Parallel Implementation of a Generalized Marching
Algorithm

Gergana Bencheva *
Institute for Parallel Processing, Bulgarian Academy of Sciences
gery@parallel.bas.bg

August 20, 2004

Abstract

New parallel implementations of the generalized marching algorithm and its
modification are theoretically studied. A decomposition of the computational do-
main into a number of strips corresponding to the number of processors is used in
both cases. Estimates for the parallel times are derived. They are analyzed with
respect to the problem size, the number of processors and the machine dependent
parameters. The comparison of the properties of the considered algorithms shows
that not always the best sequential solver has the best parallel performance.

1 Introduction

In this paper we pose the question: ”Under what circumstances does an ”expensive”
direct elliptic solver lead to a better parallel algorithm than a ”cheaper” one?” Our
attention is focused on separable elliptic problems and more specifically on a paral-
lel implementation of the generalized marching algorithm and its modification. More
precisely, a separable second order elliptic equation with nonconstant coefficients is con-
sidered:

2.0 ou ,
— sz::l Bz, (as(xs) 8—1'5> = f(x); xr = (:L‘l, ZUZ) €)= (0, 1) . (1)
u = 07 on 0f)

It is discretized on rectangular n x m grid by central finite differences or by piece-wise
linear finite elements on right—angled triangles. Using the identity n x n matrix I,,, the

*Supported in part by the Ministry of Education and Science of Bulgaria under Grant #MY-I-
901/99, by the Center of Excellence BIS-21 Grant ICA1-2000-70016 and by the USA National Science
Foundation under Grant DMS 9973328

tridiagonal, symmetric and positive definite matrices T = (t;;)7;—; and B = (b ;)7"_;,
and the Kronecker product Cyy,xny ® Dimyxn, = (cijD)idy",, C = (¢ij) 4", , the

1=1j=1° 1=1j=1>
discrete system takes the following matrix form:
Ax=BI,+1,T)x=f, (2)
where x;,f; € R", j = 1,...,m are column vectors and x’ = (XIT,XQT, . ,xg’l), 7 =
(flT S N ,fg,;). Lexicographic ordering on horizontal lines for the vectors x and f is

used. This in fact means that A is block tridiagonal matrix with tridiagonal blocks on
the main diagonal and the discrete problem has N = nm degrees of freedom.

The generalized marching algorithm (GM) for direct solution of problems of type
(2) is a stabilized version of the standard marching algorithm (SM), first proposed by
R. Bank and D. Rose in [2, 3]. It is later reformulated by P. S. Vassilevski (in [12])
using fast algorithm for separation of variables (FASV) in combination with the so-
called incomplete solution technique for problems with sparse right—hand sides (SRHS),
proposed independently by Banegas [1], Proskurowski [10] and Kuznetsov [7]. More
theoretical aspects of the problems with sparsity are investigated by Kuznetsov in [6].
Algorithm FASV itself (proposed in [13]) is another direct solver for system (2) also
based on SRHS.

The speed-up and efficiency coefficients play a key role in the analysis of parallel
algorithms. They are based on times for computations 7, = N *t, and communications
Teom = €1 x 1y + g x t,. Here, N is the total number of operations per processor, c;
characterizes the number of stages at which communications are needed and ¢, is the
total amount of the transferred words. Both ¢; and ¢, can be constants or functions of
the number of processors and/or the problem size. The parameters t¢,, t; and t,, depend
on the parallel computer. The largest one of them is ¢, and it could be hundreds and
even thousands times larger than %,,.

To obtain a good parallel implementation of the GMF algorithm, i.e. GM as it was
proposed in [12], we have to use parallel implementation of FASV (PFASV). But on the
other hand, PFASV requires parallelization of SRHS (see, e.g. [4, 11]) to be applied at
some of its steps depending on the problem size and the number of processors. Hence,
as it was shown in [4], ¢; for PFASV will depend not only on the number of processors
but also on the size of the problem and PGMF will be influenced by this fact. What
will happen if parallelization of SRHS is used instead of PFASV? In [5] it is shown
experimentally that on some parallel systems the resulting GMS algorithm has better
parallel performance than PGMF. This paper is focused on theoretical analysis and
comparison of the parallel properties of GMF and its modification GMS.

The exposition is organized as follows. The algorithms SRHS, SM, GMF and GMS
are briefly outlined in Section 2. Section 3 is devoted to the parallel implementation of
GMF and GMS and to some theoretical analysis of their properties. Estimates for the
execution times are derived and their behaviour is compared with respect to the machine
dependent parameters t; and t,,. Some concluding remarks are drawn at the end.

2 Generalized Marching Algorithm

We start the presentation in this section with a brief description of the technique for
incomplete solution of systems of the form (2) with a sparse right-hand side (SRHS).
That technique has independently been proposed by Banegas [1], Proskurowski [10], and
Kuznetsov [7]. We next present the essence of the standard (SM) and generalized (GM)
marching algorithms. The method GM is a stabilized version of the SM, first developed
by Bank and Rose [2, 3] and later reformulated by Vassilevski [12] using SRHS and
another fast separable elliptic solver called fast algorithm for separation of variables
(FASV). We first present the latter version of GM and denote it as GMF. At the end
of the section we describe the introduced in [5] modification of GM (referred as GMS)
based only on SRHS and we give a short motivation for this approach.

