of the meshsize h are obtained. The theoretical re-
sults are applied to various finite element approximations of PDE’s on
quasi-uniform mesh families. For elliptic PDE’s in variational form,
the Euclidean condition number of the stiffness matrix scales as h−2,
while it scales as h−1 if the PDE is approximated in mixed form.
When first-order PDE’s are approximated using the Galerkin–Least
Squares technique, the Euclidean condition number scales as h−1. The
same result is obtained for the �1-condition number if the first-order
PDE is approximated by means of a non-standard Galerkin tech-
nique in L1(Ω). Numerical simulations are presented to illustrate the
theoretical results.
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1 Introduction

The finite element method provides an extremely powerful tool to
approximate partial differential equations arising in engineering sci-
ences. The linear systems obtained using this technique are generally
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very large and sparse; the most practical way to solve them is to resort
to an iterative method. Since the convergence rate of such methods
is strongly affected by the condition number of the system matrix
(see, e.g., [8,11]), it is important to assess this quantity as a function
of the meshsize. For instance, second-order elliptic equations, e.g.,
a Laplacian, in variational form yield a stiffness matrix whose Eu-
clidean condition number explodes as the reciprocal of the square of
the meshsize. More generally, let p ∈ [1, +∞] and denote by ‖ · ‖p the
�p-norm in R

N , i.e., for all W ∈ R
N , set

‖W‖p =

(
N∑

i=1

|Wi|p
) 1

p

, (1)

if 1 ≤ p < +∞ and ‖W‖∞ = max1≤i≤N |Wi|. Use a similar notation
for the associated matrix norm over R

N,N . Then, upon defining the
�p-condition number of a matrix A ∈ R

N,N by

κp(A) = ‖A‖p‖A−1‖p, (2)

the objective of this paper is to give upper and lower bounds on
κp(A) when A is the stiffness matrix associated with the finite el-
ement approximation of a linear, abstract model problem posed in
Banach spaces.

This paper is organized as follows. Section 2 collects preliminary
results. Necessary and sufficient conditions for wellposedness of an ab-
stract model problem are stated, and the finite element setting for the
approximation of this problem is introduced. Section 3 contains the
main results of the paper. Section 4 presents various applications to
finite element approximations of PDE’s. Elliptic PDE’s either in vari-
ational or in mixed form are first considered. Then, first-order PDE’s
approximated using either the Galerkin–Least Squares (GaLS) tech-
nique or a non-standard Galerkin technique in L1(Ω) are analyzed.
Numerical illustrations are reported in Section 5. Finally, Appendix A
collects technical results concerning norm equivalence constants and
the existence of large-scale discrete functions in finite element spaces.

2 Preliminaries

2.1 Wellposedness

Let W and V be two real Banach spaces equipped with some norms,
say ‖·‖W and ‖·‖V , respectively. Consider a linear bounded operator

A : W −→ V.
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Recall that as a consequence of the Open Mapping Theorem and the
Closed Range Theorem [12], the following holds:

Lemma 1 The following statements are equivalent:

(i) A is bijective.
(ii) There exists a constant α > 0 such that

∀w ∈ W, ‖Aw‖V ≥ α‖w‖W , (3)

∀v′ ∈ V ′, (AT v′ = 0) =⇒ (v′ = 0). (4)

Another way of interpreting A consists of introducing the bilinear
form a ∈ L(W × V ′; R) such that

∀(w, v′) ∈ W × V ′, a(w, v′) = 〈v′, Aw〉V ′,V , (5)

where 〈·, ·〉V ′,V denotes the duality paring. Owing to a standard corol-
lary of the Hahn–Banach Theorem, for all f ∈ V and for all w ∈ W ,
Aw = f if and only if a(w, v′) = 〈v′, f〉V ′,V for all v′ ∈ V ′. Then, a re-
formulation of Lemma 1, henceforth referred to as the BNB Theorem
[1,10,6], is the following:

Theorem 1 (Banach–Nečas–Babuška) The following statements
are equivalent:

(i) For all f ∈ V , the problem

{
Seek u ∈ W such that
a(u, v′) = 〈v′, f〉V ′,V , ∀v′ ∈ V ′,

(6)

is well-posed;
(ii) There exists a constant α > 0 such that

inf
w∈W

sup
v′∈V ′

a(w, v′)
‖w‖W ‖v′‖V ′

≥ α, (7)

∀v′ ∈ V ′, (∀w ∈ W, a(w, v′) = 0) =⇒ (v′ = 0). (8)

If V is reflexive, the above setting is unchanged if V is substituted
by V ′ and V ′ by V . As an illustration of a nonreflexive situation, the
reader may think of W = W 1,1(Ω), V = L1(Ω), V ′ = L∞(Ω), and
A : W � u �−→ u + ux ∈ V .
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2.2 The finite element setting

Let Ω be an open domain in R
d. Let m be a positive integer. In

the sequel, we assume that W and V are Banach spaces of R
m-

valued functions on Ω. For p ∈ [1, +∞], equip [Lp(Ω)]m with the
norm ‖w‖Lp(Ω) = (

∫
Ω

∑m
i=1 |wi|p)

1
p if p 
= ∞ and for p = ∞, set

‖w‖L∞(Ω) = max1≤i≤m ess supΩ |wi|. Let (w, v)L2(Ω) =
∫
Ω

∑m
i=1 wivi

denote the [L2(Ω)]m-inner product. Likewise, for all measurable sub-
set K ⊂ Ω, we denote (w, v)L2(K) =

∫
K

∑m
i=1 wivi.

To construct an approximate solution to (6), we introduce a family
of meshes of Ω that we denote by {Th}h>0. The parameter h refers to
the maximum meshsize, i.e., h = maxK∈Th

hK where hK = diam(K).
Let Wh and Vh be finite-dimensional approximation spaces based on
the mesh Th. These spaces are meant to approximate W and V ′

respectively. Let p ∈ [1, +∞] and denote by p′ its conjugate, i.e.,
1
p + 1

p′ = 1 with the convention that p′ = 1 if p = +∞ and p′ = +∞ if
p = 1. We assume hereafter that dim(Wh) = dim(Vh) and that there
is p ∈ [1, +∞] such that Wh ⊂ [Lp(Ω)]m and Vh ⊂ [Lp′(Ω)]m. The
spaces Wh and Vh are equipped with some norms, say ‖ · ‖Wh

and
‖ · ‖Vh

, respectively.
Let A : W → V be an isomorphism. Problem (6) is approximated

by replacing the spaces W and V ′ by their finite-dimensional coun-
terparts, yielding the approximate problem:{

Seek uh ∈ Wh such that
ah(uh, vh) = 〈vh, fh〉V ′,V , ∀vh ∈ Vh.

(9)

Problem (9) involves an approximation ah to the bilinear form a and
an approximation fh to the data f . Henceforth, we assume

inf
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Wh

‖vh‖Vh

> 0.

