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Abstract

We use an iterative finite element procedure, formulated in the space-frequency domain, to simulate
the propagation of waves in a partially saturated heterogeneous poroviscoelastic sandstone. The
Biot-type model takes into account capillary forces and viscous and mass coupling effects between
the fluid phases under variable saturation and pore fluid pressure conditions. This formulation
leads to a Helmholtz—type boundary value problem for each temporal frequency, and the time—
domain solution is obtained by a numerical inverse Fourier transform. Heterogeneities due to fluid
distribution patterns and rock porosity-permeability are assumed to be stochastic fractals with
spectra in the wavenumber domain that reproduce fluid distribution patterns and permeability
variations similar to those observed in laboratory measurements. The two immiscible fluids (gas-
water in this case) are assumed to flow simultaneously within the poral space in what is known
as the funicular regime, and the model takes into account the capillary forces at the water-gas
interfaces. The fluid distribution is assumed to occur in the form of regions of either high gas
saturation (gas pockets) or high water saturation, in what is known as patchy distribution of
fluids. The numerical experiments are performed at a central ultrasonic frequency of 500 kHz, and
show clearly the effects of the various heterogeneities in the wave amplitudes and patterns at the
different interfaces.

*Also Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana,
47907-2067, USA.
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1. Introduction

During the past few years an important number of theoretical and experimental studies
have demonstrated the significant influence that spatial heterogeneities within porous rocks
have on elastic moduli, seismic wave velocities and other related quantities. In the context
of hydrocarbon exploration, understanding the relation between the seismic response, the
distribution pore fluids and the petrophysical properties may provide useful information
about the reservoir.

As pointed out in [1], the heterogeneous nature of porous rocks often results in the
heterogeneity of fluid distribution on scales greater than pore or grain size. In a rock
saturated by immiscible fluids (such as water and gas) at macroscopic scales two simplified
models of fluid distribution are generally considered in most published works in the subject:

(i) the proportion of both fluids within the pores is the same everywhere, i.e. homoge-
neous saturation, and

(ii) the fluids are arranged in patches, i.e, macroscopic regions (which may include thou-
sands of grains), fully saturated with one of the two fluids.

However, these must be considered as limiting cases since saturation usually exhibits
irregularities of different scale and in most cases there exists a residual saturation [2] as well
as capillary forces. In many cases the existence of patchy saturation in reservoir sandstones
is closely related with variations in lithology and clay content, which may cause small effects
on elastic properties but have a very important influence on permeability and capillary
pressure curves [1, 3].

The computation of bulk elastic moduli and compressional wave velocities for this sit-
uation was studied by different authors by means of empirical relations [4] and effective
medium theories. This latter approach is generally based in the validity of Gassmann’s
equations [5] within each patch under the assumption that their characteristic length is sig-
nificantly smaller than a wavelength [6, 1]. It is also assumed that the fluids are distributed
in patches of 100% saturation of either gas or water.

Using a different approach, White [7] analyzed the physics of wave propagation through
patchy partially-saturated porous media using Biot’s theory [8]. This model considers spher-
ical gas pockets embedded in a water-saturated porous medium. White found that one of
the main attenuation/dispersion mechanisms is the conversion of fast P wave to slow modes,
diffusive or wave-like, depending on the frequency range. Two other important mechanisms
are the Biot loss, generally occurring beyond the sonic frequency range, and scattering at-
tenuation, whose relaxation frequency depends on the size of the patches and frequency
content of the source. The simulation of acoustic wave fields in this kind of media was
recently treated in [9],[10].

While the analysis of the acoustic response of reservoir rocks for heterogeneous saturation
has been studied by different authors, to our knowledge, the influence of spatially variable
petrophysical properties on the wave fields has not received much attention yet. This
encouraged us to develop a numerical model to investigate the influence of all these type of
heterogeneities on wave propagation in porous saturated reservoir rocks.

The use of stochastic fractals for the statistical description of variable scale hetero-
geneities arising in porous media has become widely accepted for flow studies and reservoir
simulations [11, 12]. This approach will be adopted to model the spatial variability in
saturation and porosity-permeability.

Our model is based on a generalization of Biot’s theory [8, 13, 14] for porous rocks
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saturated by two immiscible fluids [15, 16, 17]. It takes into account the existence of capillary
forces at the pore scale, assuming that each fluid phase has a continuous distribution within
the tortuous pore space and that both fluids can flow (funicular saturation regime). The
formulation includes viscous and mass coupling interaction coefficients between the solid
and fluid phases under variable saturation and pore fluid pressure conditions and frequency
dependent dissipative effects associated with viscous forces and viscoelasticity. This theory
predicts the existence of one shear wave and three compressional waves (one fast and two
slow compressional waves). It has been found that for the low frequency range, the two
slow modes are diffuse waves due to viscous effects and for very high frequencies, such as
those used in laboratory testing, these two modes behave as propagating waves [15, 16].

The numerical modeling of wave propagation in dissipative media can be efficiently done
in the space—frequency domain because the solution at a given time can be obtained without
the knowledge of the time history of the system. Following the ideas given in [18, 19, 20, 21]
the space-frequency domain solution is computed for a finite number of temporal frequen-
cies, and the space-time domain solution is obtained via an approximate inverse Fourier
transform. The numerical procedure is an iterative nonoverlapping domain decomposition
algorithm specifically designed for implementation in parallel architectures; [22, 23, 24, 21].
To approximate the displacement vectors we use a nonconforming rectangular finite ele-
ment [25] for the solid phase and the vector part of the Raviart-Thomas-Nedelec mixed
finite element space of order zero for the two fluid phases, which are conforming spaces, see
[26, 27]. This algorithm is applied to perform numerical experiments in a real sandstone
saturated by two fluids (gas—water). In previous works we dealt with homogeneous models
[28, 29, 30], in which we verified numerically the propagation of fast and slow waves in this
kind of media.