2.1 Incomplete Solution Technique

It is assumed (for a reason to become clear later on) that the right—-hand side f of the
system (2) has only d (d < m) nonzero block components and that only r (r < m) block
components of the solution are needed. Let for definiteness f; = 0 for j # 71, ja, ..., Ja-
Then each vector £/ = (fi1, fiz,-- -, fi,m)T, i =1,...,n of the reordered right—hand side
has only d nonzero scalar entries f;; ,s = 1,...,d. To find the needed components
Xjt, Xjp, .-, X of the solution, the well-known algorithm for separation of variables is
applied taking advantage of the right—hand side sparsity:
Algorithm SRHS

Step 0. determine all the eigenvalues {\;}7, and the needed d < r + d entries
{ar;}, 7 € {1, -y Jay ULy, -+, 4.} of all the eigenvectors {q}y, of the tridiagonal
matrix B ;

Step 1. compute the Fourier coefficients f3; ; of f] from equations:

d
_ T e - _ .
Bi,k_qk; fz _qus,kfi,js7 Z—].,...,TL, k_]-a"'am’
s=1

Step 2. solve m nxn tridiagonal systems of linear equations for ng (8x = (Bik, -+, Buk)”
are given):
()\kIn+T)77k :Bka k= 1,...,m;
Step 3. recover r components of the solution per lines based on
X; = Z 45,k fOI'j =]{7];7 v 7.]7,«
k=1
End{SRHS}.
Steps 1 and 3 require 2d mn and 27 m n arithmetic operations (ar. ops.) respectively,
and m(5n — 4) ar. ops. are needed for solution of the systems at Step 2.
The computational complexity of Algorithm SRHS is given in:

Lemma 2.1 The Algorithm SRHS requires m[2(r + d)n + (5n — 4)] ar. ops. in the
solution part, m(4n—3) ar. ops. to factor the tridiagonal matrices \y I+T, k =1,...,m
in LDU form, and (’)(cimZ) + 9m? ar. ops. to compute all the eigenvalues and d
components of all the eigenvectors of the matriz B.

2.2 Marching Algorithm (SM)

A simple rearrangement of system (2) is at the heart of the standard marching algorithm.
The first block equation is placed at the bottom and the reordered system is rewritten
in the following two-by-two block form:

(e 0))-(5) 0

Here, matrix U is upper triangular and the block matrices G and C, and vectors x’ and
f’ read as follows

0
C = (T+baly, bi20,,0,...,0),
G = 0 , xT = (xT,x2, ..., xP),
bm—l,mIn f’T = (fT fT fT)
T 1 bm’m[n 2 3 m

Using block-Gaussian elimination the problem (3) is reduced to the solution of two
systems with the upper triangular matrix U and one system with the Schur complement
S=-CU'G.

The steps of the standard marching algorithm are summarized below.

Algorithm SM
Step 1. solve the system Uy, = f' using standard backward recurrence;
compute the right—hand side fi=1 — Cyn;
Step 2. solve incompletely Ax = (f7,07,...,07)T only for X,
using Algorithm SRHS (with d =1,j; =1 and r = 1,j; = m)
to compute the solution x,, = X,,, of the Schur complement system
Sx, = E;
Step 3. determine f' = —Gx,, + f';
solve Ux' = f' using standard backward recurrence.
End{SM}.

Step 1 and Step 3 require 2((m — 2)(11n — 4) 4+ n) ar. ops. for the systems with
the upper triangular matrix U and 17n — 8 ar. ops. to compute the related right—hand
sides. Step 2, according to Lemma 2.1, requires m(9n — 4) ar. ops. in the solution part.
Hence, the next theorem for the computational complexity of Algorithm SM holds.

Theorem 2.1 The marching algorithm in combination with the separation of variables
technique for the incomplete solution of the reduced system requires an optimal cost
Nsuyr = 31nm of ar. ops. for solving problems with separable variables (2).

2.3 Generalized Marching Algorithm (GM)

The main disadvantage of SM as shown in [2, 3] is that it is unstable for large m. More
precisely, the backward recurrence is unstable when it is applied to systems with the

upper triangular matrix U of large block order m. This makes SM of practical interest
only if the length of this recurrence is small, i.e. for m < n. For the case m ~ n one
may use the generalized marching algorithm, described below.