This, together with the fact that dim(Wh) = dim(Vh), implies that
the discrete problem (9) has a unique solution.

Let N = dim(Wh) = dim(Vh). Assume we are given a basis for
Vh, say {ϕ1, . . . , ϕN}. The elements in this basis are hereafter referred
to as the global shape functions of Vh. Likewise let {ψ1, . . . , ψN} be
the global shape functions in Wh. For a function vh ∈ Vh, denote by
V ∈ R

N the coordinate vector of vh relative to the basis {ϕ1, . . . , ϕN},
i.e., vh =

∑N
i=1 Viϕi ∈ Vh. Denote by CVh

: Vh −→ R
N the linear

operator that maps vectors in Vh to their coordinate vectors in R
N ,

i.e., CVh
vh = V. Similarly, denote by CWh

: Wh −→ R
N the operator
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that maps vectors in Wh to their coordinate vectors in R
N . It is

clear that both CVh
and CWh

are isomorphisms. Denote by (·, ·)N the
Euclidean scalar product in R

N .
Define the so-called stiffness matrix A with entries

(
ah(ψj , ϕi)

)
1≤i,j≤N

.
This definition is such that (CVh

vh,ACWh
wh)N = ah(wh, vh) for all

(wh, vh) ∈ Wh×Vh. The discrete problem (9) yields the linear system:{
Seek U ∈ R

N such that
AU = F ,

(10)

where the entries of F are Fi = 〈ϕi, fh〉V ′,V for 1 ≤ i ≤ N . The
solution uh to (9) is then uh = C−1

Wh
U .

2.3 Norm equivalence constants

Since Wh and Vh are finite-dimensional and since CWh
and CVh

are
isomorphisms, it is legitimate to introduce the positive constants (de-
pending on h)

µs,min = inf
wh∈Wh

‖wh‖Lp(Ω)

‖CWh
wh‖p

, µs,max = sup
wh∈Wh

‖wh‖Lp(Ω)

‖CWh
wh‖p

, (11)

µt,min = inf
vh∈Vh

‖vh‖Lp′ (Ω)

‖CVh
vh‖p′

, µt,max = sup
vh∈Vh

‖vh‖Lp′ (Ω)

‖CVh
vh‖p′

. (12)

These constants are such that

∀wh ∈ Wh, µs,min‖W‖p ≤ ‖wh‖Lp(Ω) ≤ µs,max‖W‖p, (13)

∀vh ∈ Vh, µt,min‖V‖p′ ≤ ‖vh‖Lp′ (Ω) ≤ µt,max‖V‖p′ , (14)

with W = CWh
wh and V = CVh

vh. Henceforth, we denote

κs,p =
µs,max

µs,min
, (15)

κt,p′ =
µt,max

µt,min
. (16)

It is possible to estimate µs,min and µs,max (resp. µt,min and µt,max)
when Wh (resp. Vh) is a finite element space and the global shape
functions are such that their support is restricted to a number of
mesh cells that is uniformly bounded with respect to the meshsize.
For instance, if the mesh family {Th}h>0 is quasi-uniform, κs,p and
κt,p′ are uniformly bounded with respect to h; see Appendix A.
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3 Bounds on κp(A)

The goal of this section is to derive upper and lower bounds for the
�p-condition number of the stiffness matrix A.

3.1 Main results

Introduce the following notation:

αp,h = inf
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′ (Ω)

, (17)

ωp,h = sup
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′ (Ω)

. (18)

A first result is the following:

Theorem 2 Under the above assumptions,

∀h, κ−1
s,p κ−1

t,p′
ωp,h

αp,h
≤ κp(A) ≤ κs,p κt,p′

ωp,h

αp,h
. (19)

Proof (1) Upper bound on ‖A‖p. Consider W ∈ R
N . Then, owing to

definition (18) and using the notation CVh
vh = V and CWh

wh = W,

‖AW‖p = sup
V∈RN

(AW,V)N

‖V‖p′

= sup
V∈RN

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′ (Ω)

‖wh‖Lp(Ω)

‖W‖p

‖vh‖Lp′ (Ω)

‖V‖p′
‖W‖p

≤ ωp,h

‖wh‖Lp(Ω)

‖W‖p
sup

V ∈RN

‖vh‖Lp′ (Ω)

‖V‖p′
‖W‖p.

Using inequalities (13)–(14) yields

‖AW‖p ≤ ωp,h µs,max µt,max ‖W‖p.

That is to say,
‖A‖p ≤ ωp,h µs,max µt,max.

(2) Upper bound on ‖A−1‖p. Using again (13)–(14) together with
definition (17) yields

αp,h µs,min ‖W‖p ≤ αp,h‖wh‖Lp(Ω) ≤ sup
vh∈Vh

ah(wh, vh)
‖vh‖Lp′ (Ω)

= sup
V∈RN

(AW,V)N

‖vh‖Lp′ (Ω)

≤ ‖AW‖p sup
V∈RN

‖V‖p′

‖vh‖Lp′ (Ω)

≤ µ−1
t,min ‖AW‖p.



Condition number of stiffness matrices 7

Hence, setting Z = AW, we infer

αp,h µs,min ‖A−1Z‖p ≤ µ−1
t,min ‖Z‖p.

Since Z is arbitrary, this means

‖A−1‖p ≤ 1
αp,h

µ−1
s,min µ−1

t,min.

The upper bound in (19) is a direct consequence of the above esti-
mates.
(3) Lower bound on ‖A−1‖p. Since Wh is finite-dimensional, there is
wh 
= 0 in Wh such that

αp,h = sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′ (Ω)

.

As a result, setting W = CWh
wh and V = CVh

vh yields

‖AW‖p = sup
V∈RN

(AW,V)N

‖V‖p′

= sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′ (Ω)

‖vh‖Lp′ (Ω)

‖V‖p′

‖wh‖Lp(Ω)

‖W‖p
‖W‖p

≤ αp,h µt,max µs,max ‖W‖p.

Hence,
1

αp,h
µ−1

t,max µ−1
s,max ≤ ‖A−1‖p.

(4) Lower bound on ‖A‖p. Since Wh is finite-dimensional, there is
wh 
= 0 in Wh such that

ωp,h = sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′ (Ω)

.

This implies

µs,min‖W‖p ≤ ‖wh‖Lp(Ω) =
1

ωp,h
sup

vh∈Vh

ah(wh, vh)
‖vh‖Lp′ (Ω)

=
1

ωp,h
sup

vh∈Vh

(AW,V)N

‖V‖p′

‖V‖p′

‖vh‖Lp′ (Ω)

≤ 1
ωp,h

µ−1
t,min‖AW‖p ≤ 1

ωp,h
µ−1

t,min‖A‖p‖W‖p.

Since W 
= 0 this yields

ωp,h µs,min µt,min ≤ ‖A‖p.