The structure of the paper is as follows. First, we give a brief description of the model
and the equations of motion and formulate the iterative finite element procedure. Next
we perform numerical experiments to analyze the partition of wave energy at the plane
interfaces defined by an abrupt change in fluid saturation and by a jump in porosity-
permeability. Then we consider the cases of patchy saturation distribution and fractal
porosity-permeability, using different degrees of heterogeneity. The analysis of the snap-
shots obtained at ultrasonic frequencies indicate that important wave mode conversions and
scattering effects take place at the plane interfaces and at the heterogeneities defined by
the patchy fluid distribution and the fractal porosity-permeability fields. The attenuation-
dispersion effects are function of the correlation length and the level of heterogeneity present
in the rock. We also found a clear correlation between the location and size of gas patches
and amplitude maxima of the wavefronts.

2. Description of the model

In a porous solid saturated by two immiscible fluids, we consider a wetting phase and a
non-wetting one, which will be indicated with the subscripts (or superscripts) “w” and “n”,
respectively. Let S, and S,, denote the averaged wetting and non-wetting fluid saturations,
respectively, with S,, and S, being the corresponding residual saturations, whose physical
significance is as follows. S, is the amount of wetting fluid that will always remain in the
pore space even at very high capillary pressures when the wetting fluid is being displaced

by the nonwetting fluid (drainage regime). On the other hand, when the nonwetting fluid
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is being displaced by the wetting fluid (imbibition), at zero capillary pressure a certain
amount S, of nonwetting fluid remains; this is the residual saturation of the nonwetting
fluid. At S, < S;,, the nonwetting phase ceases to flow [31].

We assume that the two fluid phases completely saturate the porous part of the bulk
material so that S,, +.5,, = 1. We further assume that the flow is in the funicular saturation
regime, in which each fluid phase occupies a continuous network of tortuous (funicular) paths
where simultaneous flow of both fluids is possible, so that S, < S, <1 — S, [31, 32, 33].
Let w®, u™, and u” be the Fourier transform of the averaged displacement vectors for the
solid and fluid phases at the angular frequency w.

The governing equations for wave propagation in the space—frequency domain as given
in [29] are:

—w? (pu’® + pp Spu™ + py Sy u®) — V- 7(u) = f°, (2.1)
—w? (pn Snt® + gn U™ + gnw u®) +iwdp U™ — iw dpy u® + VTa(u) = 7, (2.2)
—w? (P S U® + G U™ + gu u?) + 1w dy u¥ — iw dpyy u" + VTop(u) = f2. (2.3)

Here S,, and S,, denote the reference fluid saturations while f*, f* and f* represent the
external source in the solid and fluid phases , respectively. The coefficient p is the density
of the bulk material given by p = (1 — ¢)ps + ¢ (Sppn + Swpw), ¢ is the matrix effective
porosity, ps is the mass density of the solid grains and p, and p,, are the mass densities of
the two fluids.

The mass coupling coefficients g,,, g, gnw represent the inertial effects associated with
dynamic interactions between the three different phases, while the coefficients d,, d,,
and d,,, include the viscous coupling effects between the solid and fluid phases. Let K,
Kin(Spn), Krw(Sp) and Ky (Sy) denote the absolute and relative permeability functions,
respectively and set A = K (K Kpyy — K2,0,) s An = Krw/A, Aw = Kpn/A. Then we
take these coefficients to be of the form:

gi(w) = G S/ b+ w(8)* AiFr(0)/w, di(w) = w(8)* AFr(6), 1= mn,w,
g () = €0 (pnpwSnSw)7 /6 + (nti)® SnSuwKrnuFr (6w /(@A) (2.4)
(@) = (tn ) ? S S Ko Pt (O | A

The constants py,, i, are the fluid viscosities and G = % (1 + %—5) . The complex valued fre-

quency dependent function F(6;) = Fr(6;)+iF1(6;), l = n,w, nw is the frequency correction
function defined by Biot [13] in the high—frequency range:

6,T(6;) _ ber'(6;) + ibei (6;)

1
=-——F—— T(6)= —,
41— %T(Gl) (6) ber(6;) + ibei(6;)

F(6,)

with ber(#;) and bei(f;) being the Kelvin functions of the first kind and zero order and

0, = aﬁ,\/w o1/ s a:f, = 24/K K, Ay/¢, where Ay denotes the Kozeny-Carman constant
[34, 29].

Let P, and P, denote infinitesimal changes in the pressures of the wetting and non-
wetting fluids, respectively, with respect to corresponding reference values P,, and P,
associated with the initial equilibrium state with corresponding nonwetting fluid saturation
Sp. Recall that P, and P, are related through the capillary relation [31, 32, 33]

P.o(Sn) = Py + P, — (Py + Py) = Pua(Sy) + P — Py > 0. (2.5)



Ultrasonic waves in rocks with patchy saturation and fractal properties 5

Based on experimental data and ignoring hysteresis, the function P, is a positive and
strictly increasing function of the non-wetting fluid saturation. The stress-strain relations
are given by Ravazzoli et al. [17]:

7ij(u) = 2N €45 + ij(Acep — B1 " — Ba €Y),
To(u) = (Sn+B+C¢) Py — (B+¢) Py =—Brepy + M1 £" + M3 ¥,
Tw(w) = (Sw +¢) Py —CP, = —Boey + M3&" + My &Y, (2.6)

where 7, T,, and T, are the generalized stresses of the system, 8 = P.,(S,)/Ply(Sn), ¢ =
P,/P.(S), eij and ey = g;; are the Fourier transforms of the strain tensor of the solid and
its linear invariant, respectively and ¢/ = —V - uf for 0 =n,w.

