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Abstract

Recently a stable pair of finite element spaces for the mixed formulation of
the plane elasticity system has been developed by Arnold and Winther. Here
we construct a two-level overlapping Schwarz preconditioner for the resulting
discrete system. Essentially, this reduces to finding an efficient preconditioner
for the form (·, ·)+(div ·,div ·) in the symmetric tensor space H(div ,Ω). The
main difficulty comes from the well known complexity of building precondition-
ers for the div operator. We solve it by taking a decomposition similar to the
Helmholz decomposition. Both additive and multiplicative preconditioners are
studied, and the conditioner numbers are shown to be uniform with respect to
the mesh size.

1 Introduction

The purpose of this paper is to present and analyze the overlapping Schwarz precon-
ditioner for the mixed formulation of the plane elasticity system. Compared to the
primal-based methods, mixed finite element methods have some well-known advan-
tages [1, 14]. For example, the dual variable, which is usually the variable of primary
interest, is computed directly as a fundamental unknown. Another important advan-
tage, in the case of linear elasticity, is that the mixed formulations exhibit robustness
in the computation of nearly incompressible materials. Mixed methods also have
some obvious disadvantages, such as the necessity of constructing stable pairs of fi-
nite element spaces and the fact that the resulting discrete system is indefinite. For
decades extensive research has been taken to explore the mixed formulation of the
plane elasticity system (also known as the weak formulation of the Hellinger-Reissner
principle). Most of them focused on developing stable pairs of mixed finite element
spaces and several different solutions have been proposed [2, 3, 6, 21]. As stated
in those papers, the crux of the difficulty is that the stress tensor in the Hellinger-
Reissner principle has to be symmetric. Indeed, the symmetry condition of the stress
tensor is so hard to satisfy that the authors of [2, 3, 21] had to resort to composite
elements. Only recently did Arnold and Winther propose a new pair of mixed finite el-
ements (the Arnold-Winther elements) which does not use composite elements [6]. In
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this paper we choose to use the Arnold-Winther elements. The Arnold-Winther finite
element spaces consist of piecewise polynomials and satisfy the stability requirement.
In [6] only the pure displacement boundary problems are considered, but we will show
that the spaces also work for the pure traction boundary problems. To prove it, one
only need to modify the interpolation operator given in [6] so that it preserves the
essential boundary condition. Finally, we mention some alternative ways to circum-
vent the difficulty of constructing stable pairs of spaces while preserving symmetry
for the stress tensor. One way is to reformulate the saddle-point problem by using
Lagrangian functionals so that it does not require symmetric tensors [4]. Another
way is to use least-square formulation so that it does not require the classical discrete
inf-sup condition [7].

Throughout the paper, we adopt the convention that a Greek character denotes
2 × 2 symmetric tensor, a bold Latin character in lower case denotes a vector and
a bold Latin character in upper case denotes an operator or a matrix. Let τ =
(τij)1≤i,j≤2 be a symmetric tensor, v = (v1, v2)

t be a vector and q be a scalar. Define
div v = ∂

∂x
v1 + ∂

∂y
v2 and

div σ =

( ∂
∂x

τ11 + ∂
∂y

τ12
∂
∂x

τ21 + ∂
∂y

τ22

)
, airy q =

(
∂2

∂y2 q − ∂2

∂x∂y
q

− ∂2

∂x∂y
q ∂2

∂x2 q

)
.

Define the innerproduct between vectors and the innerproduct between matrices as:

u · v = u1v1 + u2v2, σ : τ =

2∑
i=1

2∑
j=1

σijτij .

Let Ω be a convex polygon in �2 . We will use the usual notation L2(Ω) for the set
of square integrable functions on Ω and Hs(Ω), where s is a real number, for the
normal Sobolev space defined on Ω [15]. Denote ‖ · ‖s,Ω the Hs-norm and | · |s,Ω the
Hs-seminorm as defined in [15]. Define the spaces

L2(Ω) = {vectors v = (v1, v2)
t such that vi ∈ L2(Ω) for i = 1, 2},

H(div , Ω) = {symmetric tensors τ = (τij)1≤i,j≤2 such that τij ∈ L2(Ω)

and div τ ∈ L2(Ω)},
H0(div , Ω) = {τ ∈ H(div , Ω) such that τn|∂Ω = 0},

where n is the outer normal vector on ∂Ω. For simplicity, we will use the notation
(·, ·) to denote the L2-innerproduct and ‖ · ‖ to denote the L2-norm over scalar,
vector or tensor fields defined on the whole Ω. Define the norm on H(div , Ω) as
‖τ‖�(div ,Ω) = [(τ , τ )+(div τ ,div τ )]1/2. Now we can state the mixed formulation of
the plane elasticity problem rigorously. We only consider the pure traction boundary
problem: Find σ ∈ H0(div , Ω) and u ∈ L2(Ω) such that{∫

Ω
Aσ : τ dx +

∫
Ω
div τ · u dx = 0 ∀ τ ∈ H0(div , Ω),∫

Ω
div σ · v dx =

∫
Ω

g · v dx ∀v ∈ L2(Ω).
(1)
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where the compliance tensor A : H(div , Ω) → H(div , Ω) is bounded, symmetric
and uniformly positive definite and g ∈ L2(Ω) is the body force. In order that the
above problem be well posed, we need the compatibility condition on g. Let

RM := span{
(

1
0

)
,

(
0
1

)
,

(
−y
x

)
}

be the space of infinitesimal rigid motions. By Korn’s inequality, one can see that
for any g ∈ RM⊥

�2(Ω), which means the orthogonal complement of RM in L2(Ω),
system (1) has unique solution in H0(div , Ω) × RM⊥

�2(Ω) [14].
The discretization of the system (1) leads to a symmetric indefinite linear system.

