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Abstract

A new procedure for accelerating the convergence of mixed finite element approx-
imations of the eigenpairs and of the biharmonic operator is proposed. It is based
on a postprocessing technique that involves an additional solution of a source prob-
lem on an augmented finite element space. This space could be obtained either by
substantially refining the grid, the two-grid method, or by using the same grid but
increasing the order of polynomials by one, the two-space method. The numerical
results presented and discussed in the paper illustrate the efficiency of the postpro-
cessing method.
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1 Introduction

In this paper we consider the following biharmonic eigenvalue problem: for a
given bounded domain Ω ∈ R2 with Lipschitz boundary Γ, find u(x) �= 0 and
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λ ∈ R satisfying the differential equation

∆2u(x) ≡ ∂4u

∂x4
1

+ 2
∂4u

∂x2
1∂x2

2

+
∂4u

∂x4
2

= λ u(x), x ∈ Ω, (1)

subject to homogeneous Dirichlet boundary conditions

u(x) = 0 and
∂u

∂ν
(x) = 0, x ∈ Γ. (2)

Here ν is the outward unit normal vector to the boundary Γ. The problem
(1), (2) describes the eigenmodes of a vibrating homogeneous isotropic plate
with constant thickness and clamped boundary.

The differential equation (1) can be recast in mixed form as a system of equa-
tions of second order (often refered to as problem with two unknown fields,
cf., e.g., [4,15,17]):

−∆u = σ and − ∆σ = λ u, (3)

subject to the boundary conditions (2). It is well known that if the do-
main Ω has smooth boundary or Ω is convex polygonal domain then the
eigenvalue problem (3) has infinitely many solutions (λi, (σi, ui)) such that
σi = −∆ui, i = 1, 2, . . . (see, e.g. [7]) and 0 < λ1 ≤ λ2 ≤ . . . ↗ ∞.

If (λ, (σ, u)) is an eigenpair of (3) then (λ, u) is an eigenpair of (1), (2) and
σ = −∆u. Hence the regularity of (σ, u) can be inferred from the regularity
properties of the problem (1), (2). For regularity results for such problems we
refer to Grisvard [16] (Section 7, p. 301).

Canuto [1] and Ishihara [2] considered the finite element approximaton of
eigenvalues of the mixed problem (3) and derived estimates for the error of
the eigenvalue and eigenvector approximations by using the analysis of Brezzi
[4] and Miyoshi [5].

Further, Mercier, Osborn, Rapaz, and Raviart [6] developed an abstract anal-
ysis of the approximate eigenpairs using mixed/hybrid finite element methods
based on the general theory of compact operator (see also [8] and [7]). Fi-
nally, Canuto [9] and Rannacher [10] considered eigenvalue approximation for
fourth-order self-adjoint eigenvalue problems by non-conforming and hybrid
finite elements.

In recent years a variety of effective advanced procedures that control the er-
ror and enhance the accuracy have been developed and analyzed (see, e.g.,
[11–13]). Larson [11] has combined a-posteriori error estimates with a-priori
residual estimate. Xu and Zhou [12] have presented a two-mesh discretiza-
tion technique that uses two finite element subspaces for solving second-order
eigenvalue problems. Racheva and Andreev [13] have proposed a postprocess-
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ing strategy that increases the convergence rate for the numerical solution of
2m−order self-adjoint eigenvalue problems.

In this paper, using the ideas developed in [13], we extend the results applied to
the mixed finite element formulation of the biharmonic eigenvalue problem (3).
We derive and justify a postprocessing algorithm that allows us to get higher
order convergence for the postprocessed eigenvalues. The essence of the new
method is the following: (1) for a given finite element spaces solve the mixed
finite element eigenvalue problem and (2) solve one additional source problem
on an augmented space with a right hand side the obtained eigefunctions.
In our opinion, this new procedure is quite accurate and computationally
inexpensive since we replace the solution of eigenvalue problem on a finer
mesh or space of higher degree polynomials by an additional solution of a
source problem.

The paper is organized as follows. In Section 2 we introduce the necessary
notation and the weak mixed formulation of the boundary value problem (3).
Following Babuška and Osborn [7] we recast the weak form in an abstract
saddle-point form by introducing the real Hilbert spaces V , Σ and H . Fur-
ther, we introduce the finite element approximation of the weak mixed formu-
lation and review the main known results regarding error analysis. In Section
3 we first give motivation and introduce the main ideas for our method for
postprocessing. In Section 4 we present the postprocessing method and dis-
cuss its implementation. Finally, in Section 7 we give the results of numerical
experiments on two model problems.

2 Preliminaries and notations

The standard L2(Ω)-norm is denoted by ‖ · ‖0,Ω ≡ ‖ · ‖ ≡ ‖ · ‖L2(Ω). Also we
use the Sobolev spaces with integer k, Hk(Ω) and Hk

0 (Ω). The norms in these
spaces are denoted by ‖ · ‖k,Ω ≡ ‖ · ‖Hk(Ω) (see, e.g., [14,15]). The space Hk(Ω)
is the closure of all infinitely smooth functions defined on Ω in the Hk-norm.
Similarly the space Hk

0 (Ω) is the closure in the Hk-norm of all infinitely smooth
functions with compact support in Ω. Finally, the Sobolev spaces with non-
integer k are defined by the real method of interpolation [14]. If X, Y are two
normed spaces, for an operator A : X → Y its norm is defined in a standard
way: ‖A‖ = supw∈X{‖Aw‖Y /‖w‖X} (see, e.g. [7,8]).