The lower bound in (19) easily follows from the above estimates.
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To account for a possible polynomial dependence of αp,h and ωp,h

on h, we make the following additional technical hypotheses:

∃γ,

⎧⎨⎩
0 < cα

inf = lim inf
h→0

αp,hh−γ < +∞,

0 < cα
sup = lim sup

h→0
αp,hh−γ < +∞,

(20)

∃δ,

⎧⎨⎩
0 < cω

inf = lim inf
h→0

ωp,hhδ < +∞,

0 < cω
sup = lim sup

h→0
ωp,hhδ < +∞.

(21)

As a consequence of Theorem 2, we deduce the following:

Theorem 3 Under the assumptions (20)–(21), the following holds
true: For all ε ∈ ]0, 1[, there is hε such that for all h ≤ hε,

(1 − ε)
cω
inf

cα
sup

κ−1
s,p κ−1

t,p′ h
−γ−δ ≤ κp(A) ≤ (1 + ε)

cω
sup

cα
inf

κs,p κt,p′ h
−γ−δ.

Proof Let ε ∈ ]0, 1[.
(1) There is hε such that for all h ≤ hε, (1 − ε

3)cα
infh

γ ≤ αp,h and
ωp,h ≤ (1 + ε

3)cω
suph

−δ. Then, apply Theorem 2 to deduce the upper
bound.
(2) Owing to the definition of cα

sup, there is hε such that for all 0 <
h ≤ hε there is wh ∈ Wh satisfying

sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′ (Ω)

≤ (1 +
ε

2
) cα

sup hγ .

Then, proceed as in step (3) of the proof of Theorem 2 to derive the
lower bound ‖A−1‖p ≥ (1 + ε

2)−1 (cα
sup)

−1 µ−1
s,max µ−1

t,max h−γ .
(3) The definition of cω

inf implies the existence of hε such that for all
0 < h ≤ hε there is wh ∈ Wh satisfying

(1 − ε

2
) cω

inf h−δ ≤ sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′ (Ω)

.

Then, proceed as in step (4) of the proof of Theorem 2 to derive the
lower bound ‖A‖p ≥ (1− ε

2) cω
inf µs,min µt,min h−δ. The lower bound on

κp(A) then results from the above estimates.
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3.2 Estimates based on natural stability norms

Introduce the quantities

αh = inf
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Wh

‖vh‖Vh

, (22)

ωh = sup
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Wh

‖vh‖Vh

. (23)

In general, one may expect that the norms of Wh and Vh are selected
so that αh is uniformly bounded from below away from zero and ωh

is uniformly bounded. Hence, bounding κp(A) in terms of αh and ωh

may yield valuable information.
To this purpose, we make the following technical assumptions:

∃csP > 0, ∀wh ∈ Wh, csP ‖wh‖Lp(Ω) ≤ ‖wh‖Wh
, (24)

∃ctP > 0, ∀vh ∈ Vh, ctP ‖vh‖Lp′ (Ω) ≤ ‖vh‖Vh
, (25)

∃s > 0,∃csI , ∀wh ∈ Wh, ‖wh‖Wh
≤ csIh

−s‖wh‖Lp(Ω), (26)

∃t > 0,∃ctI , ∀vh ∈ Vh, ‖vh‖Vh
≤ ctIh

−t‖vh‖Lp′ (Ω). (27)

Estimates (24) and (25) are Poincaré-like inequalities expressing the
fact that the norms equipping Wh and Vh control the Lp-norm and the
Lp′-norm, respectively. In other words, the injections Wh ⊂ [Lp(Ω)]m

and Vh ⊂ [Lp′(Ω)]m are uniformly continuous. Furthermore, (26) and
(27) are inverse inequalities. When the mesh family {Th}h>0 is quasi-
uniform, the constants s and t can be interpreted as the order of
the differential operator used to define the norms in Wh and Vh,
respectively.

As a consequence of Theorem 2, we deduce the following:

Corollary 1 Under the assumptions (24)–(27), the following bound
holds:

∀h, κp(A) ≤ κs,p κt,p′
csIctI

csP ctP

ωh

αh
h−s−t. (28)

Proof Let us estimate αp,h and ωp,h.
(1) It is clear that

αh = inf
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Wh

‖vh‖Vh

≤ 1
csP ctP

inf
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Lp(Ω)‖vh‖Lp′ (Ω)

.
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Hence αp,h ≥ csP ctP αh.
(2) Moreover,

ωp,h = sup
wh∈Wh

sup
vh∈Vh

ah(wh, vh)
‖wh‖Wh

‖vh‖Vh

≤ ωh sup
wh∈Wh

‖wh‖Wh

‖wh‖Lp(Ω)
sup

vh∈Vh

‖vh‖Vh

‖vh‖Lp′ (Ω)

≤ ωh csI ctI h−s−t.

Hence, ωp,h ≤ csI ctI ωh h−s−t.
(3) Conclude using Theorem 2.

Remark 1 It may happen that (28) is not sharp; see §4.3 and (61).

In addition to (24)–(27), we assume the following:

∃µ,

⎧⎪⎨⎪⎩
0 < dα

inf = lim inf
h→0

αp,h

αh
hµ < +∞,

0 < dα
sup = lim sup

h→0

αp,h

αh
hµ < +∞,

(29)

∃ν,

⎧⎪⎨⎪⎩
0 < dω

inf = lim inf
h→0

ωp,h

ωh
hs+t−ν < +∞,

0 < dω
sup = lim sup

h→0

ωp,h

ωh
hs+t−ν < +∞.

(30)

The constants µ and ν are meant to measure the possible default to
optimality of Corollary 1. Proceeding as in the proof of Theorem 3,
it is clear that the following holds true:

Corollary 2 Under the assumptions (24)–(27) and (29)–(30), the fol-
lowing holds true: For all ε ∈ ]0, 1[, there is hε such that for all h ≤ hε,

(1 − ε)
dω

inf

dα
sup

κ−1
s,p κ−1

t,p′
ωh

αh
h−s−t+µ+ν ≤ κp(A)

≤ (1 + ε)
dω

sup

dα
inf

κs,p κt,p′
ωh

αh
h−s−t+µ+ν . (31)

4 Applications

This section presents various applications of the theoretical results
derived in Section 3 to finite element approximations of PDE’s posed
on a bounded domain Ω in R

d. For the sake of simplicity, we assume
that Ω is a polyhedron. Let {Th}h>0 be a shape-regular family of
meshes of Ω.



Condition number of stiffness matrices 11

4.1 Elliptic PDE’s in variational form

Consider the Laplacian with homogeneous Dirichlet boundary condi-
tions. Set W = H1

0 (Ω), V = H−1(Ω), and A : W � w �−→ −∆w ∈ V .
Clearly A : W → V is an isomorphism. Introduce the bilinear form
a(w1, w2) =

∫
Ω ∇w1 · ∇w2, ∀(w1, w2) ∈ W × W .