Generally speaking, there were three main approaches toward solving large symmetric
indefinite linear systems corresponding to certain mixed formulations. One can use
the well-studied Uzawa-type method [10, 14, 17]. The second choice is the positive
definite reformulation proposed by Bramble and Pasciak in [8] and [9]. The third
choice is the preconditioned minimum residual method analyzed in [5, 22]. Our pa-
per adopts the idea of preconditioned minimum residual method. An analysis similar
to the one in [5] will show that the problem of constructing a preconditioner for the
indefinite linear system derived from system (1) is essentially the same as the problem
of constructing a preconditioner for the bilinear form (·, ·) + (div ·,div ·) in the ten-
sor space H0(div , Ω). We construct the preconditioner by the overlapping Schwarz
method. For more background on this topic, one can refer to [16, 11, 12, 24, 25].
The main difficulty comes from the well-known complexity of building overlapping
Schwarz preconditioners for the div operator and also the non-nested character of
the finite element spaces.

In Section 2 we briefly present the mixed finite elements introduced in [6]. Further-
more some important observations on this finite element space are stated and proved.
In Section 3 the details of the overlapping Schwarz preconditioner are explained and
the condition number of the preconditioned system is analyzed. In Section 4 the
main assumption used in the proof in Section 3 is proved. The results of numerical
experiments illustrating the theory are given in Section 5. In Appendix A, we give a
proof of the stability and approximation property of the mixed finite element spaces.
In Appendix B, we construct a Clement-type interpolation operator which is used in
Section 4.

2 Finite element discretization

First we present the Arnold-Winther elements. Let T be a quasi-uniform triangulation
of Ω. On each triangular element T ∈ T define

ΣT = {symmetric tensors τ ∈ (P3(T ))3 such that div τ ∈ (P1(T ))2},
V T = (P1(T ))2,

where Pi(T ) denotes the space consisting of polynomials of degree i or less. The
degrees of freedom for ΣT are
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• the nodal values of the three components of τ (x) (9 dofs)

• the moments of degree 0 and 1 of the two normal components of τ on each edge
of T (12 dofs)

• the moments of degree 0 of the three components of τ on T (3 dofs)

and the degrees of freedom of V T are given as the zero’th and first order moments.
Figure 1 illustrates the degrees of freedom for ΣT . The finite element spaces on mesh

Figure 1: Finite element ΣT

T and domain Ω are defined as follows:

Σ(T , Ω) = {τ defined on Ω satisfying τ |T ∈ ΣT for each T ∈ T ,

τ is continuous on the degrees of freedom on each vertex

and each edge of T and τn|∂Ω = 0.}
V (T , Ω) = {v ∈ L2(Ω) such that v|T ∈ V T for each T ∈ T }.

The definition of Σ(T , Ω) clearly implies that Σ(T , Ω) ⊂ H0(div , Ω) (see [6, 14]).
Note that the boundary condition σn|∂Ω = 0 implies two linear relations among the
three components of σ on boundary nodes. Hence on the corner vertices where two
boundary edges meet, we will have σ = 0. This fact was noticed by Arnold and
Winther in [6]. Another immediate observation is that, by Green’s formula,

div σ ∈ RM⊥� (T ,Ω), for all σ ∈ Σ(T , Ω).

We have the discrete elasticity problem: find σ ∈ Σ(T , Ω) and u ∈ V (T , Ω) such
that {

(Aσ, τ ) + (div τ , u) = 0 ∀τ ∈ Σ(T , Ω),

(div σ, v) = (g, v) ∀v ∈ V (T , Ω).
(2)

Let V ⊥ ⊂ Σ be defined as {τ ∈ Σ | (div τ , v) = 0, for all v ∈ V }. We say the pair
of mixed finite element spaces (Σ(T , Ω), V (T , Ω)) is stable if there exists constants
c and C independent of the mesh size such that

(Aσ, σ) ≥ c‖σ‖2
�(div ,Ω), for all σ ∈ V ⊥,

sup
�∈Σ(T ,Ω)

(div τ , v)

‖τ‖�(div ,Ω)

≥ C‖v‖�2(Ω), for all v ∈ RM⊥� (T ,Ω) .
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The second condition is called the discrete inf-sup condition. In [6], the stability of
this new pair of spaces is proved for the pure displacement boundary problem. A slight
modification in the proof will show that it also works for the pure traction case (see
Appendix A). It follows from the results given in Appendix A that for g ∈ RM⊥

�2(Ω),
the discrete solution of (2) exists and provides a good approximation for the weak
solution of (1).

Next we introduce the Argyris element which will play an important role in the
analysis to be given later. Let QT denote the Argyris element [15] defined on T . It
is a quintic element and the degrees of freedom are

• the nodal values (3 dofs), the first derivatives at the nodes (6 dofs) and the
second derivatives at the nodes (9 dofs)

• the moments of degree 0 of ∂
∂�

q on the edges of T (3 dofs)

Define the space

Q̃(T , Ω) = {q defined on Ω satisfying q|T ∈ QT for each T ∈ T ,

q is continuous on the degrees of freedom on each vertex

and each edge of T and airy q ∈ Σ(T , Ω)}.

Clearly Q̃(T , Ω) ⊂ H2(Ω).
It is well know that for any σ ∈ H(div , Ω) satisfying div σ = 0, there exists

a q ∈ H2(Ω) such that airy q = σ. Analogously on the discrete level we have the
following exact sequence:

0 −→ P1(Ω)
⊂−→ Q̃(T , Ω)

airy−→ Σ(T , Ω)
div−→ V (T , Ω).

The exactness of this sequence for discrete spaces without boundary conditions was
proved on page 408 of [6] and the proof of the above exact sequence follows from their
result. For the convenience of further analysis, we note the following lemmas:

Lemma 2.1. For any q ∈ Q̃(T , Ω), q|∂Ω is a linear function.

Proof. Since (airy q)n|∂Ω = 0, we have(
∂2

∂y2 q − ∂2

∂x∂y
q

− ∂2

∂x∂y
q ∂2

∂x2 q

)
n

∣∣∣∣∣
∂Ω

=

(
∂
∂�

∂
∂y

q

− ∂
∂�

∂
∂x

q

)
= 0.