The coefficients N, A., By, Ba, M1, M2, M3 are the elastic moduli of the medium, and can
be determined as follows. The coefficient N is the shear modulus of the dry rock, while
Ae = K. — %N in 3D space and A\, = K. — N in 2D space, with K, being the undrained
bulk modulus. Following [16] K, is computed using the formulae

K.=Ks(Km +E)/(K; +E), E= Kf(Km _KS)/Q_S(Kf - K5),
Ky=a (7'§ncn + chw)_l , a=1+(S,+p8)(v—1),

v = (14 Py(8,)5155C0) (1 + PLy(5,)505,Cn) ", (2.7)
where K,,, K;, K, and K,, are the bulk modulus of the empty matrix, the solid grains and
the nonwetting and wetting fluid phases, respectively, with corresponding compressibilities
C = Kl_l, l=m,s,n,w.

The remaining coefficients can be obtained by using the following relations:
By = xK[(Sn+B)y =B+ (v —1)¢], B2 =xKc[(Sw+ (1 —7)C], (2.8)
M1 = —M3 — BlCmé’l, M2 = (’f‘BQ -+ C)qil, M3 = —M2 — BQCm(Sil, (29)

with

X = [5 + d_’(cm - CC)] {0‘ [(5 + d_’(Cm - Cf)]}i1 , 4= q_5 (Cn + 1/Péa(gn)gngw) ’
r= (Sn + /B)Cs + (Cc - Cm) [qB? + (Sn + /8) (1 - CSCC_I)] ’ 0= CS - Cm'

To introduce viscoelasticity we use the correspondence principle stated by M. Biot [14, 35],
i.e. we replace the real poroelastic coefficients in the constitutive relations by complex
frequency dependent poroviscoelastic moduli satisfying the same relations as in the elastic
case, with some necessary thermodynamic restrictions. In this work we use the linear
viscoelastic model presented in [36] to make the undrained bulk modulus K, and the shear
modulus N complex and frequency dependent, while all other coefficients in (2.6) are real.
Thus, we take
* *
= KC, , N(w) = N . .
Ry (w) — iTk, (w) Ry (w) — TN (w)

The coefficients K} and N* are reference values of the closed bulk and shear moduli properly

K (w)

(2.10)

chosen to fit high frequency velocities usually measured in laboratory. The functions R; and
T, Il = K., N, associated with a continuous spectrum of relaxation times, characterize the
viscoelastic behaviour and are given by [36, 37]

1 14 w?T? 9 -
n 2 12,l’ Ty(w) = — tan™! w( 1512 2,1).
@ l+w T2,l T 1+ w?Ty Ty,
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The model parameters @l, Ty, and Ty are taken such that the quality factors Q;(w) = T;/R;
are approximately equal to Ql in the range of frequencies where the equations are solved,
which makes this model convenient for geophysical applications.

The plane wave analysis performed in [15] shows that in these type of media, three
different compressional waves (P;, P, and Ps) and one shear wave (or S-wave) can propagate.
The P, wave is the classical fast P-wave propagating in elastic or viscoelastic isotropic solids,
while the P, and P3 waves are slow waves strongly attenuated in the low frequency range,
corresponding to motions out of phase of the solid and fluid phases. In the high-frequency
range they become truly propagating modes.

For simplicity in notation, the spatial dependency of all coefficients is omitted through-
out the text. However in the numerical applications we will consider spatial variations
in saturation, porosity and permeability, which induce heterogeneity also in bulk density,
elastic moduli, mass coupling and viscous drag coefficients. This in turn produces local vari-
ations in phase velocities and intrinsic attenuation, modifying the patterns of wave energy
propagation.

3. The domain decomposition iteration

We consider the solution of equations (2.1)—(2.3) in a rectangular poro-viscoelastic do-
main (2 in the (z, z)-plane using a domain decomposition procedure. Let N be a nonover-
lapping partition of € into rectangles Q; of diameter bounded by h such that Q = U 19,
Set I'; = 002N 0Q;, T'jp, = 0Q; N 0K, and denote by ¢; and &;;, the midpoints of I‘ and
[k, respectively. Let us denote by vj;, the unit outer normal on I'j; from €2; to and by
vj the unit outer normal to I';. Let x; and x;jx be two unit tangents on I'; and I'j;, so that
{vj,x;} and {vi, x;r} are orthonormal systems on I'; and I'jj, respectively.

Let the positive definite mass matrix P € R®*% and the nonnegative dissipation matrix
C € R%%6 be defined by

ol Supnl Swpwl oI oI 0I
P = '?npnI gnl gn,wI ) C=| 01 dnl _dn,wI )
Swpwl  gnwl  gul 0I —dpuwl  dyl

where I denotes the identity matrix in R%2*2. Also set F = (f%, f™, f%) and for u =
(u®,u™, u") let L£(u) be the second order differential operator defined by

L(u) =A{V - 7ij(u), =V Tu(u), =V Tu(u)} .