Let Wh be a finite-dimensional space based on the mesh Th. We
assume that Wh ⊂ W , i.e., the approximation is H1-conformal. We
assume that Wh is such that there is c independent of h such that
the following global inverse inequality holds:

∀wh ∈ Wh, ‖∇wh‖L2(Ω) ≤ c h−1 ‖wh‖L2(Ω). (32)

This hypothesis holds whenever Wh is a finite element space con-
structed using a quasi-uniform mesh family; see, e.g., [2,3,6,7].

Consider the approximate problem:{ Seek uh ∈ Wh such that
a(uh, vh) = (f, vh)L2(Ω), ∀vh ∈ Wh,

(33)

for some data f ∈ L2(Ω). Let A be the stiffness matrix associated
with (33). The main result concerning the Euclidean condition num-
ber of A is the following:

Theorem 4 If the mesh family {Th}h>0 is quasi-uniform, there are
0 < c1 ≤ c2 independent of h such that

c1h
−2 ≤ κ2(A) ≤ c2h

−2. (34)

Proof (1) For wh ∈ Wh, define R(wh) =
‖∇wh‖2

L2(Ω)

‖wh‖2
L2(Ω)

. Then

α2,h = inf
wh∈Wh

R(wh), ω2,h = sup
wh∈Wh

R(wh). (35)

(2) Let z̃h be given by Lemma 5 with Z = H1
0 (Ω), Zh = Wh equipped

with the H1-seminorm, and L = L2(Ω). Since R(z̃h) ≤ c, we infer
α2,h ≤ R(z̃h) ≤ c uniformly in h. Moreover, the Poincaré inequality
in H1

0 (Ω) implies that α2,h is uniformly bounded from below away
from zero.
(3) Letting wh in (35) be one of the global shape functions in Wh, it is
clear that ω2,h ≥ ch−2. Moreover, owing to the inverse inequality (32),
ω2,h ≤ c′h−2.
(4) To conclude, use Theorem 2 (or Theorem 3 with γ = 0 and
δ = 2) and observe that owing to the quasi-uniformity of {Th}h>0

and Lemma 4, the constants κs,p and κt,p′ are independent of h.



12 A. Ern, J.-L. Guermond

Remark 2 The Euclidean condition number κ2(A) can also be esti-
mated using Corollary 1. One readily verifies that αh and ωh are in-
dependent of h and that s = t = 1. Hence, (28) yields κ2(A) ≤ ch−2,
i.e., the estimate is sharp. One also verifies that µ = ν = 0 in (29)–
(30), confirming the optimality of Corollary 1.

Remark 3 Estimate (34) extends to more general second-order elliptic
operators, e.g., advection–diffusion–reaction equations.

4.2 Elliptic PDE’s in mixed form

In this section we investigate a non-standard Galerkin technique to
approximate the Laplacian in mixed form.

Let H(div;Ω) = {v ∈ [L2(Ω)]d; ∇·v ∈ L2(Ω)}, W = H(div;Ω) ×
H1

0 (Ω), and V = [L2(Ω)]d × L2(Ω). Introduce the operator

A : W � (u, p) �−→ (u + ∇p,∇·u) ∈ V. (36)

One readily verifies that A : W → V is an isomorphism. For (w, v) ∈
W × V , define the bilinear form

a((u, p), (v, q)) = (u, v)L2(Ω) + (∇p, v)L2(Ω) + (∇·u, q)L2(Ω). (37)

By analogy with Darcy’s equations, u is termed the velocity and p
the pressure.

The non-standard Galerkin approximation introduced in [4] con-
sists of seeking the discrete velocity in the Raviart–Thomas finite ele-
ment space of lowest order and the discrete pressure in the Crouzeix–
Raviart finite element space. Denote by Fh, F∂

h , and F i
h the set of

faces, boundary faces, and interior faces of the mesh, respectively.
Define

Xh = {uh; ∀K ∈ Th, uh|K ∈ RT0; ∀F ∈ F i
h,

∫
F [[uh·n]] = 0}, (38)

Yh = {ph; ∀K ∈ Th, ph|K ∈ P1; ∀F ∈ Fh,
∫
F [[ph]] = 0}, (39)

where RT0 = [P0]d⊕xP0, [[uh·n]] denotes the jump of the normal com-
ponent of uh across interfaces, and [[ph]] the jump of ph across inter-
faces (with the convention that a zero outer value is taken whenever
F ∈ F∂

h ). Test functions for both the velocity and the pressure are
taken to be piecewise constants. Introducing the spaces Wh = Xh×Yh

and

Vh = {(vh, qh); ∀K ∈ Th, vh|K ∈ [P0]d and qh|K ∈ P0}, (40)
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and defining the bilinear form ah ∈ L(Wh × Vh; R) such that

ah((uh, ph), (vh, qh)) = (uh, vh)L2(Ω)

+ (∇·uh, qh)L2(Ω) +
∑

K∈Th

(∇ph, vh)L2(K), (41)

the discrete problem is formulated as follows:{ Seek (uh, ph) ∈ Wh such that
ah((uh, ph), (vh, qh)) = (f, qh)L2(Ω), ∀(vh, qh) ∈ Vh,

(42)

for some data f ∈ L2(Ω). Note that the approximation setting is
conformal on the velocity and non-conformal on the pressure. More-
over, it is readily checked that the total number of unknowns in (42)
equals the total number of equations. Indeed, the former is the num-
ber of faces plus the number of interior faces, the latter is equal to
(d + 1) times the number of elements, and these two quantities are
equal owing to the Euler relations.

Equip Wh with the norm

‖(uh, ph)‖2
Wh

= ‖uh‖2
L2(Ω)+‖∇·uh‖2

L2(Ω)+‖ph‖2
L2(Ω)+

∑
K∈Th

‖∇ph‖2
L2(K),

(43)
and equip Vh with the norm ‖(vh, qh)‖2

Vh
= ‖vh‖2

L2(Ω) + ‖qh‖2
L2(Ω).

In the framework of the BNB Theorem, the main stability result for
(42) is the following:

Lemma 2 There are c > 0 and h0 such that for all h ≤ h0,

inf
(uh,ph)∈Wh

sup
(vh,qh)∈Vh

ah((uh, ph), (vh, qh))
‖(uh, ph)‖Wh

‖(vh, qh)‖Vh

≥ c. (44)

Proof Since this is a non-classical result, the proof is briefly sketched;
see [4] and [6] for further details.
(1) Let (uh, ph) ∈ Wh. Denote by uh the function whose restriction
to each element K ∈ Th is the mean value of uh. Denote by ∇hph

the function whose restriction to each element K ∈ Th is ∇ph|K . Set
vh = uh + ∇hph and qh = 2ph + ∇·uh. Note that (vh, qh) is in Vh.
Hence,

ah((uh, ph), (vh, qh)) = (uh, uh)L2(Ω)+‖∇·uh‖2
L2(Ω)+

∑
K∈Th

‖∇ph‖2
L2(K)

+ 2(∇·uh, ph)L2(Ω) +
∑

K∈Th

(uh,∇ph)L2(K) + (∇ph, uh)L2(K)

= ‖uh‖2
L2(Ω) + ‖∇·uh‖2

L2(Ω) +
∑

K∈Th

‖∇ph‖2
L2(K),
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since (∇·uh, ph)L2(Ω) +
∑

K∈Th
(uh,∇ph)L2(K) = 0.