The weak form of (3) is derived by multiplying the first equation of (3) by
ψ ∈ H1(Ω), the second equation by v ∈ H1

0 (Ω), and integrating by parts over
Ω so that ∫

Ω
∇σ · ∇v dx = λ

∫
Ω

uv dx,
∫

Ω
∇u · ∇ψ dx =

∫
Ω

σψ dx. (4)
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These identities are obviously well defined for u ∈ H1
0 (Ω) and σ ∈ H1(Ω) they

represent the week mixed form of the biharmonic eigenvalue problem.

Following Babuška and Osborn [7] we shall consider (4) as a particular case of
an abstract eigenvalue saddle point problem. The abstract form of an eigen-
value saddle point problem is related to three real Hilbert spaces V , Σ, and H
with inner products (·, ·)V , (·, ·)Σ, (·, ·)H, and norms || · ||V , || · ||Σ, || · ||H , and
two bilinear forms a(σ, ψ) and b(ψ, v) defined on H × H and Σ × V , respec-
tively. We assume that V ⊂ H and Σ ⊂ H . Babuška and Osborn (see e.g. [7]
p. 752) have studied the following problem: find (σ, u) ∈ Σ×V , (σ, u) �= (0, 0)
and λ ∈ R such that

−a(σ, ψ) + b(ψ, u) = 0, ∀ ψ ∈ Σ,

b(σ, v) = λa(u, v), ∀ v ∈ V.
(5)

This problem is studied in [7] under the following assumptions:
(A1): b(ψ, v) is defined on Σ × V and satisfies

|b(ψ, v)| ≤ C1||ψ||Σ ||v||V , ∀ψ ∈ Σ, ∀v ∈ V, (6)

sup
ψ∈Σ

|b(ψ, u)| > 0, ∀ 0 �= u ∈ V ; (7)

(A2): the bilinear form a(σ, ψ) is symmetric on H × H and satisfies

a(σ, ψ) ≤ C2||σ||H ||ψ||H, ∀ψ, σ ∈ H, (8)

a(σ, σ) > 0, ∀ 0 �= σ ∈ H. (9)

If we identify as H = L2(Ω), Σ = H1(Ω), and V = H1
0 (Ω) and

b(σ, v) =
∫
Ω
∇σ · ∇v dx and a(σ, ψ) =

∫
Ω

σ ψ dx,

then the weak form of (4) could be rewritten in the abstract form (5): find
(σ, u) ∈ Σ × V , (σ, u) �= (0, 0) and λ ∈ R such that

−a(σ, ψ) + b(ψ, u) + b(σ, v) = λa(u, v), ∀(ψ, v) ∈ Σ × V. (10)

The inner products (and the corresponding norms) in V, Σ, and H are:

(u, v)V =
∫
Ω
∇u · ∇v dx, (σ, ψ)Σ =

∫
Ω
(∇σ · ∇ψ + σψ) dx, (u, v)H =

∫
Ω

uv dx.

It follows from the definition that the bilinear form a(·, ·) coincides with the
inner product in H and therefore is symmetric and coercive on H . Similarly,
the bilinear form b(·, ·) is symmetric and coercive on V and therefore defines
an inner product that is equivalent to the inner product on V (i.e. on H1

0 (Ω)).
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In our case the conditions (6), (8) and (9) of the abstract problem are obviously
satisfied. We only need to check the condition (7). In fact, since V ⊂ Σ we
have even stronger inf-sup type inequality for b(·, ·):

sup
0�=ψ∈Σ

|b(ψ, u)|
‖ψ‖Σ

≥ sup
0�=ψ∈V

|b(ψ, u)|
‖ψ‖V

≥ |b(u, u)|
‖u‖V

= ‖u‖V , ∀ u ∈ V. (11)

If (λ, (σ, u)) is an eigenpair of (5) then (λ, u) is an eigenpair of (1), (2) and
σ = −∆u. Hence the regularity of (σ, u) can be inferred from the regularity of
the solution of the problem (1), (2) (see, e.g. Grisvard [16], Section 7, p. 301).

Remark 1 One can consider also other boundary conditions. For example,
the deformations of an isotropic plate with simply supported boundary will be
governed by the equation (1) with the boundary conditions

u(x) = 0 and
∂2u

∂ν2
(x) = 0, x ∈ Γ. (12)

If Ω is a polygonal domain then the second boundary condition in (12) essen-
tially reduces to ∆u = 0 on Γ and one can recast this problem in the following
weak form: find (σ, u) ∈ V × V , (σ, u) �= (0, 0) and λ ∈ R such that

−a(σ, ψ) + b(ψ, u) + b(σ, v) = λa(u, v), ∀(ψ, v) ∈ V × V. (13)

This formulation falls into the class of problems we consider. In fact, this is a
much simpler problem, since now both forms a(σ, ψ) and b(ψ, u) are symmetric
on H × H and V × V , respectively.

Now we shall consider the finite element approximation of the problem (5).
Let Th be a splitting of Ω into a finite number of finite elements (triangles or
quadrilaterals), which is quasiuniform and has characteristic size h. We assume
that Th satisfies the conditions of finite element triangulation (cf. Ciarlet [15],
p. 38). Associated with the triangulation Th we define the finite element spaces
Vh ⊂ V and Σh ⊂ Σ of piece wise polynomials of degree n (see, for example, [7],
p. 758). Since the finite element spaces are subspaces of H1(Ω) the functions
in Vh and Σh need to be continuous so n ≥ 1. Further, we shall need only the
approximation properties of these spaces. Namely, we assume that

inf
v∈Vh

{||u − v||0,Ω + h||∇(u − v)||0,Ω} ≤ Chn+1||u||n+1,Ω,

and
inf

τ∈Σh

{||σ − τ ||0,Ω + h||∇(σ − τ)||0,Ω} ≤ Chn+1||σ||n+1,Ω.

