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Abstract

The macroscopic description of the dynamical behavior of a porous solid composed

of two nonwelded solid phases saturated by a single-phase fluid is derived using two-

space homogenization techniques for periodic structures. The pore size is assumed to

be small compared to the macroscopic scale under consideration. At the microscopic

scale the two solids are described by the linear elastic equations, and the fluid by

the linearized Navier-Stokes equations, with appropriate boundary conditions at the

solid-solid and solid-fluid interfaces. The nonwelded interface between the two solid

phases is represented by displacement and/or velocity discontinuities proportional

to the stresses across the interface, while the stresses are assumed to be continu-

ous. After performing the homogenization procedure, constitutive relations, Darcy’s

and Biot’s type dynamic equations for the saturated composite porous material are

obtained.

Keywords: composite porous solids, homogenization.

1 Introduction

The study of the deformation and wave propagation in porous saturated media is a

subject of interest in many fields such as geophysics, rock physics, material science

and ocean acoustics, among others.

The fundamental concepts about the stress-strain relations and the dynamics of

deformable porous single-phase solids fully saturated by a fluid were established in
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the works of M. Biot [1],[2],[3]. This formulation, widely accepted by the researchers

in this field, assumes that the quantities measured at the macroscopic scale can be

described using the concepts of the continuum mechanics. In that context, the

validity of Lagrange’s equations and the existence of macroscopic strain and kinetic

energy densities and a dissipation function are assumed.

When the porous matrix is composed by two (or more) different solid phases, a

more precise modelization is required. Following Biot’s approach Leclaire et al. [4]

developed a phenomenological model to describe wave propagation in a porous solid

matrix where the pore space is filled with ice and water, assuming no interaction

between the solid and ice particles. This formulation, valid for uniform porosity,

has been extended by Carcione and Tinivella [5] to include the interaction between

the solid and ice particles and grain cementation with decreasing temperature. This

model has been recently generalized to the case of variable porosity [7]. These

models are useful for different applications in geophysics, such as seismic amplitude

and velocity analysis in shaley sandstones [6] and in permafrost areas [8],[9] and for

the detection of gas-hydrate concentrations in ocean-bottom sediments from seismic

data [5]. This subject has also received attention recently for the evaluation of the

freezing conditions of foods by ultrasonic techniques [10], [11].

The equations governing the macroscopic behaviour of porous media can also be

obtained by means of homogenization methods, which consist on passing from the

microscopic description at the pore and grain scales to the macroscopic scale. Im-

portant contributions to the solution of this problem were given by Sanchez-Palencia
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[12] and Bensoussan et al.[13], who developed the so called two-space homogenization

technique. This method provides a systematic procedure for deriving macroscopic

dynamical equations starting from the equations which govern the behaviour of the

medium at the microscale. It was successfully applied by different authors to obtain

a theoretical justification of Darcy’s law and Biot’s equations for single phase media

[14] [15].

Following these ideas, the aim of this paper is to apply the homogenization pro-

cedure to obtain a rigorous description of the macroscopic behaviour of porous satu-

rated composite media. We restrict the analysis to the range of small deformations

and for the case of Newtonian fluids, under the assumption of spatial periodicity.

At the solid-fluid interfaces the usual non sliding boundary condition was assumed.

At the nonwelded contact between the two solid phases continuity of stresses and

velocity-displacement discontinuities (proportional to the stresses across the inter-

face) are assumed. These kind of conditions, representing purely elastic, viscous or

visco-elastic slip at the interface, are supported by experimental research on frac-

tures (see references in [16]). Using this approach the constitutive relations, a form

of Darcy’s law and the equations of motion for this type of saturated composite

porous material are obtained.

2 Local description

Let us consider a porous medium consisting of a skeleton composed of two nonwelded

solid phases, referred to by the subscripts or superscripts 1 and 3, saturated by a
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fluid phase indicated by the subscript or superscript f . In this work we will restrict

the analysis to a simplified scheme in which one of the solids envelops the other and

the fluid is only in contact with this one. Figure 1 shows two extreme configurations

of this model.

The porous medium will be considered to be periodic and composed of a large

number of periods, with l and L denoting the length of the period and the macro-

scopic length, respectively, with a ratio ε =
l

L
<< 1. The microscopic and macro-

scopic behavior will be described by the two dependent spatial variables x and

y =
x

ε
. In this way the properties of the medium vary rapidly on the small scale y

and slowly on the large scale x, so they are considered to be functions of (x, y) [15].

Let Ω denote one period of our composite porous medium consisting in two

nonwelded solid parts Ω1 and Ω3 and a fluid part Ωf , so that

Ω = Ω1 ∪ Ω3 ∪ Ωf ,

with boundaries

Γ1f = ∂Ω1 ∩ ∂Ωf , Γ13 = ∂Ω1 ∩ ∂Ω3, Γje = ∂Ω3 ∩ ∂Ω, j = 1, f, 3,

so that (see Figure 1):

∂Ωf = Γ1f ∪ Γfe, ∂Ω1 = Γ1f ∪ Γ13 ∪ Γ1e, ∂Ω3 = Γ13 ∪ Γ3e.

We assume that all parts are connected, that Ω1 is completely surrounded by Ω3

and that Γ13 does not intersect Γ1f .

