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SUMMARY

We consider a finite volume discretization of second order nonlinear elliptic boundary value problems
on polygonal domains. For sufficiently small data, we show existence and uniqueness of the finite
volume solution using a fixed point iteration method. We derive error estimates in H1–, L2– and L∞–
norm. In addition a Newton’s method is analyzed for the approximation of the finite volume solution
and numerical experiments are presented. Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We analyze a finite volume element method for the discretization of second order nonlinear
elliptic partial differential equations on a polygonal domain Ω ⊂ R

2. Namely, for a given
function f we seek u such that

L(u)u ≡ −∇ · (A(u)∇u) = f in Ω, and u = 0, on ∂Ω, (1.1)

with A : R → R sufficiently smooth such that there exist constants βi, i = 1, 2, 3, satisfying

0 < β1 ≤ A(x) ≤ β2, |A′(x)| ≤ β3, for x ∈ R. (1.2)

Finite volume approximations rely on the local conservation property expressed by the
differential equation. Namely, integrating (1.1) over any region V ⊂ Ω and using Green’s
formula, we obtain

−
∫

∂V

(A(u)∇u) · n ds =
∫

V

f dx, (1.3)
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where n denotes the unit exterior normal to ∂V .
There are various approaches in deriving finite volume approximations of nonlinear elliptic

equations. One, often called finite volume element method, uses a finite element partition
of Ω, where the solution space consists of continuous piecewise linear functions, a collection
of vertex centered control volumes and a test space of piecewise constant functions over the
control volumes, cf., e.g., [5, 20, 19]. A second approach, usually called finite volume difference
method, uses cell-centered grids and approximates the derivatives in the balance equation by
finite differences, cf., e.g., [16]. A third, uses mixed reformulation of the problem, [23]. The
first approach is quite close to the finite element method. The second approach is closer to
the classical finite difference method and extends it to more general than rectangular meshes.
It is used mostly on PEBI or Voronoi type of meshes. The third approach is close to mixed
and hybrid finite element methods and can deal for example with irregular quadrilateral and
hexahedral cells. Finite volume discretizations for more general nonlinear convection–diffusion–
reaction problems were studied by many authors, cf., e.g., [12, 17].

We shall use the standard notation for the Sobolev spaces W s
p and Hs = W s

2 , cf., [1]. Namely,
Lp(V ), 1 ≤ p < ∞, denotes the p–integrable real–valued functions over V ⊂ R

2, (·, ·)V the
inner product in L2(V ), and ‖ · ‖W s

p (V ) the norm in the Sobolev space W s
p (V ), s ≥ 0. If V = Ω

we suppress the index V , and if p = 2 we write Hs = W s
2 and ‖ · ‖ = ‖ · ‖L2

. Further we shall
denote with p′ the adjoint of p, i.e., 1

p + 1
p′ = 1, p > 1.

It is well known that for domains with smooth boundary, for f ∈ Cr, with r ∈ (0, 1), there
exists a unique solution u ∈ C2+r, cf., e.g., [14]. Also for ‖f‖ sufficiently small, there exists a
unique solution u ∈ H2 ∩ H1

0 . However, here, since we assume the domain Ω to be polygonal,
we do not expect the solution u to have such regularity. We shall assume that for f ∈ L2,
problem (1.1) has a solution u ∈ W 2

q ∩ H1
0 , with 4/3 < q ≤ 2. Note that in order (1.3) to be

well defined, u ∈ H1+s with s > 1/2. Using a standard Sobolev embedding we see that for
u ∈ W 2

q , with q > 4/3 this is true.
We shall study approximations of (1.1) by the finite volume element method, which for

brevity we shall refer to as the finite volume method below. The approximate solution will be
sought in the piecewise linear finite element space

Xh ≡ Xh(Ω) = {χ ∈ C(Ω) : χ|K linear, ∀K ∈ Th; χ|∂Ω = 0},

where {Th}0<h<1 is a family of quasi-uniform triangulations of Ω, h denotes the maximum
diameter of the triangles of Th.

The discrete finite volume problem will satisfy a relation similar to (1.3) for V in a finite
collection of subregions of Ω called control volumes, the number of which will be equal to
the dimension of the finite element space Xh. These control volumes are constructed in the
following way. Let zK be the barycenter of K ∈ Th. We connect zK with line segments to the
midpoints of the edges of K, thus partitioning K into three quadrilaterals Kz, z ∈ Zh(K),
where Zh(K) are the vertexes of K. Then with each vertex z ∈ Zh = ∪K∈Th

Zh(K) we associate
a control volume Vz , which consists of the union of the subregions Kz, sharing the vertex z
(see Figure 1). We denote the set of interior vertexes of Zh by Z0

h.
The finite volume method is then to find uh ∈ Xh such that

−
∫

∂Vz

(A(uh)∇uh) · n ds =
∫

Vz

f dx, ∀z ∈ Z0
h. (1.4)

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
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Figure 1. Left: A union of triangles that have a common vertex z; the dotted line shows the boundary
of the corresponding control volume Vz. Right: A triangle K partitioned into the three subregions Kz.

The Galerkin finite element method for (1.1) is: Find uh ∈ Xh such that

a(uh; uh, χ) = (f, χ), ∀χ ∈ Xh, (1.5)

with a(·; ·, ·) the form defined by

a(v; w, φ) =
∫

Ω

A(v)∇w · ∇φdx.

It is known that the solution uh of (1.5) satisfies

‖uh − u‖ + h‖∇(uh − u)‖ ≤ C(u, f)h2

‖uh − u‖L∞ ≤ Cp inf
χ∈Xh

‖∇(u − χ)‖W 1
p
, with p > 2. (1.6)

Numerical methods for this type and more general problems has been considered by many
authors, cf., e.g, [4, 13, 18, 21].

Here for sufficiently small data we shall derive similar results for the finite volume method.
Li, in [20], considers a variation of the finite volume method under investigation here. The
method differs in the construction of the control volumes. Instead of the barycenter zK , the
circumcenter is selected. For this finite volume method similar results with the finite element
method, for the H1-norm error estimate, are valid.

In Section 3, we establish existence of the finite volume solution uh of (2.3), using a fixed
point iteration method. In particular, in Theorem 3.1 we show that the iterations remain
inside a fixed ball with a radius that depends only on f . Then in Theorem 3.2 we show that
for a sufficiently small data, f , the fixed point iteration operator is Lipschitz continuous with
Lipschitz constant less that 1.

In Section 4 we derive optimal order H1–, L2– and almost optimal L∞–norm error estimates.
Note that for the L2 estimation we assume that A′ is also Lipschitz continuous, A′′ ∈ L1(R)
and f ∈ H1.

Also in Section 5 we analyze a Newton’s method for the approximation of the finite volume
solution uh. We consider an inexact Newton iteration, a variant of the Newton iteration for
nonlinear systems of equations, where the Jacobian of the system is solved approximately,
cf., e.g., [2, 3, 11]. A similar approach for the finite element method is analyzed by Douglas
and Dupont in [13]. As it is expected, one has to start the Newton iteration with an initial
approximation u0

h sufficiently close to uh. Also, following [13], we show that the Newton
iterations converge to uh with order 2. Finally in Section 6 numerical results are presented.

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
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2. PRELIMINARIES–THE FINITE VOLUME METHOD

There has been a tendency of analyzing finite volume element method using the existing
results from its finite element counterpart, cf., e.g., [7, 8, 9, 10]. The investigations recorded in
all these references were concentrated on elliptic and/or parabolic problems with coefficients
independent of the solution, i.e., the function A is only spatially varied. The finite volume
element method is viewed as a perturbation of standard Galerkin finite element method with
the help of an interpolation operator Ih : C(Ω) → Yh, defined by

Ihv =
∑

z∈Z0
h

v(z)Ψz, (2.1)

where
Yh = {η ∈ L2(Ω) : η|Vz = constant, ∀z ∈ Z0

h; η|Vz = 0, ∀z ∈ ∂Ω},
and Ψz is characteristic function of Vz . We note that Ih : Xh → Yh is a bijection and bounded
with respect to the L2−norm, i.e., there exist c1, c2 > 0, such that

c1‖χ‖ ≤ ‖Ihχ‖ ≤ c2‖χ‖, ∀χ ∈ Xh. (2.2)

The finite volume problem (1.4) can be rewritten in a variational form. For an arbitrary
η ∈ Yh, we multiply the integral relation in (1.4) by η(z) and sum over all z ∈ Z0

h to obtain
the Petrov–Galerkin formulation, to find uh ∈ Xh such that

ah(uh; uh, η) = (f, η), ∀η ∈ Yh, (2.3)

where the form ah(·; ·, ·) : Xh × Xh × Yh → R is defined by

ah(w; v, η) = −
∑

z∈Z0
h

η(z)
∫

∂Vz

(A(w)∇v) · n ds, v, w ∈ Xh, η ∈ Yh. (2.4)

Obviously, ah(w; v, η) may be defined by (2.4) also for v, w ∈ W 1
p (Ω) ∩ H1

0 (Ω), p > 2, and
using Green’s formula we easily see that

ah(w; v, η) = (L(w)v, η), for v, w ∈ W 1
p (Ω) ∩ H1

0 (Ω), η ∈ Yh. (2.5)

The bilinear form ah(w; ·, ·), with w ∈ L∞, of (2.4) may equivalently be written as

ah(w; v, η) =
∑
K

{
(L(w)v, η)K + (A(w)∇v · n, η)∂K

}
, ∀v ∈ Xh, η ∈ Yh. (2.6)

Indeed, by integration by parts, we obtain, for z ∈ Z0
h and K ∈ Th,∫

Kz

L(w)v dx = −
∫

∂Kz∩∂K

(A(w)∇v) · n ds −
∫

∂Kz∩∂Vz

(A(w)∇v) · n ds, (2.7)

and (2.6) hence follows by multiplication by η(z) and by summation first over the triangles
that have z as a vertex and then over the vertexes z ∈ Z0

h. Also, we can easily see that Ih has
the following properties, cf., e.g., [7],∫

K

Ihχ dx =
∫

K

χ dx, ∀χ ∈ Xh, for any K ∈ Th, (2.8)

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
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∫
e

Ihχ ds =
∫

e

χ ds, ∀χ ∈ Xh, for any side e of K ∈ Th, (2.9)

‖Ihχ‖L∞(e) ≤ ‖χ‖L∞(e), ∀χ ∈ Xh, for any side e of K ∈ Th, (2.10)

‖χ − Ihχ‖Lp(K) ≤ h‖∇χ‖Lp(K), ∀χ ∈ Xh, 1 ≤ p < ∞. (2.11)

In addition in [7, Lemma 6.1, Remark 6.1, Lemma 5.1] the following lemma was derived.