It is well known that the rate of convergence of a finite element approximation
to the eigenvalues and the eigenfunctions depends on the smoothness of the
exact eigenfunctions. For general domains, the eigenfunctions of the bihar-
monic problem belong to the space H2(Ω). Additional smoothness could be
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ensured for domains with smooth boundaries. In this case we need to use ei-
ther isoparametric finite elements that fit the domain exactly or finite element
subspaces Vh �⊂ V and Σh �⊂ Σ (see, e.g. [15,18]).

The goal of this paper is to design and justify a post-processing technique that
would allow us to achieve higher order convergence for both the eigenvalues
and eigenfunctions. The assumption that Ω is a convex polygonal domain on
one hand simplifies the exposition and makes the presentation of the main
ideas more transparent. On the other hand, its limits the regularity of the
eigenfunctions and makes the investigation of the convergence rates much
more difficult. It is well known (see, e.g. [16]) that for a given f ∈ L2(Ω) the
solution w of the corresponding biharmonic boundary value problem

∆2w = f in Ω, w =
∂w

∂n
= 0 on ∂Ω (14)

belongs to H3(Ω). More refined results regarding the smoothness for the solu-
tions of the first biharmonic boundary value problem could be obtained either
by employing weighted Sobolev spaces (see, e.g. [20]) or by using Sobolev
spaces of fractional order (e.g. [3,16]). For example, in [20] it has been shown
that if the largest interior angle of the boundary ∂Ω is less than 126.28o and
f ∈ L2(Ω), then w ∈ H4(Ω). Using interpolation of Banach spaces it has been
shown in [16] that if f ∈ L2(Ω) and Ω is a convex polygonal domain then
w ∈ H3+s(Ω), where 0 < s ≤ 1 is a constant that depends on the largest
interior angle of ∂Ω. For an easy procedure for finding s through the angle of
the domain Ω we refer to [3]. The regularity results for the source problem
(14) will lead to regularity of the eigenfunctions.

We define the approximation of the eigenpair (λ, (σ, u)) by the mixed finite
element method as λh ∈ R, (σh, uh) ∈ Σh × Vh such that a(uh, uh) = 1 and

−a(σh, ψ) + b(ψ, uh) + b(σh, v) = λha(uh, v), ∀(ψ, v) ∈ Σh × Vh. (15)

It has been shown (cf. [7], Theorem 11.4, p. 763, see also [1,6,17]) that if the
finite element spaces contain polynomials of degree n ≥ 2 and u ∈ Hn+1(Ω),
then

|λ − λh| ≤ C h2n−2‖u‖n+1,Ω, ‖u − uh‖0,Ω ≤ C hn‖u‖n+1,Ω (16)

and
‖u − uh‖1,Ω + h‖σ − σh‖0,Ω ≤ C hn‖u‖n+1,Ω. (17)

For polygonal domains the solution does not have the required in (16), (17)
regularity for n ≥ 3 and the estimate does not remain valid. For Ω a convex
polygonal domain and n ≥ 3 instead of (16) and (17) we have (see, e.g. [6])

|λ − λh| ≤ C h2+2s‖u‖3+s,Ω,

‖u − uh‖1,Ω + h‖σ − σh‖0,Ω ≤ C h2+s‖u‖3+s,Ω.
(18)
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Here 0 < s ≤ 1 depends on the maximal interior angle of the boundary ∂Ω
(see, e.g. [16,20]). For rectangular domains s = 1 and the error has optimal
convergence rate.

The case n = 1 is considered by Ishihara [19] who proved a convergence rate for

the eigenvalues and eigenfunctions of the form |λ−λh|+ ‖u−uh‖1,Ω = O(h
1
2 ).

Remark 2 The inequalities (16) and (17) show that for n = 2 the error
estimates of the mixed finite element approximation of the eigenvalues and
eigenfunctions of a fourth order problem are optimal with respect to both the
regularity of the solution and the order of approximation so that the conver-
gence rate for the eigenvalues is twice that of the finite element approximation
error in the energy norm. However, in the case of polygonal domains and finite
elements of degree higher or equal to three the convergence rate is limited due
to the limited regularity of the solution.

3 Postprocessing Technique: Motivation

We now present a relatively simple postprocessing procedure that gives better
accuracy for both eigenvalues and eigenfunctions. This postprocessing tech-
nique involves solving the original finite element eigenvalue problem using
piece wise polynomials of degree n and one additional source problem using
an enriched finite element space. We consider two possibilities, namely spaces
based on a much finer grid and spaces of piece wise polynomials of higher
degree, e.g., n + 1.

To motivate our approach we shall first study the corresponding source prob-
lem, namely, the mixed form of the elliptic problem with right-hand side
f ∈ L2(Ω): find (τ, w) ∈ Σ × V such that

−a(τ, ψ) + b(ψ, w) + b(τ, v) = a(f, v), ∀(ψ, v) ∈ Σ × V. (19)

The solution (τ, w) of this problem defines two component solution operators:

S : L2(Ω) → Σ, Sf = τ, T : L2(Ω) → V, Tf = w.