For ease of presentation, let m + 1 = p(k + 1) for some integers p and k. Similar
to the standard marching algorithm, the system (2) is first reordered and rewritten into

two-by-two block form

1411,1 Alﬂ xM Y\ (f0

gm gm x@ | —\ f@& |-
Then applying again block-Gaussian elimination, it is reduced to solution of two systems
with the block A;; and one system with the Schur complement S = Aj5—A, AT} Ao

Now, A = (ﬁi,j)?,jzl is a symmetric block odd—even reordering of A. It is induced by

simultaneous reordering of the unknown vector x” = (x(l)T, x(Q)T) and the right-hand
side fT' = (f(l)T, f(z)T) by the rule: all rows of x (respectively of f) of multiplicity k + 1
form its second block component x(®. The block x® is a separator — it partitions the
n x m grid into p strips with % grid lines. Hence the blocks on the diagonal of A are
block—diagonal. More specifically, they are defined by:

Ay = blockdiag(APY_ | A® =, T + B® @ 1I,,
ng) = tridia‘q(bks'i'ivks'i'i_l) bks+iaks+i) bks+i,ks+i+1)£€=1)
Asy = blockdiag(T + e\ koyy In), ks = (s = 1)(k+1),s=1,...,p.

The components x, £ i = 1,2 of the solution and the right-hand side are grouped as
follows (ks = (s — 1)(k+1),s=1,...,p):

x{ £V Xk +1 B
X(l) =) f(l) - ’ Xgl) = : ’ fs(l) - : ’
ngl) flgl) Xkytk i +r
T
X(2) T: (X£+1? e ,XZE]C_'_I)a e 7Xg;)—1)(]€+1))’
£ — (fkTH, . ..,fikﬂ), . --,fg,_1)(k+1))'

The subproblems with Agk) are independent of each other and the systems with ﬁm

are solved by applying p times the Algorithm SM. To ensure the stability of SM at this

1
step, the length £ —1 = mEl_ 2 of the backward recurrence is controlled by choosing

p
sufficiently large p.

The system with the Schur complement is again equivalent to incomplete solution
of a system with the original matrix and with a sparse right-hand side. Now, p — 1
components of the solution are needed and the right—hand side has p — 1 nonzero blocks.
The algorithm GM is summarized as follows:
Algorithm GM
Step 1. for s=1to p

solve AR y(1) = £(1) using Algorithm SM,;
end {loop on s}
compute the right-hand side f® = f® — 4, y(1;
£, i=s(k+1)
0, i#s(k+1) "’
seeking only Xy(x41) = Xgk11), s=1,...,p— 1

Step 2. solve incompletely AX = ?, where E = {

to compute the solution of the system S x® = f®;
Step 3. compute the right-hand side f) = £ — 4, , x®:
fors=1top
solve A®) x(D =) using Algorithm SM;
end {loop on s}
End{GM}.

Step 1 and Step 3 are in fact solution of 2p systems of block order k using Algorithm
SM. They require 2p(31kn — 25n — 12k + 8) ar. ops. The related right-hand sides are
updated with 8n(p — 1) ar. ops. These two steps require approximately 62pkn ~ 62mn
ar. ops. The total cost of GM algorithm depends on how Step 2 is handled.

The variant of GM proposed in [12] and referred here as GMF uses [, = logp steps
of the algorithm FASV (developed in [13]). In this case 24nm(logp — 1) — 9nm ar. ops.
are needed for Step 2. The total cost of GMF is summarized in

Theorem 2.2 The generalized marching algorithm in combination with the fast algo-
rithm for separation of variables and the incomplete solution technique takes Ngyp ~
62mn + 24nm(logp — 1) — 9nm ar. ops. to solve systems of the form (2).

Similar to the approach in SM, another possible way to solve the system with the
Schur complement is to use Algorithm SRHS with d = r = p — 1. The resulting
modification of GM is denoted for brevity with GMS. The estimates in Lemma 2.1 and
Theorem 2.1 lead to the next Theorem for the computational complexity of algorithm
GMS.

Theorem 2.3 The modification GMS of the generalized marching algorithm based on
the incomplete solution technique requires Ngayrs =~ 62mn + 4pnm + nm ar. ops.

For large values of logp (logp > 5) GMF is faster than GMS. Then why do we
introduce GMS? Let us first recall that Algorithm FASV is in some sense recursive
(for more details see, e. g. [9]). It consists of forward and backward recurrence, each

m
with [= logm steps. At each of the steps s = 1,...,l, ¢ = 2/~* systems of order —

q
are solved incompletely using SRHS with » = 3, d = 1 at the forward recurrence and

with r = 1, d = 2 at the backward recurrence. Our goal in this study is to obtain
a scalable parallel implementation of the generalized marching algorithm. When we
start from GMF we have to use parallel implementation of FASV (PFASV). But on the
other hand, the variable size of the subsystems solved incompletely in FASV lead to
some difficulties in its parallelization. PFASV requires parallelization of SRHS (see, e.g.
[4, 11]) to be applied at some of its steps depending on the problem size and the number

6

of used processors. If the starting sequential solver is GMS we need parallel SRHS only
once. What we gain and what we lose with this modification will be discussed in the
next Section.