Then we seek the solution of our differential problem over each subdomain €2; as follows:
for j =1,---,J, find uj(z, z,w) such that

—wPuj +iwCuj — L(uj) = Fi(z,z,w), (z,2,w) € Q; x (0,w*), (3.1)

with w* an upper temporal frequency of interest. Problem (3.1) needs a set of boundary
conditions chosen as indicated below. Set

gj(uj) (T(uj) Vj,T('U/j)Vj'Xj,_m(uj),_%(uj)), (.Z‘,Z) Erj
Gin(ug) = (7(u)Vjk - Vik, T(uj)Vik - Xjk> = Tnl(ug), —Tw(us)), (x,2) € Tjk,
Hp] ug) = (U] vy, U XU Vg, U -1/]-) (z,2) €Ty,

(u Uk, WS Xjks Ug * Vik, g ng) (r,2) € Tji.
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If ©2; has a part I'; of its boundary contained in Jf2, we impose the absorbing boundary
condition (see [38])

_gj(uj) = iWBHFj (U’j)a (‘Ta z) € F]‘, (32)

p 0 Supn Suwpw K:+N* 0 By B
0 P 0 0 0 N 0 0
M = — ) 5 — )
k?npn 0 dn Inw By 0 M; M;
wPw 0 gnw Juw By 0 M; M,

p=p— (gw (pngn)2 + gn (pwgw)2 - 2gnwpn5npwgw) /(n Gw — gr%w)'

Furthermore, as in [24, 21], at the interior interface I'j; we use the Robin transmission
boundary conditions:

Gik(uj) +iwBirkIlr,, (uj) = Grj(ug) — iwBjrllr,, (ur), (z,2) € Tjp C 08, (3.3)
Grj(uk) +iwBjkllr,; (up) = Gjk(us) — iwBrllr;, (us), (2,2) € Ljx C 0. (3.4)

Here ;) is a positive definite matrix function defined on the interior boundaries I';;. The
Robin transmission conditions (3.3)—(3.4) impose the continuity of the solid displacement,
the normal component of the fluid displacements and the generalized stresses at the interior
interfaces I'jz. The spatial discretization is performed as follows. To approximate each
component of the solid displacement vector we employ the nonconforming finite element
space as in [25], while to approximate the fluid displacement vectors we choose the vector
part of the Raviart-Thomas-Nedelec space [26, 27] of zero order. More specifically, set

R=[-1,1>,  V(R)=Span{l,%,7,0(z) - 0(2)}, 6(z)=7"— gf‘*-

with the degrees of freedom being the values at the midpoint of each edge of R. Also, if
Pl(F) = -1+ 7, vB@) =7, vB(2) = —1 + 2, ¥1(2) = 2, we have that

W(R) = Span{($"(%),0), (4"(2),0), (0,4 (2)), (0,4 (2))}-

For each €2, let Fo, : R— {2; be an invertible affine mapping such that Fo;, (E) =, and
define

VJ’-L = {v = (v1,v2) : v; =; 0 Féjl, v; € 17(1/'1\’), i=1,2},

th ={w: w:@oF@l, @ € W(R)}.
Next, following [25, 24, 21], we introduce a set of Lagrange multipliers 7, = (77;'1’:’ n;kx, 1> — M%)
associated with the values of the generalized forces at the mid points £;; of I'j; in the sense

that n;x ~ G;x(U;)(&x). The Lagrange multipliers 7;; belong to the following space of
functions defined on the interior interfaces I'j;:

A" = {n:nlr,, = njk € [Po(Tje)]* = A, V{4, k}},
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where Py(T'j;) denotes the constant functions on T'jj.

Next, we state a domain decomposition iteration using a variational formulation. Let
us denote by (-, ) the usual complex inner product in L?(§2;). Moreover, for I' = T, or
I' = Tjg let (-,-)p denote the complex inner product in L*(T'), and let ({u,v))r denote
its approximation by the mid-point quadrature: ((u,v))r = (u?)(&;x)|T'| where |I'| is the
measure of .

Fort=0,1,2,---, let U]'? = (Ujs’t, U;-l’t, U;-”’t) and n;k be the discrete displacement vectors
and the Lagrange multipliers at the t—iteration level. Then, multiply (3.1) by v € [V]’-L]2 X
W]h X W]h, and integrate over (;, using integration by parts in the (£(u),v) — term. Next,
apply the boundary conditions (3.2) and (3.3) and approximate the boundary integrals on
I'; and I'j;, using the mid-point quadrature rule. Then the domain decomposition iteration
can be stated as follows: given (U]Q, n;?k) € [VJ’}]2 X W]h X W]h X A;?k forallj, fort =1,2,3,.--,
find (U}, n%,) € [V}1? x W} x WP x A%y such that

w? (PU;, U)j+iw (cut, ) +Z(qu ), Epg(v 8))_

J

o) (),
+<<z wBIr, ( >>F <<z wpBikIlr; k(Uj),Hrjk (U)>>ij

= (%, 0y (7 0+ (7
—;((wrajkﬂrkjwk ),Hrjk(v>>>rjk—;<<< " T, )

v = (v%,v",vY) € [Vh] X Wh X Wh X A]k,

it =gy~ = dwBe Ty, (U1 + Ty, (UF) (0) (3.)

Equation (3.6), used to update the Lagrange multipliers, is obtained directly from (3.3)
evaluated at the mid point §;;. Equation (3.5) yields a 16 x 16 linear system of equations
for the degrees of freedom associated with the vector displacements of the three phases
on each subdomain €2, at the {—iteration level. After solving these systems, the Lagrange
multipliers are updated using (3.6). The iteration (3.5)—(3.6) is a Jacobi-type iteration.
A twice as fast iteration may also be defined by using a red—black type iteration, (see
[24, 21]).