We will analyze the behaviour of the composite porous medium under a monochro-

matic oscillation of angular temporal frequency ω. Thus all field variables will be
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understood to be defined in the space-frequency domain. We also assume that at

the local level the two solid phases are linear elastic and the fluid is compressible

and viscous Newtonian with constant viscosity η, density ρf and bulk modulus Bf

[14],[15]. We further assume that at this level the fluid motion is slow enough to

be described by the linearized Navier-Stokes equations and the transient Reynolds

number (or equivalently the dimensionless viscosity η/(ωρfε
2)) is of order unity so

that the fluid viscosity is scaled by ε2 [14]. Let uj and σj , j = 1, 3, f denote the

displacement vectors and stress tensors of the three phases, respectively and set

vj = iωuj. The local variables are assumed to be zero outside their domain of

definition.

The local equations are:

solid 1: ∇ · σ1 = −ω2ρ1u1, in Ω1, (2.1)

σ1 = a1 : e(u1), in Ω1, (2.2)

solid 3: ∇ · σ3 = −ω2ρ3u3, in Ω3, (2.3)

σ3 = a3 : e(u3), in Ω3, (2.4)

fluid: ∇ · σf = iωρfvf , in Ωf , (2.5)

σf = −pfI + τf , in Ωf , (2.6)

τf = 2ηε2e(vf), in Ωf , (2.7)

iωpf = Bf∇ · vf , in Ωf . (2.8)

Here ρ1, ρ3, a1 and a3 are respectively the mass densities and fourth-order elastic

tensors associated with the two solid phases, depending on the space variable and
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Ω-periodic. Also, e denotes the linear strain tensor, i.e.,

elm(vf) =
1

2

(
∂vf,l

∂xm
+

∂vf,m

∂xl

)
.

Here and in what follows if a, e and u are respectively, fourth, second and first order

tensors, then a : e denotes the index contraction operation aklstest, with the usual

Einstein’s convention of summing on repeated indices. Similarly e · u denotes the

index contraction estus.

Next, with νjk, j, k = 1, 3, f denoting the unit outer normal at the interface Γjk,

the boundary conditions among the different solid and fluid phases are

σ1 · ν1f = σf · ν1f , on Γ1f , (2.9)

σ1 · ν13 = σ3 · ν13, onΓ13, (2.10)

σ1 · ν13 = P · [u] + Q · [iωu] , on Γ13, (2.11)

v1 = vf , on Γ1f . (2.12)

In (2.11) the symbol [·] indicates the jump discontinuity in the corresponding variable

at the Γ13 interface, i.e.

[u] =
(
u1 · ν13 + u3 · ν31, u1 · χ(1)

13 + u3 · χ(1)
31 , u1 · χ(2)

13 + u3 · χ(2)
31

)
, (2.13)

where ν13, χ
(1)
13 , χ

(2)
13 denote the unit outward vector and two unit tangent vectors

on Γ13 such that {ν13, χ
(1)
13 , χ

(2)
13 } is an orthonormal set on Γ13, and similarly for

ν31, χ
(1)
31 , χ

(2)
31 . The boundary condition (2.11) is a generalization (stated in tensor

form) of that given in [17], [18], [16] and models a nonwelded contact between two

solid phases assuming that the stresses across Γ13 are continuous but displacements
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and/or particle velocities across Γ13 are discontinuous. Is is also assumed that dis-

placement and/or velocity discontinuities are proportional to the stresses across the

interface, with the proportionality factors being the second order interface tensors

P and Q known as specific stiffness and specific viscosity tensors, respectively. The

tensors P and Q, which are dependent on the space variable and Ω-periodic, are

referred to the local basis
{
ν13, χ

(1)
13 , χ

(2)
13

}
. For Q = 0 equation (2.11) represents a

purely elastic contact, while for P = 0 we obtain a pure viscous slip.

3 The homogenization procedure

Next, following Sanchez-Palencia [12] and Auriault et al.[14], we expand the un-

knowns vectors u1, u3, uf in asymptotic power series of ε in the form

uε
i = ui(x, y) = u

(0)
i (x, y) + εu

(1)
i (x, y) + ε2u

(2)
i (x, y) + · · · i = 1, f, 3, (3.1)

where the functions u
(n)
i (x, y), n = 0, 1, · · · are Ω-periodic. The same expansion is

also used for σ1, σ3 and pf . Then we substitute the expansions (3.1) into equations

(2.1)–(2.12) describing the local behavior, remembering that the spatial derivatives

take the form

d

dx
=

∂

∂x
+ ε−1 ∂

∂y
.

Similarly,

e = ex + ε−1ey, ∇ = ∇x + ε−1∇y, ∆ = ∆x + ε−2∆y.
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First, from (2.2) and (2.4),

σj = aj : (ex + ε−1ey)(u
(0)
j + εu

(1)
j + · · · ) (3.2)

= ε−1aj : ey(u
(0)
j ) + aj :

(
ex(u

(0)
j ) + ey(u

(1)
j )

)
+ · · ·

= ε−1σ
(−1)
j + σ

(0)
j + · · · in Ωj , j = 1, 3. (3.3)

Next, from (2.1) and (3.2)

ε−2∇y · σ(−1)
j + ε−1

(
∇x · σ(−1)

j + ∇y · σ(0)
j

)
(3.4)

+ε(0)
(
∇x · σ(0)

j + ∇y · σ(1)
j

)
+ · · · = −ρjω

2
(
u

(0)
j + εu

(1)
j + · · ·

)
in Ωj , j = 1, 3.

Also, from (2.6)-(2.7),

σ
(0)
f + εσ

(1)
f + · · · = −p

(0)
f I + ε

(
−p

(1)
f I + 2ηe(v

(0)
f )

)
+ · · ·

= −p
(0)
f I + ε

(
−p

(1)
f I + τ

(1)
f + · · ·

)
in Ωf .

Next we use (2.9)–(2.12) to obtain the boundary conditions for the local problems.