By the continuity of the first and second derivatives of q on the vertices, it is obvious
that ∇q|∂Ω = const.

Let H2
0 (Ω) = {q ∈ H2(Ω) such that q|∂Ω = 0, ∇q|∂Ω = 0} and define

Q(T , Ω) = {q defined on Ω satisfying q|T ∈ QT for each T ∈ T ,

q is continuous on the degrees of freedom on each vertex

and each edge of T and q|∂Ω = 0, ∇q|∂Ω = 0}.
Clearly Q(T , Ω) ⊂ H2

0 (Ω). From the previous analysis we can derive

Lemma 2.2. The following exact sequence holds:

0 −→ Q(T , Ω)
airy−→ Σ(T , Ω)

div−→ V (T , Ω). (3)
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3 Overlapping Schwarz preconditioner

In this section we develop an overlapping Schwarz preconditioner for the discrete
problem (2) so that preconditioned minimal residual method can be used to solve
this problem. For simplicity, denote Σ = Σ(T , Ω) and V = V (T , Ω). Denote ‖ · ‖Σ

and ‖ · ‖� to be the norms on Σ and V respectively, which are just ‖ · ‖�(div ,Ω) and
‖ · ‖�2(Ω). Let Σ∗ and V ∗ be the dual spaces of Σ and V with dual norms ‖ · ‖Σ∗ and
‖ · ‖� ∗ . Define operators{

A : Σ → Σ∗ (Aσ, τ ) = (Aσ, τ ), for all τ ∈ Σ,

B : Σ → V ∗ (Bσ, v) = (div σ, v), for all v ∈ V .

Let Bt : V → Σ∗ be the adjoint of B. Equation (2) can be rewritten as

M
(

σ
u

)
=

(
A Bt

B 0

)(
σ
u

)
=

(
F
G

)
, (4)

where F ∈ Σ∗, G ∈ V ∗ and M : Σ × V → Σ∗ × V ∗. Let V /RM be the quotient
space with the quotient norm ‖ · ‖� /RM . We have the following lemma:

Lemma 3.1. If (σ, u) is a solution of the equation (4), then

c0(‖F‖Σ∗ + ‖G‖� ∗) ≤ ‖σ‖Σ + ‖u‖� /RM ≤ c1(‖F‖Σ∗ + ‖G‖� ∗),

where c0 and c1 are positive and independent of h.

Proof. By the stability of the finite elements spaces (Σ, V ) and Proposition 1.3
in [14],

‖σ‖Σ + ‖u‖� /RM ≤ c1(‖F‖Σ∗ + ‖G‖� ∗),

where c1 is independent of h. By the Schwartz inequality, the other direction comes
from

‖F‖Σ∗ + ‖G‖� ∗ = sup
�∈Σ

F (τ )

‖τ‖Σ

+ sup
�∈�

G(v)

‖v‖�

= sup
�∈Σ

(Aσ, τ ) + (div τ , u)

‖τ‖Σ

+ sup
�∈�

(div σ, v)

‖v‖�
≤ c(‖σ‖Σ + ‖u‖� ).

Our purpose is to find a preconditioner for the operator M. By lemma 3.1, we
only need to find an operator S : Σ∗×V ∗ → Σ×V such that ‖S‖L(Σ∗×� ∗,Σ×� ) and
‖S−1‖L(Σ×� ,Σ∗×� ∗) are bounded uniformly in h(see [5] for details). Indeed we can

consider those S in the form S =

(
S1 0
0 S2

)
, where S1 : Σ∗ → Σ and S2 : V ∗ → V

and their inverses are bounded uniformly in h. Define the innerproduct

Λ(σ, τ ) = (σ, τ ) + (div σ,div τ )
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on Σ. Consider the following problem: find σ ∈ Σ such that

Λ(σ, τ ) = F (τ ), ∀ τ ∈ Σ. (5)

Clearly a good preconditioner for this problem will yield an ideal S1. Similarily, a
good preconditioner for the problem: find u ∈ V such that

(u, v) = G(v), ∀ v ∈ V (6)

will yield an ideal S2. The space V consists of discontinuous linears on the triangles
so the solution of (6) reduces to the inversion of a 3×3 block diagonal matrix. Hence
the problem of finding S reduces to the problem of constructing S1. In the remainder
of this paper we will focus on constructing a two-level Schwarz preconditioner for
problem (5).

Let TH be a quasi-uniform mesh on Ω with characteristic mesh size H and Th be a
quasi-uniform refinement of TH with characteristic mesh size h. Let Ω̃i, i = 1, · · · , k
be a non-overlapping decomposition of Ω whose boundaries align with the coarse
mesh TH . Extend Ω̃i by one or more layers of fine elements to get Ωi, then we have
an overlapping cover of Ω whose boundaries align with the fine mesh Th. Figure 2
illustrates how the subdomains are defined inside Ω and near the boundary of Ω.
The bold line contour draws the boundary of Ω̃i and the outmost dashed line contour
draws the boundary of Ωi. We have illustrated the case of one cell overlap although
we may overlap many more cells in practice.

Ω̃i

Ω i

Ω̃i

Ωi

Figure 2: Subdomains Ω̃i and Ωi

Assume all Ω̃i and Ωi be convex polygons and denote the characteristic distance
between ∂Ω̃i\∂Ω and ∂Ωi\∂Ω as δ. Furthermore, assume there exist a positive integer
Nc such that for all x ∈ Ω, x is included in at most Nc subdomains in {Ωi}. Define

Q0 = Q(TH , Ω), Σ0 = Σ(TH , Ω), V 0 = V (TH , Ω),

Q = Q(Th , Ω), Σ = Σ(Th , Ω), V = V (Th , Ω).

For i = 1, · · · , k define Σi, V i and Qi to be the subspaces of Σ, V and Q respec-
tively, which vanish outside Ωi. Recalling how we defined the boundary conditions
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for Q(T , Ω) and Σ(T , Ω), it is clear that

Qi � Q(Th, Ωi), Σi � Σ(Th, Ωi), for all i = 1, · · · , k.