The arguments given in [24, 21] can be used here to show that the iteration (3.5)—
(3.6) converges and it is first order correct in the spatial discretization. The choice of the
nonconforming element used to compute the solid displacement is based on the dispersion
analysis performed in [39] showing that it almost halves the number of points per wavelength
needed to reach a desired accuracy as compared with the standard conforming bilinear
element. The iteration parameter matrix 3;; is chosen to have the same form of the matrix
B in (3.2) and defined in terms of averages of the coefficients of the differential system on
both sides of the interfaces I'j;. The space-time solution is obtained by solving (3.5)(3.6)
for a finite number of frequencies and an approximate inverse Fourier transform [19]. The
definition of the iteration (3.5)—(3.6) can be extended to the case of larger subdomains Q;,
see [29].



Ultrasonic waves in rocks with patchy saturation and fractal properties 9

4. Numerical applications

We use the iterative procedure (3.5)—(3.6) to simulate the propagation of waves in a
sample of Nivelsteiner sandstone, a friable sandstone mainly composed of quartz with small
percentages of rock fragments and potash-feldspar (see [40] for more details). Its material
properties, taken from [41], are ¢=0.33, K= 5000 mD, p,= 2.65 gr/cm?, grain bulk modulus
K,= 36 GPa, frame bulk modulus K,,= 6.21 GPa and frame shear modulus, N= 4.55
GPa. The pore space is assumed to be filled by water (as the wetting phase) and a free
hydrocarbon gas. Their properties are: p,= 1 gr/cm?, p,= 0.01 Poise, K,, = 2.223 GPa,
pn= 0.1 gr/cm3, pu, = 0.00015 Poise, K, =0.022 GPa. The reference fluid pressure P, is
taken 30 MPa, corresponding to a typical hydrostatic pressure at a burial depth of about 3
Km.

The relative permeability functions K,,(S,) and K, (S,) and the capillary pressure
function P,,(S,) needed to describe our system are taken to be [42]:

Km(sn) = (1 - (1 - Sn)/(1 - Srn))Qa Krw(Sn) = ([1 =S — Srw] / (1 - Srw))Za
Pea(Sn) = A(1/(Sn + Spw — 1)2 = 82, /[Sn(1 — Sy — Srw)]?) - (4.1)

These relations are based on laboratory experiments performed on different porous rocks
during imbibition and drainage processes (neglecting hysteresis effects). In the numeri-
cal experiment, we chose S;,, = Sy, = 0.05, and A = 30 kPa. The resulting capillary
pressure at S,=0.1 is about 3.4 kPa. In the absence of proper experimental data, the
coupling permeability function K,,,(Sy) used in this work is assumed to be K, (S,) =
V€K (Sn) Ky (Spn). The parameter € in (2.4) and the equation above is equal to 0.1, as
in [15]. The viscoelastic parameters describing the dissipative behaviour of the saturated
sandstone are Ql = 30,20, for I = K., N, respectively, T1; = 10ms, T7; = 10°ms, for
Il=K.N.

Table 1. Phase velocities and attenuation factors at 500 kHz.

S, =.1 Sn=.9
Wave ¢ (Km/s) o’ (dB) & (Km/s) o’ (dB)
P, 2.50867 1.222697 2.56871 1.178192
P, 0.27493 1.387460 0.14115 10.71559
P; 0.41786 2.500792 0.30602 0.711237
S 1.50596 1.460961 1.55697 1.407368

Values of the phase velocities ¢/ and attenuation coefficients ; (in dB) for j = Py, Py, Ps, S,
computed as in [43, 37], at the central frequency fo = 500 kHz are given in Table 1 for S,
= 0.1 and S,, = 0.9. The value of the Kozeny-Carman constant Ag used in the definition
of the pore size parameters is equal to 5 [34].

In the following numerical experiments, we simulate a laboratory test of generation
and propagation of body waves at ultrasonic frequencies. The domain for the numerical
simulation is a square of side length Ly =6 cm with a uniform partition N of Q into squares
of side length h = Ly/N,, with N, = N, = 640.

The source function (f*, f™, f*) is a compressional point source located at (zs,zs) = (3
cm, 2 cm) applied to the solid and fluid phases given by

iz, z,w) = fz, 2z,w) = Yz, 2,w) = Vg, ,, 9(w), (4.2)
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where 0z, ,, denotes the Dirac distribution at (zs,2;). The function g(w) is the Fourier
transform of the waveform g(t) = —2¢(t — to)e ¢¢=%)° | with fo = 500 kHz denoting the
source central (dominant) frequency and ¢ = 8f%, ty = 1.25/fy. The spectrum of g(w) is
negligible for frequencies w above w* = 27 1000 kHz. Thus, the iterative procedure (3.5)—
(3.6) is used to compute the particle velocities V!(z, z,w) = iwU!(z, z,w), | = s,n,w, at
500 equally spaced temporal frequencies in the interval (0, w*). The solution V!(z, z,t), | =
s,n,w, at the desired discrete times is obtained by using a discrete time Fourier transform.
The maximum simulation time in all the experiments was equal to 0.06 ms . See [19] for
more details about the numerical procedure and error estimations.

4.1. Saturation interface.

We first analyze the propagation of the wave fields in the presence of a plane horizontal
interface defined by an abrupt variation in saturation. This interface divides the compu-
tational domain in two layers of equal thickness (3 cm). In the lower part of the domain
(where the source is located) S,=0.9 and in the upper part S,=0.1. As expected, when the
three compressional waves generated by the point source arrive at the interface, reflection,
refraction and wave conversion phenomena can be observed.