Lemma 2.1. Let e be a side of a triangle K ∈ Th. Then for v ∈ W 1
p (K) there exists a constant

C1 > 0 independent of h such that

|
∫

e

v(χ − Ihχ) ds| ≤ C1h‖∇v‖Lp(K)‖∇χ‖Lp′(K), ∀χ ∈ Xh, with
1
p

+
1
p′

= 1. (2.12)

Also, for f ∈ W i
p, i = 0, 1 and χ ∈ Xh,

|εh(f, χ)| ≤ Chi+j‖f‖W i
p
‖χ‖W j

p′
, f ∈ W i

p, i, j = 0, 1, with
1
p

+
1
p′

= 1, (2.13)

where εh : L2 × Xh → R is defined by

εh(f, χ) = (f, χ − Ihχ). (2.14)

Lemma 2.2. Let v ∈ W 2
q , 4/3 < q ≤ 2. The following identities hold.

∑
K

∫
∂K

A(w̄)∇v · n χ ds = 0,
∑
K

∫
∂K

A(w̄)∇v · n Ihχ ds = 0, ∀χ ∈ Xh. (2.15)

where w̄ could be an element of Xh or the point value at the midpoint of the edge e of triangle
K, of an element of Xh.

Proof. Note, that for v ∈ W 2
q , the trace ∇v · n on ∂K exists for q > 4/3. The left identity is

obvious by rewriting the sum as integrals of jump terms over the interior edges of Th. These
jumps obviously vanish due to the continuity of A(w̄)∇v · n (in the trace sense). A similar
argument gives the second identity. �

Our analysis will be based on the corresponding one for linear problems, cf., e.g, [7, 8]. There
the error estimations are derived by bounding the error between the bilinear forms of the finite
element, a, and the finite volume methods, ah. This is shown to be O(h) uniformly in Xh.
Then for sufficiently small h the finite volume bilinear form ah is coercive in Xh, which leads
to the existence and uniqueness of the finite volume approximation.

In the nonlinear case a similar estimation for the error functional εa,

εa(w; vh, χ) = a(w; vh, χ) − ah(w; vh, Ihχ) ∀vh, χ ∈ Xh, w ∈ L∞, (2.16)

shows that this error is not O(h) uniformly in Xh, cf. Lemma 2.3. This is due to the fact that
the bound of εa(wh; vh, χ), will depend on ‖wh‖L∞ . Inverse inequalities of the form, cf., e.g.,
[6],

‖∇χ‖Ls
≤ Ch2/s−2/t‖∇χ‖Lt

, ∀χ ∈ Xh, with 1 ≤ t ≤ s ≤ ∞, (2.17)

which are true in a quasi-uniform mesh, give εa = O(h1−2/t), uniformly in a ball of Xh with
respect to W 1

t –norm, for t > 2.
In the sequel we derive estimations for εa.

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
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Lemma 2.3. There exists a constant C2 > 0, independent of h, such that

|εa(wh; vh, χ)| ≤ C2β3h‖∇wh · ∇vh‖Lp
‖∇χ‖Lp′ , ∀wh, vh, χ ∈ Xh,

1
p

+
1
p′

= 1. (2.18)

Proof. In view of Green’s formula and (2.6), we may write εa in the following form:

εa(wh; vh, χ) =
∑
K

{
(L(wh)vh, χ − Ihχ)K + (A(wh)∇vh · n, χ − Ihχ)∂K

}

=
∑
K

{IK + IIK} .
(2.19)

Applying Hölder’s inequality to IK , and using the fact that wh and vh are linear in K, and
using (1.2) and (2.11), we have

|IK | ≤ β3‖∇wh · ∇vh‖Lp(K)‖χ − Ihχ‖Lp′(K) ≤ β3h‖∇wh · ∇vh‖Lp(K)‖∇χ‖Lp′(K). (2.20)

For the IIK , we break the integration over the boundary of each triangle K, into the sum of
integrations over its sides, and thus may use (2.12), and follow the same steps as in estimating
IK . Hence,

|IIK | ≤ C1h|A(wh)∇vh|W 1
p (K)‖∇χ‖Lp′(K) ≤ C1β3h‖∇wh · ∇vh‖Lp(K)‖∇χ‖Lp′(K). (2.21)

Finally, (2.20) and (2.21) establish the desired estimate for C2 = C1 + 1. �

The following lemma will be used in Section 4 to estimate the error in the L2–norm. For
this estimation we will need to assume that A′ is Lipschitz continuous with constant L, i.e.

|A′(x) − A′(y)| ≤ L|x − y|, ∀x, y ∈ R. (2.22)

Lemma 2.4. Assume that A′ is Lipschitz continuous and v ∈ W 2
q ∩ H1

0 , for 4/3 < q ≤ 2.
Then there exists a constant C > 0 independent of h such that for wh, vh, χ ∈ Xh,

|εa(wh; vh, χ)| ≤C
{
h2‖∇wh‖L∞(‖∇wh · ∇vh‖ + ‖v‖W 2

q
)

+ h‖∇wh · ∇(vh − v)‖Lq

}
‖∇χ‖Lq′

,
(2.23)

with 1/q + 1/q′ = 1.

Proof. Let wK and we denote the average value of a function w over triangle K and the edge
e, respectively. Since v ∈ W 2

q , Lemma 2.2 gives the identity(
(A(wh) − A(wh,e))∇v · n, χ − Ihχ

)
∂K

= 0, ∀χ ∈ Xh.

Employing this identity, the fact that vh is linear in K, Green’s formula, and (2.8) we get

εa(wh; vh, χ) =
∑
K

(
(A′(wh) − A′(wh,K))∇wh · ∇vh, χ − Ihχ

)
K

+
∑
K

(
(A(wh) − A(wh,e))∇(vh − v) · n, χ − Ihχ

)
∂K

=
∑
K

{IK + IIK}.

Using now Hölder’s inequality, the fact that wh is linear in K, and (2.11), we can bound IK ,

|IK | ≤ C

∫
K

|wh − wh,K | |∇wh · ∇vh| |χ − Ihχ| dx

≤ Ch2‖∇wh‖L∞ ‖∇wh · ∇vh‖L2(K) ‖∇χ‖L2(K).

(2.24)

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
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For the estimation of IIK , we apply (2.12) and we get,

|IIK | ≤ Ch |(A(wh) − A(wh,e))∇(vh − v)|W 1
q (K) ‖∇χ‖Lq′ (K). (2.25)

Further, a simple calculation gives

|(A(wh) − A(wh,e))∇(vh − v)|W 1
q (K) ≤ C(‖∇wh·∇(vh − v)‖Lq(K) + h‖∇wh‖L∞‖v‖W 2

q (K)

)
.

Summing now over all triangles, the relation above, (2.24), (2.25) and using the fact that
q′ > 2, we obtain (2.23). �

Next we will derive a “Lipschitz”-type estimation for εa.

Lemma 2.5. Let v ∈ H1 ∩ L∞, w ∈ W 1
p with p > 2 and A′ be Lipschitz continuous with

constant L, cf. (2.22). There exists C2 > 0 such that

|εa(v; φh, χ) − εa(w; φh, χ)|
≤ C2h‖∇φh‖L∞(β3 + L‖∇w‖Lp

)‖∇(v − w)‖ ‖∇χ‖, ∀φh, χ ∈ Xh,
(2.26)

where β3 is the upper bound of A′, cf., (1.2).

Proof. We can easily see that

εa(v; φh, χ) − εa(w; φh, χ) =
∑
K

{∫
K

div((A(v) − A(w))∇φh)(χ − Ihχ) dx

+
∫

∂K

(A(v) − A(w))∇φh · n(χ − Ihχ) ds

}
.

Also, since φh is linear in K, div (∇φh) = 0, therefore,

div((A(v) − A(w))∇φh) =
{
A′(v)∇(v − w) + (A′(v) − A′(w))∇w

}
· ∇φh, in K.