First, from (2.9) and (2.12),

ε−1σ
(−1)
1 + σ

(0)
1 + εσ

(1)
1 + · · · (3.5)

= −p
(0)
f I + ε

(
−p

(1)
f I + 2ηey(v

(0)
f )

)
+ · · · on Γ1f .

Also, from (2.10) and (2.11)

(
ε−1σ

(−1)
1 + σ

(0)
1 + εσ

(1)
1 + · · ·

)
· ν13 (3.6)

= P · [u(0)
]
+ Q · [iωu(0)

]
+ ε

(
P · [u(1)

]
+ Q · [iωu(1)

])
+ · · · on Γ13.
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4 Solution of the local equations at the lowest or-

der

Let us consider the local equations for the solid at the lowest order: from (3.4) at

ε−2 and (3.2), (3.5) and (3.6) at ε−1 we obtain the elliptic system

∇y · σ(−1)
1 = 0 in Ω1, (4.1)

σ
(−1)
1 = a1 : ey(u

(0)
1 ) in Ω1, (4.2)

σ
(−1)
1 · ν1f = 0 on Γ1f , (4.3)

σ
(−1)
1 · ν13 = 0 on Γ13. (4.4)

It follows from (4.1)–(4.4) that

u
(0)
1 (x, y) = u

(0)
1 (x), (4.5)

and from (4.2) we see that

σ
(−1)
1 = 0. (4.6)

With identical argument, for the solid phase 3 we get

u
(0)
3 (x, y) = u

(0)
3 (x), (4.7)

σ
(−1)
3 = 0. (4.8)

Next, from the fluid equations (2.5)–(2.8) we get

ηε2
(
∆x + ε−2∆y)(v

(0)
f + εv

(1)
f + ε2v

(2)
f + · · ·

)
(4.9)

=
(∇x + ε−1∇y

) (
p

(0)
f + εp

(1)
f + ε2p

(2)
f + · · ·

)
+iωρf

(
v

(0)
f + εv

(1)
f + · · ·

)
in Ωf ,

10



and

iω
(
p

(0)
f + εp

(1)
f + · · ·

)
= (4.10)

Bf

(∇x · +ε−1∇y·
) (

v
(0)
f + εv

(1)
f + ε2v

(2)
f + · · ·

)
in Ωf .

Thus, from (4.9) at ε−1 we get

p
(0)
f (x, y) = p

(0)
f (x) in Ωf . (4.11)

The analysis in this section shows that the zero order terms p
(0)
f , u

(0)
1 and u

(0)
3 only

depend on the macroscopic variable x.

5 Solution of the local equations for the solid phases.

The next order.

Here we will find expressions for the solid displacements at order one, i.e., u
(1)
1 , u

(1)
3 .

First, from 3.4) at ε−1 and (4.6) we see that

∇y · σ(0)
1 = 0 in Ω1. (5.1)

Also, from (3.2) at ε(0),

σ
(0)
1 = a1 :

(
ex(u

(0)
1 ) + ey(u

(1)
1 )

)
in Ω1. (5.2)

From (3.5)–(3.6) at ε(0) we get the boundary conditions

σ
(0)
1 · ν1f = −p

(0)
f (x)ν1f on Γ1f , (5.3)

σ
(0)
1 · ν13 = P · [u(0)

]
+ Q · [iωu(0)

]
on Γ13. (5.4)
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With identical argument we get the following equations for the solid phase 3:

∇y · σ(0)
3 = 0 in Ω3, (5.5)

σ
(0)
3 = a3 :

(
ex(u

(0)
3 ) + ey(u

(1)
3 )

)
in Ω3, (5.6)

σ
(0)
3 · ν31 = −P · [u(0)

] − Q · [iωu(0)
]

on Γ13. (5.7)

Let us formulate (5.1)–(5.4) and (5.5)–(5.7) in variational form. Set

Wj
Ω =

{
α ∈ [H1(Ωj)]

3, α is complex valued and Ω − periodic
}

, j = 1, 3.

Then a weak form of (5.1)–(5.4) can be stated as follows: find u
(1)
1 ∈ W1

Ω such that

(
a1 : ey(u

(1)
1 ), ey(α)

)
Ω1

= −
(
a1 : ex(u

(0)
1 ), ey(α)

)
Ω1

(5.8)

+

∫
Γ1f

p
(0)
f ν1f αdS +

∫
Γ13

P · [u(0)
]
+ Q · [iωu(0)

]
αdS, α ∈ W1

Ω.

In (5.8) (·, ·)Ω1
denotes the complex inner product in L2(Ω1), α denotes the complex

conjugate of α and dS is the surface measure in the corresponding surface.

Equation (5.8) can be rewritten in the equivalent form: find u
(1)
1 ∈ W1

Ω such that

(
a1 : ey(u

(1)
1 ), ey(α)

)
Ω1

= p
(0)
f (x)

∫
Γ1f

ν1f,l · αldS

−ex,lm(u
(0)
1 )

∫
Ω1

a1,rtlm(x, y)ey,rt(α)dy

+
(
u

(0)
1,t − u

(0)
3,t

)[∫
Γ13

(Pr1 + iωQr1) ν13,tαrdS (5.9)

+

∫
Γ13

(Pr2 + iωQr2) χ
(1)
13,tαrdS +

∫
Γ13

(Pr3 + iωQr3)χ
(2)
13,tαrdS

]
,

α ∈ W1
Ω.
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Similarly, a weak form for u
(1)
3 is given by: find u

(1)
3 ∈ W3

Ω such that

(
a3 : ey(u

(1)
3 ), ey(α)

)
Ω3

= −ex,lm(u
(0)
3 )

∫
Ω3

a3,rtlm(x, y)ey,rt(α)dy

+
(
u

(0)
1,t − u

(0)
3,t

)[∫
Γ13

(Pr1 + iωQr1) ν13,tαrdS (5.10)

+

∫
Γ13

(Pr2 + iωQr2) χ
(1)
13,tαrdS +

∫
Γ13

(Pr3 + iωQr3)χ
(2)
13,tαrdS

]
,

α ∈ W3
Ω.