(2) For uh ∈ Xh, one readily verifies that ∀K ∈ Th, ∀x ∈ K, uh(x) =
uh + 1

d(x − gK)∇·uh where gK is the barycenter of K. This implies
that there is c independent of h such that

∀uh ∈ Xh, ‖uh‖L2(K) ≤ ‖uh‖L2(K) + c hK‖∇·uh‖L2(K).

Hence,

ah((uh, ph), (vh, qh)) ≥ c‖uh‖2
L2(Ω) + (1 − c′h2)‖∇·uh‖2

L2(Ω)

+
∑

K∈Th

‖∇ph‖2
L2(K).

If h is small enough, (1 − c′h2) is bounded from below by 1
2 .

(3) Use the extended Poincaré inequality (see, e.g., [5,6] for a proof)

∀ph ∈ Yh,
∑

K∈Th

‖∇ph‖2
L2(K) ≥ c ‖ph‖2

L2(Ω),

and the above estimates to conclude that ah((uh, ph), (vh, qh)) ≥
c ‖(uh, ph)‖2

Wh
≥ c′‖(uh, ph)‖Wh

‖(vh, qh)‖Vh
.

We now estimate the Euclidean condition number of the stiffness
matrix A resulting from (42). Our main result is the following:

Theorem 5 If the mesh family {Th}h>0 is quasi-uniform, there are
0 < c1 ≤ c2 independent of h such that

c1h
−1 ≤ κ2(A) ≤ c2h

−1. (45)

Proof (1) Owing to (44),

sup
(vh,qh)∈Vh

ah((uh, ph), (vh, qh))
‖(vh, qh)‖Vh

≥ c ‖(uh, ph)‖Wh
≥ c ‖(uh, ph)‖L2(Ω).

Hence, α2,h ≥ c.
(2) Take uh = 0 and ph = z̃h given by Lemma 5 with Z = H1

0 (Ω),
Zh = Yh ∩ H1

0 (Ω) equipped with the H1-seminorm, and L = L2(Ω).
Then,

α2,h ≤ sup
(vh,qh)∈Vh

ah((0, z̃h), (vh, qh))
‖(0, z̃h)‖L2(Ω)‖(vh, qh)‖L2(Ω)

≤ c′.

(3) Since the mesh family {Th}h>0 is quasi-uniform, it is clear that
an inverse inequality of the form (32) holds in Wh. This implies that
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ω2,h ≤ ch−1. Moreover, setting uh = 0 and letting ph be one the
global shape functions in Yh, say ψi, yields

ω2,h ≥ sup
(vh,qh)∈Vh

ah((0, ψi), (vh, qh))
‖(0, ψi)‖L2(Ω)‖(vh, qh)‖L2(Ω)

≥ c′h−1.

(4) To conclude, use Theorem 2 (or Theorem 3 with γ = 0 and δ = 1)
and Lemma 4.

Remark 4 As for elliptic PDE’s in variational form, κ2(A) can also
be estimated using Corollary 1. One readily verifies that αh and ωh

can be uniformly bounded from below and above, and that s = 1
and t = 0. Hence, (28) yields κ2(A) ≤ ch−1, i.e., the estimate is
sharp. One also verifies that µ = ν = 0 in (29)–(30), confirming the
optimality of Corollary 1.

Remark 5 It is also possible to consider a standard Galerkin approx-
imation to the Laplacian in mixed form. In this case, the trial space
and the test space are identical and given by Wh = Vh = Xh × Zh

where Xh is defined by (38) and Zh denotes the space of piecewise
constant functions. The discrete problem is (42) with the bilinear
form

ah((uh, ph), (vh, qh)) = (uh, vh)L2(Ω)−(∇·vh, ph)L2(Ω)+(∇·uh, qh)L2(Ω).
(46)

One readily verifies that the Euclidean condition number of the result-
ing stiffness matrix scales as h−1, i.e., the same asymptotic behavior
as for the non-standard Galerkin approximation is obtained. This re-
sult is essentially due to the fact that the mixed form only involves
first-order PDE’s.

Remark 6 Although the Euclidean condition number of the stiffness
matrix associated with the mixed form is one order smaller in h than
that associated with the variational form, the matrix in the first case
is larger than that in the second case so that it is not a priori clear
to decide which linear system is the easiest to solve by an iterative
method.

4.3 First-order PDE’s and GaLS

Let β be a vector field in R
d, assume β ∈ [L∞(Ω)]d, ∇·β ∈ L∞(Ω),

and define the inflow and outflow boundaries

∂Ω− = {x ∈ ∂Ω; β(x)·n(x) < 0}, ∂Ω+ = {x ∈ ∂Ω; β(x)·n(x) > 0},
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where n is the outward normal to Ω. Let µ be a function in L∞(Ω)
and consider the advection–reaction equation{

µu + β·∇u = f,

u|∂Ω− = 0.
(47)

To give a mathematical meaning to (47), consider the spaces

W = {w ∈ L2(Ω); β·∇w ∈ L2(Ω); w|∂Ω− = 0}, (48)

V = L2(Ω). (49)

Equipped with the norm ‖w‖W = ‖w‖L2(Ω) + ‖β·∇w‖L2(Ω), W is a
Hilbert space. Now, define the differential operator

A : W � w �−→ µw + β·∇w ∈ V.

It is clear that A is continuous. Moreover, assuming that there is
µ0 > 0 such that

µ(x) − 1
2∇·β(x) ≥ µ0 > 0 a.e. in Ω, (50)

A : W → V is an isomorphism.
We want to illustrate Theorem 2 by analyzing the Euclidean con-

dition number of the stiffness matrix associated with the GaLS ap-
proximation of (47). To this purpose introduce a finite-dimensional
approximation space Wh based on the mesh Th. Assume that Wh ⊂
H1(Ω) ∩ W , i.e., the approximation is H1-conformal. Introduce the
bilinear form a ∈ L(W × V ; R) such that a(w, v) = (Aw, v)L2(Ω) and
set

ah(w, v) = a(w, v) +
∑

K∈Th

δ(hK)(Aw, Av)L2(K), (51)

where δ(hK) = cGaLShK and cGaLS is a (user-defined) mesh-independent
constant. Assume f ∈ L2(Ω). The GaLS approximate problem con-
sists of the following [9]:{ Seek uh ∈ Wh such that

ah(uh, vh) = (f, vh)L2(Ω) +
∑

K∈Th
δ(hK)(f, Avh)L2(K), ∀vh ∈ Wh.