3 Parallel Implementation

Parallel implementations of the GMS (PGMS) and GMF (PGMF) algorithms are pro-
posed and experimentally compared in [5]. Here they are described in some more details
and their properties are theoretically studied. First part of this section deals with the
questions "How to partition the data and computations?”, ”What kind of communica-
tions are induced by such division?”. Both PGMS and PGMF, as well as parallel SRHS
(PSRHS) as an important part of PGMS, are given in a compact form. The parallel
times of PGMF and PGMS are evaluated in the second part, where the estimates for
PFASV used in PGMF are taken from [4]. Their behaviour on the ring, 2D mesh and
hypercube architectures is illustrated using the expressions for local and global commu-
nications given in the book of Kumar et. al. [8]. The advantages and disadvantages of
PGMS versus PGMF are summarized in the last part. They are based on the presented
theoretical analysis and our experience with the parallel FASV (see [4]) and the obtained
in [5] numerical results for PFASV, PGMF and PGMS.

3.1 Data distribution, computations and communications

Let us first discuss how GMS could be partitioned into small tasks to be executed
concurrently. At each of its stages there is a group of independent systems which may
be solved in parallel. At Step 1 and Step 3 these are the p block equations with matrices
A®) of order kn (k blocks of order n). At Step 2 the m tridiagonal systems (A1, +T)n; =
Bi,i = 1,...,m of order n can be considered as separate tasks. In both cases the
whole matrix 7" is needed. In addition, the related parts of the matrix B should be
available for each of the tasks in the first group. In the second one these are some
of the eigenvalues and parts of the eigenvectors of B. Taking these observations into
account we divide data and computations in the following way. Let us have N, = 2"»
processors enumerated with Py, P, ..., Py,—;. We assume that N, < p and Algorithm
SM need not to be implemented in parallel. The initial data, i. e. the matrix A and
the right-hand side f (and the remainder of the vectors) are divided into N, strips with
approximately equal size — first N, — 1 are of length LSTRIP = 2!=™ and the last
one is LSTRIP —1 (m+1 = 2' = p(k + 1)). Two strips with common boundary are
associated with processors with successive indices. Each of F;,7 = 0,..., N, —1 contains
the whole matrices 7" and B and the i-th block of f. In such a way each processor can

solve % systems with A%). It can also solve (at the preprocessing stage) the related
p
eigenproblems and to store the data required for Step 2. The same partitioning is

enough for PGMF'. Note that the whole B is needed only to compute the eigenpairs at
the preprocessing stage. After that it is enough each P; to contain the i-th strip of B.

The links between equations in the original system are now in the blocks ALQ and
Ay of the reordered matrix A = {4; ;12 To compute the related right-hand sides

one have to perform matrix X vector multiplications with ALQ and fI?,l- How do these

i,j=1"

o0

fiyo)

U

U

wUOnU0 <0 S0

Figure 1: Structure of A and A and distribution among processors when p = 8,k =
3,m=pk+1),N,=4.

blocks look like? The structure of the matrices A and A and the distribution of their
entries among the processors are presented in Figure 1 for the case p = 8,k = 3,m =
p(k+1),N, = 4. A nonzero block of order n is denoted by *. The right-hand side f and
all the aux1l1ary vectors are distributed in a similar way. We know that A1 1 and A22
are block-diagonal — A1 1 has p nonzero blocks of order kn, while the blocks of A, 2 are
p — 1 of order n. Therefore ALQ and AQ,I have respectively p x (p — 1) blocks of order
kn x n and (p — 1) x p blocks of order n x kn. Each column of A, 5 has not more than
2 nonzero entries of order n, while in A, the same holds for the rows. Then P; (i ;é 0)
sends to P;,_; the first component of order n of y) to ensure computation of A2 1y 1)
while to determine A, 2x@ P, (i # N, — 1) sends to Pi,; the last block of x?). So at
each of the Steps 1 and 3 for both PGMF and PGMS one vector of length n should be
transferred between neighbours.
The difference between GMS and GMF is in the way Step 2 is handled. For PGMF
is needed parallel implementation of FASV, while parallel SRHS is used in PGMS.
Now we are ready to present the compact form of PGM:
Algorithm PGM
Step 1. solve % systems with A%) using Algorithm SM,

p
communications one_to_one: 1 vector of size n;

compute £2); ~
Step 2. solve incompletely Ax = f using
Algorithm PSRHS (for PGMS) or Algorithm PFASV (for PGMF);

Step 3. communications one_to_one: 1 vector of size n;

compute f(l);
solve % systems with A%) using Algorithm SM;

End {PGM}.
Algorithm PFASV is proposed and studied in [4]. To design PSRHS we have to keep
in mind the specific requirements for its input and output data. At the beginning of Step
2 of PGMS each processor will have a block of the right-hand side and the whole matrices

T and B. At the end P; should contain a group of Nﬂ (and Nﬂ — 1 for Py,—;) of the

sought components Xsx+1), s = 1,...,p — 1. Note thatpthe versign of PSRHS presented
below is slightly different from that proposed in [4] and used in parallel FASV, because
the input and output data for PFASV and PGMS are not one and the same.
Algorithm PSRHS
Step 0. compute all the eigenvalues {\;}, and the needed d <1 + d entries
{qi;}, 7€ty -y Jat U{dy, - -+, 4.} of all the eigenvectors {q;}™, of
the tridiagonal matrix B ; (preprocessing stage);

Step 1. determine the Fourier coefficients j3; ; by
d(Pr)
computations: ﬁi(,}j)r) = Z G.ilij,t=1,...,n,7=1,...,m;
s=1
communications: all_to_all reduce_scatter for j3;;

Step 2. solve ()\j[n+T)77j:5j;j:17"'7%;
P
Step 3. recover X;, j = ji, jy, .-, j. by

m
. m
computations: Xgpr) => g, j=1Jt. .. jp,m= N
i=1 P
communications: all_to_all reduce_scatter for x;

End {PSRHS}.