The solution of (5.9) and (5.10) can be obtained by superposition as follows. For

j = 1, 3 and A = P or A = Q, let Z1f,l, V j,rtlm, W j,1,rt,(A), W j,2,rt,(A) and W j,3,rt,(A)

be the solutions of

(
aj : ey(Z

1f,l)), ey(α
)
Ω1

=

∫
Γ1f

ν1f,lαldS, α ∈ W1
Ω (l not summed),

(
aj : ey(V

j,rtlm), ey(α
)
Ωj

= −
∫

Ωj

aj,rtlm(x, y)ey,rt(α)dy,

α ∈ Wj
Ω (r,t not summed),

(
aj : ey(W

j,1,rt,(A)), ey(α
)
Ωj

=

∫
Γ13

Ar1ν13,tαrdS, α ∈ Wj
Ω (r not summed),

(
aj : ey(W

j,2,rt,(A)), ey(α
)
Ωj

=

∫
Γ13

Ar2χ
(1)
13,tαrdS, α ∈ W1

Ω (r not summed),

(
aj : ey(W

j,3,rt,(A)), ey(α
)
Ωj

=

∫
Γ13

Ar3χ
(2)
13,tαrdS, α ∈ Wj

Ω (r not summed).

Then the solutions of (5.9) and (5.10) defined up to vectors u∗
1, u∗

3 which are functions

of x alone are given by

u
(1)
1 (x, y) = p

(0)
f (x)

∑
l

Z1,f,l + ex,lm(u
(0)
1 (x))

∑
rt

V 1,rtlm (5.11)

+
(
u

(0)
1,t (x) − u

(0)
3,t (x)

) ∑
n

∑
r

(
W 1,n,rt,(P ) + iωW 1,n,rt,(Q)

)
+ u∗

1,
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and

u
(1)
3 (x, y) = ex,lm(u

(0)
3 (x))

∑
rt

V 3,rtlm (5.12)

−
(
u

(0)
1,t (x) − u

(0)
3,t (x)

) ∑
n

∑
r

(
W 3,n,rt,(P ) + iωW 3,n,rt,(Q)

)
+ u∗

3.

Let the third order tensors ξ1, ξ3, the first order tensor β1f and the second order

tensors δ
(P )
1 , δ

(P )
3 , µ

(Q)
1 and µ

(Q)
3 be defined by

ξj,lms(x, y) =
∑
rt

V j,rtlm
s , j = 1, 3, β1f,s(x, y) =

∑
l

Z1f,l
s , (5.13)

δ
(P )
1,st(x, y) =

∑
n

∑
r

W 1,n,rt,(P )
s , µ

(Q)
1,st(x, y) =

∑
n

∑
r

W 1,n,rt,(Q)
s ,

δ
(P )
3,st(x, y) = −

∑
n

∑
r

W 3,n,rt,(P )
s , µ

(Q)
3,st(x, y) = −

∑
n

∑
r

W 3,n,rt,(Q)
s .

Then the solutions u
(1)
1 = (u

(1)
1,s), u

(1)
3 = (u

(1)
3,s) in (5.11)and (5.12) can be written

in the form

u
(1)
1,s(x, y) = β1f,s(x, y)p

(0)
f (x) + ξ1,lms(x, y)ex,lm(u

(0)
1 (x)) + (5.14)

+δ
(P )
1,st(x, y)

(
u

(0)
1,t (x) − u

(0)
3,t (x)

)
+µ

(Q)
1,st(x, y)

(
iωu

(0)
1,t (x) − iωu

(0)
3,t (x)

)
+ u∗

1,s,

u
(1)
3,s(x, y) = ξ3,lms(x, y)ex,lm(u

(0)
3 (x)) + δ

(P )
3,st

(
u

(0)
1,t (x) − u

(0)
3,t (x)

)
(5.15)

+µ
(Q)
3,st

(
iωu

(0)
1,t (x) − iωu

(0)
3,t (x)

)
+ u∗

3,s.

6 The constitutive relations

First, from (4.10) at ε(0) we get

iωp
(0)
f B−1

f = ∇x · v(0)
f + ∇y · v(1)

f in Ωf . (6.1)
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Next, it follows from the adherence condition (2.12) that

v
(n)
f = iωu

(n)
1 on Γ1f , n = 0, 1, 2, · · · . (6.2)

As the fluid velocity field vf depends upon both x and y, to extract its slowly varying

part we will average it over the fast variable y. In general we define a volume average

of θ(y) over Ω, where θ is defined to be zero outside its domain of definition, in the

form

〈θ〉 =
1

|Ω|
∫

Ω

θ(y)dy, (6.3)

and we also define the surface average

〈〈θ〉〉 =
1

|Γ13|
∫

Γ13

θ(y)dS. (6.4)

We introduce the coefficient

φ =
|Ωf |
|Ω| , (6.5)

which gives a measure of the porosity of the medium. Then, averaging over Ω in

(6.1) and using periodicity and (6.2) we conclude that

∇x ·
〈
v

(0)
f

〉
= φiωB−1

f p
(0)
f − 1

|Ω|
∫

∂Ωf

v
(1)
f · νf1dS (6.6)

