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Abstract. In this paper we propose and analyze a class of finite volume element method
for solving a second order elliptic boundary value problem whose solution is defined in more
than one length scales. The method has the ability to incorporate the small scale behaviors
of the solution on the large scale one. This is achieved through the construction of the
basis functions on each element that satisfy the homogeneous elliptic differential equation.
Furthermore, the method enjoys numerical conservation feature which is highly desirable
in many applications. Existing analyses on its finite element counterpart reveal that there
exists a resonance error between the mesh size and the small length scale. This result
motivates an oversampling technique to overcome this drawback. We develop an analysis
of the proposed method under the assumption that the coefficients are of two scales and
periodic in the small scale. The theoretical results are confirmed experimentally by several
convergence tests. Moreover, we present an application of the method to flows in porous
media.

1. Introduction

Understanding and quantification of the phenomena and processes arising in engineering
and physics often involve solving boundary value problems with many scales. The existence
of heterogeneities, such as in the flow in porous media formations for example, occurs
either globally or locally which influence the behavior of the phenomena under investigation.
Consequently, attempts to primitively solve these problems numerically are challenging since
a vast amount degree of freedoms have to be devoted in order to produce the most accurate
predictions.

Besides utilizing the parallel computing technology which does not actually reduce the
problem size, there have been significant efforts to develop methods of obtaining effective
parameters that are defined on coarser models. This is also in conjunction with engineering
work that often requires only the knowledge of the processes on the large scale. The common
terminology for this practice is upscaling. Among the many literatures that deal with these
issues are [5, 7, 8, 11, 20] and references cited therein. In general, the more simplified
mathematical descriptions were motivated by homogenization theory (see, e.g. [18]).

A somewhat new direction in tackling this problem has been developed recently (cf.
e.g. [1, 9, 15, 16]). The numerical methods presented in these papers have the ability to
capture the small scales effect on the large scale solution without resolving the small scale
details. In [15, 16] for example, this is implemented by devising the so called oscillatory
basis functions which are incorporated into the finite element formulation on the coarse grid,
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hence the name multiscale finite element method. The basis functions serve as the building
block of all small scales structures inherited from the original problem, so that they are set
to satisfy the leading order homogeneous elliptic equation in each coarse element. It should
be noted that the effectiveness of the multiscale finite element method is more significant
when the coarse element size is substantially larger than the small scale length.

The analyses and convergence tests for the case of two-scale periodic coefficients reported
in [15, 16] reveal that there exists an interaction between the coarse element size and the
small scale length. This kind of error, referred to as resonance error, is the ratio of these
two numbers. In effect, the error becomes large when these two numbers are close to each
other. This brings the use of oversampling strategy reported in [10]. Since it is believed that
the resonance error is originated from the boundary layer in the first order corrector of the
local solution, then solving the basis functions on larger domain than the specified coarse
element would diminish the boundary layer. This is the meaning of oversampling. One
drawback of the oversampling technique is that the resulting solution is nonconforming.
However, for some practical purposes where the sought quantity is the gradient of the
solution (flux) nonconformity should not cause a serious harm. The errors associated with
this nonconformity have been studied in [10, 21]. In particular, the authors of [21] have
shown that by a careful choice of global formulation of the problem, one can reduce the
nonconforming error.

In addition to capturing small scale effects on the large one, many engineering and phys-
ical applications such as those arising in the petroleum reservoir simulations, groundwater
hydrology and environmental remediation, desire to develop numerical methods that have
certain conservation features. This may be achieved by using mixed finite element, dis-
continuous Galerkin finite element, and finite volume methods. The finite volume method
(box schemes) has the simplicity of the finite difference method [13], and at the same time
enjoys the flexibility of the finite element method. For this reason this method is referred
to as finite volume element method [12, 19]. Recently, the trend is to view the finite vol-
ume element method as a perturbation of finite element method using certain interpolation
operator. This way, analysis of the method uses substantially the existing finite element
results and techniques [2, 3, 4].

In this paper we propose a two-scale finite volume element method for solving a class of
second order elliptic boundary value problems. We will follow the ideas from [10, 16, 15]
for the construction of the basis functions. An oversampling strategy will be utilized to
produce the nonconforming basis functions. The difference is the variational formulation
will be defined through finite volume method. Similar procedure has been implemented
in [17]. For the analysis, we concentrate on the two-scale periodic coefficients, so that we
may use the technique of the homogenization theory to obtain asymptotic expansion of the
solution. The main result is based on estimating the perturbation of this two-scale finite
volume element method with respect to its finite element counterpart.