(52)
Note that the solution space and the test space are identical here,
i.e., Vh = Wh. Define the symmetric bilinear form as ∈ L(W ×W ; R)
such that

∀(w1, w2) ∈ W×W, as(w1, w2) = 1
2

(
(Aw1, w2)L2(Ω)+(w1, Aw2)L2(Ω)

)
.

It is clear that as is positive definite since

∀w ∈ W, as(w, w) = a(w, w) ≥ µ0‖w‖2
L2(Ω). (53)

The main result of this section is the following:
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Theorem 6 Assume that there is a nonempty open subset of Ω, say
Ω0, in which infΩ0 ‖β‖ > 0 and β is in C0,1(Ω0). Assume that the
mesh family {Th}h>0 is quasi-uniform. Then, there are 0 < c1 ≤ c2

and h0 such that for all h ≤ h0,

c1h
−1 ≤ κ2(A) ≤ c2h

−1. (54)

Proof (1) Owing to (53),

µ0 ≤ inf
wh∈Wh

ah(wh, wh)
‖wh‖2

L2(Ω)

≤ inf
wh∈Wh

sup
vh∈Wh

ah(wh, vh)
‖wh‖L2(Ω)‖vh‖L2(Ω)

= α2,h,

i.e., µ0 ≤ α2,h.
(2) To derive a bound on α2,h, use Lemma 5. Set Z = W , Zh = Wh,
L = L2(Ω), and equip Zh with the norm ‖zh‖Zh

= ‖Azh‖L2(Ω).
Lemma 5 implies that there exists c̃ > 0 and h̃ such that for all
h ≤ h̃, there is z̃h ∈ Wh\{0} satisfying ‖Az̃h‖L2(Ω) ≤ c̃‖z̃h‖L2(Ω).
Then

α2,h ≤ sup
vh∈Wh

ah(z̃h, vh)
‖z̃h‖L2(Ω)‖vh‖L2(Ω)

.

A direct computation using (32) shows that α2,h is bounded uniformly
with respect to h.
(3) Using again (32) it is clear that there is c independent of h such
that ω2,h ≤ ch−1.
(4) A simple computation yields

ah(wh, wh) ≥
∫

Ω
(µ0 − h‖µ‖2

L∞(Ω))w
2
h +

∑
K∈Th

hK

2

∫
K
|β·∇wh|2.

Assume that h is small enough so that µ0−h‖µ‖2
L∞(Ω) ≥ 0 and there

is a mesh cell K0 ⊂ Ω0. Then for all wh ∈ Wh,

ah(wh, wh) ≥ hK0

2

∫
K0

1
2
|β·∇wh|2 − |(β − β)·∇wh|2,

where β is the value of β at the barycenter of K0. Then it is always
possible to find a global shape function ϕi that is nonzero on K0 and
such that

‖β·∇ϕi‖L2(K0) ≥ ch−1‖ϕi‖L2(K0) ≥ c′h−1‖ϕi‖L2(Ω),

where c′ is positive and independent of h. Hence, if h is small enough

ω2,h ≥ ah(ϕi, ϕi)
‖ϕi‖2

L2(Ω)

≥ c′h−1.

(5) To conclude, use Theorem 2 (or Theorem 3 with γ = 0 and δ = 1)
and Lemma 4.
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We now estimate the Euclidean condition number κ2(A) using the
natural stability norms. For the GaLS technique, such norms are

∀w ∈ W,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖w‖2

h,A = as(w, w) +
∑

K∈Th

δ(hK)‖Aw‖2
L2(K),

‖w‖2
h, 1

2

= ‖w‖2
h,A +

∑
K∈Th

h−1
K ‖w‖2

L2(K).
(55)

The introduction of these norms is motivated by the following stabil-
ity and boundedness results:

∀w ∈ W, ah(w, w) ≥ ‖w‖2
h,A, (56)

∀w ∈ W, ∀wh ∈ Wh, ah(w, wh) ≤ c ‖w‖h, 1
2
‖wh‖h,A. (57)

from which the convergence analysis of the GaLS approximation di-
rectly follows; see [6] for more details.

Proposition 1 Equip Wh and Vh with the norm ‖ · ‖h,A to define
αh and ωh in (22)–(23). Then if the mesh family {Th}h>0 is quasi-
uniform, there is c independent of h such that

αh ≥ 1, (58)

ωh ≤ c h− 1
2 , (59)

s = t =
1
2
. (60)

Proof (1) Estimate (58) is a direct consequence of (56).
(2) Owing to the quasi-uniformity hypothesis and (53),

‖w‖2
h, 1

2

= ‖w‖2
h,A + ch−1‖w‖2

L2(Ω)

≤ ‖w‖2
h,A +

c

µ0
h−1as(w, w) ≤ (1 +

c

µ0
h−1)‖w‖2

h,A.

The bound (59) follows readily from (57).
(3) Statement (60) is an easy consequence of (32).

Remark 7 If we apply Corollary 1, we obtain

κ2(A) ≤ ch− 3
2 . (61)

This result shows that Corollary 1 may not be optimal; in fact, one
readily verifies that µ = 0 and ν = 1

2 in Corollary 2.
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4.4 First-order PDE’s in L1

Let Ω = ]0, 1[, f ∈ L1(Ω), and consider the following problem:{
µu + ux = f,

u(0) = 0,
(62)

where µ is a nonnegative constant. This problem has a unique solution
in the framework

W = {w ∈ W 1,1(Ω); w(0) = 0}, (63)

V = L1(Ω). (64)

Define the operator

A : W � w �−→ µw + wx ∈ V. (65)

A ∈ L(W ; V ) is an isomorphism, implying that

∃α > 0, ∀w ∈ W, ‖Aw‖L1(Ω) ≥ α‖w‖W 1,1(Ω). (66)

Define the finite element spaces

Wh = {wh ∈ C0(Ω); ∀K ∈ Th, wh|K ∈ P1; wh(0) = 0}, (67)

Vh = {vh ∈ L1(Ω); ∀K ∈ Th, vh|K ∈ P0}. (68)

The discrete solution space Wh consists of continuous piecewise affine
functions while the discrete test space Vh consists of piecewise con-
stant functions. Introduce the bilinear form

∀(w, v) ∈ W × V ′, a(w, v) =
∫ 1

0
(µw + wx)v.

Clearly a ∈ L(W × V ′; R) where V ′ = L∞(Ω). The discrete problem
is the following: {

Seek uh ∈ Wh such that

a(uh, vh) =
∫ 1
0 fvh, ∀vh ∈ Vh.