Hence the space Σi does not correspond to a natural stress tensor approximation
subspace with pure traction boundary condition.

Denote Ψ(T ) to be the set of all nodes in the mesh T . We know that Q0 � Q
and Σ0 � Σ since, for example, a function σ ∈ Σ0 is not continuous at the points in
Ψ(Th) which are on the edges of the coarse grid. Hence we need to define interpolation
operators. The easiest way to do this is to take the average of the degrees of freedom
on those nodes where discontinuity occurs. For any point v ∈ Ψ(Th), let Θ(v) be the
set of all triangles in TH which contain the vertex v and |Θ(v)| denote the number of
triangles in Θ(v). We define q̃ and τ̃ as follows: on each element T ∈ Th, let q̃|T ∈ QT

and τ̃ |T ∈ ΣT satisfy

airy q̃(v)|T =

(
1

|Θ(v)|
∑

Tv∈Θ(v)

airy q(v)|Tv

)
− airy q(v)|T ,

τ̃ (v)|T =

(
1

|Θ(v)|
∑

Tv∈Θ(v)

τ (v)|Tv

)
− τ (v)|T ,

(7)

on each vertex v of T and vanish at all the other degrees of freedom. Define

I0q = q + q̃, for all q ∈ Q0,

I0τ = τ + τ̃ , for all τ ∈ Σ0.

It is not hard to see that I0 maps Q0 to Q and I0 maps Σ0 to Σ. Therefore q̃ ∈ H2
0 (Ω)

and τ̃ ∈ H0(div , Ω). Furthermore, since q̃ vanishes on all the other degrees of
freedom except for the second derivatives on each node, we can derive from a standard
scaling argument that for all q ∈ Q0 and i = 0, 1, 2,

|q − I0q|i,Ω = |q̃|i,Ω ≤ ch2−i|q̃|2,Ω ≤ ch2−i|q|2,Ω, (8)

where c is independent of h and H .
The following lemma shows the relations between the spaces defined above.

Lemma 3.2. The following commutative diagram of exact sequences holds:

0 −→ Q0
airy−→ Σ0

div−→ V 0

↓I0 ↓I0 ↓id

0 −→ Q
airy−→ Σ

div−→ V

(9)

For each i = 1, · · · , k, we have the exact sequence

0 −→ Qi
airy−→ Σi

div−→ V i. (10)
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Proof. Let T be a triangle and vi, i = 1, 2, 3 be its three vertices. Denote the
opposite edge to each vertex vi as li. Let τ i, i = 1, 2, 3 be given constant symmetric
tensors. Define q ∈ QT as:

airy q(vi) = τ i, for i = 1, 2, 3;

q(vi) = 0, ∇q(vi) = 0,

∫
li

∂

∂n
q ds = 0, for i = 1, 2, 3

and define τ ∈ ΣT as:

τ (vi) = τ i, for i = 1, 2, 3;∫
li

τn ds =

∫
li

τns ds = 0,

∫
T

τ dx = 0, for i = 1, 2, 3.

Let n and s denote the outer normal vector and the unit tangential vector on
∂T respectively. Simple calculation shows that ∂2

∂�2
q = nT (airy q)n and ∂2

∂�∂�
q =

−nT (airy q)s. Hence by the definition of q and the integration by parts, all of∫
li
(airy q) n · n ds,

∫
li
(airy q) n · s ds,

∫
li
(airy q) n · ns ds and

∫
li
(airy q) n · ss ds

vanish. Consequently,∫
li

(airy q) n ds = 0,

∫
li

(airy q) ns ds = 0.

Since
∫

li

∂
∂�

q ds = 0 and
∫

li

∂
∂�

q ds = 0 implies
∫

li

∂
∂x

q ds =
∫

li

∂
∂y

q ds = 0, so by Green’s
formula, ∫

T

airy q dx = 0.

We have shown that τ and airy q are identical on all the degrees of freedom. Therefore
τ = airy q and consequently div τ = 0. We will use these results to prove (9) and
(10).

By lemma 2.2, in order to prove (9), it is sufficient to prove the commutativity
property. By the definition of I0 and I0, for all q ∈ Q0 and τ = airy q we have
τ̃ (v)|T = airy q̃(v)|T at each vertex v of each T ∈ Th, where τ̃ and q̃ were defined
by (7). We can conclude that τ̃ = airy q̃, which implies airy I0 = I0airy . For any
τ ∈ Σ0 we have div τ̃ = 0, which implies div I0τ = div τ . That completes the proof
for (9).

By the definition of Qi and Σi for i = 1, · · · , k, we can see that for each q ∈ Qi,
airy q vanishes on the vertices of Th on ∂Ωi and for each τ ∈ Σi, τ vanishes on the
vertices of Th on ∂Ωi. Hence by lemma 2.2 and the previous analysis, (10) is clear.

By the commutative diagram (9), we immediately have the following lemma.

Lemma 3.3. For any τ ∈ Σ0, there exists a positive constant ω independent of h
and H such that

Λ(I0τ , I0τ ) ≤ ωΛ(τ , τ ). (11)
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Proof. Since

Λ(I0τ , I0τ ) = ‖I0τ‖2 + ‖div I0τ‖2 = ‖I0τ‖2 + ‖div τ‖2,

we only need to show that ‖I0τ‖2 ≤ ω‖τ‖2. This follows from a standard scaling
argument, the definition of I0 and the quasi-uniformity of the mesh.

Now we can define our preconditioner. Let I be the identity operator. For i =
1, · · · , k, let Ii denote the natural imbedding of Σi into Σ. Define Pi : Σ → Σi as
the H(div , Ω) adjoint of Ii and define operators Ti = IiPi, for i = 0, · · · , k. We also
define the bilinear form Λi on Σi × Σi for each i by

Λi(σ, τ ) = Λ(σ, τ ), for all σ, τ ∈ Σi.