At the preprocessing stage each processor solves the eigenproblem and stores the
data in the required way. More specifically, for Step 2 each processor needs a block of

length % of the eigenvalues A = {\;}/,. For Step 1, i.e. to compute j3;;, each of
p

d
P, should have d(Pr) = N components of all the eigenvectors. For Step 3 P; needs r
P

entries of N eigenvectors. Computations and communications at Step 1 are the same as

p
if we have to perform matriz X matriz multiplication. The data for this multiplication
is distributed as follows:

PP | P B B PP | P B
P B
P, -
Ps
Fn><d dem Betanxm

Here left-hand matrix is divided in strips by columns, the right-hand one — by rows, and
the product should be distributed among processors again in strips by columns. Each

9

processor computes the parts BZ-(,I;T) of B;; and after that P, i =0, ..., N, — 1 collects
m

N, ;
reduce_scatter and they are performed as follows. First all_to_one reduce is executed
and a single processor contains all the vectors 3;. Next their parts are transferred to
processors which will use them by one_to_all scatter. At the next Step 2 each processor

of B; = ZBJ(-PT). The required global communications are denoted by all_to_all
P

m
solves N independent tridiagonal systems without any communications. The third step
p

is performed in a similar way as Step 1 with the only difference that the second matrix
and the result are now column vectors:

Bo| P | P | P Py Py
n| | A

P |~ | PR

Py Py

Q rXm Vm X T

This time parts of x; are determined and after that each processor obtains its components
X; = ngpr) with the help of all_to_all reduce_scatter.
Pr

3.2 Parallel times estimates

How to evaluate the execution time Ty, for the considered solvers? It will depend
not only on the particular algorithm, but also on the used parallel computer and its
characteristics. We assume that we have a distributed memory machine with N, = 2"»
processors. Let us recall that p = 2% k+1 = 2% m+1 = 2L, 1 = [, + [,. For
the machine dependent parameters we use the following notations: t, is the average
unit time to perform 1 ar. op. on one processor, t, is the start-up time to initiate a
communication, and t, is the time necessary to send a word between two processors.
We suppose also that computations and communications are not overlapped and hence
the total time per processor is Ty, = Ty +Teom- We assume that there is no vectorization
and the execution of M ar. ops. on a single processor takes time 7, = M x t,. The
communication time is presented as 1., = ¢; *ts+ co xt,,, where the parameters ¢; and
co depend on the type and the amount of communications. The following assumptions
are taken into account to derive ¢; and ¢y for our solvers. To send M words between two
processors, i.e. to perform one_to_one communication we need time T,, = t, + [.M % t,,,
where [is the distance between them and when they are neighbours it is Tj,. = t; +
M xt,,. We suppose that processors with successive indices are physically neighbours,
i.e. the communications between them are local. Estimates for the time of the global
communications one_to_all broadcast, all_to_one reduce and one_to_all scatter are also
needed. The time to broadcast a package of M words to a group of N, processors is
denoted with b(N,, M). The scheme for execution of one_to_all broadcast and all_to_one
reduce is one and the same but the operations are performed in a reverse order and
hence they take equal amount of time. When a processor send N, packages of M words

10

(one per receiver) using one_to_all scatter, the spent time is s(N,, M). Upper bounds for
Tpo = 00(Ny, M), b(N,, M) and s(N,, M) on ring, 2D mesh and hypercube architectures
are given in Table 1 (details about how they are obtained could be found in [8]).

Table 1: Estimates for basic local and global communications
Ring 2D mesh hypercube

00(Np, M)ty + 1y M. [N, /2|ty + 2t M.[\/N,/2] 1, +t,.Mlog N,
B(Np, M) (ts +tu M)[Np/2] 2(ts + 1. M)[\/Np/2] (ts + t.M) log N,

s(Np, M) (t, +to. M)(N, — 1) 2t,(,/N, — 1)+ t, log N,+
tw.M(N, — 1) tw.M.(N, — 1)

We are ready to derive theoretical estimates for the parallel times of PGMS and
PGMF. First we focus our attention on PSRHS as an important part of PGMS.