= φiωB−1
f p

(0)
f +

1

|Ω|
∫

Γ1f

iωu
(1)
1 · ν1fdS

= φiωB−1
f p

(0)
f +

1

|Ω| iω
∫

Ω1

∇y · u(1)
1 dy

−φ13
1

|Γ13|iω
∫

Γ13

u
(1)
1 · ν13dS,

where

φ13 =
|Γ13|
|Ω| .
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Next, subtract the identity

iωφIex(u
(0)
1 ) = iωφ∇x · u(0)

1 ,

from (6.6) and use (5.14)-(5.15) for expressing the terms u
(1)
j , j = 1, 3 in the resulting

equation. Then, defining the scalar J , the second order tensor γ1 and the first order

tensors M (P ) and N (Q) by

J = φB−1
f + 〈∇y · β1f 〉 − φ13 〈〈β1f · ν13〉〉 ,

γ1 = −〈∇y · ξ1〉 + φI + φ13 〈〈ξ1 · ν13〉〉 ,

M (P ) = −
〈
∇y · δ(P )

1

〉
+ φ13

〈〈
δ

(P )
1 · ν13

〉〉
,

N (Q) = −
〈
∇y · µ(Q)

1

〉
+ φ13

〈〈
µ

(Q)
1 · ν13

〉〉
,

(6.7)

and introducing the absolute average fluid displacement in the form

U
(0)
f =

1

φ

〈
u

(0)
f

〉
(6.8)

we obtain the following equation for the macroscopic fluid pressure p
(0)
f

φp
(0)
f =

φ2

J
∇x · U (0)

f +
φ

J
(γ1 − φI) : ex(u

(0)
1 ) (6.9)

+
M (P )φ

J
·
(
u

(0)
1 − u

(0)
3

)
+

N (Q)φ

J
·
(
iωu

(0)
1 − iωu

(0)
3

)
+

φφ13

J
u∗

1 · 〈〈ν13〉〉 .

Next, from (3.4) at ε0 we have

σ
(0)
j = aj : ex(u

(0)
j ) + aj : ey(u

(1)
j ), j = 1, 3. (6.10)
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Using (5.14) and averaging over Ω in (6.10) we conclude that the macroscopic stress

in solid phase 1 takes the form

〈
σ

(0)
1

〉
= C1 : ex(u

(0)
1 ) + 〈a1 : ey(β1f)〉 p

(0)
f +

〈
a1 : ey(δ

(P )
1 )

〉
·
(
u

(0)
1 − u

(0)
3

)
+

〈
a1 : ey(µ

(Q)
1 )

〉
·
(
iωu

(0)
1 − iωu

(0)
3

)
, (6.11)

where C1 is the fourth order tensor given by

C1 = 〈a1 : (I + ey(ξ1))〉 . (6.12)

Thus, using (6.9) in (6.11) we obtain

〈
σ

(0)
1

〉
=

[
C1 + 〈a1 : ey(β1f )〉 1

J
(γ1 − φI)

]
: ex(u

(0)
1 ) (6.13)

+ 〈a1 : ey(β1f )〉 φ

J
∇x · U (0)

f + 〈a1 : ey(β1f)〉 φ13

J
u∗

1 · 〈〈ν13〉〉

+

[〈
a1 : ey(δ

(P )
1 )

〉
+

M (P )

J
〈a1 : ey(β1f)〉

]
·
(
u

(0)
1 − u

(0)
3

)

+

[〈
a1 : ey(µ

(Q)
1 )

〉
+

N (Q)

J
〈a1 : ey(β1f )〉

]
·
(
iωu

(0)
1 − iωu

(0)
3

)
.

Similarly, using (5.15) in (6.10) for the macroscopic stress in solid phase 3 we obtain

〈
σ

(0)
3

〉
= C3 : ex(u

(0)
3 ) +

〈
a3 : ey(δ

(P )
3 )

〉
·
(
u

(0)
1 − u

(0)
3

)
(6.14)

+
〈
a3 : ey(µ

(Q)
3 )

〉
·
(
iωu

(0)
1 − iωu

(0)
3

)
,

where the fourth order tensor C3 is defined by

C3 = 〈a3 : (I + ey(ξ3))〉 . (6.15)

Remark: equations (6.9), (6.13) and (6.14) are the macroscopic constitutive rela-

tions for
〈
σ

(0)
1

〉
and

〈
σ

(0)
3

〉
and the fluid pressure p

(0)
f . The coefficients in these rela-

tions contain information about the size and geometry of the interface Γ13 between
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the two solid phases and explicitly show how the microscopic displacement and/or

particle velocity discontinuities affect the macroscopic stresses and fluid pressure.

7 The equations of motion

7.1 Derivation of Darcy’s law

Now we shall obtain a general relation between the relative velocity of the fluid and

the macroscopic pressure gradient through a generalized permeability tensor, taking

into account the elastic deformation of the solid in contact with the fluid.