The additive and multiplicative Schwarz preconditioners (denoted by Ba and Bm

respectively) are defined by:

BaΛ =
k∑

i=0

Ti;

BmΛ = I − (I− Tk)(I− Tk−1) · · · (I − T0)
2 · · · (I −Tk−1)(I −Tk)

= I − E∗E.

Note that the computation of the action of Ba or Bm on a function F ∈ Σ∗ involves
the solution of subspace problems and the application of the interpolation operator
Ii and its L2-adjoint.

The proof of the following result is standard: [13, 24]

Theorem 3.1. Assume that (11) holds (with ω ∈ (0, 2) in the multiplicative case)
and that:

(A) For any σ ∈ Σ there exists a decomposition σ =
∑k

i=0 Iiσi and a constant CA

such that
∑k

i=0 Λi(σi, σi) ≤ CAΛ(σ, σ).

Then, we have

1

CA
Λ(σ, σ) � Λ(BaΛσ, σ) � NcωΛ(σ, σ),

2 − ω

CAω2N2
c

Λ(σ, σ) � Λ(BmΛσ, σ) � Λ(σ, σ),
(12)

in which � means “less than or equal to” up to a trivial constant.

Remark 3.1. Theorem 3.1 indicates that the condition numbers of BaΛ and BmΛ
are bounded above by constants depending only on CA, ω and Nc. Hence if we can
prove assumption (A) with CA independent of h and k, then the condition numbers
of BaΛ and BmΛ are also bounded by constants independent of h and k.
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4 Proof of assumption (A)

In this section we prove the assumption (A). The main idea of the proof is very
similar to that used in the analysis given in [18]. It is based on the exact sequence (3)
which divides Σ into two parts, one of which is divergence free. The decomposition
in assumption (A) will be constructed seperately on the two different parts of Σ.

First we introduce some operators. Denote P� 0 to be the L2 orthogonal projection
from V onto V 0. Clearly,

‖P� 0v‖ ≤ ‖v‖, for all v ∈ V . (13)

Let ΠQ denote the natural interpolation operator onto Q associated with the degrees
of freedom.Denote C1(Ω) to be the space of continuous functions with continuous first
derivatives. It is not hard to see that ΠQq is well defined as long as q ∈ C1(Ω), q has
continuous second derivatives on each node of the fine mesh, q|∂Ω = 0 and ∇q|∂Ω = 0.

We construct a partition of unity {θi}k
i=1 using the Argyris finite elements on the

mesh Th (without any boundary conditions). Specifically, we start with a smooth
partition of unity, {θ̃i}k

i=1 satisfying

(1) supp(θ̃i) ⊂ Ωi ; (2) |θ̃i|j,∞ ≤ Cδ−j , j = 0, 1, 2,

where |·|j,∞ denotes the W j
∞ seminorm. We then define θi to be the Argyris interpolant

of θ̃i. It easily follows that {θi}k
i=1 is a partition of unity satisfying

(1) θi|T ∈ P5(T ) for any T ∈ Th; (2) supp(θi) ⊂ Ωi;

(3) |θi|j,∞ ≤ Cδ−j, j = 0, 1, 2.

Clearly we have

θi|∂Ωi\∂Ω = 0, ∇θi|∂Ωi\∂Ω = 0,

airy θi(v) = 0, for all v ∈ Ψ(Th) ∩ (∂Ωi\∂Ω).

Hence for any q ∈ Q, we have ΠQ(θiq) ∈ Qi. Furthermore, by the approximation
property of the Argyris element (Theorem 6.1.1 in [15]) and the inverse inequality,

|θiq − ΠQ(θiq)|22,Ω ≤ c
∑
T∈Th

(h4|θiq|6,T )2 ≤ c|θiq|22,Ω for all q ∈ Q.

Note that we can apply the inverse inequality here since θiq|T is a polynomial of
degree less than or equal to 10. Therefore we have

|ΠQ(θiq)|2,Ω ≤ c|θiq|2,Ω, for all q ∈ Q. (14)

We also need an interpolation operator PQ0 : H2
0 (Ω) → Q0 such that

|(I− PQ0)q|i,Ω ≤ cH2−i|q|2,Ω, for all q ∈ H2
0 (Ω), i = 0, 1, 2. (15)

We will prove in Appendix B that such an operator exists.
Finally, we can prove the key result of this paper:
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Theorem 4.1. Under the settings of the subdomains and the meshes defined above,
assumption (A) holds with

CA = c(
H4

δ4
+

H2

δ2
+ 1),

where c depends only on ω and Nc.

Proof. For σ ∈ Σ, define σg
0 ∈ Σ0 and a u0 ∈ V 0 such that{

(σg
0, τ ) + (div τ , u0) = 0, ∀τ ∈ Σ0,

(div σg
0, v) = (P� 0div σ, v), ∀v ∈ V 0.

For i = 1, · · · , k define σg
i ∈ Σ(Th, Ω̃i) and a ui ∈ V (Th, Ω̃i) such that{

(σg
i , τ )Ω̃i

+ (div τ , ui)Ω̃i
= 0, ∀τ ∈ Σ(Th, Ω̃i),

(div σg
i , v)Ω̃i

= (div σ − P� 0div σ, v)Ω̃i
, ∀v ∈ V (Th, Ω̃i).

We need to show the above definitions are proper, i.e. the compatibility conditions
are satisfied. Since RM ⊂ V 0 ⊂ V and div σ ∈ RM⊥� , so clearly

(P� 0div σ, v) = (div σ, v) = 0, for all v ∈ RM.

Thus σg
0 is well defined. Since the boundary of Ω̃i aligns with the coarse mesh, it’s

obvious that ∫
Ω̃i

(div σ − P� 0
div σ) · v dx = 0 for all v ∈ RM.

Therefore σg
i is also well defined for i = 1, · · · , k.

The moments of degree 0 and 1 of the normal components of σi on each edge of
the fine mesh on ∂Ω̃i are zero. By the proof of lemma 3.2, we can extend σg

i to Ωi

by a divergence-free function in Ωi\Ω̃i which has nonzero degrees of freedom only on
the nodes on ∂Ω̃i. The resulting function can be extended by zero outside of Ωi and
yields a function (still denoted by σg

i ) in Σi. By construction, div σg
i = 0 in Ω\Ω̃i.