The solution (λ, (σ, u)) of the eigenvalue problem (5) will satisfy the following
relations expressed through the operators T and S: σ = λ Su and u = λ Tu.
Indeed, consider the problem (19) with f = λu, where (λ, (σ, u)) is the solution
of (5). In this case the solution of (19) is (S(λu), T (λu)) = (λSu, λTu), i.e.,

−a(λSu, ψ) + b(ψ, λTu) + b(λSu, v) = a(λu, v), ∀(ψ, v) ∈ Σ × V. (20)

Comparing (20) and (10) we see that (λSu, λTu) and (σ, u) are solutions to
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the same source problem. Because of uniqueness they coincide, i.e. σ = λ Su
and u = λ Tu.

Similarly, the corresponding finite element approximation: find (τh, wh) ∈ Σh×
Vh such that

−a(τh, ψ) + b(ψ, wh) + b(τh, v) = a(f, v), ∀(ψ, v) ∈ Σh × Vh,

defines the discrete component solution operators:

Sh : L2(Ω) → Σh, Shf = τh, Th : L2(Ω) → Vh, Thf = wh.

Obviously, the operators S, T, Sh, and Th satisfy the identities

−a(Sf, ψ) + b(ψ, Tf) + b(Sf, v) = a(f, v), ∀ ψ ∈ Σ, ∀ v ∈ V,

and

−a(Shf, ψ) + b(ψ, Thf) + b(Shf, v) = a(f, v), ∀ ψ ∈ Σh, ∀ v ∈ Vh.

In fact, (Shf, Thf) is the “Ritz projection” of (Sf, Tf) onto the finite element
space Σh × Vh and it satisfies the orthogonality condition

−a(Sf −Shf, ψ)+ b(ψ, Tf −Thf)+ b(Sf −Shf, v) = 0, ∀ ψ ∈ Σh, ∀ v ∈ Vh.

Now consider the operator T and the family of operators {Th} on the space
L2(Ω). It follows (see, e.g. Falk and Osborn [17]) that

‖Tf − Thf‖0,Ω = ‖w − wh‖0,Ω ≤ C h2‖Tf‖3,Ω.

The regularity result gives ‖Tf‖3,Ω ≤ C‖f‖0,Ω so we get

‖T − Th‖ = sup
f∈L2(Ω)

‖(T − Th)f‖0,Ω

‖f‖0,Ω
≤ C h2,

and consequently ‖T − Th‖ → 0 as h → 0.

Since the operator Th has a finite dimensional range, i.e. dimR(Th) < ∞, Th

is compact. The last convergence implies that T is also compact. Thus, the
eigenpairs (λ, (σ, u)) of (5) can be characterized in terms of operator T . This
means, that if (λ, (σ, u)) is an eigenpair of (5), then λTu = u, u �= 0, and
conversely if λTu = u, u �= 0, then there is a σ = S(λu), σ ∈ Σ, such that
(λ, (σ, u)) is an eigenpair of (5). Thus λ is an eigenvalue of (5) if and only if
λ−1 is an eigenvalue of T .

The operators T and Th are symmetric in the inner product defined by the
bilinear form a(·, ·). Indeed, for any u, v ∈ V we have the following sequence

8



of equalities:

a(u, Tv) = b(Su, Tv) (by the definition of the operator S)

= a(Su, Sv) (by the definition of the operator T )

= a(Sv, Su) (by the symmetry of the form a(·, ·))
= b(Sv, Tu) (by the definition of the operator T )

= a(v, Tu) (by the definition of the operator S)

= a(Tu, v).

A similar argument can be applied to the discrete problem. Thus, Th is sym-
metric in the inner product a(·, ·) and the approximate eigenvalues defined by
(15) can be characterized in terms of the eigenvalues of Th. Namely, λh is an
eigenvalue of (15) if and only if λ−1

h is an eigenvalue of Th. As shown by Falk
and Osborn [17] we also have

‖(T − Th)f‖1,Ω + h‖(S − Sh)f‖0,Ω + h2‖∇(S − Sh)f‖0,Ω ≤ Chn‖Tf‖n+1,Ω.
(21)

Assume that a solution (λh, (σh, uh)) of the mixed finite element problem (15)
is already found. We may then consider the elliptic problem (19) with a right-
hand side uh and solution (τ̃ , w̃) ∈ Σ × V :

−a(τ̃ , ψ) + b(ψ, w̃) + b(τ̃ , v) = a(uh, v), ∀ ψ ∈ Σ, ∀ v ∈ V. (22)

Using the operators S and T the solution of the problem (22) could be written
as (τ̃ , w̃) = (Suh, Tuh).

For the moment, assume that the solution (τ̃ , w̃) of (22) is available so we can
evaluate the number

λ̃ =
1

a(uh, Tuh)
=

1

a(uh, w̃)
. (23)

In the next theorem we show that λ̃ provides a good approximation to λ:

Theorem 3.1 Let (λ, (σ, u)) be an eigenpair of problem (5), and let also
(λh, (σh, uh)) ∈ R×Σh ×Vh be its finite element approximation obtained from
(15) assuming that the eigenfunctions are normalized by ‖u‖0,Ω = ‖uh‖0,Ω = 1.

Let λ̃ be computed by (23), where w̃ is the solution of (22). Then

|λ − λ̃| ≤ C ‖u − uh‖2
0,Ω. (24)

P r o o f. By taking into account the symmetry of the operator T in the inner
product defined by the form a(·, ·), the equality u = λTu, and the normaliza-
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tion of the eigenfunctions a(u, u) = a(uh, uh) = 1 we easily get

1

λ
− 1

λ̃
= a(u, Tu) − a(uh, Tuh)

= a(u, Tu) − a(uh, Tuh) + a(u − uh, T (u − uh)) − a(u − uh, T (u − uh))

= 2a(u, Tu) − 2a(uh, Tu) − a(u − uh, T (u − uh))

=
1

λ
a(u − uh, u − uh) − a(u − uh, T (u − uh)).