In Figure 1 we present a snapshot of V(z,z,t) (i.e. the normal component to the sat-
uration interface) at ¢ =0.007 msec, showing the propagation of the fast P; wave and the
development of a slow wave front still very close to the source. Figure 2 shows a snapshot
of Vi(z,z,t) at ¢ = 0.012 msec, where the effect of the saturation interface can be clearly
observed. In this picture we can see the direct P; and P3; waves, P; reflected and transmit-
ted waves and shear S waves (reflected and transmitted), converted from the incident P;
wave. No slow P» wave is observed due to its high attenuation coefficient, as can be seen
in Table 1 for 5,=0.9. The presence of these shear waves was also checked by computing
the curl and divergence of the particle velocity field in the solid. The wave energy splitting
at the saturation interface can be quantified by measuring for the solid phase the peak am-
plitudes of the different wave fronts incident (i), reflected (r) and transmitted (t) through
the interface, which will be denoted as A™(r),m = i,r,t for r = Py, P, P3,S. For this
purpose we computed snapshots of the modulus of the two-dimensional particle velocity
fields. The amplitude of the incident P; wave was measured just before arriving to the
interface. For the reflected and transmitted P; waves we found the ratios A" (Py)/A*(Py) ~
0.06 and A'(Py)/A*(Py) = 0.2, respectively. For the shear waves the corresponding ratios
are A"(S)/A*(P;) = 0.09 and A'(S)/A*(P;) ~ 0.29. This shows the important wave en-
ergy partition that may take place due to saturation heterogeneities. The corresponding
snapshots for V*(z, z,t) and V(z, z,t) show a similar behaviour and are omitted.

The wave field corresponding to V7(z,z,t) at ¢ = 0.045 msec is shown in Figure 3,
when the direct fast waves exited from the domain. The spherical wavefront corresponds
to the direct slow P; wave arriving at the interface. Significant wave mode conversion
from the incident P; wave to fast P;, S and slow reflected and transmitted waves can be
observed. In particular, a P, wave is transmitted to the upper medium since for S,=0.1
the attenuation coefficient shows a significant decrease; the corresponding transmitted Ps
wave is not observed due to its high attenuation for this saturation (see Table 1). From the
snapshots we obtained the following ratios for the reflected waves: A" (P3)/A'(P3) = 0.122,
AT(Py)/AY(P3) ~ 0.1, A"(S)/A*(P3) ~ 0.044, and for the transmitted: A'(P;)/A*(P3) ~
0.019, AY(P,)/A*(P3) = 0.055, AY(S)/A*(P3) ~ 0.006. Similar mode conversion phenomena
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in single phase Biot media were theoretically studied by some of the authors in [44].

Some numerical artifacts can be observed in the figures due to the low number of points
per wavelengths used to represent the slow waves at high frequencies (about 3). No spurious
reflections from the artificial boundaries are observed, showing that the absorbing boundary
conditions is performing quite well in the simulation.

4.2. Immiscible patchy saturation

Here we abandon the hypothesis of homogeneous saturation and we consider a patchy
distribution of the fluids (water and gas) throughout the domain. For this set of experiments
porosity and permeability are taken constants, with the values given at the beginning of this
section. We remark that, unlike other known models for patchy saturation, this one takes
into account the capillary pressure and residual saturation effects that take place when the
pore space is occupied by two (or more) immiscible fluids.

To generate the spatial distribution of the fluids we used a modified fractal field, based on
the so-called von Karman self-similar correlation functions. These models are widely used
in the statistical characterization of heterogeneities for different applications. Following [45]
and [9], we consider a particular case for which the spectral density is given by:

Sa(ky, kz) = So(1 + k?a®) - HHE/2) (4.3)

where k = /kZ + k2 is the radial wavenumber, a the correlation length, H is a self-similarity
coefficient (0 < H < 1), Sp is a normalization constant and E is the euclidean dimension.
Equation (4.3) corresponds to a fractal process of dimension D = E+1— H at scales smaller
than a. For this application we take £F=2, a=0.2 cm and D=2.5

The first step was to assign to each point of the mesh a random number using a two
dimensional random number generator with uniform distribution (white noise). This field
was then Fourier transformed to the spatial wavenumber domain and its amplitude spectrum
was then filtered using (4.3). The result was then transformed to the spatial domain, forced
to have zero mean and normalized to a range appropriate to produce saturation fluctuations
around a given value S* subject to the restriction S,, < S, < 1—S,-. Finally, to construct
the patches, we modified the saturation S, obtained at each point of the grid so that for
cells having S,, < S§* we changed the saturation to a value close to the non-wetting residual
(i.e. almost fully water saturated) and where S,, > S* we assigned a saturation close to that
corresponding to the wetting residual saturation. The result of this procedure is illustrated
in Figure 4. The black zones represent cells almost fully saturated with water (S, =0.94
and S, =0.06), and the opposite holds for the white zones. The resulting macroscopic
saturations of the computational domain are S'g = 0.1 and 5’5 = 0.9, which are computed
as the mean of the local saturations values of each cell.