Since the mesh is quasi-uniform, there exists a constant c independent of h such that
for i = 1, · · · , k,

‖σg
i ‖�(div ,Ω) ≤ c‖σg

i ‖�(div ,Ω̃i)
.

By the above inequality and lemma 3.1,

k∑
i=0

Λ(σg
i , σ

g
i ) ≤ c(‖σg

0‖2
�(div ,Ω) +

k∑
i=1

‖σg
i ‖2
�(div ,Ω̃i)

)

≤ c(‖P� 0div σ‖2 +

k∑
i=1

‖div σ −P� 0div σ‖2
�

2(Ω̃i)
)

≤ c‖div σ‖2.

12



Next consider σa = σ − I0σ
g
0 −

∑k
i=1 σg

i . Simple calculation shows that div σa = 0.
By the finite overlapping assumption and lemma 3.3, we know that Λ(σa, σa) ≤
cΛ(σ, σ) where c only depends on Nc and ω. Set

σa
0 = airyPQ0airy

−1σa,

σa
i = airy ΠQ(θiairy

−1(σa − I0σ
a
0)), for i = 1, · · · , k.

The above definitions are proper since div σa = 0 and div (σa − I0σ
a
0) = 0. Clearly

σa =
∑k

i=0 Iiσ
a
i while σa

i ∈ Σi and div σa
i = 0 for i = 0, · · · , k. By inequality (15),

Λ(σa
0, σ

a
0) = ‖airyPQ0airy

−1σa‖2 ≤ c‖σa‖2 = cΛ(σa, σa).

Let q̂ = airy −1(σa − I0σ
a
0) and q = airy −1σa. Then

q̂ = airy −1(σa − I0airyPQ0q) = (I − PQ0)q + (I− I0)PQ0q.

By inequality (14), the assumptions on θi, inequality (8) and inequality (15),

k∑
i=1

Λ(σa
i , σ

a
i ) =

k∑
i=1

‖airy ΠQ(θiq̂)‖2 ≤ c
k∑

i=1

|θiq̂|22,Ωi

≤ c
k∑

i=1

(δ−4|q̂|20,Ωi
+ δ−2|q̂|21,Ωi

+ |q̂|22,Ωi
)

≤ cNc(
H4

δ4
+

H2

δ2
+ 1)|q|22,Ω

≤ cNc(
H4

δ4
+

H2

δ2
+ 1)‖σa‖2.

Therefore we can conclude that
∑k

i=0 Λ(σa
i , σ

a
i ) ≤ c(H4

δ4 + H2

δ2 + 1)Λ(σ, σ), where c
depends on ω and Nc.

Finally, define σi = σg
i +σa

i for i = 0, · · · , k. Clearly σ =
∑k

i=0 Iiσi while σi ∈ Σi

and

k∑
i=0

Λ(σi, σi) ≤ 2(

k∑
i=0

Λ(σg
i , σ

g
i ) +

k∑
i=0

Λ(σa
i , σ

a
i )) ≤ c(

H4

δ4
+

H2

δ2
+ 1)Λ(σ, σ),

where c depends only on ω and Nc. This completes the proof of lemma 4.1.

Remark 4.1. We have shown in the above theorem that CA is of order O(H4

δ4 +H2

δ2 +1).
Recall that for the classical second order elliptic problem, similar result has been proved
with CA of order O(H2

δ2 + 1). In our proof the divergence free part is mapped to the

fourth order Argyris finite element space, which brings H4

δ4 to the result. It is not clear
whether a sharper estimate can be proved for our problem.
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5 Numerical Results

Let Ω be the unit square (0, 1)×(0, 1). We solve both the problem (5) and the problem
(2) by the preconditioned MINRES method. The overlapping Schwarz preconditioners
Ba and Bm are used for problem (5) and the preconditioner S is used for problem
(2), as described in Section 3. In the implementation of the MINRES solver, we use
preconditioned Lanczos procedure to generate a tridiagonal matrix whose eigenvalues
are good approximations of the eigenvalues of the original matrix. Therefore we can
derive an estimate of the condition number of the original matrix. Note that for
symmetric positive matrix we define the condition number as the ratio between the
maximum eigenvalue and the minimum eigenvalue, while for symmetric indefinite
matrix whose eigenvalues lie in [a, b] ∪ [c, d] where a < b < 0 < c < d, we define its
condition number as ad

bc
. For problem (2) the linear system is indeed singular and

its kernel is RM , but we can avoid this kernel in the computation as long as the
body force g satisfies the compatibility condition and the initial guess in the iterative
method is perpendicular to RM .

To get the most accurate condition number estimates from the Lanczos procedure,
we need to choose the test problem carefully. Indeed we experimented over several dif-
ferent test problems and finally chose the one which gave the largest condition number

estimates. For problem (5) we set the exact solution to be σ =

(
x(1 − x) 0

0 y(1 − y)

)
.

For problem (2), we set µ = 0.5, λ = 1 and the body force g =

(
1 − 3x2

2y − 1

)
, which

satisfies the compatibility condition.

Table 1: Condition number estimates, H/δ = 4, k = 4.
Problem (5) Problem (2)

h No Prec. Additive Multiplicative No Prec. Additive Multiplicative

1/8 3.4e+5 5.12 1.06 1.1e+5 12.61 2.09
1/16 1.4e+6 5.01 1.06 1.8e+5 12.36 2.13
1/32 5.5e+6 4.96 1.06 6.3e+5 11.34 2.15

Table 2: Condition number estimates for problem (5), H/δ = 2.
Additive Multiplicative

h k = 4 k = 8 k = 16 k = 4 k = 8 k = 16

1/8 4.86 6.07 6.04 1.02 1.02 1.02
1/16 4.88 5.98 6.02 1.02 1.02 1.02

In Table 1, we report the condition numbers of the unpreconditioned systems
and the preconditioned systems for both the problem (5) and the problem (2). The
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Table 3: Condition number estimates for problem (5), k = 4, H = 1/2
h δ Additive Multiplicative

1/4 1/4 4.85 1.01
1/8 1/8 5.12 1.06
1/16 1/16 8.35 1.52
1/32 1/32 18.63 2.75

coarse mesh and four overlapping subdomains are fixed. The results are uniform with
respect to h.