Since

a(u − uh, T (u − uh)) ≤ ‖u − uh‖0,Ω‖T (u − uh)‖0,Ω ≤ ‖T‖‖u − uh‖2
0,Ω

we get

|λ − λ̃| ≤ λλ̃
(

1

λ
+ ‖T‖

)
‖u − uh‖2

0,Ω ≤ C‖u − uh‖2
0,Ω.

The boundness of the operator T implies (24).

As a corollary of the above estimate (24) and the error estimates (16) we can
conclude that for n ≥ 2

|λ − λ̃| ≤ C h2n if u ∈ Hn+1(Ω),

which is a substantial improvement compared with the estimate (16).

For a convex polygonal domain Ω we get a slightly worst result for n = 3
(since we need to use (18))

|λ − λ̃| ≤ C h2(2+s) since u ∈ H3+s(Ω).

Recall that 0 < s ≤ 1 and depends on the maximal interior angle of the
boundary ∂Ω.

4 Postprocessing Technique: Algorithm

The above theorem is very useful from a theoretical point of view. However,
it is not very practical since the exact solution of the source problem (22) is
hardly ever available. To make it useful for computational practice we need
to appropriately approximate λ̃. Here we shall present and discuss two possi-
ble approaches. The first approach is the “two-grid method” of Xu and Zhou
introduced and studied in [12] for second order differential equations and in-
tegral equations. The second approach proposed and studied by Andreev and
Racheva in [13] uses the same grid but finite elements of higher degree.
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The first approach uses a finer grid (with mesh size h2) to get an approximation
of λ̃ with an error O(h2n). The advantage of this approach is that it uses
the same finite element spaces and does not require higher regularity of the
solution. The disadvantage is that we have to generate an order of magnitude
finer mesh. The second approach is based on the same finite element partition
T but using piece-wise polynomials of degree n + 1. Here we need to generate
the corresponding finite element matrices for higher degree polynomials. Also,
to get an approximation of λ̃ with an error O(h2n) in this case, we need higher
regularity of the solution u. For polygonal domains this approach could be
used for n = 2, 3 only.

We shall treat both approaches in the same abstract manner. Namely, we
introduce an additional finite element spaces of continuous functions Σ̃h × Ṽh

such that Σh × Vh ⊂ Σ̃h × Ṽh ⊂ Σ × V and consider the following discrete
elliptic problem (source problem): find (τ̃h, w̃h) ∈ Σ̃h × Ṽh such that

−a(τ̃h, ψ) + b(ψ, w̃h) + b(τ̃h, v) = a(uh, v), ∀ψ ∈ Σ̃h, ∀v ∈ Ṽh. (25)

The solution (τ̃h, w̃h) of this problem can be expressed as τ̃h = S̃huh and
w̃h = T̃huh, where S̃h and T̃h are solution operators related to the finite element
space Σ̃h × Ṽh.

Now we present a postprocessing algorithm which will give improved approx-
imations of the eigenvalues and eigenfunctions of the mixed problem (10).

Algorithm 4.1:

(1) Solve the eigenvalue problem (15) for λh ∈ R and (σh, uh) ∈ Σh × Vh.
(2) Solve the sorce problem (25) and find (τ̃h, w̃h) ∈ Σ̃h × Ṽh.
(3) Compute

λ̃h = a(uh, w̃h)
−1. (26)

(4) Evaluate ũh = λ̃h w̃h and σ̃h = λ̃h τ̃h.

The pair (λ̃h, (σ̃h, ũh)) represents a new (and better) approximations to (λ, (σ, u)).

In the next two sections we shall study the error in the eigenvalues and eigen-
functions defined by this algorithm for two particular choices of the spaces
Σ̃h × Ṽh outlined above.

5 Error estimates for the recovered eigenvalues

Below we establish the main results of this paper, namely estimates for the
approximate eigenvalues computed by Algorithm 4.1.
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Theorem 5.1 Let (λ, (σ, u)) be an eigenpair of the problem (5) and (τ̃h, w̃h))
and let λ̃h, (σ̃h, ũh)) be found by the Algorithm 4.1. If the eigenfunctions are
normalized by ‖u‖0,Ω = ‖uh‖0,Ω = 1, then

|λ − λ̃h| ≤ C
(
‖u − uh‖2

0,Ω + ‖τ̃ − τ̃h‖1,Ω‖w̃ − w̃‖1,Ω + ‖τ̃ − τ̃h‖2
0,Ω

)
. (27)

The constant C may depend on λ but is independent of h.

Pr o o f. We first note that |λ − λ̃h| ≤ |λ − λ̃| + |λ̃ − λ̃h|. The first term in
this inequality has already been estimated in (24), so to complete the proof
we only need to estimate the second term.

Using the definition of λ̃ and λ̃h and the properties of the operators T and T̃h

we have

1

λ̃
− 1

λ̃h

= a(uh, w̃) − a(uh, w̃h)

= [2b(τ̃ , w̃) − a(τ̃ , τ̃)] − [2b(τ̃h, w̃h) − a(τ̃h, τ̃h)]

= 2b(τ̃ − τ̃h, w̃ − w̃h) − a(τ̃ − τ̃h, τ̃ − τ̃h)

+2 [b(τ̃ − τ̃h, w̃h) − a(τ̃ − τ̃h, τ̃h) + b(τ̃h, w̃ − w̃h)]

= 2b(τ̃ − τ̃h, w̃ − w̃h) − a(τ̃ − τ̃h, τ̃ − τ̃h).