First, from (4.9) at ε(0) we get

η∆yv
(0)
f = ∇y · τ (1)

f (v
(0)
f ) = ∇yp

(1)
f + ∇xp

(0)
f + iωρfv

(0)
f in Ωf , (7.1)

and from (4.10) at ε−1

∇y · v(0)
y = 0 in Ωf . (7.2)

We now introduce a vector field ṽ
(0)
f representing the zero order relative velocity of

the fluid in the frequency domain, given by

ṽ
(0)
f = v

(0)
f − iωu

(0)
1 (x), in Ωf (7.3)

so that

ṽ
(0)
f = 0 on Γ1f . (7.4)

In terms of this relative flow equations (7.1)–(7.2) become

−∇y · τ (1)
f (ṽ

(0)
f ) + ∇yp

(1)
f + iωρf ṽ

(0)
f = f (0)(x, ω) in Ωf , (7.5)

∇y · ṽ(0)
f = 0 in Ωf , (7.6)

18



where

f (0)(x, ω) = −
[
∇xp

(0)
f + iωρfv

(0)
1

]
. (7.7)

Let us solve the cell problem (7.5)- (7.6) for ṽ
(0)
f with the boundary condition (7.4).

Let

VΩf
=

{
ϕ ∈ [H1(Ωf )]

3, ∇y · ϕ = 0, ϕ = 0 on Γ1f , (7.8)

ϕ is complex valued and , Ω − periodic} , (7.9)

provided with the natural (complex) inner product in L2(Ωf ), denoted by (·, ·)Ωf
.

Then a variational formulation of (7.5), (7.6) and (7.4) can be stated as follows:

Find ṽ
(0)
f ∈ VΩf

such that

(
η∇ṽ

(0)
f ,∇ϕ

)
Ωf

+ iω
(
ρf ṽ

(0)
f , ϕ

)
Ωf

= f (0)(x, ω) ·
∫

Ωf

ϕdy, ϕ ∈ VΩf
. (7.10)

It is known that (7.10) has a unique solution, which can be found as usual by solving

the following set of problems [12]. Let V s for s=1,2,3 be particular solutions of the

problem

(η∇V s,∇ϕ)Ωf
+ iω (ρfV

s, ϕ)Ωf
=

∫
Ωf

ϕsdy, ϕ ∈ VΩf
, (7.11)

and set the second order tensor K given by

K(x, y, ω) = (K)sj = V s
j . (7.12)

Then by linearity we obtain the solution

ṽ
(0)
f = K · f (0)(x, ω). (7.13)
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Integrating (7.13) over Ωf and dividing by |Ω| the resulting equation we obtain

〈
v

(0)
f

〉
− iωφu

(0)
1 = −〈K〉 ·

[
∇xp

(0)
f + iωρfv

(0)
1

]
, (7.14)

which is the form of Darcy’s law for this system, being 〈K(x, ω)〉 its generalized

permeability [14].

7.2 Dynamic equilibrium equations

In this section we will find a set of coupled differential equilibrium equations gov-

erning the macroscopic motion of the three phases.

To formulate the equation associated to the fluid phase, first we introduce the

second order tensor H given by

H = 〈K〉−1 = H1 + iH2. (7.15)

Then, using (7.15) and (6.8) we can rewrite (7.14) in the form

−∇xp
(0)
f = −ω2

(
ρfI − φH2

ω

)
· u(0)

1 − ω2

(
φH2

ω

)
· U (0)

f (7.16)

+iωφH1 ·
(
U

(0)
f − u

(0)
1

)
.

Next, we obtain the corresponding equations for the solids starting from (3.4) at ε(0)

∇x · σ(0)
1 + ∇y · σ(1)

1 = −ρ1ω
2u

(0)
1 in Ω1, (7.17)

∇x · σ(0)
3 + ∇y · σ(1)

3 = −ρ3ω
2u

(0)
3 in Ω3. (7.18)

Also, (7.1) can be stated in the form

∇y · σ(1)
f = ∇xp

(0)
f + iωρfv

(0)
f in Ωf . (7.19)
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Next, using (2.9), (2.11) and periodicity in the y-variable to cancel the outer bound-

ary terms,

∫
Ω1

∇y · σ(1)
1 dy +

∫
Ωf

∇y · σ(1)
f dy =

∫
∂Ω1

σ
(1)
1 · ν1dS +

∫
∂Ωf

σ
(1)
f · νfdS

=

∫
Γ13

σ1 · ν13dS =

∫
Γ13

(
P · [u(1)

]
+ Q · [iωu(1)

])
dS. (7.20)

Thus averaging (7.17) and (7.19) over Ω and adding the resulting equations we

conclude that

∇x ·
〈
σ

(0)
1

〉
−∇x ·

〈
p

(0)
f I

〉
+ φ13T

13 = −ω2 〈ρ1〉u
(0)
1 + iωρf

〈
v

(0)
f

〉
, (7.21)

where

T 13 =
1

|Γ13|
∫

Γ13

(
P · [u(1)

]
+ Q · [iωu(1)

])
dS. (7.22)

Next use (2.13) and the expressions for u
(1)
1 , u

(1)
3 given in (5.14)-(5.15) to compute

the boundary term T 13 in (7.21). For this purpose it is convenient to define the

first order tensors Λ(P ), Λ(Q), the second order tensors Z(P ), Z(Q), E(P ), E(Q), E(P,Q),

E(Q,P ) and the third order tensors α
(P )
1 , α

(P )
3 given by

Z
(P )
sl = Ps1ν13,l + Ps2χ

(1)
13,l + Ps3χ

(2)
13,l,

Z
(Q)
sl = Qs1ν13,l + Qs2χ

(1)
13,l + Qs3χ

(2)
13,l,

α
(P )
j,smr = Z

(P )
sl ξj,lmr, α

(Q)
j,smr = Z

(Q)
sl ξj,lmr, j = 1, 3, (7.23)