Then, this, (2.11), (2.12), the Hölder inequality

‖vw‖Ls
≤ ‖v‖Lt

‖w‖Lt̄
, with t > s,

s

t
+

s

t̄
= 1, (2.27)

for s = 2 and t = p and the Sobolev inequality, cf. e.g., [6, 4.x.11],

‖v‖Ls
≤ ‖∇v‖, ∀s < ∞, (2.28)

give for C2 = C1 + 1

|εa(v; φh, χ) − εa(w; φh, χ)| ≤ C2h(β3‖∇(v − w)‖ + L‖ |v − w| |∇w| ‖)‖∇χ‖ ‖∇φh‖L∞

≤ C2h(β3‖∇(v − w)‖ + L‖v − w‖Lp̄
‖∇w‖Lp

)‖∇χ‖ ‖∇φh‖L∞

≤ C2h(β3 + L‖∇w‖Lp
)‖∇(v − w)‖ ‖∇χ‖ ‖∇φh‖L∞ . �

3. EXISTENCE OF FVE APPROXIMATIONS FOR SMALL DATA

In this section using a fixed point iteration we will show that a finite volume solution uh of
(2.3) exists and is in the ball

BM = {χ ∈ Xh : ‖∇χ‖Lp
≤ M}, with p > 2,

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
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where M = M(f) > 0, cf. Theorem 3.1. Further, if M is sufficiently small, i.e., an appropriate
norm of f is small, the finite volume solution uh is unique, cf., Corollary 3.3.

For a fixed f ∈ L2, we consider the iteration map Th : Xh → Xh given by

ah(vh; Thvh, η) = (f, η), ∀η ∈ Yh. (3.1)

In view of the Sobolev imbedding, ‖v‖L∞ ≤ C‖v‖W 1
p

for p > 2, we shall employ the following
inf–sup condition, cf., e.g., [6, Chapter 7]: There exist constants α = α(A, Ω) > 0, hα > 0 and
ε = ε(A, Ω) > 0 such that for all 0 < h ≤ hα and vh ∈ Xh and w ∈ L∞,

‖∇vh‖Lp
≤ α sup

0�=χ∈Xh

a(w; vh, χ)
‖∇χ‖Lp′

, (3.2)

with 2 ≤ p ≤ 2 + ε and 1
p + 1

p′ = 1.
In view of the identity a(wh; vh, χ) = ah(wh; vh, Ihχ) + εa(wh; vh, χ) and the error estimate

in Lemma 2.3 and (2.17),

|εa(wh; vh, χ)| ≤ Ch‖∇wh · ∇vh‖Lp
‖∇χ‖Lp′ ≤ Ch1−2/p‖∇wh‖Lp

‖∇vh‖Lp
‖∇χ‖Lp′ ,

there exists hM > 0 such that for all 0 < h ≤ hM ≤ hα

‖∇vh‖Lp
≤ α sup

0�=χ∈Xh

ah(wh; vh, Ihχ)
‖∇χ‖Lp′

, ∀vh ∈ Xh, wh ∈ BM , 2 < p ≤ 2 + ε. (3.3)

Therefore, for h < hM and vh ∈ BM , Thvh is well defined. Note that (3.3) holds also for p = 2
and wh ∈ B̃M = {χ ∈ Xh : ‖∇χ‖Lp̃

≤ M}, with p̃ > 2.
In the following two theorems we will show that in a sufficiently small ball BM and data f ,

there exists a unique solution uh ∈ Xh of (2.3).

Theorem 3.1. There exists hM > 0, such that for all 0 < h < hM , if ‖f‖ ≤ Mα−1 then Th

maps BM into itself for 2 < p < 2 + ε.

Proof. Let vh ∈ BM then in view of (3.3) we have

‖∇Thvh‖Lp
≤ α sup

0�=χ∈Xh

ah(vh; Thvh, Ihχ)
‖∇χ‖Lp′

≤ α sup
0�=χ∈Xh

(f, Ihχ)
‖∇χ‖Lp′

. (3.4)

Then, using (2.2) and the Sobolev inequality ‖v‖ ≤ ‖v‖W 1
p
, for p > 1, cf. [6, 4.x.11], we get

‖∇Thvh‖Lp
≤ α‖f‖, (3.5)

which gives the desired result. �

Next, we will show that the iteration map Th is Lipschitz continuous. For M sufficiently
small, Th is a contraction in BM in H1-norm, which gives the uniqueness of the solution uh of
(2.3) and the convergence of the fixed point iteration, vn+1

h = Thvn
h → uh, as n → ∞.

Theorem 3.2. Let A′ be Lipschitz continuous with constant L, cf. (2.22). Then there exists
a constant CL = CL(A, Ω) > 0 and h′

M > 0, such that for ‖f‖ ≤ Mα−1, M < CL
−1 and all

0 < h ≤ h′
M , Th is a contraction, with constant 	 = CLM < 1,

‖∇(Thv − Thw)‖ ≤ 	‖∇(v − w)‖, ∀v, w ∈ BM . (3.6)

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
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Proof. Let v, w ∈ BM . Then, in view of the definition of Th, (3.1) we have

ah(v; Thv, η) − ah(w; Thw, η) = 0, ∀η ∈ Yh.

Therefore, we can easily see that for η = Ihχ, χ ∈ Xh,

ah(v; Thv − Thw, Ihχ) = ah(w; Thw, Ihχ) − ah(v; Thw, Ihχ)
= εa(v; Thw, χ) − εa(w; Thw, χ) + ((A(w) − A(v))∇Thw,∇χ).

(3.7)

Using now the fact that for sufficiently small h, Thw ∈ BM , cf., Theorem 3.1, the Hölder
inequality (2.27) with s = 2 and t = p and the Sobolev (2.28), the last term of the right–hand
side of (3.7) can be bounded for any χ ∈ Xh,

|(A(w) − A(v))∇Thw,∇χ)| ≤ β3‖(w − v)|∇Thw| ‖ ‖∇χ‖
≤ β3‖w − v‖Lp̄

‖∇Thw‖Lp
‖∇χ‖ ≤ β3M‖∇(v − w)‖ ‖∇χ‖. (3.8)

Also, in view of Lemma 2.5 the remaining two terms in the right–handside of (3.7), give

|εa(v; Thw, χ) − εa(w; Thw, χ)| ≤ C2h
1−2/pM(β3 + LM)‖∇(v − w)‖ ‖∇χ‖. (3.9)

Since, ah(vh; ·, ·) is coercive for vh ∈ BM and h sufficiently small, choosing χ = Thv − Thw in
the above relation and in (3.7) and (3.8) gives that there exists a constant CL = CL(A, Ω) > 0
such that

‖∇(Thv − Thw)‖ ≤ CLM‖∇(v − w)‖.
Therefore, for M < C−1

L , Th is a contraction with constant 0 < 	 = CLM < 1. �

Finally, Theorems 3.1 and 3.2 give the following corollary,

Corollary 3.3. Assume that A′ is Lipschitz continuous with a constant L. Then there exist
constants CL = CL(A, Ω) > 0 and h0 > 0 such that if ‖f‖ ≤ α−1C−1

L , with 2 < p < 2 + ε then
for h sufficiently small the problem (2.3), i.e., find uh ∈ Xh such that

ah(uh; uh, Ihχ) = (f, Ihχ), ∀χ ∈ Xh,

has a unique solution, with ε given in (3.2).

4. ERROR ESTIMATES

In this section we shall derive W 1
s –, with 2 ≤ s < p, L2– and L∞-norm error estimates for

the error uh − u for f ∈ L2. We shall assume that the nonlinear problem (1.1) has a unique
solution u ∈ W 2

q ∩ H1
0 , with 4/3 < q ≤ 2. In Section 3 we show that a finite volume solution

uh of (2.3) exists and is unique.
First, we will derive an a priori error estimate in ‖∇ · ‖Ls

, 2 ≤ s < p, norm. For s = 2 we
get the usual H1–norm error bound. But for s > 2 this estimate combined with a standard
Sobolev imbedding gives an L∞–norm error estimate, cf. Theorem 4.2.

Theorem 4.1. Let uh and u be the solutions of (2.3) and (1.1), respectively, with f ∈ L2.
Then, if γ = αβ3M < 1 there exists a constant C = C(u, f), independent of h, such that for
0 < h ≤ hM

‖∇(uh − u)‖Ls
≤ C(u, f)h1+2/s−2/q, with 2 ≤ s < p < 2 + ε,

4
3

< q ≤ 2, (4.1)

where α is the constant appeared in (3.2).
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Proof. Using the triangle inequality we get

‖∇(uh − u)‖Ls
≤ ‖∇(u − χ)‖Ls

+ ‖∇(uh − χ)‖Ls
, ∀χ ∈ Xh. (4.2)

In view of the approximation property of Xh,

inf
χ∈Xh

‖∇(v − χ)‖Ls
≤ Ch1+2/s−2/q‖v‖W 2

q
, with 4/3 < q ≤ 2 ≤ s, (4.3)

the first term of the right–handside of (4.2) is bounded as desired. Also, we can easily see that

a(u; uh − χ, ψ) = a(u; uh − u, ψ) + a(u; u− χ, ψ) ≤ a(u; uh − u, ψ) + β2‖∇(u − χ)‖Ls
‖∇ψ‖Ls′

,

with 1/s + 1/s′ = 1. Hence, in view of (3.2), we may write for 2 ≤ s < p,

‖∇(uh − χ)‖Ls
≤ α sup

0�=ψ∈Xh

a(u; uh − χ, ψ)
‖∇ψ‖Ls′

≤ α sup
0�=ψ∈Xh

a(u; uh − u, ψ)
‖∇ψ‖Ls′

+ αβ2‖∇(u − χ)‖Ls
.