(69)

Obviously Wh and Vh have the same dimension, say N , the number of
mesh cells. In the framework of the BNB Theorem, the main stability
result for (69) is the following:

Lemma 3 There is γ > 0 and h0 such that for all h ≤ h0,

inf
wh∈Wh

sup
vh∈Vh

a(wh, vh)
‖wh‖W 1,1(Ω)‖vh‖L∞(Ω)

≥ γ. (70)
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Proof Let wh ∈ Wh\{0}. Denote by sg the sign function, i.e., sg(x) =
x
|x| if x is not zero and sg(0) = 0. For wh ∈ Wh, let wh ∈ Vh be the
function such that the restriction of wh to a mesh cell K is the mean
value of wh over this mesh cell. Set zh = sg(µwh + wh,x). Clearly
µwh + wh,x 
= 0, otherwise wh would be zero; hence, ‖zh‖L∞(Ω) = 1.
Observing that zh ∈ Vh, we infer

sup
vh∈Vh

a(wh, vh)
‖vh‖L∞(Ω)

≥ a(wh, zh)
‖zh‖L∞(Ω)

=
∑

K∈Th

µzh

∫
K

wh +
∫ 1

0
wh,xzh

=
∑

K∈Th

µzh

∫
K

wh +
∫ 1

0
wh,xzh =

∫ 1

0
(µwh + wh,x)zh

= ‖µwh + wh,x‖L1 ≥ ‖µwh + wh,x‖L1 − ‖µ(wh − wh)‖L1

≥ α‖wh‖W 1,1(Ω) − ch‖wh‖W 1,1(Ω).

The conclusion follows readily.

Let {ψ1, . . . , ψN} be the standard P1 shape functions of Wh. Let
{ϕ1, . . . , ϕN} be the standard P0 shape functions of Vh, i.e., the char-
acteristic functions of mesh cells. Let A be the stiffness matrix with
entries

(
a(ψj , ϕi)

)
1≤i,j≤N

. The main result of this section is the fol-
lowing:

Theorem 7 If the mesh family {Th}h>0 is quasi-uniform, there are
0 < c1 ≤ c2 and h0 such that for all h ≤ h0,

c1h
−1 ≤ κ1(A) ≤ c2h

−1. (71)

Proof (1) From Lemma 3, it is clear that α1,h ≥ γ.
(2) To derive a bound on α1,h, we use Lemma 5. Set Z = W , Zh =
Wh, L = L1(Ω), and equip Zh with the norm ‖ · ‖W 1,1(Ω). Lemma 5
implies that there exists c̃ > 0 and h̃ such that for all h ≤ h̃, there is
z̃h ∈ Zh\{0} satisfying ‖z̃h‖W 1,1(Ω) ≤ c̃‖z̃h‖L1(Ω). Since

α1,h ≤ sup
vh∈Vh

a(z̃h, vh)
‖z̃h‖L1(Ω)‖vh‖L1(Ω)

,

one readily infers that α1,h is bounded uniformly with respect to h.
(3) Using standard inverse inequalities yields ω1,h ≤ ch−1.
(4) Let ψi be a shape shape function in Wh and set vh = sg(ψi,x).
Then, vh ∈ Vh, ‖vh‖L∞(Ω) = 1 and

a(ψi, vh) ≥ −µ‖ψi‖L1(Ω) + ‖ψi,x‖L1(Ω) ≥ −µ‖ψi‖L1(Ω) + c
h‖ψi‖L1(Ω)

≥ ( c
h − µ)‖ψi‖L1(Ω)‖vh‖L∞(Ω).
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LapMix GaLS NGL1

h−1 κ2(A)

4 8.5
8 16.7

16 32.9
32 64.9
64 129.0

h−1 κ2(A)

10 68.5
20 139.0
40 282.8
50 345.2

h−1 κ1(A)

4 50.7
8 101.2

16 202.3
32 404.6
64 809.1

Table 1. Condition number of the stiffness matrix as a function of meshsize for
the three test cases.

This implies ω1h ≥ ch−1.
(5) Apply Theorem 2 to conclude.

Remark 8 The above result can be easily adapted to the situation
where µ is a nonconstant function in L∞(Ω).

5 Numerical illustrations

The purpose of this section is to numerically illustrate the theoretical
results derived in the previous sections. Consider the following test
cases:

– Case 1 (LapMix): the Laplacian in mixed form is approximated by
the non-standard Galerkin technique described in Section 4.2; the
domain is Ω = ]0, 1[ and a family of uniform meshes with stepsize
h = 2−i, i ∈ {2, . . . , 6}, is employed.

– Case 2 (GaLS): the first-order PDE (47) posed in the unit square
of R

2 with µ = 1 and β = (1, 0)T is approximated by the GaLS
technique with parameter cGaLS set to 1; the meshes are quasi-
Delaunay triangulations constructed using a frontal method by
imposing a uniform mesh of stepsize h = 0.1, 0.05, 0.025, and 0.02
on the boundary of Ω.

– Case 3 (NGL1): the first-order PDE (62) with µ = 1 is approxi-
mated by the non-standard Galerkin technique based on the L1-
setting described in Section 4.4; a family of uniform meshes with
stepsize h = 2−i, i ∈ {2, . . . , 6}, is employed.

Results are collected in Table 1. In the three cases we observe that
the numerical predictions match the theoretical results.
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A Technical results

A.1 Estimates of κs,p and κt,p′

Let {Th}h>0 be a shape-regular family of meshes of Ω. Recall that the
shape-regular mesh family {Th}h>0 is said to be quasi-uniform if there
is c independent of h = maxK∈Th

(hK) such that h ≤ c minK∈Th
(hK).

Let {K̂, P̂ , Σ̂} be the reference finite element on which Wh is con-
structed. For each cell K, denote by TK : K̂ −→ K the transforma-
tion that maps the reference cell K̂ to K. For the sake of simplicity,
assume that TK is affine, i.e., Ω is a polyhedron. Moreover, assume
the following:

Wh ⊂ {wh ∈ [L1(Ω)]m; ∀K ∈ Th, (wh ◦ T−1
K )|K ∈ P̂}. (72)

See [2,3,6,7] for more details on the construction of finite element
spaces.

Lemma 4 If {Th}h>0 is quasi-uniform, there exist 0 < c1 ≤ c2 such
that

∀h, ∀wh ∈ Wh, c1h
d
p ‖CWh

wh‖p ≤ ‖wh‖Lp(Ω) ≤ c2h
d
p ‖CWh

wh‖p.
(73)

As a result,
∀h,

c1

c2
≤ κs,p ≤ c2

c1
. (74)

Proof Assume 1 ≤ p < +∞. The case p = +∞ can be treated simi-
larly.
(1) Let {θ̂1, . . . , θ̂nsh

} be the local shape functions for the reference
finite element. Denote by Snsh the unit sphere in R

nsh for the ‖ · ‖p-
norm and define the operator

ψ : Snsh � η �−→
∥∥∥ nsh∑

k=1

ηkθ̂k

∥∥∥
Lp( ̂K)

∈ R.