Theorem 3.1 The parallel implementation PSRHS of Algorithm SRHS for solution
of the problem (2) with a sparse right-hand side with d nonzero entries, when only r
block components of the solution are needed using N, processors is executed for time
TP9(N,, m, r, d), where

TP9(N,, m, r,d) = TN, m,r, d)+ T (N, m,r, d),
pmn

TP9(N,, m, r, d) = < N
p

(r+d)+%(5n—4)> * g

L0 (N, m, .y d) = BN, mn) + 5(Nyy 55m) + BNy, ron) + 5(Ny,).
p p

d
Proof. Computations: At Step 1 are performed Qan ar. ops. to determine the
p

related Fourier coefficients. At Step 2 each processor solves — linear algebraic systems
p

with %(E’m — 4) ar. ops. The solution is found at Step 3 by 27“%71 ar. ops. Total
p p

computation time for PSRHS is TP*9(N,, m, r, d) = (2M

N, (r+d)+ﬁ(5n—4))*ta:

Np
NS’RHS

Ny
denoted as all_to_all reduce_scatter is performed. At Step 1 it is used to send parts of

the Fourier coefficients — all_to_one reduce for m vectors, each of length n is followed

x to. Communications: At each of the Steps 1 and 3 a global communication

m
by one_to_all scatter for packages containing N vectors of length n which takes time
P

b(N,, m.n) + s(Np, ﬁn) Parts of the solution are transferred at Step 3 in a similar way
p
for time b(N,, r.n) + s(N,, Ln) n
Np

11

Only [, steps of algorithm PFASV are needed in PGMF. Taking into account this
fact we modify the estimates for PFASV obtained in [4]. We get TP/*Y(N,, m) =

mc

1
T2 (Ny,) + T2t (N, m), where 71 = 2 — 1 and
-2
TV (N m) = (2400 (1, — 1)+ 9 s,
’ Np p
Tcpoj;g,sivnc(Npa m) < (lp - np)(ts +nxty) + Tcpos#;(2np, m, 1, 1)+ Tp 00(2"", n)
Y (T @30 T, W, 1, 2) 4 (24) 00(2,).
j=1

Note that the parallel implementation of SRHS used in PFASV is slightly different
from that proposed here. Its execution time is TP/ (N,, m, r, d) = TP*/(N,, m, r, d) +
TP/ (N,, m, r, d), where

com

TP N (N, m, r, d) = TP(N,, m,r,d) = (2@@)+ 2 5m - 4)> sty

Np Np
TP (Ny, m, r, d) = b(N,, d.n) +b(N,, r.n).
For ring, 2D mesh and hypercube (denoted with upper indices r, m, h) the commu-
nication time for both versions of PSRHS is bounded respectively by:

N, N,
TELT (N, my 7y d) = 2 [—pw *ts + {71)} 1 * by,

com 2
Tg)srgl,r(]\[p, m,r,d) = 2(Np -1+ {%w) xty + (02 + {%w 03) x 1y,

TESL™(Ny, my v, d) = 4 {@ \/ﬁp

xts + 2

@b*tﬁ(cm%

TP (N, my v, d) = 2log N, * t, 4 ¢ log N, t,,

com

com — | C1 * tw,

58 ™ (Ny, my r, d) = 4(\/E_ 14 5

\/ﬁﬂ ¢3) * tu,

Ti" (N, my 1, d) = 4log Ny by + (c2 + 3 log N,) #

com

N, —1
where ¢; = (d+7)n, c; = pT(m +7)n, c3 = (m+71)n.

P
These observations are related to Step 2 of PGMF and PGMS. What happens at

Step 1 and Step 37 At each of them % systems of order k are solved using Algorithm
p

SM, i. e. %?Jkn ar. ops. are performed. To compute the related right-hand sides
P

4np

ar. ops. are needed. In total, Steps 1 and 3 of either PGMF or PGMS require
P

12

k m
o~ 62%71 = 62ﬁn ar. ops. To compute the right-hand sides at each of these steps

p p
also local communications have to be preformed — one vector of length n is transferred
between processors with successive indices, which by assumption are neighbours. Thus

the communication time here is T/ " 3 = 2(t; +n * t,,) and the total time for Steps 1
k
and 3 is 1793 = 62%n *tg + 2(ts + 1 x ty).
P
Hence for the execution times of PGMF and PGMS the following theorem holds.

Theorem 3.2 The parallel implementation PGMF of the generalized marching algo-
rithm in combination with the fast algorithm for separation of variables is executed for
time TPI™ (N, m) = TP (N,, m) + TPI™ (N,, m). The modification PGMS, using

com
only the incomplete solution technique for problems with sparse right-hand sides requires

time TPI™* (N, m) = TP9™*(N,, m) + TEI"S(N,, m). The additives in these expressions

1
read as follows (m = 7;”+_] —1):
TP (N, m) = (62ﬁn + 24nﬁ(l - 1)+ o — Qp) *
‘ " Np Np ! p a,
pgms _ k. m
TP (N, m) = (62an+ an(4p—|— 1)) *ta,