(4.4)

Then in view of (4.3), it suffices to estimate the first term of the right–handside in the relation
above. We can easily see for any ψ ∈ Xh,

a(u; uh − u, ψ) = a(u; uh, ψ) − (f, ψ)
= {a(u; uh, ψ) − a(uh; uh, ψ)} + {εa(uh; uh, ψ) − εh(f, ψ)} = I + II.

(4.5)

Using then the fact that uh ∈ BM , the Hölder inequality (2.27), with t = p, and the Sobolev
inequality (2.28), we have for any χ, ψ ∈ Xh,

|I| = |a(u; uh, ψ) − a(uh; uh, ψ)| ≤ β3‖(uh − u)|∇uh|‖Ls
‖∇ψ‖Ls′

≤ β3‖uh − u‖Lp̄
‖∇uh‖Lp

‖∇ψ‖Ls′
≤ β3M‖∇(uh − u)‖ ‖∇ψ‖Ls′

≤ β3M(‖∇(uh − χ)‖Ls
+ ‖∇(u − χ)‖Ls

)‖∇ψ‖Ls′
.

(4.6)

The remaining term II can be bounded using Lemma 2.3 and (2.13), the inverse inequality
(2.17) and the Hölder inequality (2.27), with t = 2q/(2 − q) and t̄ = st/(t − s),

|εh(f, ψ)| ≤ Ch‖f‖‖∇ψ‖ ≤ Ch2−2/s′‖f‖ ‖∇ψ‖Ls′
= Ch2/s‖f‖ ‖∇ψ‖Ls′

, (4.7)

and

|εa(uh; uh, ψ)| ≤ Ch(‖∇uh · ∇(uh − u)‖Ls
+ ‖∇uh · ∇u‖Ls

)‖∇ψ‖Ls′

≤ C
(
h1−2/pM‖∇(uh − u)‖Ls

+ h‖∇uh‖Lt̄
‖∇u‖Lt

)
‖∇ψ‖Ls′

≤ C
(
h1−2/pM‖∇(uh − u)‖Ls

+ h1+2/t̄−2/pM‖∇u‖Lt

)
‖∇ψ‖Ls′

.

(4.8)

Further, in view of the Sobolev imbedding, cf., e.g., [1]

‖v‖Lt
≤ C‖v‖W 1

r
, ∀v ∈ W 1

r , r ≤ 2, and t ≤ 2r/(2 − r), (4.9)

and
1 +

2
t̄
− 2

p
= 1 − 2

t
+

2
s
− 2

p
= 2 − 2

q
+

2
s
− 2

p
> 1 +

2
s
− 2

q
,
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relation (4.8) becomes

|εa(uh; uh, ψ)| ≤ C
(
h1−2/pM‖∇(uh − u)‖Ls

+ h1+2/s−2/qM‖u‖W 2
q

)
‖∇ψ‖Ls′

. (4.10)

Thus (4.4)–(4.10) and the fact that 1 − 2/q ≤ 0, give

(1 − γ)‖∇(uh − χ)‖Ls
≤ (γ + αβ2)‖∇(u − χ)‖Ls

+ Ch1−2/p‖∇(uh − u)‖Ls

+ Ch1+2/s−2/q(‖u‖W 2
q

+ ‖f‖).
(4.11)

Finally, for h sufficiently small, the estimation above, (4.2) and (4.3) give the desired
estimate. �

Corollary 4.2. Let uh and u be the solutions of (2.3) and (1.1), respectively, with f ∈ L2.
Then, if γ = αβ3M < 1 there exists a constant Cs = Cs(u, f), independent of h, such that for
0 < h ≤ hM

‖u − uh‖L∞ ≤ Cs(u, f)h1+2/s−2/q, with 2 < s < p < 2 + ε. (4.12)

Proof. In view of the Sobolev imbedding ‖v‖L∞ ≤ Cs‖∇v‖Ls
, s > 2 and Theorem 4.1 we can

easily see that (4.12) holds. �

Note that the constant Cs in Corollary 4.2 blows-up as s → 2. Later, in Theorem 4.5, we will
show an almost optimal order L∞ error estimate. Next, we will show that the finite volume
solution uh is also bounded in ‖∇ · ‖Lq̄

, 2/q + 2/q̄ = 1. This will be used later in the L2–norm
error estimation.

Theorem 4.3. Let uh and u be the solutions of (2.3) and (1.1), respectively, with u ∈
W 2

q ∩ H1
0 , 4/3 < q ≤ 2. Then uh ∈ W 1

q̄ , uniformly for all 0 < h ≤ hM , i.e.,

‖∇uh‖Lq̄
≤ C(u, f), with

2
q

+
2
q̄

= 1. (4.13)

Proof. We rewrite uh by adding and subtracting Rhu and Πhu, where Rh : H1
0 → Xh is the

elliptic projection operator defined by

a(u; Rhu, χ) = a(u; u, χ), ∀χ ∈ Xh,

and Πh : C(Ω) → Xh the standard nodal interpolant. Thus

‖∇uh‖Lq̄
≤ ‖∇(uh − Rhu)‖Lq̄

+ ‖∇Rhu‖Lq̄

≤ ‖∇(uh − Rhu)‖Lq̄
+ ‖∇(Rhu − Πhu)‖Lq̄

+ ‖∇Πhu‖Lq̄
.

(4.14)

In view of the approximation property, (4.3), Πh satisfies

|∇(Πhv − v)‖Ls
≤ Ch1+2/s−2/q‖v‖W 2

q
, 4/3 < q ≤ 2 ≤ s. (4.15)

Then, the last term in (4.14) can easily be estimated in view of (4.9) and (4.15), we have

‖∇Πhu‖Lq̄
≤ C‖u‖W 2

q
. (4.16)

Also, we can easily see that the identity

a(u; Rhu − u, Rhu − u) = a(u; Rhu − u, Πhu − u),
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gives
‖∇(Rhu − u)‖ ≤ C‖∇(Πhu − u)‖.

Thus, using the inverse inequality (2.17), (4.15) and the fact that 2 − 2/q = 1 − 2/q̄, we can
bound the second term in (4.14) by

‖∇(Rhu − Πhu)‖Lq̄
≤ Ch2/q̄−1‖∇(Rhu − Πhu)‖
≤ Ch2/q̄−1(‖∇(Rhu − u)‖ + ‖∇(Πhu − u)‖) ≤ C‖u‖W 2

q

(4.17)

Finally, the first term, in (4.14) can be estimated similarly. From Theorem 4.1, (2.17) and the
fact that 2 − 2/q = 1 − 2/q̄ we have

‖∇(uh − Rhu)‖Lq̄
≤ Ch2/q̄−1‖∇(uh − Rhu)‖
≤ Ch2/q̄−1(‖∇(uh − u)‖ + ‖∇(Rhu − u)‖ + ‖∇(Πhu − u)‖)
≤ C(u, f).

(4.18)

Combining now this with (4.14), (4.16) and (4.17), proves the theorem. �

For the proof of the L2–norm error estimate we will employ a similar duality argument as
the one used in [13]. Let us consider the following auxiliary problem. Let ϕ ∈ H1

0 be such that

a(u; ϕ, v) + (A′(u)∇u∇ϕ, v) = (u − uh, v), ∀v ∈ H1
0 . (4.19)

If A(u) is Lipschitz continuous and A′(u)∇u ∈ L∞, then the solution ϕ of (4.19) satisfies the
following elliptic regularity estimate,

‖ϕ‖W 2
q0

≤ C‖uh − u‖, with 4/3 < q0 ≤ 2, (4.20)

where q0 depends on the biggest interior angle of Ω and the coefficients A(u), A′(u)∇u. If Ω is
convex then q0 = 2, and if it is nonconvex then q0 < 2.

Theorem 4.4. Let uh and u be the solutions of (2.3) and (1.1), respectively, with u ∈
W 2

q ∩ H1
0 ∩ W 1

∞, 4/3 < q ≤ 2. Then, if u and A′ are Lipschitz continuous, A′′ ∈ L1(R),
f ∈ H1 and γ = β−1

1 β3M < 1 there exists a constant C, independent of h, such that for
sufficiently small h,

‖uh − u‖ ≤ C(u, f)h4−2/q−2/q0 . (4.21)

Proof. Before we begin the proof we note the following Taylor expansions

A(uh) − A(u) = (uh − u)
∫ 1

0

A′(u − t(u − uh)) dt ≡ (uh − u)Ā′,

A(uh) − A(u) − A′(u)(uh − u) = (uh − u)2
∫ 1

0

A′′(u − t(u − uh))(1 − t) dt

≡ (uh − u)2Ā′′.

(4.22)

Then, in view of (4.19), we have

‖u − uh‖2 = a(u; u − uh, ϕ) + (A′(u)(u − uh)∇u,∇ϕ)
= a(u; u, ϕ) − a(uh; uh, ϕ) + ((A(uh) − A(u))∇uh,∇ϕ)
− ((A(uh) − A(u))∇u,∇ϕ) + ((A(uh) − A(u))∇u,∇ϕ) − (A′(u)(uh − u)∇u,∇ϕ)

= a(u; u, ϕ) − a(uh; uh, ϕ) + ((A(uh) − A(u))∇(uh − u),∇ϕ)
+ ((A(uh) − A(u) − A′(u)(uh − u))∇u,∇ϕ).
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Further, using (2.3) and (4.22), the relation above gives for any χ ∈ Xh,

‖u − uh‖2 = a(u; u, ϕ − χ) − a(uh; uh, ϕ − χ) + εh(f, χ) − εa(uh; uh, χ)

+ ((uh − u)Ā′∇(uh − u) + (uh − u)2Ā′′∇u,∇ϕ)
= {a(uh; u − uh, ϕ − χ) + ((uh − u)Ā′∇u,∇(ϕ − χ)) + εh(f, χ)}
− εa(uh; uh, χ) + {(uh − u)Ā′∇(uh − u) + ((uh − u)2Ā′′∇u,∇ϕ)}

= I1 + I2 + I3.