Figures 5(a) and 5(b) show snapshots of V}(z,z,t) at ¢t = 0.007 msec for the heteroge-
neous and the homogeneous saturation, respectively. As can be seen from Figures 4 and
5(a), a remarkable correlation exists between the locations and size of the larger gas patches
and the maxima and minima of the particle velocity fields, which can be associated with
compressional and shear waves generated at the irregular saturation interfaces after the
passage of the fast P wave. The presence of shear waves was verified by computing the
corresponding snapshot of the curl of the velocity field, which is not shown for brevity. On
the right side of Figure 5(a) a spherical wave front can be observed around the source, due
to the propagation of the P; wave train through a zone of homogeneous saturation. For
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comparison, Figure 5(b) shows the propagation of this wave mode at the same time under
homogeneous saturation S,, = 0.9. The peak amplitude relation between figures 5(b) and
5(a) is 1.372 which shows the effect of the presence of the gas bubbles on the amplitudes of
the waves.

The next graphs show the corresponding snapshots after 0.02 msec, where we can observe
the propagation of the slow wave P3 through the heterogeneities of the domain (Figure 6(a))
and its counterpart in the homogeneous case (Figure 6(b)). Once again we can observe
important wave-mode conversion from slow to fast compressional and shear waves at the
irregular saturation interfaces, a fact that was also verified observing the snapshot of the
curl for this time. The peak amplitude relation between figures 6(b) and 6(a) is 2.63; this
amplitude increase is again associated to the presence of the gas bubbles.

4.3. Porosity-permeability interface

Here we consider the propagation of the waves when the computational domain has
homogeneous saturation S,, = 0.1, but there exist an abrupt change in both porosity and
permeability. This change in the petrophysical properties of the rock defines a plane hor-
izontal interface at the middle of the domain. For the lower half we keep the reference
porosity and permeability values given at the beginning of this section, that is K = 5000
mD and ¢ =0.33, while for the upper half we consider a much lower permeability, equal to
20 mD. We assume that the porosity and permeability values at both sides of the interface
are related through the Kozeny-Carman equation in the form [46]

K(1—¢)?
P

Thus, solving the resulting cubic equation for the porosity, we found for the upper layer a
porosity ¢ =0.0654. Figure 7 shows a snapshot of the vertical component of the particle
velocity field after 0.012 msec. To analyze the wave energy splitting at this interface once
again we measured the ratios of peak amplitudes of the different wave fronts in the corre-
sponding snapshot of the modulus of the particle velocity fields. We also measured the peak
amplitude of the incident P, wave just before arriving at the interface. For the reflected P,
wave we found that the ratio A”(P;)/A*(P;) =~ 0.06, for the transmitted A'(Py)/A*(P;) ~
0.09, and for the shear reflected and transmitted waves the ratios are A™(S)/A*(P;) =~ 0.12
and A*(S)/A*(Py) ~ 0.25, respectively.

= constant. (4.4)

4.4. Fractal porosity-permeability

Now we analize the propagation of waves when the saturation is uniform (S, = 0.1) but
the permeability behaves like a stochastic fractal. The scattering of slow waves in poroelastic
media with random and periodic heterogeneities saturated by single-phase fluids has been
analyzed in [47]. For the present analysis we describe permeability in the form [12]

K(z,2) = K* /x(@2) (4.5)

where K* is a constant reference permeability and fx (x, z) is a fractal field. In the numerical
tests we consider different permeability distributions to analyze the resulting wave fields for
variable degree of spatial heterogeneity. Following [12] this effect is quantified by means
of the dimensionless coefficient C,, defined as the ratio between the standard deviation of
K (z, z) and its mean value.
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To generate the fractal fields fx(x,z) we used equation (4.3) with euclidean dimension
E = 2 and fractal dimension D=2.2 for different values of the correlation length and the
reference permeability. The numerical procedure is analogous to that described in the
previous set of experiments. The field fx(z,z) is used in (4.5) in order to obtain a fractal
permeability distribution and the corresponding porosity distribution is obtained by solving
the Kozeny-Carman equation (4.4) at each point of the domain. More general relationships
between porosity and permeability for fractal pore geometries are presented in [48].

In Figure 8 we show the fractal permeability distribution obtained using a correlation
length @ =0.2 cm, K* =1100 mD and a C, coefficient of about 0.58. The resulting perme-
ability field varies from 138 to 7284 mD. The darker areas in the figure correspond to the
higher values. The corresponding porosity map, with values in the range from 0.12 to 0.36
is not included for brevity.

Figure 9 (a) shows V’(z, z,t) after 0.009 msec, where the combined effect of the P; and
S waves can be observed. It is important to observe the irregular character of the wave
fronts due to the scattering effects at the heterogeneities and also to the spatial variations
in the intrinsic attenuation.

Next, we analyze the acoustic response of the medium for the same correlation length
but changing K* to 500 mD and C, ~ 0.93 (i.e, a more heterogeneous medium). In this
case the permeability varies from 25.35 mD to 7578 mD and the porosity from 0.07 to 0.36.
The corresponding snapshot is presented in Figure 9(b). To quantify the overall attenuation
of the waves we computed the ratio between the maximum amplitudes in Figures 9 (b) and
(a) resulting 0.95.

Now we reduce one order in magnitude the scale of the heterogeneity, taking a correlation
length a =0.025 cm, but keeping the same parameters of Figure 9(a) (i.e. C, ~ 0.58). Here
the permeability varies from 135 mD to 10903 mD and the porosity from 0.12 to 0.39.
The resulting snapshot is shown in Figure 9(c), where it can be noted that the form of the
wavefronts are less affected by scattering than in the two previous figures. This is due to the
small size of the heterogeneities compared to the wavelength of the fast waves. However, the
relative amplitude decrease in this case (referred to Figure 9(a)) is about 11% (amplitude
relation 0.88), showing the effect of the intrinsic attenuation.