Here we have used the following orthogonality condition for the finite element
problem (25):

b(τ̃ − τ̃h, v) − a(τ̃ − τ̃h, ψ) + b(ψ, w̃ − w̃h) = 0, ∀ (ψ, v) ∈ Σ̃h × Ṽh

by choosing ψ = τ̃h and v = w̃h.

The above equality then leads to

|1
λ̃
− 1

λ̃h

| ≤ 2|b(τ̃ − τ̃h, w̃ − w̃h)| + |a(τ̃ − τ̃h, τ̃ − τ̃h)|

≤ 2‖τ̃ − τ̃h‖1,Ω‖w̃ − w̃h‖1,Ω + ‖τ̃ − τ̃h‖2
0,Ω,

which together with (24) completes the proof of (27).

A key point in Algorithm 4.1 is the construction of appropriate finite element
spaces Σ̃h and Ṽh for solving the discrete problem (25). Below we present two
practical approaches to this problem.

Method 1 (“two-grid method” of Xu and Zhou [12]): Let Σ̃h and Ṽh be spaces
of continuous functions that are piece wise polynomials of degree n on a mesh
T̃h with characteristic grid-size hβ with β > 1 (which will be chosen later).
This is a finer grid that could be generated by multilevel refinement of the
original grid Th (see, e.g. [12]).
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First, we consider the case when the problem (14) allows smooth solutions.
Our analysis is restricted to n ≤ 4 since H5(Ω) is the maximum regularity of
the solution w̃ of the problem (14) with a right hand side in H1(Ω). Choosing
β = n/(n − 1) and applying Theorem 5.1 and the error estimate (21) for w̃h

we get

|λ − λ̃h| ≤ C(‖u − uh‖2
0,Ω + ‖τ̃ − τ̃h‖1,Ω‖w̃ − w̃h‖1,Ω + ‖τ̃ − τ̃h‖2

0,Ω)

≤ Ch2n(‖Tu‖2
n+1,Ω + ‖Tuh‖2

n+1,Ω), n ≤ 4.

The above estimate is valid also for convex polygonal domains and spaces
involving polynomials of degree n = 2. In this case the solution is in H3(Ω)
and we can take β = 2 so that the rate of convergence in the eigenvalues is
O(h4). This is a significant improvement compared with the estimate (16),
which ensures a convergence rate of |λ − λ̃h| = O(h2).

For n = 3, 4 and Ω a convex polygonal domain, we use the estimate (18) to
get

|λ − λ̃h| ≤ C(‖u − uh‖2
0,Ω + ‖τ̃ − τ̃h‖1,Ω‖w̃ − w̃h‖1,Ω + ‖τ̃ − τ̃h‖2

0,Ω)

≤ C(h2(2+s)‖Tu‖2
3+s,Ω + h2β(1+s)‖Tuh‖2

3+s,Ω).

The parameter β is chosen appropriately in order to balance the terms in the
above inequality. We know that the solution is in H3+s(Ω), 0 < s ≤ 1. For a
known value of s we can choose β = (2 + s)/(1 + s). We can always choose
β = 2 (this is the worst case that leads to some extra work since the mesh is
finer) to get

|λ − λ̃h| = O(h4+2s) for u ∈ H3+s(Ω), 0 < s ≤ 1.

This estimate is an improvements of the error estimate for the eigenvalues,
namely, we get convergence rates O(h4+2s) instead of O(h2+2s). This improve-
ment is at the cost of solving an additional source problem on a finer mesh
with characteristic mesh-size h2. Although this involves significant additional
work, the solution of the source problem is much cheaper than solving the
eigenvalue problem on a finer mesh that will ensure the same convergence
rate.

Method 2 (“two space” method of Andreev and Racheva [13]): Let Σ̃h and
Ṽh be spaces of continuous functions that are piece wise polynomials of degree
n+1 on the same mesh Th. If the problem (14) has solution in Hn+2(Ω), then
the error estimate (21) for the approximation (26) gives

|λ − λ̃h| ≤ Ch2n(‖Tu‖2
n+1,Ω + ‖Tuh‖2

n+2,Ω), n = 2, 3.
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The restriction n ≤ 3 represents the maximum regularity we can get for the
solution of the source problem (22) with the right hand side uh ∈ H1. This is
an improvement over (16) which ensures convergence rate of O(h2n−2).

For Ω a convex polygonal domain it only makes sense to apply this approach
for n = 2. Then the spaces Vh, Σh, and Ṽh, Σ̃h contain polynomials of degree
2 and 3, respectively. Taking into account (18) we get

|λ − λ̃h| ≤ C(h4‖Tu‖2
3,Ω + h2+2s‖Tuh‖2

3+s,Ω).

Here 0 < s ≤ 1 depends on the maximal interior angle of the boundary Γ. The
estimate (16) for piece wise quadratic finite elements ensures |λ− λ̃h| = O(h2).
The improvement that we get, an error estamte |λ − λ̃h| = O(h2+2s), costs
solving one source problem on the same grid with piece wise cubic elements.

6 Error estimates for the recovered eigenfunctions

We now present a postprocessing technique for biharmonic eigenfunctions.
First, we define an approximation (ũ, σ̃) of the exact eigenfunctions (u, σ) by

ũ = λ̃h w̃ := λ̃h Tuh, σ̃ = λ̃h τ̃ := λ̃h Suh. (28)

Theorem 6.1 Let the assumptions of Theorem 3.1 be satisfied. Then the fol-
lowing estimate is valid for ũ and σ̃ defined by (28):

|u − ũ|21,Ω ≤ ‖σ − σ̃‖2
0,Ω = |λ̃h − λ| + ‖u − uh‖2

0,Ω +
λ̃h

λ̃
|λ̃h − λ̃| (29)

P r o o f. We begin with the identity:

a(σ − σ̃, σ − σ̃) = −a(σ − σ̃, σ − σ̃) + 2b(σ − σ̃, u − ũ)

= [−a(σ, σ) + 2b(σ, u)]

+2[a(σ, σ̃) − b(σ̃, u) − b(σ, ũ)]

[−a(σ̃, σ̃) + 2b(σ̃, ũ)].