The operator ψ is clearly continuous. Moreover, since Snsh is compact,
ψ reaches its minimum and its maximum, say ĉ1 and ĉ2, respectively.
Assume that ĉ1 = 0. Then, there exists η ∈ Snsh such that ψ(η) = 0,
yielding

∑nsh
k=1 ηkθ̂k = 0. Since {θ̂1, . . . , θ̂nsh

} is a basis, this implies
η1 = . . . = ηnsh

= 0, contradicting the fact that η ∈ Snsh . Therefore,
ĉ1 > 0. Consider now Û ∈ R

nsh with Û 
= 0. Let û =
∑nsh

i=1 Ûiθ̂i and
ηi(û) = Ûi/‖Û‖p for 1 ≤ i ≤ nsh. Clearly, η(û) = (ηi(û))1≤i≤nsh

is in
Snsh . Since ψ(η(û)) = ‖û‖

Lp( ̂K)
/‖Û‖p, the following inequalities hold:

∀Û ∈ R
nsh , ĉ1 ‖Û‖p ≤ ‖û‖

Lp( ̂K)
≤ ĉ2 ‖Û‖p. (75)
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(2) Consider now an arbitrary element K in the mesh. Denote by
TK : K̂ → K the corresponding transformation and by {θ1, . . . , θnsh

}
the local shape functions. For U ∈ R

nsh , set u =
∑nsh

i=1 Uiθi and û =
u ◦ TK . Observing that Û = U and changing variables in the integral
in (75) yields

∀U ∈ R
nsh ,

(
meas(K)

meas( ̂K)

) 1
p

ĉ1 ‖U‖p ≤ ‖u‖Lp(K) ≤
(

meas(K)

meas( ̂K)

) 1
p

ĉ2 ‖U‖p.

Clearly, meas(K)

meas( ̂K)
≤ chd

K ≤ chd. Furthermore, the quasi-uniformity

of the mesh family implies c′hd ≤ meas(K)

meas( ̂K)
. As a result, there are

0 < c1 ≤ c2 such that

∀h, ∀K ∈ Th, ∀U ∈ R
nsh , c1h

d
p ‖U‖p ≤ ‖u‖Lp(K) ≤ c2h

d
p ‖U‖p.

(3) Let wh ∈ Wh and set W = CWh
wh, i.e., wh =

∑N
i=1 Wiψi. Step 2

shows that

∀h, ∀K ∈ Th, c1h
d
∑
i∈ΥK

|Wi|p ≤ ‖wh‖p
Lp(K) ≤ c2h

d
∑
i∈ΥK

|Wi|p,

where ΥK is the set of indices i such that the intersection of K with
the support of the global shape function ψi has non-zero measure.
Summing over the elements yields

c1h
d

∑
K∈Th

∑
i∈ΥK

|Wi|p ≤ ‖wh‖p
Lp(Ω) ≤ c2h

d
∑

K∈Th

∑
i∈ΥK

|Wi|p.

Since {Th}h>0 is shape-regular, it is clear that the cardinal of ΥK is
bounded uniformly in h; hence, (73) holds.
(4) Estimate (74) is a direct consequence of (73).

Remark 9 The above proof can be easily adapted if the finite elements
are not locally defined by the change of variable (wh ◦ T−1

K )|K ∈ P̂
but by some other scaling like for Raviart–Thomas-like elements or
Nédélec-like elements.

Remark 10 If {Th}h>0 is not quasi-uniform, the lower bound in (73)

holds with h
d
p

min and the upper bound holds with h
d
p
max , where hmax

and hmin are the largest and smallest cell diameters in the mesh,
respectively.
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Remark 11 When p = 2, it is possible to interpret µs,min, µs,max,
µt,min, and µt,max in terms of eigenvalues. Define the mass matrix
Ms = (

∫
Ω ψiψj)1≤i,j≤N . Observe that Ms is symmetric positive def-

inite. Let λs,min and λs,max be the smallest and largest eigenvalue of
Ms, respectively. Likewise define the mass matrix associated with the
global shape functions in Vh, i.e., Mt = (

∫
Ω ϕiϕj)1≤i,j≤N . The small-

est and largest eigenvalue of Mt are denoted by λt,min and λt,max,
respectively. Definitions (11) and (12) imply

µs,min = λ
1
2
s,min, µs,max = λ

1
2
s,max, (76)

µt,min = λ
1
2
t,min, µt,max = λ

1
2
t,max. (77)

A.2 Existence of large-scale discrete functions

Let Z ⊂ L be two Banach spaces with continuous embedding. Denote
by 1

cP
the norm of the embedding operator, i.e.,

1
cP

= sup
z∈Z

‖z‖L

‖z‖Z
. (78)

Let {Zh}h>0 be a family of finite-dimensional vector spaces equipped
with the norm ‖ · ‖Zh

. Assume Zh ⊂ L for all h > 0. Introduce
Z(h) = Z + Zh and equip this space with a norm ‖ · ‖Z(h) such that
‖ ·‖Z(h) = ‖ ·‖Zh

on Zh and Z is uniformly continuously embedded in
Z(h). Denote by cinj the uniform embedding constant, i.e., ‖z‖Z(h) ≤
cinj‖z‖Z for all z ∈ Z. Assume moreover that the family {Zh}h>0 has
the approximability property, i.e.,

∀z ∈ Z, lim
h→0

inf
zh∈Zh

‖z − zh‖L + ‖z − zh‖Z(h) = 0. (79)

Lemma 5 Under the above assumptions, there is h0 such that for all
h ≤ h0, there is z̃h ∈ Zh\{0} such that

‖z̃h‖Zh
≤ 2cP cinj‖z̃h‖L. (80)

Proof The definition of cP implies that there exists z̃ ∈ Z\{0} such
that ‖z̃‖Z ≤ 3

2cP ‖z̃‖L. Let ε > 0. The approximability property im-
plies that there is hε such that for all h ≤ hε, there is z̃h ∈ Zh

satisfying

‖z̃ − z̃h‖L ≤ ε‖z̃‖L, ‖z̃ − z̃h‖Z(h) ≤ εcP cinj‖z̃‖L.
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Then

‖z̃h‖Zh
≤ ‖z̃ − z̃h‖Z(h) + ‖z̃‖Z(h) ≤ εcP cinj‖z̃‖L + cinj‖z̃‖Z

≤ cP cinj(ε + 3
2)‖z̃‖L.

Moreover,

‖z̃h‖L ≥ ‖z̃‖L − ‖z̃ − z̃h‖L ≥ (1 − ε)‖z̃‖L.

Then
‖z̃h‖Zh

‖z̃h‖L
≤ cP cinj

3
2 + ε

1 − ε
.

Conclude using ε = 1
6 .

Remark 12 If Z = H1
0 (Ω), L = L2(Ω), and ‖z‖2

Z =
∫
Ω ∇z·∇z, then

cP is the square root of the first eigenvalue of the Laplace opera-
tor supplemented with homogeneous Dirichlet boundary conditions.
This motivates the fact that the function z̃h provided by Lemma 5 is
termed a large-scale discrete function.
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