For problem (5), we also computed the condition numbers for various values of k
and h. The results are given in Table 2 and they are uniform with respect to both k
and h.

Finally, in Table 3, we give a set of condition numbers for various δ. Note that
larger values of δ yields better preconditioners.

A Stability of the finite element spaces

For simplicity, we extend our notation ‖ · ‖s,Ω of the Sobolev norm and | · |s,Ω of
the Sobolev semi-norm to the vector case (Hs(Ω))2 and the symmetric tensor case
(Hs(Ω))3. The weak solution for system (1) exists and is unique in H0(div , Ω) ×
RM⊥

�2(Ω) . For simplicity, let Σ = Σ(T , Ω) and V = V (T , Ω). Since div Σ ⊂ V ,
clearly

‖σ‖�(div ,Ω) = ‖σ‖0,Ω ≤ c(Aσ, σ)1/2, for all σ ∈ V ⊥.

We only need the discrete inf-sup condition to show the stability of the finite element
spaces. Indeed, we have

Lemma A.1. There exists a constant c independent of the mesh size such that

sup
�∈Σ

(div τ , v)

‖τ‖�(div ,Ω)

≥ c‖v‖0,Ω, ∀v ∈ RM⊥� .

Proof. The results of Grisvard [19, 20] imply that when Ω is a convex polygon,
the solution (σ, u) of system (1) with g ∈ RM⊥

�2(Ω) has the regularity u ∈ (H2(Ω))2,
σ ∈ H0(div , Ω) ∩ (H1(Ω))3 and ‖σ‖1,Ω ≤ c‖g‖0,Ω. Taking g = v gives ‖v‖0,Ω ≤
c (div�,�)

‖�‖1,Ω
. Thus, it suffices to construct an interpolation operator Πh : H0(div , Ω) ∩

(H1(Ω))3 → Σ bounded in L((H1(Ω))3, H(div , Ω)) such that div Πh = P� div ,
where P� : L2(Ω) → V is the L2 orthogonal projection.

In [6], such an interpolation was defined for the pure displacement case. We only
need to do a slight modification to make it work for the pure traction problem. Let h
be the characteristic mesh size. Let Rh be the interpolation operator from L2(Ω) onto
the space of C0-quadratics with respect to the mesh Th as defined by Scott and Zhang
[23]. Rh preserves the homogeneous boundary condition on H1(Ω) and Rhp = p for
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all C0-quadratic p defined on mesh Th. Define Rh mapping (H1(Ω))3 to the space of
symmetric tensors of C0-quadratics with respect to the mesh Th by

• for any corner x of the polygon Ω, Rh(τ )(x) = 0;

• for all the other degrees of freedom x, Rh(τ )(x) =

(
(Rhτ11)(x) (Rhτ12)(x)
(Rhτ21)(x) (Rhτ22)(x)

)
.

Consider the triangles in Th as closed subsets of Ω which contain their boundary.
For a triangle T ∈ Th, define ST =

⋃
{Ti|Ti ∩ T �= ∅, Ti ∈ Th}. Following the proof

of [23], we will show that

1. for any τ ∈ H0(div , Ω) ∩ (H1(Ω))3, (Rhτ )n|∂Ω = 0;

2. (stability) for j = 0, 1 and τ ∈ (H1(Ω))3, ‖Rhτ‖j,T ≤
∑1

i=0 hi−j |τ |i,ST
;

3. (approximability) for j = 0, 1, 1 ≤ m ≤ 3 and τ ∈ H0(div , Ω) ∩ (Hm(Ω))3,
‖Rhτ − τ‖j,T ≤ chm−j |τ |m,ST

.

The first result is obvious from the definition. The proof for stability is exactly the
same as the proof of theorem 3.1 in [23]. We need to prove the approximability. By
the Bramble-Hilbert lemma, there exists a symmetric tensor of quadratic polynomials
ρ = (ρij)1≤i,j≤2 ∈ (P2)

3 such that

‖τ − ρ‖j,ST
≤ Chm−j |τ |m,ST

, 0 ≤ j ≤ m ≤ 3.

Hence
‖Rhτ − τ‖j,T ≤ ‖τ − ρ‖j,T + ‖Rh(τ − ρ)‖j,T + ‖ρ − Rhρ‖j,T

≤ c

1∑
i=0

hi−j‖τ − ρ‖i,ST
+ ‖ρ − Rhρ‖j,T

≤ chm−j |τ |m,ST
+ ‖ρ −Rhρ‖j,T .

By the definition of Rh, ρ − Rhρ has none-zero nodal values only at the corners of
polygon Ω. Denote Vc the set of the corners of polygon Ω. Then ‖ρ − Rhρ‖j,T ≤
ch−j+1

∑
v∈Vc∩T |ρ(v)|, where |ρ(v)|2 =

∑2
i,j=1 |ρij(v)|2. Now we evaluate |ρ(v)| for

each v ∈ Vc. It is easy to see that v is the intersection of two edges γ1, γ2 of mesh Th

and γ1, γ2 ⊂ ∂Ω∩∂ST . Denote n1, n2 the outer normal vectors on γ1, γ2 respectively.
Then by the boundary condition of τ and the trace theorem,

h|ρ(v)|2 ≤ c
2∑

i=1

‖ρni‖2
0,γi

= c
2∑

i=1

‖(τ − ρ)ni‖2
0,γi

≤ ch(h−2‖(τ − ρ)‖2
0,ST

+ |(τ − ρ)|21,ST
)

≤ ch2m−1|τ |2m,ST
.