(30)

Now we transform the terms in the brackets. First, using (10) with (ψ, v) =
(σ, u) we get

−a(σ, σ) + 2b(σ, u) = λa(u, u) = λ. (31)

Taking into account the definition of (σ̃, ũ) by (28) we also obtain

a(σ, σ̃)−b(σ̃, u)−b(σ, ũ) = λ̃h [a(σ, τ̃) − b(τ̃ , u) − b(σ, ũ)] = −λ̃h a(uh, u) (32)
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and

−a(σ̃, σ̃) + 2b(σ̃, ũ) = λ̃2
h [−a(σ, τ̃ ) + 2b(τ̃ , w̃)] =

λ̃2
h

λ̃
. (33)

Inserting (31), (33), and (32) into (30) we get the equality:

a(σ − σ̃, σ − σ̃) = λ − 2λ̃ha(uh, u) +
λ̃2

h

λ̃

= [λ − λ̃h] + λ̃h[2 − 2a(uh, u)] +
[

λ̃2
h

λ̃
− λ̃h

]

= [λ − λ̃h] + λ̃h‖u − uh‖2
0,Ω + λ̃h

λ̃
[λ̃h − λ̃],

(34)

which gives the estimate for ‖σ − σ̃‖0,Ω.

To show the estimate for u− ũ we use the identity b(ψ, u− ũ) = a(σ− σ̃, ψ) for
ψ ∈ Σ, the inf-sup condition (11), and the estimate for ‖σ − σ̃‖0,Ω to obtain

‖u − ũ‖1,Ω ≤ sup
ψ∈Σ

|b(ψ, u − ũ)|
‖ψ‖Σ

≤ sup
ψ∈Σ

|a(σ − σ̃, ψ)|
‖ψ‖Σ

≤ ‖σ − σ̃‖0,Ω.

As a corollary or this theorem we can get estimate for the eigenfunctions.
Namely, we consider ũh = λ̃hw̃h = λ̃hT̃huh and σ̃h = λ̃hτ̃h = λ̃hS̃huh as
new approximations of the eigenfunctions (u, σ). If in Σ̃h × Ṽh we choose
polynomials one degree higher than those of the spaces Σh × Vh or a spaces
on a finer grid in case of smooth solutions we get the estimate (after applying
triangle inequality and the estimate (29))

‖σ − σ̃h‖2
0,Ω ≤ ‖σ − σ̃‖0,Ω + ‖σ̃ − σ̃h‖0,Ω ≤ Chn‖u‖n+1,Ω.

Since this is an improvement for σ only we shall not elaborate further on this.

7 Numerical Results

The efficiency of the postprocessing algorithm is illustrated on two simple
model problems. The exact eigenvalues and eigenfunctions are know and the
eigenfunctions in both examples are smooth. Therefore, there are no restric-
tions concerning the regularity.

To find the approximate eigenpairs (λj,h, (σj,h, uj,h)), j = 1, 2, 3, 4 we have
used the method of subspace iteration (e.g. [21], p. 288).

Example 1. The first example represents a model problem of a long thin bar
of length l with unit flexural rigidity and density which is simply supported
at its endpoints. The natural frequencies of the bar are determined by the
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eigenvalues of the following problem:

uIV (x) = λ u(x), x ∈ (0, l), u(0) = u′′(0) = 0, u(l) = u′′(l) = 0. (35)

When l = 1, the exact solutions are:

λj = π4j4, uj(x) =
√

2 sin πjx, σj(x) = −
√

2(πj)2 sin πjx, j = 1, 2, . . . ,

where the eigenfunctions are normalized a(uj, uj) = 1. For convenience we
give the first four eigenvalues with 8 significant digits:

λ1 = 97.409091, λ2 = 1558.5454, λ3 = 7890.1363, λ4 = 24936.727.

The numerical results presented in Table 1 and Table 3 have been obtained
by using the mixed finite element method on uniform partitions consisting of
one-dimensional (beam) elements. The spaces Vh and Σh contained C0 piece-
wise quadratic polynomials, i.e. n = 2, while the solution of the corresponding
elliptic source problem used finite element spaces Ṽh and Σ̃h defined on the
same mesh and contained continuous piece wise cubic polynomials.

Table 1: Error for |λj − λj,h| for Problem (35):

# elements j = 1 j = 2 j = 3 j = 4

16 4.01 × 10−4 1.02 × 10−1 2.58 25.6

32 2.51 × 10−5 6.42 × 10−3 1.64 × 10−1 1.63

64 1.57 × 10−6 4.02 × 10−4 1.03 × 10−2 1.03 × 10−1

128 9.83 × 10−8 2.51 × 10−5 6.44 × 10−4 6.43 × 10−3

Table 2: Error for |λj − λ̃j,h| for Problem (35):