Tg)%lf(Npa m) < (I, —n,+2)(ts +nxty,)+ TPsI (2" m, 1, 1) + n, 00(2", n)
+ nf (TPs0(27, m, 3, 1) + T2 (27, i, 1, 2) + (2 +) 00(27, n)),
=1
5 (N, m) - < 2](ts +nxty) + T (N, mop—1,p—1).
Computations are distributed into equal parts among the processors. For ring, 2D

mesh and hypercube, the communication times for PGMF are estimated with

TP (N, m) 1+ 3)y

g (I — 4+3.2m™ + xt

<
+ n(ly —ny = 6+2"71 (20, +9)) * ty
<

(1p— 4+ LA(ny)) + 2 1) o,

n(ly, +13n, — 8+ | fa(n,)]) * tw,

(0 + np(5n2p +3)

Than T (N, m)
np(n2 4 15n, — 10)
3

where fi(n,) = —4(2 +V2) + 227 (3 + 2v2) and fo(n,) = —14 — 6v2 + V27 (7T +
6v/2 + (2 4+ v/2)n,). For PGMS these times are

IN +

T2 (N, m)

com

)xts +n(l, +2+

) * to,

0220+ [5]) 1 e [

13

T2 (N, m) < (4/N, — 2+ 4 @w) *ta+ (2n+glc+2

TP (Ny, m) < (4log N + 2) * t, + (20 + g(c +1og N,)) * ty ,

com

mw)) * tu,

2

N, -1
N,

where g = (m+p—1)n and ¢ =

3.3 Parallel GMF versus parallel GMS

What are the advantages and the disadvantages of the studied solvers? The time for
execution of each solver, and respectively the speed-up and the efficiency, depends on
both calculations and type and amount of the required communications. For shared
memory parallel computers, the time for computations is the leading term in T4% (N,) =
To(Np)+Teom(N,). The computations are divided into equal parts among processors and
T.(N,) = 2T,(2N,) for both PGMF and PGMS. So the algorithm with smaller operation
count (PGMF in our case) is better when the influence of Ti,n (NN,) is negligible.

For distributed memory systems, the performance depends to a great extent on
Teom(Np). We have obtained in 3.2 estimates of the form Tio,(N,) < Ty %t + T, *
t, for three parallel architectures — ring, 2D mesh and hypercube. The coefficients
T, and T, represent respectively the number of stages at which communications are
needed and the total amount of the transferred words. They depend in addition on the
type of the architecture, since for the considered solvers we have both global and local
communications.

The values of T as a function of n, (N, = 2™) for m = n = 1023 for ring and
hypercube are presented in Figure 2. Both graphics for ring almost coincide with a

Ring, Ts, n=1023

= Method PGMS | j j ! "=+ Method PGMS
= Method PGMF == Method PGMF

Hypercube, Ts, n=1023

350

3000

2500

™
S
S
S

1500

Stages to communicate
Stages to communicate

1000

500

5 6
log (NP)

5 6
log (NP)

T e

Figure 2: Coefficients in front of ¢,, for k =7, n = 1023.

slight advantage of PGMS. The behaviour of T on 2D mesh is similar since the leading
terms (as for ring) for both algorithms are equal. For hypercube, as shown in Figure 2,

14

TP9™s grows up very slowly compared to T7P9™/. The reason is that the leading term for
PGMS is n,, while for PGMF it is n_.

Ring, Tw, n=1023 Hypercube, Tw, n=1023

10°

= Method PGMS -
= Method PGMF - = Method PGMF

10°F

(-

-
-

»-
2,

,4
<,
Words to be transferred
=
5]

Words to be transferred

10°F

10‘ I I I I I I I I 10‘
1 2 3 4 5 6 8 9 10 1 2 3 4
log (NP)

5 6
log (NP)

T, Ty

Figure 3: Coefficients in front of ¢, for k =7, n = 1023.

For all the cases, T, depends on both the number of processors and the problem size.
The behaviour of T, for m = n = 1023 is illustrated in Figure 3 — the line for 779 is
always above the other one.

The main advantage of the PGMS is that the number of stages at which commu-
nications are needed is a constant (4 in all) and they do not depend on the program
execution, although the total amount of the transferred words is larger than that for
PGMF. At each step of the forward and the backward recurrence of algorithm PFASV
(i. e. Step 2 of PGMF) we have local communications. The drawback here is that global
communications for groups of the processors are also performed at some of the steps
depending on the size of the problem and the number of processors. The size of these
groups and the amount of data depend again on mn and N,. They are dynamically
determined, which takes additional time and decreases the efficiency.

The total execution time is affected as well by parameters ¢, and ¢,, of the particular
parallel computer (ts > t, > t,). In Figures 4 and 5 is presented T, for hypercube
as a function of 7 = tt—s € [1,10°%) for n = 511,1023 and N, = 8,64. For small values

w
of 7, TP9™/ grows up slowly and it is smaller than TP9™S. When 7 ~ 102, TPI™/ starts

com com
to increase faster and at some moment 7, it intersects the graphic of T?9™*. How big
is 79 depends on the number of processors and on the size of the problem. For the
presented values of n,m and N, we have 10> < 75 < 10*. Taking into account all
these observations, we can conclude that on computers with small values of ¢,,,f, and
7 algorithm PGMF will have better performance. But on parallel systems with slow
memory and communications (large t,,t; and 7) and especially when the processors are
fast, our ”"expensive” direct solver GMS lead to a better parallel algorithm than the

”cheaper” GMF with respect to both the measured time and the achieved speed-up.