Hence |ρ(v)| ≤ chm−1|τ |m,ST
and consequently ‖ρ − Rhρ‖j,T ≤ chm−j |τ |m,ST

. That
completes the proof of approximability for Rh because of the limited overlap property
of {ST}.
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Define Πh = Π0
h(I−Rh) + Rh, where Π0

h is defined exactly the same as is defined
in [6]. Πh clearly preserves the boundary condition of H0(div , Ω) and as shown
in [6], we have div Πhτ = P� div τ and ‖Π0

hτ‖0,Ω ≤ c(‖τ‖0,Ω + h‖τ‖1,Ω) for all
τ ∈ H(div , Ω)∩ (H1(Ω))3. Finally, by the properties of Π0

h and Rh, it is easy to see
that

‖τ − Πhτ‖0,Ω ≤ chm‖τ‖m,Ω, for τ ∈ H0(div , Ω) ∩ (Hm(Ω))3, 1 ≤ m ≤ 3.

Consequently for τ ∈ H0(div , Ω) ∩ (H1(Ω))3,

‖Πhτ‖2
�(div ,Ω) = ‖Πhτ‖2

0,Ω + ‖div Πhτ‖2
0,Ω

= ‖Πhτ‖2
0,Ω + ‖P� div τ‖2

0,Ω

≤ c‖τ‖2
1,Ω.

Therefore Πh is bounded in L((H1(Ω))3, H(div , Ω)) by a constant independent of
the mesh size.

B Construction of the operator PQ0

Here we construct an operator PQ0 : H2
0 (Ω) → Q0 such that inequality (15) holds.

Let H1
0 (Ω) = {w ∈ H1(Ω) such that w|∂Ω = 0}. Note that for q ∈ H2

0 (Ω), we have
∇q ∈ (H1

0 (Ω))2. By Scott and Zhang [23], there is a Clement type operator Π from
H1(Ω) to its continuous piecewise linear subspace based on the mesh TH preserving the
homogeneous boundary condition. Let T ∈ TH and ST =

⋃
{Ti|Ti∩T �= ∅, Ti ∈ TH}.

Let vi, i = 1, 2, 3 be the three vertices of T and li be the edge of T which is opposite
to the vertex vi. From the proof of Theorem 3.1 in [23], there exists a constant c
independent of H and T such that

3∑
i=1

|Πw(vi)| ≤ c
1∑

m=0

Hm−1|w|m,ST
, for all w ∈ H1(Ω). (16)

Define the operator PQ0 as

for each vertex vi in TH :

(PQ0q)(vi) = Πq(vi), airy (PQ0q)(vi) = 0,

∂

∂x
(PQ0q)(vi) = Π(

∂

∂x
q)(vi),

∂

∂y
(PQ0q)(vi) = Π(

∂

∂y
q)(vi);

for each edge li in TH :∫
li

∂

∂n
(PQ0q) ds =

∫
li

∂

∂n
q ds.

Clearly PQ0 is well-defined and maps H2
0 (Ω) to Q0. We will show that PQ0 is stable

in the following sense:

|PQ0q|i,T ≤
2∑

m=0

Hm−i|q|m,ST
, for q ∈ H2

0 (Ω), T ∈ TH , i = 0, 1, 2. (17)
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By the inverse inequality, we only need to prove inequality (17) for i = 0. Let φj,
j = 1, · · · , 21 be the basis of the Argyris element in T , that is, φj equals to 1 on
the j’th degree of freedom while vanishing on all the other degrees of freedom. The
Argyris element is almost affine but not affine, but by using the technique in the
proof of Theorem 6.1.1 in [15], we can conclude that there exists a constant c which is
independent of H and T such that ‖φj‖0,T ≤ cH when the j’th degree of freedom is
the nodal value at the vertex or the moment on the edge, while ‖φj‖0,T ≤ cH2 when
the j’th degree of freedom is the first derivative at the vertex. For each q ∈ H2

0 (Ω),
we have PQ0q|T =

∑21
j=1 Nj(q)φj, where Nj : H2

0 (Ω) → � are defined as

Nj(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Πq(vi), when the j’th dof is the nodal value on vi ;

Π(
∂

∂x
q)(vi),

Π(
∂

∂y
q)(vi),

when the j’th dof is the first derivative on vi ;

0, when the j’th dof is the second derivative on vi ;∫
li

∂
∂�

q ds, when the j’th dof is the moment on li .

Thus

‖PQ0q‖0,T ≤
21∑

j=1

|Nj(q)|‖φj‖0,T ≤ c

(
H

3∑
i=1

|Πq(vi)|

+ H2
3∑

i=1

|Π(
∂

∂x
q)(vi)| + H2

3∑
i=1

|Π(
∂

∂y
q)(vi)| + H

3∑
i=1

|
∫

li

∂

∂n
q ds|

)
.

By the inequality (16),

3∑
i=1

|Π(
∂

∂x
q)(vi)| +

3∑
i=1

|Π(
∂

∂y
q)(vi)| ≤ c

2∑
m=1

Hm−2|q|m,ST
,

3∑
i=1

|Πq(vi)| ≤ c

1∑
m=0

Hm−1|q|m,ST
.

By the trace theorem, we have

|
∫

li

∂

∂n
q ds|2 ≤ cH

∫
li

| ∂

∂n
q|2 ds

≤ cH(H−1‖∇q‖2
T + H|∇q|21,T )

≤ C

2∑
m=1

H2m−2|q|2m,T .

The stability result (17) follows immediately from combining all the above inequali-
ties.
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Finally we prove the inequality (15). Let q ∈ H2
0 (Ω). By the Bramble-Hilbert

lemma, there exists a linear polynomial p such that

‖q − p‖i,ST
≤ cH2−i|q|2,ST

, for i = 0, 1, 2.

One important observation is that PQ0p|T = p|T . By the triangle inequality and
inequality (17),

|q − PQ0q|i,T ≤ |q − p|i,T + |PQ0(q − p)|i,T
≤ cH2−i|q|2,ST

,

where c is independent of H and T . Thus inequality (15) follows from the limited
overlap property of {ST}.
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