# elements j = 1 j = 2 j = 3 j = 4

16 5.47 × 10−7 5.44 × 10−4 2.98 × 10−2 4.97 × 10−1

32 8.63 × 10−9 8.76 × 10−6 4.99 × 10−4 8.69 × 10−3

64 1.36 × 10−10 1.38 × 10−7 7.93 × 10−6 1.40 × 10−4

128 2.13 × 10−12 5.42 × 10−9 4.93 × 10−8 7.25 × 10−5

In Table 2 and Table 4 we present the error of the first four eigenvalues and
eigenfunctions respectively using the mixed method with the postprocessing
procedure. It is readily seen that a considerable acceleration of convergence
due to the postprocessing arises on the coarse mesh, i.e. on the mesh with 16
or 32 finite elements.
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Table 3: Error
(
‖uj − uj,h‖2

1,Ω + ‖σj − σj,h‖2
0,Ω

) 1
2 for Problem (35):

# elements j = 1 j = 2 j = 3 j = 4

16 4.29 × 10−3 1.37 × 10−2 1.04 × 10−1 4.37 × 10−1

32 1.13 × 10−3 9.18 × 10−3 3.31 × 10−2 1.03 × 10−1

64 2.82 × 10−4 2.27 × 10−3 7.79 × 10−3 2.34 × 10−2

128 7.05 × 10−5 5.65 × 10−4 1.92 × 10−3 5.54 × 10−3

Table 4: Error
(
‖uj − ũj,h‖2

1,Ω + ‖σj − σ̃j,h‖2
0,Ω

) 1
2 for Problem (35):

# elements j = 1 j = 2 j = 3 j = 4

16 1.36 × 10−4 2.28 × 10−3 1.37 × 10−2 5.57 × 10−2

32 1.70 × 10−5 2.76 × 10−4 1.56 × 10−3 6.37 × 10−2

64 2.27 × 10−6 1.01 × 10−4 8.19 × 10−4 2.33 × 10−3

128 1.53 × 10−7 2.25 × 10−5 3.17 × 10−5 2.05 × 10−4

Example 2. We consider the two-dimensional biharmonic eigenvalue problem

∆2u = λu in Ω, u = ∆u = 0 on Γ, (36)

where Ω = (0, 1) × (0, 1) and Γ ≡ ∂Ω. This problem has been discussed
in Remark 2.1 and its mixed weak formulation is presented in (13). The
exact eigenvalues of this problem can be calculated by the formula λ =
(l2 + m2)2π4, l, m ∈ N, while the corresponding eigenfunctions, normalized
by a(u, u) = 1, are u(x, y) = 4 sin lπx sin mπy.

Thus the first four eigenvalues and corresponding eigenfunctions are

λ1 = 4π4 = 389.6363641, u1 = 4 sin πx sin πy, (l = 1, m = 1),

λ2 = 25π4 = 2435.227276, u2 = 4 sin πx sin 2πy, (l = 1, m = 2),

λ3 = 25π4 = 2435.227276, u3 = 4 sin 2πx sin πy, (l = 2, m = 1),

λ4 = 64π4 = 6234.181826, u4 = 4 sin 2πx sin 2πy, (l = 2, m = 2).

In Table 5 we show the eigenvalues, calculated by the mixed method on uni-
form rectangular mesh. Σh and Vh are the space of continuous functions that
are biquadratic over the finite elements. For the postprocessing method given
by Algorithm 4.1 we use as Σ̃h and Ṽh the space of continuous functions that
are bicubic over the rectangular finite elements. For solving the algebraic eigen-
value probelm we use the method of subspace iterations [21]. Based on Table
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6 one may conclude that it is not very reasonable to use postprocessing for the
first eigenvalue and first eigenfunction. Also, if we are going to use postpro-
cessing, it is sufficient the mixed method to obtain an approximate solution on
a coarse mesh with small number of iterations. Note that the postprocessing
decreases the values of λj,h.

Table 5: The approximate eigenvalues of Problem (36) computed by the
mixed FEM

elements λ1,h λ2,h λ3,h λ4,h

9 391.6563 2522.890 2522.890 6510.286

16 390.8524 2465.127 2465.127 6416.349

25 390.0355 2447.942 2447.942 6324.614

Table 6: The approximate eigenvalues of Problem (36) computed by
postprocessing Algorithm 4.1

elements λ̃1,h λ̃2,h λ̃3,h λ̃4,h

9 390.1023 2450.109 2464.251 6412.786

16 389.8916 2441.264 2444.357 6328.817

25 389.6961 2434.270 2435.012 6244.637

8 Remarks and Conclusions

Comparing the results proved in the previous sections as well as the numerical
result for the eigenvalues and corresponding eigenfunctions of the mixed vari-
ant of the first biharmonic eigenvalue problem so-called ”optimal” case (see
[1,5–7]) we see that higher order accuracy could be extracted using a relatively
simple postporcessing technique.

Our approach is easily extended to various other problems, such as:

• One dimensional problems with various boundary conditions, for example:
uIV (x) = λ u(x), x ∈ (0, l), u(0) = u′(0) = 0, u′′(l) = u′′′(l) = 0. This
problem easily falls into the class of problems considered in this paper.

• Plates with variable density. Namely, the term λu in (1) is replaced by λρu,
where ρ is a strictly positive and bounded function on Ω.

• Eigenvalue value problem ∆2u = λ∆u, in Ω, u = ∂u
∂n

= 0, on Γ, which has
been considered in [6].

We note that linear finite elements (i.e. n = 1) are rarely applied to mixed
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biharmonic problems (see Ishihara [2,19]). The rate of convergence for the

eigenfunctions in any Sobolev norm ‖ · ‖k,Ω, k = 0, 1, 2 is O(h
1
2 ) (see, e.g.,

[19]). Our postprocessing method could be applied to this case as well and
will be discussed in a separate paper.
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