(4.23)

Choosing now χ = Πhϕ in (4.23) and using (2.13) and Lemma 2.4 we get

|I1| ≤ C(‖∇(uh − u)‖ + ‖∇u‖L∞‖uh − u‖)‖∇(ϕ − Πhϕ)‖ + Ch2‖f‖H1‖∇Πhϕ‖,
|I2| ≤ C

{
h2‖∇uh‖L∞(‖ |∇uh|2‖ + ‖u‖W 2

q
) + h‖∇uh · ∇(uh − u)‖Lq

}
‖∇Πhϕ‖Lq′

.
(4.24)

Since 2 < q̄ = 2q/(2 − q), (4.16), the approximation property (4.15) and the fact that
2 ≥ 3 − 2/q0, now give

|I1| ≤ Ch2−2/q0(‖∇(u − uh)‖ + ‖∇u‖L∞‖u − uh‖ + h‖f‖H1)‖ϕ‖W 2
q0

. (4.25)

Using then Theorem 4.1 and (4.20), we obtain

|I1| ≤ C(u)h2−2/q0
{
‖∇(uh − u)‖ + h‖f‖H1 + ‖uh − u‖

}
‖uh − u‖

≤ C(u, f)h4−2/q−2/q0‖uh − u‖ + C(u, f)h2−2/q0‖uh − u‖2.
(4.26)

Also, using the fact that q, q0 > 4/3 we get q′ ≤ 2q0/(2− q0), thus in view of (4.9) and (4.15),

‖∇Πhϕ‖Lq′
≤ C‖ϕ‖W 2

q0
.

Then this, the inverse inequality (2.17), the Hölder inequality (2.27), with s = 2, t = q̄ and
s = q, t = 2, and the fact that 2q̄/(q̄ − 2) ≤ q̄, for q > 4/3, give

|I2| ≤ C
{
h2−2/q̄‖∇uh‖Lq̄

(‖∇uh‖Lq̄
‖∇uh‖L2q̄/(q̄−2)

+ ‖u‖W 2
q
)

+ h‖∇uh‖Lq̄
‖∇(uh − u)‖)

}
‖∇Πhϕ‖Lq′

≤ C‖∇uh‖Lq̄

{
h2−2/q̄(‖∇uh‖2

Lq̄
+ ‖u‖W 2

q
) + h‖∇(uh − u)‖

}
‖ϕ‖W 2

q0
.

Using, next Theorems 4.1 and 4.3 and (4.20), we obtain

|I2| ≤ C(u, f)(h2−2/q̄ + h‖∇(uh − u)‖)‖uh − u‖ ≤ C(u, f)h3−2/q‖u − uh‖. (4.27)

Next, we turn to the estimation of the term I3 in (4.23). For this we use the Hölder inequality
(2.27) with t = q0; hence

|I3| ≤ C‖∇(uh − u)‖ ‖(u − uh)∇ϕ‖ ≤ C‖∇(uh − u)‖ ‖uh − u‖Lq0
‖∇ϕ‖Lq̄0

. (4.28)

Then the interpolation inequality, cf., e.g., [15, Appendix B],

‖v‖Lq0
≤ ‖v‖1/2‖v‖1/2

Ls
, with s = 2q0/(4 − q0),

and the Sobolev inequality (2.28) give

‖uh − u‖Lq0
≤ C‖∇(uh − u)‖1/2‖uh − u‖1/2.
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Therefore, using this and Theorem 4.1 in (4.28) give

|I3| ≤ C‖∇(u − uh)‖3/2‖u − uh‖1/2‖ϕ‖W 2
q0

≤ (C‖∇(u − uh)‖3 +
1
2
‖u − uh‖)‖u − uh‖

≤ C(u, f)h3(2−2/q)‖u − uh‖ +
1
2
‖u − uh‖2.

We can easily see that 3(2 − 2/q) > 4 − 2/q − 2/q0. Therefore, combining the relation above
with (4.23), (4.26) and (4.27), we get

‖u − uh‖2 ≤ |I1| + |I2| + |I3|
≤ C(u, f)h4−2/q−2/q0‖uh − u‖ + C(u, f)h2−2/q0‖uh − u‖2 + C(u, f)h3−2/q‖u − uh‖

+ C(u, f)h3(2−2/q)‖u − uh‖ +
1
2
‖u − uh‖2,

which for sufficiently small h gives the desired estimate. �

Theorem 4.5. Let uh and u be the solutions of (2.3) and (1.1), respectively. Then, if Ω is
convex, γ = CΩβ−1

1 β2β3‖u‖W 1
p

< 1, with CΩ > 0 a constant depending only on Ω, u ∈ W 2
∞

and f ∈ L∞, then there exists a constant C independent of h, such that for sufficiently small
h,

‖u − uh‖L∞ ≤ C(u, f)h2 log(
1
h

). (4.29)

Proof. Using again a triangle inequality we get

‖uh − u‖L∞ ≤ ‖uh − u‖L∞ + ‖uh − uh‖L∞ ,

where uh is the Galerkin finite element approximation of u, i.e.,

a(uh; uh, χ) = (f, χ), ∀χ ∈ Xh. (4.30)

In the case of the linear problem −div (A(x)∇w) = f , we have for A ∈ W 2
∞, cf., eg., [6]

‖wh − w‖L∞ ≤ Ch2 log(
1
h

)‖w‖W 2∞
,

where wh is the finite element approximation of w. Since f ∈ L∞ and u ∈ W 2
∞, then

A(u) ∈ W 2
∞. Therefore,

‖Rhu − u‖L∞ ≤ C(u)h2 log(
1
h

). (4.31)

The estimation of ‖uh − Rhu‖L∞ was derived in [21], where it shown that

‖uh − Rhu‖L∞ ≤ γ‖uh − u‖L∞ , (4.32)

with γ = CΩβ−1
1 β2β3‖u‖W 1

p
. Thus (4.31) and (4.32) give

(1 − γ)‖uh − u‖L∞ ≤ C(u)h2 log(
1
h

), (4.33)

We turn now to the estimation of ‖uh − uh‖L∞ . Let x0 ∈ K0 ∈ Th such that ‖uh − uh‖L∞ =
|(uh − uh)(x0)| and δx0 = δ ∈ C∞

0 (Ω) a regularized Dirac δ–function satisfying

(δ, χ) = χ(x0), ∀χ ∈ Xh.
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For such a function δ, cf., e.g., [6], we have

supp δ ⊂ B = {x ∈ Ω : |x − x0| ≤ h/2},∫
Ω

δ = 1, 0 ≤ δ ≤ Ch−2, ‖δ‖Lp
≤ Ch2(1−p)/p, 1 < p < ∞.

Also let us consider the corresponding regularized Green’s function G ∈ H1
0 , defined by

a(uh; G, v) = (δ, v), ∀v ∈ H1
0 . (4.34)

Then, we have

‖uh − uh‖L∞ = (δ, uh − uh) = a(uh; G, uh − uh) = a(uh; Gh, uh − uh)

= (f, Gh) − a(uh; uh, Gh)
= εh(f, Gh) − εa(uh; uh, Gh) + {a(uh; uh, Gh) − a(uh; uh, Gh)},

(4.35)

where Gh ∈ Xh is the finite element approximation of G, i.e.,

a(uh; G, χ) = a(uh; Gh, χ), ∀χ ∈ Xh.

Since u ∈ W 2
∞, we have u ∈ H2. Thus, in view of Theorem 4.3, ‖∇uh‖L∞ ≤ C. Further, using

Lemma 2.4 and (2.13), (1.2) and Theorem 4.4, we obtain

‖uh − uh‖L∞ ≤ C
{
h2(‖f‖H1 + ‖∇uh‖2

L∞‖∇uh‖ + ‖∇uh‖L∞‖u‖H2)

+ h‖∇uh‖L∞‖∇(uh − u)‖ + ‖(uh − uh)|∇uh|‖
}
‖∇Gh‖

≤ Ch2(‖f‖H1 + ‖u‖H2 + ‖uh − u‖)‖∇Gh‖.
(4.36)

The last term can be estimated by, cf., e.g., [13],

‖uh − u‖ ≤ C(u, f)h2. (4.37)

In addition in view of [22, Lemma 3.1] we get

‖Gh‖H1 ≤ C‖∇G‖L2
≤ C

1
(s − 1)1/2

‖δ‖Ls
, (4.38)

with s ↓ 1. Choosing now s = 1 + (log(1/h))−1 we have

‖Gh‖H1 ≤ C(log(
1
h

))1/2. (4.39)

Combining now (4.35)–(4.39), we obtain

‖uh − uh‖L∞ ≤ C(u, f)h2 log(
1
h

)1/2. (4.40)

¿From this and (4.33) for γ < 1 we get the desired estimation (4.29).
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5. NEWTON’S METHOD

In this section we shall analyze Newton’s method for the computation of the finite volume
solution uh of (2.3). We consider an inexact Newton iteration, a variant of the Newton iteration
for nonlinear systems of equations, where the Jacobian of the system is solved approximately,
cf., e.f., [2, 3, 11]. Our analysis is based on a similar approach for the finite element method,
studied by Douglas and Dupont in [13].