Λ(P )
s = Z

(P )
sl β1f,l, Λ(Q)

s = Z
(Q)
sl β1f,l,

E
(P )
st = Z

(P )
sl

(
δ

(P )
1,lt − δ

(P )
3,lt

)
, E

(P,Q)
st = Z

(P )
sl

(
µ

(Q)
1,lt − µ

(Q)
3,lt

)
E

(Q,P )
st = Z

(Q)
sl

(
δ

(P )
1,lt − δ

(P )
3,lt

)
, E

(Q)
st = Z

(Q)
sl

(
µ

(Q)
1,lt − µ

(Q)
3,lt

)
.
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Thus, using these definitions in (7.22) and taking into account that
〈
p

(0)
f I

〉
= φIp

(0)
f

equation (7.21) becomes

∇x ·
〈
σ

(0)
1

〉
− φ∇xp

(0)
f + φ13

[ 〈〈
α

(P )
1

〉〉
: ex(u

(0)
1 ) +

〈〈
α

(P )
3

〉〉
: ex(u

(0)
3 ) (7.24)

+
〈〈

Λ(P )
〉〉

p
(0)
f +

〈〈
E(P )

〉〉 · (u
(0)
1 − u

(0)
3

)
+

〈〈
E(P,Q)

〉〉 · (iωu
(0)
1 − iωu

(0)
3

)
+

〈〈
α

(Q)
1

〉〉
: ex(iωu

(0)
1 )

+
〈〈

α
(Q)
3

〉〉
: ex(iωu

(0)
3 ) +

〈〈
Λ(Q)

〉〉
iωp

(0)
f +

〈〈
E(Q,P )

〉〉 · (iωu
(0)
1 − iωu

(0)
3

)
−ω2

〈〈
E(Q)

〉〉 · (u
(0)
1 − u

(0)
3

)
+

〈〈
Z(P )

〉〉 · (u∗
1 − u∗

3) +
〈〈

Z(Q)
〉〉 · (iωu∗

1 − iωu∗
3)

]

= −ω2 〈ρ1〉u
(0)
1 − ω2ρfφU

(0)
f .

Next using in (7.24) the expressions for p
(0)
f and its gradient obtained in (6.9) and

(7.16), respectively, we conclude that the equilibrium equation associated to the

solid phase 1 takes the following form:

∇x ·
〈
σ

(0)
1

〉
+ G

(P )
1 : ex(u

(0)
1 ) + G

(P )
3 : ex(u

(0)
3 ) + φ13

φ

J

〈〈
Λ(P )

〉〉∇x · U (0)
f (7.25)

+D
(Q)
1 : ex(iωu

(0)
1 ) + D

(Q)
3 : ex(iωu

(0)
3 ) + φ13

φ

J

〈〈
Λ(Q)

〉〉∇x ·
(
iωU

(0)
f

)
= −ω2

[
〈ρ1I〉 − φ

(
ρfI − φ

H2

ω

)
− F (Q)

]
· u(0)

1 − ω2F (Q) · u(0)
3

−ω2φ

(
ρfI − φ

H2

ω

)
· U (0)

f − iωH1φ
2 ·

(
U

(0)
f − u

(0)
1

)
− F (P ) ·

(
u

(0)
1 − u

(0)
3

)
−F (P,Q) ·

(
iωu

(0)
1 − iωu

(0)
3

)
− φ13

〈〈
Z(P )

〉〉 · (u∗
1 − u∗

3)

−φ13

〈〈
Z(Q)

〉〉 · (iωu∗
1 − iωu∗

3) −
(φ13)

2

J

〈〈
Λ(P )

〉〉
u∗

1 · 〈〈ν13〉〉

−(φ13)
2

J

〈〈
Λ(Q)

〉〉
iωu∗

1 · 〈〈ν13〉〉 .

In (7.25) we have introduced the second order tensors F (P ), F (P,Q), F (Q) and the
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third order tensors G
(P )
1 , G

(P )
3 , D

(Q)
1 , D

(Q)
3 by the formulae

G
(P )
1 = φ13

(〈〈
α

(P )
1

〉〉
+

1

J
(γj − φI)

〈〈
Λ(P )

〉〉)
, G

(P )
3 = φ13

〈〈
α

(P )
3

〉〉
,

D
(Q)
1 = φ13

(〈〈
α

(Q)
1

〉〉
+

1

J
(γ1 − φI)

〈〈
Λ(Q)

〉〉)
, D

(Q)
3 = φ13

〈〈
α

(Q)
3

〉〉
,

F (P ) = φ13

(〈〈
E(P )

〉〉
+

M (P )

J

〈〈
Λ(P )

〉〉)
,

F (P,Q) = φ13

(〈〈
E(P,Q)

〉〉
+

〈〈
E(Q,P )

〉〉
+

N (Q)

J

〈〈
Λ(P )

〉〉
+

M (P )

J

〈〈
Λ(Q)

〉〉)
,

F (Q) = φ13

(〈〈
E(Q)

〉〉
+

N (Q)

J

〈〈
Λ(Q)

〉〉)
.