In the next set of graphs we analyze the effects of the previously described fractal
porosity-permeability fields on the propagation of the slow waves. Figures 10 (a)-(c) show
the corresponding snapshots of V(z, z,t) at ¢ =0.06 ms, where the relative amplitude de-
crease (normalized to Figure 10 (a)) is about 60% for Figure 10 (b) and 59% for Figure
10 (c). These higher dissipation rates are due to the fact that the slow waves have ampli-
tude components only in the high frequency range, with wavelengths on the order of the
heterogeneities, consequently suffering important scattering effects. The faster waves have
frequency components also in the low frequency range (with larger wavelengths) being less
affected by scattering at the heterogeneities.

5. Conclusions

We have developed a model to describe the acoustic response of porous dissipative rocks
saturated with two—phase immiscible fluids. The constitutive relations and the equations
of motion include the effects of capillary forces, mass and viscous coupling coefficients and
viscoelastic dissipation. Frequency dependent correction factors for the high—frequency
range are taken into account, so that the formulation is valid for the full frequency range.



14 J.E. Santos, C.L. Ravazzoli, P.M. Gauzellino, J.M. Carcione

This model is applied for the numerical simulation of ultrasonic waves in a real clean
sandstone, saturated with gas and water, with different kinds of heterogeneities. The nu-
merical solution is obtained by means of an iterative domain decomposition finite element
procedure formulated in the space—frequency domain, allowing for the simultaneous and
independent solution of the equations for a finite number of frequencies. The space-time
solution is obtained by using an approximate inverse Fourier transform.

We analyzed the response of the medium in the presence of plane horizontal interfaces
defined by changes either in saturation or porosity-permeability and also in the case of more
realistic distributions in these parameters given by stochastic fractals. Our main results can
be summarized as follows:

e At the plane interfaces, important energy splitting is observed due to mode conversion
from fast compressional and shear waves to slow waves and vice versa.

e In the case of patchy saturation, the presence of gas pockets produces local increases
in the amplitudes of the wavefronts, both for fast and slow waves.

e For the fast waves there exist a noticeable correlation between the location and size
of the maximum amplitudes of the wavefronts in the snapshots and the location of
the larger gas pockets in the patchy saturation map.

e Important mode conversion from slow to fast waves occurs at the gas pockets.

e In the case of fractal porosity-permebility, there exist attenuation and dispersion ef-
fects in all the wavefronts, associated to scattering at the irregular interfaces and also
to variable intrinsic attenuation. However, the energy losses are more pronounced in
the case of slow waves, because their wavelengths are in the order of the size of the
heterogeneities.

e When the correlation length becomes smaller, the wavefronts associated with fast
waves become more regular, as in the presence of an equivalent effective medium.

All these results indicate that a careful analysis of the characteristics of ultrasonic waves
in porous saturated reservoir rocks may provide useful information about the spatial vari-
ability of its petrophysical parameters at different scales, about the nature of the reservoir
fluids and to discriminate the saturation state.
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Figure Captions

Fig. 1. Saturation interface. Snapshot of V?(z,z,t) at t =0.007 msec, showing the fast
compressional P; waves, direct (Py4), transmitted (Pj;) and a slow direct wave (Psq).

Fig. 2. Saturation interface. Snapshot of V}(z,z,t) at ¢ = 0.012 msec, displaying direct,
transmitted and reflected fast compressional waves (P4, Pit, Pir), reflected and transmitted
shear waves (S, S;) and the direct slow wave Psg.

Fig. 3. Saturation interface. Snapshot of V}(z, 2,t) at ¢t = 0.045 msec, showing the direct
and reflected slow waves (Psq, P3,), a transmitted Py; wave and transmitted and reflected
fast compressional and shear waves (Pi, Piy, Sy, St)-

Fig. 4. Patchy saturation distribution. Black zones represent regions of almost full water
saturation. The macroscopic gas saturation is 10 %.

Fig. 5. Patchy saturation. Snapshots of V(z, z,¢) at ¢ = 0.007 msec for (a) patchy and
(b) homogeneous 10 % gas saturation. The peak amplitude relation between snapshots (b)
and (a) is 1.372.

Fig. 6. Patchy saturation. Snapshots of V}(z,z,t) at ¢ = 0.02 msec for (a) patchy and
(b) homogeneous 10 % gas saturation. The peak amplitude relation between snapshots (b)
and (a) is 2.63.

Fig. 7. Porosity-permeability interface. Snapshot of V?(z, z,t) at ¢ = 0.012 msec, display-
ing direct, transmitted and reflected fast compressional waves (Pyq4, Py, Pi,), reflected and
transmitted shear waves (S;,S;) and the direct slow wave Psq4.

Fig. 8. Permeability distribution for fractal dimension D=2.2, correlation length a = 0.2
cm and C, = 0.58. The permeability varies from 138 to 7284 mD.

Fig. 9. Fractal porosity-permeability. Snapshots of V(z,z,t) at t = 0.009 msec for (a)
a =02 cm, C, = 0.58, (b) a =0.2 cm, C,, = 0.93, (c) a =0.025 cm, C,, = 0.58. The peak
amplitude relation between snapshots (b) and (a) is 0.95 and between snapshots (c) and
(a) is 0.88.

Fig. 10. Fractal porosity-permeability. Snapshots of V?(z,z,t) at ¢ = 0.06 msec for (a)
a =0.2 cm, C, = 0.58, (b) a =0.2 cm, C, = 0.93, (¢) a =0.025 cm, C,, = 0.58. The peak
amplitude relation between snapshots (b) and (a) is 0.39 and between snapshots (c¢) and
(a) is 0.4.
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