Also here, we will assume that (1.1) has a unique solution u ∈ H2 ∩ H1
0 . For φ ∈ H1 we

define the bilinear form N(φ; ·, ·) on H1
0 × H1

0 by

N(φ; v, w) = a(φ; v, w) + d(φ; v, w), (5.1)

where d is given by
d(φ; v, w) = (A′(φ)v∇φ,∇w). (5.2)

Further, let Nh be the corresponding finite volume form to N , defined for φ ∈ H2 ∩ H1
0 on

(H2 ∩ H1
0 ) + Xh × (H2 ∩ H1

0 ) + Xh by

Nh(φ; v, w) = ah(φ; v, w) + dh(φ; v, w), (5.3)

where dh is given by

dh(φ; v, w) = −
∑
K

∫
K

div(A′(φ)v∇φ)Ihw dx +
∫

∂K

(A′(φ)v∇φ) · nIhw ds. (5.4)

For u0
h ∈ Xh, the Newton approximations to the solution uh forms a sequence {uk

h}∞k=0 in
Xh satisfying

Nh(uk
h; uk+1

h − uk
h, χ) = (f, Ihχ) − ah(uk

h; uk
h, Ihχ), ∀χ ∈ Xh. (5.5)

We will show that uk
h → uh in H1–norm as k → ∞, with order two, provided that u0

h is
sufficiently close to uh. For this we will assume that uh converges to u sufficiently fast,

‖u − uh‖L∞ + σh‖u − uh‖H1 → 0, as h → 0, (5.6)

where
σh ≡ sup{‖χ‖L∞/‖χ‖H1 : 0 �= χ ∈ Xh}. (5.7)

Since Th is a quasi-uniform mesh, there exists a constant C, independent of h such that

|σh| ≤ C log(
1
h

). (5.8)

Further, let C3 be another constant, independent of h, satisfying

‖uh‖W 1∞
≤ C3. (5.9)

Note that this assumption holds, for u ∈ H2, cf. Section 3. In addition we assume that A′′ is
bounded and is Lipschitz continuous, i.e.,

|A′′(x)| ≤ β4, |A′′(x) − A′′(y)| ≤ L2|x − y|, ∀x, y ∈ R. (5.10)

Next, we will show various auxilliary results that helps in the proof of Theorem 5.1. We
start by stating the following lemma of Douglas and Dupont, [13].

Copyright c© 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 00:1–26
Prepared using nlaauth.cls



A FVEM FOR A NONLINEAR ELLIPTIC PROBLEM 17

Lemma 5.1. Given τ > 0, there exists positive constants δ, h0 and C4 such that the following
holds. If 0 < h < h0, if φ ∈ W 1

∞ satisfies

‖φ‖W 1∞
≤ τ and σh‖φ − u‖H1 ≤ δ,

and if G is a linear functional on H1
0 with

|||G||| = sup
0�=χ∈Xh

|G(χ)|
‖χ‖H1

,

then there exists a unique v ∈ Xh satisfying the equations

N(φ; v, χ) = G(χ), w ∈ Xh. (5.11)

Furthermore, v satisfies the bound

‖v‖H1 ≤ C4|||G|||. (5.12)

We shall also use the error functional εN , defined by εN = N − Nh, and we derive similar
estimates to εa, cf. Section 2.

Lemma 5.2. For φ ∈ Xh the error functional εN satisfies

|εN (φ; ψ, χ)| ≤ Ch‖∇φ‖L∞(1 + σh‖φ‖H1 )‖ψ‖H1‖χ‖H1 , ∀χ, ψ ∈ Xh.

Proof. ¿From the definition of εN we can easily see that, εN = εa +(d−dh). Therefore in view
of Lemma 2.3, it suffices to bound d − dh. Following the proof of Lemma 2.3 we have,

d(φ; ψ, χ) − dh(φ; ψ, χ)

=
∑
K

{
(div

(
(A′(φ)ψ)∇φ

)
, χ − Ihχ)K +

(
(A′(φ)ψ)∇φ

)
· n, χ − Ihχ)∂K

}

=
∑
K

{IK + IIK} .

(5.13)

Applying Hölder’s inequality to IK , and using the fact that φ is linear in K, (1.2), (5.10) and
(2.11), we have

|IK | ≤ (β3‖∇φ · ∇ψ‖L2(K) + β4‖ |∇φ|2ψ‖L2(K))‖χ − Ihχ‖L2(K)

≤ Ch(β3‖∇φ · ∇ψ‖L2(K) + β4‖ |∇φ|2ψ‖L2(K))‖∇χ‖L2(K).
(5.14)

For the IIK , we break the integration over the boundary of each triangle K, into the sum of
integrations over its sides, and thus may use (2.12), and follow the same steps as in estimating
IK . Hence,

|IIK | ≤ Ch|(A′(φ)ψ)∇φ|H1(K)‖∇χ‖L2(K)

≤ Ch(β3‖∇φ · ∇ψ‖L2(K) + β4‖ |∇φ|2ψ‖L2(K))‖∇χ‖L2(K).

Then combining this with Lemma 2.3 and (5.14), we get

|εN (φ; ψ, χ)| ≤ Ch
(
‖∇φ‖L∞‖∇ψ‖ + ‖∇φ‖L∞‖ψ‖L∞‖∇φ‖

)
‖χ‖H1 .

Finally, in view of the definition of σh we get the desired estimate. �

Next, we derive a “Lipchitz”–type estimation for εN .
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Lemma 5.3. Let v, w, φ, χ ∈ Xh then

|εN (v; φ, χ)−εN (w; φ, χ)| ≤ Ch
{
‖∇(v − w) · ∇φ‖ + ‖∇w‖L∞‖(v − w)∇φ‖

+ ‖(|∇v|2 − |∇w|2)φ‖ + ‖∇w‖2
L∞‖(v − w)φ‖

}
‖∇χ‖.

(5.15)

Proof. Similarly as in the proof of the previous lemma, we can easily see that εN =
εa + (d − dh). Thus in view of Lemma 2.5, it suffices to estimate d(v; φ, χ) − dh(w; φ, χ).
Using a similar decomposition as in (5.13) and then applying (2.11) and (2.12) we get

|d(v; φ, χ) − dh(w; φ, χ)| ≤ Ch
{
‖div

(
(A′(v)∇v − A′(w)∇w)φ

)
‖

+ |(A′(v)∇v − A′(w)∇w)φ|H1

}
‖∇χ‖.

(5.16)

Next, since φ ∈ Xh, we have

div((A′(v)∇v − A′(w)∇w)φ)

= (A′′(v)|∇v|2 − A′′(w)|∇w|2)φ + (A′(v)∇v − A′(w)∇w) · ∇φ

= (A′′(v)(|∇v|2 − |∇w|2)φ + (A′′(v) − A′′(w))|∇w|2φ
+ (A′(v)(∇v −∇w) · ∇φ + (A′(v) − A′(w))∇w · ∇φ.

(5.17)

Therefore, (5.16) gives

|d(v; φ, χ) − dh(w; φ, χ)| ≤ Ch(‖∇(v − w) · ∇φ‖ + ‖∇w‖L∞‖(v − w)∇φ‖)‖∇χ‖
+ Ch(‖(|∇v|2 − |∇w|2)φ‖ + ‖∇w‖2

L∞‖(v − w)φ‖)‖∇χ‖.
(5.18)

Finally, this estimation and Lemma 2.5 give the desired (5.15). �

Next, we show an error bound that we will employ in the proof of Theorem 5.1.

Lemma 5.4. For vh, wh, χ ∈ Xh, we have

|εN(vh; wh − vh, χ) + εa(vh; vh, χ) − εa(wh; wh, χ)|
≤ Ch

(
σh(‖∇vh‖2

L∞ + ‖∇(wh + vh)‖L∞) + h−1
)
‖wh − vh‖2

H1‖χ‖H1 .
(5.19)

Proof. In view of the definition of εN and εa we have

εN (vh; wh − vh, χ) + εa(vh; vh, χ) − εa(wh; wh, χ)

=
∑
K

∫
K

div
(
A(vh)∇(wh − vh) + A′(vh)(wh − vh)∇vh + A(vh)∇vh

− A(wh)∇wh

)
(χ − Ihχ) dx

+
∑
K

∫
∂K

(
A(vh)∇(wh − vh) + A′(vh)(wh − vh)∇vh + A(vh)∇vh

− A(wh)∇wh

)
· n(χ − Ihχ) ds.