15

Time for communications

Time for communications

Hypercube, Np=8, n=511 Hypercube, Np=64, n=511
)))))) Method PGMS |}
Method PGMF |1

‘=1 Method PGMS |
= Method PGMF |{

H
=
Time for communications

10 0 Il IZ I3 IA I5 6
10 10 10 10 10 10 10
ts/tw
a) N, =8;
. . . . ls
Figure 4: Communication times as a function of — for k =7, n = 511.
w
. Hypercube, Np=8, n=1023 \ Hypercube, Np=64, n=1023
10 T T T T 10 T T T T

' Method PGMS =1 Method PGMS
Method PGMF Method PGMF

=
2,

-
<,
Time for communications

10

ls
Figure 5: Communication times as a function of — for k =7, n = 1023.

16

4 Concluding Remarks

We derived in this paper theoretical estimates for the execution times of two paral-
lel implementations (PGMF and PGMS) of the generalized marching algorithm. The
presented analysis shows that each of PGMF and PGMS has its advantages and dis-
advantages to be kept in mind when the study is aimed in a qualitative parallel imple-
mentation on a given machine. The PGMF has smaller operation count and data to
be transferred, but the number of stages for communications depend on the number of
processors and the size of the problem. The number of stages for communications of
PGMS is constant, but PGMS is expensive with respect to the computation count and
the total amount of transferred words. On machines with different characteristics they
have different performance. This is confirmed by the presented in [5] numerical results
on two of the coarse-grained parallel architectures available in Texas A&M University
— Silicon Graphics Origin 2000 and a Beowulf cluster of Digital (Compaq) Personal
Workstations.

Future steps to complete the present study are: a) MPI/OpenMP modification of the
code; b) more experiments on shared memory, distributed memory and heterogeneous
systems; ¢) comparison of the theoretical estimates and the new numerical results. Very
important are generalizations of the considered solvers to 3D case and development of
efficient sequential and parallel preconditioners.

References

[1] Banegas, A., Fast Poisson solvers for problems with sparsity, Math. Comp. 32
(1978) 441-446.

2] Bank, R., Marching algorithms for elliptic boundary value problems. II: The variable
coefficient case, SIAM J. Numer. Anal. 14 (1977) 950-970.

(3] Bank, R., Rose, D., Marching algorithms for elliptic boundary value problems. I:
The constant coefficient case, SIAM J. Numer. Anal. 14 (1977) 792-829.

[4] Bencheva, G., MPI parallel implementation of a fast separable solver, Large-Scale
Scientific Computing, (S. Margenov, J. Wasniewski, P. Yalamov, eds.), Springer
LNCS, 2179, (2001), 454-461.

[5] Bencheva, G., Parallel performance comparison of three direct separable ellip-
tic solvers, Large-Scale Scientific Computing, (S. Margenov, J. Wasniewski, P.
Yalamov, eds.), Springer LNCS, to appear, (Extended version: Technical Report
ISC-03-02-MATH (http://www.isc.tamu.edu/iscpubs/0302.ps).)

6] Kuznetsov, Y., Block relaxation methods in subspaces, their optimization and ap-
plication, Sov. J. Numer. Anal. Math. Model. 4 (1989) 433-452.

17

7]

[10]

[11]

[12]

[13]

Kuznetsov, Y., Matsokin, A.M., On partial solution of systems of linear algebraic
equations, Vychislitel'nye Metody Lineinoi Algebry (Ed. G.I. Marchuk). Vychisl.
Tsentr Sib. Otdel. Akad. Nauk SSSR, Novosibirsk, (1978), pp. 62-89. In Russian,
English translation in: Sov. J. Numer. Anal. Math. Modelling 4 (1989) 453-468.

Kumar, V., Grama, A., Gupta, A., Karypis, G., Introduction to parallel computing:
design and analysis of algorithms, Benjamin-Cummings Addison-Wesley Publishing
Company,Inc., (1994).

Sv. Petrova, Parallel implementation of fast elliptic solver, Parallel Computing 23
(1997) 1113-1128.

Proskurowski, W., Numerical solution of Helmholtz equation by implicit capacitance
matriz method, ACM Trans. Math. Software 5 (1979) 36-49.

Rossi, T., Toivanen, J., A parallel fast direct solver for block tridiagonal systems
with separable matrices of arbitrary dimension, SIAM J. Sci. Comput., 20 (1999)
No. 5, 1778-1796.

Vassilevski, P.S., An optimal stabilization of marching algorithm, Compt. rend. de
I’Acad. bulg. Sci. 41 (1988) No 7, 29-32.

Vassilevski, P.S., Fast algorithm for solving a linear algebraic problem with separable
variables, Compt. rend. de I’Acad. bulg. Sci. 37 (1984) No 3, 305-308.

18