In the same fashion, to obtain the equation of motion associated with the solid phase

3 we average (7.18) over Ω to conclude that

∇x ·
〈
σ

(0)
3

〉
− φ13T

13 = −ω2 〈ρ3〉 u
(0)
3 . (7.26)

Finally, applying in (7.26) the argument leading to (7.25) we get the following macro-

scopic equation of motion for the solid phase 3:

∇x ·
〈
σ

(0)
3

〉
− G

(P )
1 : ex(u

(0)
1 ) − G

(P )
3 : ex(u

(0)
3 ) − φ13

φ

J

〈〈
Λ(P )

〉〉∇x · U (0)
f (7.27)

−D
(Q)
1 : ex(iωu

(0)
1 ) − D

(Q)
3 : ex(iωu

(0)
3 ) − φ13

φ

J

〈〈
Λ(Q)

〉〉∇x ·
(
iωU

(0)
f

)
= −ω2

[〈ρ3I〉 − F (Q)
] · u(0)

3 − ω2F (Q) · u(0)
1 + F (P ) ·

(
u

(0)
1 − u

(0)
3

)
+F (P,Q) ·

(
iωu

(0)
1 − iωu

(0)
3

)
+ φ13

〈〈
Z(P )

〉〉 · (u∗
1 − u∗

3)

+φ13

〈〈
Z(Q)

〉〉 · (iωu∗
1 − iωu∗

3) +
(φ13)

2

J

〈〈
Λ(P )

〉〉
u∗

1 · 〈〈ν13〉〉

+
(φ13)

2

J

〈〈
Λ(Q)

〉〉
iωu∗

1 · 〈〈ν13〉〉 .

Equations (7.16), (7.25) and (7.27) are the equations of motion for our composite

system. The equation of motion for the fluid (7.16) is the same that for the classic
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Biot’s theory, due to the restricted geometrical configuration being analyzed in which

only one solid phase is in contact with the fluid. The equations of motion (7.25)

and (7.27), expressed in terms of the macroscopic particle displacements u
(0)
1 , u

(0)
3

and U
(0)
f , contain zero order jumps, first order spatial derivatives and mass terms

relating such macroscopic variables, all of them with coefficients indicated by the

superindices (P ), Q) and (P,Q). The equation of motion (7.25) for the solid phase 1

also contains the classic viscous dissipative Darcy term related to the relative fluid

flow between the solid phase 1 and the fluid.

8 Conclusions

We have obtained the constitutive relations and the equations of motion representing

the macroscopic monochromatic motion of a fluid saturated porous solid in which

the matrix is composed of two nonwelded solid phases by employing the two-space

homogenization procedure. The analysis is carried over for the case in which the

local Reynolds number (or equivalently, the dimensionless viscosity η/(ωρfε
2) is of

order unity. As expected, the behavior of the composite system is determined by

the boundary conditions at the solid-solid interface, where it is assumed that at the

microscopic level the stresses are continuous while the displacement and/or particle

velocities are discontinuous. The macroscopic equations obtained display the static

and dynamic interaction among the three phases. The jump in the microscopic

displacements and/or velocities introduce jumps in the corresponding macroscopic

displacements and/or velocities in the constitutive relations (6.11) and (6.14). Those
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microscopic jumps also introduce zero order jumps and first order terms in the

macroscopic equations of motion (7.25) and (7.27) for the two solid phases, as well as

dissipative terms related to the difference between the macroscopic particle velocities

of the two solid phases. Since only one solid phase sees the fluid phase, the equation

of motion for the fluid (7.16) reduces to that of the classic Biot theory as in references

[14], [15].
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discussions about boundary conditions in fractured media.

References

[1] M. A. Biot, J. Acoust. Soc. Am. 28 (1956) 168-171.

[2] M. A. Biot, J. Acoust. Soc. Am. 28(1956) 179-191.

[3] M. A.Biot, J. Appl. Physics 33 (4) (1962) 1482–1498.

[4] Ph. Leclaire, F. Cohen-Tenoudji and J. Aguirre Puente, J. Acoust. Soc. Amer.

96 (6) (1994) 3753–3767.

[5] J. M. Carcione and U. Tinivella, Geophysics 65 (1) (2000) 54–67.

[6] J. M. Carcione, B. Gurevich and F. Cavallini, Geophysical Prospecting 48 (2000)

539–557.

25



[7] J.E. Santos, C.L. Ravazzoli and J.M. Carcione, Journal of the Acoustical Society

of America 115 (6) (2004) 2749-2760.

[8] J. L. Morack and J. C. Rogers, Arctic 3 (1981) 166–174.

[9] J. M. Carcione and G. Seriani, Geophysical Prospecting 46 (1998) 441–454.

[10] S. Lee, P. Cornillon and O. Campanella,2002 Annual Meeting and Food Expo.,

Anaheim (CA).

[11] S. Lee, L. Pyrak-Nolte, P. Cornillon and O. Campanella, to appear in Journal

of the Science of Food and Agriculture.

[12] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture

Notes in Physics, Springer-Verlag, New York, 1980.

[13] A. Bensoussan,J. L. Lions and G. C. Papanicolaou, Asymptotic analysis for

periodic structures, in: Studies in Mathematics and its Applications, 5, North-

Holland, 1978.

[14] J. L. Auriault, L. Borne and R. Chambon, J. Acoust. Soc. Am. 77 (5) (1985)

1641-1650.

[15] R. Burridge and J. B. Keller, J. Acoust. Soc. Amer. 70 (4) (1981) 1140-1146.

[16] L. J. Pyrak-Nolte, L. R. Myer and N. G. Cook, J. Geophys. Research 95 (B7)

(1990) 11345-11358.

26



[17] J.M. Carcione, Wave fields in real media: Wave propagation in anisotropic,

anelastic and porous media, Handbook of Geophysical Exploration 31, Pergamon

Press Inc., Amsterdam, 2001.

[18] M. Schoenberg, J. Acoust. Soc. Am., 68 (5) (1980) 1516–1521.

27



Figure 1

(a)

Γfe

Γ3e

Γ1f

Γ13

Ω3

Ω1

Ωf

Ω1

Ω3

l

Γ1e

(b)

Ωf

Ω1

l

Ω3

Γ13

Γ1f

Γ3e

28



Figure Captions

Figure 1: Some simple examples of the composite homogenization volume.
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