Then, since vh, wh are linear in K ∈ Th, we get

div
(
A(vh)∇(wh − vh) + A′(vh)(wh − vh)∇vh + A(vh)∇vh − A(wh)∇wh

)

= 2A′(vh)∇vh · ∇(wh − vh) + A′′(vh)(wh − vh)|∇vh|2 + A′(vh)|∇vh|2 − A′(wh)|∇wh|2

= A′′(vh)(wh − vh)|∇vh|2 + A′(vh)|∇vh|2 − A′(wh)|∇vh|2

+ A′(wh)|∇vh|2 − A′(wh)|∇wh|2 + 2A′(vh)∇vh · ∇(wh − vh).
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We consider now similar Taylor expansions as in (4.22) and denoting this Ã′ and Ã′′ the
expressions corresponding to Ā′ and Ā′′, where we substitute A with A′. Then the previous
relation gives

div
(
A(vh)∇(wh − vh) + A′(vh)(wh − vh)∇vh + A(vh)∇vh − A(wh)∇wh

)

= −(wh − vh)2Ã′′|∇vh|2 − A′(wh)∇vh · ∇(wh − vh) − A′(wh)∇wh · ∇(wh − vh)
+ 2A′(vh)∇vh · ∇(wh − vh)

= −(wh − vh)2Ã′′|∇vh|2 + (A′(vh) − A′(wh))∇vh · ∇(wh − vh)

+ (A′(vh) − A′(wh))∇wh · ∇(wh − vh) − A′(vh)|∇(wh − vh)|2

= −(wh − vh)2Ã′′|∇vh|2 + (A′(vh) − A′(wh))∇(wh + vh) · ∇(wh − vh) − A′(vh)|∇(wh − vh)|2

= −(wh − vh)2Ã′′|∇vh|2 − (wh − vh)Ã′∇(wh + vh) · ∇(wh − vh) − A′(vh)|∇(wh − vh)|2.
Finally, this combined with (2.11) and (2.12) give the desired estimate

|εN (vh; wh − vh, χ) + εa(vh; vh, χ) − εa(wh; wh, χ)|
≤ Ch

(
‖wh − vh‖L∞‖∇vh‖2

L∞ + ‖wh − vh‖L∞‖∇(wh + vh)‖L∞

+ ‖wh − vh‖L∞

)
‖wh − vh‖H1‖χ‖H1

≤ Ch
(
σh(‖∇vh‖2

L∞ + ‖(wh + vh)‖L∞) + h−1
)
‖wh − vh‖2

H1‖χ‖H1 . �

Next, we show that the Newton sequence obtained by (5.5), is well defined and it converge
to the finite volume approximation uh of (2.3) with order 2.

Theorem 5.1. There exists positive constants h0, δ and C5 such that if 0 < h ≤ h0 and
σh‖u0

h − uh‖H1 ≤ δ then {uk
h}∞k=0 exists and νk = ‖uk

h − uh‖H1 is a decreasing sequence
satisfying

νk+1 ≤ C5σhν2
k . (5.20)

Proof. The proof is based on a similar result of Douglas and Dupont, [13], for the finite element
method. First we show that for h0 and δ are sufficiently small, and σh‖uk

h − uh‖H1 = σhνk ≤ δ,
with 0 < h ≤ h0, there exists a unique uk+1

h , given by (5.5). It suffices to show that if

Nh(uk
h; v, χ) = 0, ∀χ ∈ Xh,

then v ≡ 0, or else ‖v‖H1 ≤ 0. For this we will employ Lemma 5.1 and demonstrate that
C4|||G||| < ‖v‖H1 , for an appropriately defined functional G. We can easily see that

N(uh; v, χ) = G(χ),

where G is given by

G(χ) = N(uh; v, χ) − Nh(uk
h; v, χ) = {N(uh; v, χ) − N(uk

h; v, χ)} + εN(uk
h; v, χ) = I + II,

Following the proof in [13] we have that that

|I| ≤ Cσh‖uh − uk
h‖H1‖v‖H1‖χ‖H1 = Cσhνk‖v‖H1‖χ‖H1 . (5.21)

For the estimation of II we use the inverse inequality, (2.17), (5.9), Lemma 5.2 and the fact
that induction hypothesis and (5.6) give

‖uk
h‖H1 ≤ νk + ‖uh‖H1 ≤ σ−1

h δ + ‖uh‖H1 ≤ C, (5.22)
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to get

|II| ≤ C(νk(1 + σh‖uk
h‖H1) + h(1 + σh‖uk

h‖H1 )‖uh‖W 1∞
)‖v‖H1‖χ‖H1

≤ Cσhνk‖v‖H1‖χ‖H1 + Chσh‖v‖H1‖χ‖H1 .
(5.23)

Hence, since σh ≤ C log(1/h), (5.21) and (5.23) give for δ and h sufficiently small, ‖v‖H1 ≤
C0σh(νk + h log(1/h))‖v‖H1 < ‖v‖H1 ; thus v = 0.

In order to show (5.20) we will employ again Lemma 5.1 for a different functional G. This
time let

N(uh; uk+1
h − uh, χ) = G(χ), ∀χ ∈ Xh,

where G is defined by

G(χ) = N(uh; uk
h − uh, χ) + N(uk

h; uk+1
h − uk

h, χ)

+ N(uh; uk+1
h − uk

h, χ) − N(uk
h; uk+1

h − uk
h, χ)

= {N(uh; uk
h − uh, χ) + a(uh; uh, χ) − a(uk

h; uk
h, χ)}

+ {εN(uk
h; uk+1

h − uk
h, χ) − εa(uh; uh, χ) + εa(uk

h; uk
h, χ)}

+ {N(uh; uk+1
h − uk

h, χ) − N(uk
h; uk+1

h − uk
h, χ)} = I + II + III.

(5.24)

We will show that
|||G||| ≤ Cσhνk(νk + νk+1) + Chσhνk+1. (5.25)

Then Lemma 5.1, and σhνk ≤ δ, give

νk+1 ≤ C4|||G||| ≤ Cσhνk(νk + νk+1) + Chσhνk+1

≤ Cσhν2
k + C(δ + h log(

1
h

))νk+1.
(5.26)

Finally for sufficiently small δ and h, the desired estimate, (5.20), follows easily.
Let us turn now to the estimation of |||G|||, for G given by (5.24). The terms I and III are

similar to the ones that appear in the analysis of the finite element method in [13], thus using
the same arguments we get

|I + III| ≤ Cσhνk(νk + νk+1)‖χ‖H1 . (5.27)

Then, we can easily see that II can be rewritten in the following way,

II = εN(uk
h; uk+1

h − uk
h, χ) − εN (uh; uk+1

h − uk
h, χ)

+ εN (uh; uk+1
h − uk

h, χ) − εa(uh; uh, χ) + εa(uk
h; uk

h, χ)

= {εN(uk
h; uk+1

h − uk
h, χ) − εN(uh; uk+1

h − uk
h, χ)}

+ εN (uh; uk+1
h − uh, χ)

− {εN (uh; uk
h − uh, χ) + εa(uh; uh, χ) − εa(uk

h; uk
h, χ)} = II1 + II2 + II3.

(5.28)

Using Lemma 5.3, (5.9), inverse inequality, (2.17), (5.6) and (5.22), we can bound II1 in the
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following way,

|II1| ≤ Ch
{
(‖∇(uk

h − uh)‖L∞ + ‖∇uh‖L∞‖uk
h − uh‖L∞)‖∇(uk+1

h − uk
h)‖

+
(
‖∇(uk

h + uh)‖L∞‖∇(uk
h − uh)‖

+ ‖∇uh‖2
L∞‖uk

h − uh‖
)
‖uk+1

h − uk
h‖L∞

}
‖χ‖H1

≤ C
(
(1 + (‖uk

h + uh‖H1 + h)σh)νk(νk + νk+1)
)
‖χ‖H1

≤ Cσhνk(νk + νk+1)‖χ‖H1 .

(5.29)

Further, using Lemma 5.2, (5.9) and (5.6), we can easily bound II2,

|II2| ≤ Ch(‖∇uh‖L∞ + σh‖∇uh‖L∞‖uh‖H1)‖uk+1
h − uh‖H1‖χ‖H1

≤ Ch(1 + σh)νk+1‖χ‖H1 .
(5.30)

Finally using, Lemma 5.4 and the fact that ‖∇uh‖L∞ ≤ C3 and h‖∇uk
h‖L∞ ≤ C‖uk

h‖H1 ≤ C,
II3 can be estimated by

|II3| ≤ C(hσh‖∇uh‖2
L∞ + hσh‖∇(uk

h + uh)‖L∞ + 1)‖uk
h − uh‖

2

H1‖χ‖H1

≤ C(σh + 1)ν2
k‖χ‖H1 .

(5.31)

Therefore combining (5.27) and (5.29)–(5.31), we get the desired (5.25). �

6. NUMERICAL IMPLEMENTATIONS

In this section we present procedures for implementing the finite volume method for the
nonlinear problem. A series of numerical examples is given to further assess the theories
that were preceedingly deduced. Following the previous mathematical works, we implement
two iterative schemes to solve the nonlinear finite volume problems, namely the fixed point
iteration and the Newton iteration. As will be clear in the following subsection, these two
schemes are built in the finite dimensional setting, i.e., using the finite element space Xh.
We denote {φi}d

i=1 to be the standard piecewise linear basis functions of Xh. Then the finite
volume element solution may be written as

uh =
d∑

i=1

αi φi for some α = (α1, α2, · · · , αd)T

6.1. Fixed Point Iteration vs Newton Iteration

To describe the schemes, we begin with several notations, noting that some of them have
already been mentioned. Let Zh be the collection of vertices zi that belong to all triangles
K ∈ Th and Z0

h = {zi ∈ Zh : zi /∈ ΓD}. Let I = {i : zi ∈ Z0
h}, IK = {m : zm is a vertex of K},

Th,i = {K ∈ Th : i ∈ IK}, and Ii = {m ∈ I : zm is a vertex of K ∈ Th,i}. Let Vi be the control
volume surrounding the vertex zi.

Now we may write this finite volume problem as to find α = (α1, α2, · · · , αd)T such that

F (α) = 0, (6.1)
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where F : R
d → R

d is a nonlinear operator with

Fi(α) = −
∫

∂Vi

A(uh)∇uh · n ds −
∫

Vi

f dx ∀ i ∈ I. (6.2)

The fixed point iteration is derived from the linearization of (6.1) on the coefficient A(u) in
(6.2). Thus, given an initial iterate α0 (i.e., equivalently u0

h =
∑d

i=0 α0
i φi), for k = 0, 1, 2, · · ·

until convergence solve the linear system M(αk)αk+1 = q, where M(αk) is the resulting
stiffness matrix evaluated at uk

h =
∑d

i=0 αk
i φi, whose entries are

Mk
ij = −

∫
∂Vi

A(uk
h)∇φj · n ds.

On the other hand, the classical Newton iteration relies on the first order Taylor expansion of
F (α). It results in solving a linear system of the Jacobian of F (α). An inexact-Newton iteration
is a variation of Newton iteration for nonlinear system of equations in that the system Jacobian
is only solved approximately, cf. e.g., [2, 3, 11]. To be specific, given an initial iterate α0, for
k = 0, 1, 2, · · · until convergence do the following:
(a) Solve F ′(αk)δk = −F (αk) until ‖F (αk) + F ′(αk)δk‖ ≤ βk ‖F (αk)‖;
(b) Update αk+1 = αk + δk.

In this algorithm F ′(αk) is the Jacobian matrix evaluated at iteration k. For iterative
technique solving a linear system such as the Krylov method we only need the action of
the Jacobian to a vector. It has been common practice to use the following finite difference
approximation for such an action:

F ′(αk) v ≈ F (αk + σv) − F (αk)
σ

, (6.3)

where σ is a small number computed as follows:

σ =
sign(αk · v)

√
ε max(|αk · v|, ‖v‖1)
v · v ,

with ε being the machine unit round-off number. We note that when βk = 0 then we have
recovered the classical Newton iteration. One common used relation is

βk = 0.001
( ‖F (αk)‖
‖F (αk−1)‖

)2

,

with β0 = 0.001. Choosing βk this way we avoid oversolving the Jacobian system when αk is
still considerably far from the exact solution.

Instead of using (6.3), we will present below an explicit construction of the Jacobian matrix.
We note that we may decompose Fi(α) as follows:

Fi(α) =
∑

K∈Th,i

Fi,K(α), where Fi,K(α) = −
∫

K∩∂Vi

A(uh)∇uh · n ds −
∫

K∩Vi

f dx.

From the above description it is apparent that Fi(α) is not fully dependent on all
α1, α2, · · · , αd. Consequently, ∂Fi(α)

∂αj
= 0 for j /∈ Ii. Next we want to find an explicit form

of ∂Fi(α)
∂αj

for j ∈ Ii.
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Now suppose the edge zizj is shared by triangles Kl, Kr ∈ Th,i. Then

∂Fi

∂αj
= −

∑
e=l,r

∫
Ke∩∂Vi

(A′(uh)φj∇uh · n + A(uh)∇φj · n) ds.

Furthermore,

∂Fi

∂αi
= −

∑
K∈Th,i

∫
K∩∂Vi

(A′(uh)φi∇uh · n + A(uh)∇φi · n) ds.

From this derivation it is obvious that the Jacobian matrix is not symmetric but sparse.
Computation of this Jacobian matrix is similar to computing the stiffness matrix resulting
from standard finite volume element, in that each entry is formed by accumulation of element
by element contribution. Once we have the matrix stored in memory, then its action to a vector
is straightforward. Since it is a sparse matrix, devoting some amount of memory for entries
storage is not very expensive.

6.2. Numerical Examples

In this subsection we present several numerical experiments to verify the theoretical
investigations. We solve a set of Dirichlet boundary value problems in Ω = [0, 1] × [0, 1].
We compare the fixed point iteration and the Newton iteration. In both schemes, the iteration
is stopped once ‖uk

h − uk−1
h ‖L∞ < 10−10. In all examples below, the initial iteration is taken

to be α = (0, 0, · · · , 0)T .
The first example is solving −∇·(k(u)∇u) = f in Ω where the function f is chosen such that

the known solution is u(x, y) = (x − x2)(y − y2) The nonlinearity comes from the coefficient
with k(u) = 1

(1+u)2 . The results are listed in Table I. First column represents the mesh size. The
domain is discretized into N numbers of rectangle in each direction. Each of these rectangle is
divided into two triangles. Second and third columns correspond to the number of iterations
performed until the stopping criteria is reached for fixed point iteration (FP) and Newton
iteration (NW), respectively. The table shows that a superconvergence is observed in H1-norm
due to the smoothness of the solution. Number of iterations in both schemes do not depend on
the the mesh size. The numerical results for the second example are presented in Table II. Here

Table I. Error of FVEM for nonlinear elliptic BVP, with u = (x − x2)(y − y2) and k(u) = 1/(1 + u)2

h # iter H1-seminorm L2-norm L∞-norm
FP NW Error ×10−5 Rate Error ×10−5 Rate Error ×10−5 Rate

1/16 7 5 17.1931 - 3.73555 - 7.51200 -
1/32 7 5 4.31635 1.99 0.94094 1.99 1.88100 1.99
1/64 7 5 1.08075 1.99 0.23568 1.99 0.47000 2.00

1/128 7 5 0.27778 1.96 0.05894 2.00 0.01180 1.99

the exact solution is chosen to be u = 40(x−x2)(y−y2) and k(u) = 0.125(−u3 +4u2−7u+8)
if u < 1 and k(u) = 1/(1 + u) if u ≥ 1. Again a superconvergence is observed for this example.
Furthermore, number of iterations needed are slightly higher than the previous example, which
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may be due to larger source term f . In this case the Newton iteration is shown to converge faster
than the fixed point iteration. Next we consider a problem with known solution u(x, y) = x1.6

Table II. Error of FVEM for nonlinear elliptic BVP, with u = 40(x − x2)(y − y2) and k(u) =
0.125(−u3 + 4u2 − 7u + 8) if u < 1 and k(u) = 1/(1 + u) if u ≥ 1

N # iter H1-seminorm L2-norm L∞-norm
FP NW Error ×10−2 Rate Error ×10−2 Rate Error ×10−2 Rate

1/16 16 10 33.65484 - 7.33022 - 13.3000 -
1/32 15 8 9.10047 1.89 1.98347 1.89 3.57150 1.90
1/64 15 7 2.32645 1.97 0.50708 1.97 0.91120 1.97

1/128 15 7 0.58451 1.99 0.12740 1.99 0.22880 1.99

with k(u) = 1 + u. Obviously, this solution is an element of H2(Ω) but not in H3(Ω). Also the
resulting source term f only belongs to L2(Ω). The results are presented in Table III. These
experiments show that the H1-norm of the error decreases at first order. The L2-norm of the
error decreases slower than second order. Again, this case shows that the Newton iteration is
relatively faster than the fixed point iteration.

Table III. Error of FVEM for nonlinear elliptic BVP with u(x, y) = x1.6 and k(u) = 1 + u

N # iter H1-seminorm L2-norm L∞-norm
FP NW Error ×10−4 Rate Error ×10−4 Rate Error ×10−4 Rate

1/16 11 6 34.1671 - 3.71216 - 8.97536 -
1/32 11 7 17.5558 0.96 1.44873 1.36 3.53674 1.34
1/64 11 7 8.68644 1.02 0.53714 1.43 1.33414 1.40
1/128 11 8 4.20084 1.05 0.19272 1.48 0.48582 1.46

Tables IV and V illustrate Theorem 5.1. In this theorem, it has been shown that there
exists a sequence of solutions in the Newton iteration such that their errors with respect to
the finite volume solution uh are a decreasing sequence. Using the notation in that theorem,
νk = ‖uk

h − uh‖H1 is a decreasing sequence satisfying

νk+1 ≤ C5σhν2
k , k = 0, 1, 2, · · · .

We would like to examine the numerical behavior of this sequence for a fixed mesh size h. It
is obvious that given ν0 we have

νk ≤ (C5σh)2
k−1ν2k

0 , k = 1, 2, · · · ,

which after dividing by ν2k

0 and taking logarithm on both sides give

| log(νk/ν2k

0 )| ≤ C5σh (2k − 1), k = 1, 2, · · · .

Hence we should expect that the sequence νk would decrease exponentially as k → ∞.
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Table IV. Results for case 2

k h = 1/32 h = 1/64 h = 1/128
| log(νk/ν2k

0 )| m | log(νk/ν2k

0 )| m | log(νk/ν2k

0 )| m
1 1.13 1.13 1.13
2 3.40 3.02 3.40 3.02 3.40 3.02
3 7.97 7.08 7.96 7.06 7.96 7.05
4 16.8 15.0 16.8 14.9 16.6 14.7

The Tables IV and V show the decreasing behavior of the sequence resulting from the
Newton iteration for last two model problems described above. In each table, k represents the
iteration level, h is the mesh size, and m is the value of row k divided by the value of row
k − 1.

For case 2 presented in Table IV, in which the problem has a piecewise continuous coefficient
and larger source term, we see that the decreasing behavior of the sequence is approximately
exponential, and it is independent of the mesh size. Similar trends are also evident for case 3
shown in Table V.

Table V. Results for case 3

k h = 1/32 h = 1/64 h = 1/128
| log(νk/ν2k

0 )| m | log(νk/ν2k

0 )| m | log(νk/ν2k

0 )| m
1 1.17 1.32 1.45
2 3.57 3.05 3.86 2.93 4.19 2.89
3 8.04 6.85 8.72 6.63 9.26 6.37
4 16.8 14.3 18.2 13.9 19.6 13.4
5 32.7 27.9 36.9 28.1 40.1 27.6
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