The paper is organized as follows. In section 2 we present the model problem and revisit
several existing notations and tools required for developing the two-scale finite volume
element method and its analysis. Then section 3 is devoted to presenting the formulation of
two-scale finite volume element method. It includes an overview of homogenization theory
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Figure 1. Left: Portion of triangulation sharing a common vertex z and its
control volume. Right: Partition of a triangle K into three quadrilaterals

that will be used in the construction of the oversampling method and also in the subsequent
analysis. The method is focused on a two-dimensional space problems. However, extension
of the method to three-dimensional problems is straightforward. In section 4 we give an
H1 estimate of the error, which will be for the case when the mesh size is larger than the
fluctuating scale of the continuous problem. Numerical examples aimed to investigate the
convergence and accuracy of the method are given in section 5 on problems with periodic
and random coefficients. Section 6 is reserved for concluding remarks.

2. Model Problem and Preliminaries

We seek the solution uε = u(x, x/ε) of the following boundary value problem:

Lε uε ≡ −∇ · (A(x/ε)∇uε) = f(x) in Ω ⊂ R
2,

uε = 0 on ∂Ω,
(2.1)

where Ω ⊂ R
2 is a bounded polygonal domain, ε > 0 is a small parameter, and A(x/ε) =

(Aij(x/ε)) is a 2 × 2 symmetric positive definite matrix, i.e., there exists constants β >
α > 0 such that α|ξ|2 ≤ ξtAξ ≤ β|ξ|2 for any vector ξ ∈ R

2 and for almost every x ∈ Ω.
Furthermore, we assume that the coefficients Aij(y) is sufficiently smooth periodic functions
(with period 1) in y in a unit square Y = [0, 1]× [0, 1]. In our analysis it suffices to assume
that Aij(y) ∈ W 2

p (Y ) (p > 2).
In what follows we describe some preliminaries that are necessary for the description of

our numerical method and its analysis. Let {Th}0<h<1 be a family of quasiuniform trian-
gulations of a bounded polygonal domain Ω, with hK denotes the diameter of the triangle
K ∈ Th, and h = maxK{hK}. Given the triangulation Th we describe the construction
of the control volumes as follows. Consider a triangle K, and let zK be its barycenter.
The triangle K is divided into three quadrilaterals of equal area by connecting zK to the
midpoints of its three edges. We denote these quadrilaterals by Kz, where z ∈ Zh(K),
are the vertices of K. Also we denote Zh =

⋃
K Zh(K), and Z0

h = interior vertices of Zh.
The control volume Vz is defined as the union of the quadrilaterals Kz sharing the vertex z
(see Figure 1). Let K be a domain in R

2. We denote by L2(K), the space of square inte-
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grable real functions over K, (·, ·)K the inner product in L2(K), ‖ · ‖Hm(K) and | · |Hm(K),
the norm and seminorm of the Sobolev space Hm(K) for m ∈ N. We also introduce the
“broken” norm ‖ · ‖m,h such that ‖v‖m,h = {∑K∈Th

‖v‖2
Hm(K)}1/2, and its corresponding

seminorm | · |m,h such that |v|m,h = {∑K∈Th
|v|2Hm(K)}1/2. Also we denote by ‖·‖W m

p (K) and
| · |W m

p (K), respectively the norm and seminorm of the Sobolev space W m
p (K), m ∈ N, p ≥ 1.

Finally we designate by 〈·〉K the mean of a function over K. We note that we suppress
the K in the notations whenever K = Ω, and suppress the index m whenever m = 0, i.e.,
H0(K) = L2(K). Throughout the paper, C and c (sometimes with indices) will denote a
generic constant independent of h and ε.

We denote the following two finite dimensional spaces:

(2.2) Xh =
{
χ ∈ H1

0 (Ω) : χ |K is linear, χ |∂Ω= 0
}

,

(2.3) Yh =
{
ξ ∈ L2(Ω) : ξ |Vz is constant, z ∈ Z0

h, ξ |Vz= 0 if z ∈ ∂Ω
}

.

In the sections that follow we use the following interpolation operator Ih : Xh → Yh such
that ∀χ ∈ Xh

(2.4) Ihχ =
∑
z∈Zh

0

χ(z)Ψz,

where Ψz is the characteristic function of the control volume Vz. Below we list several
properties of Ih (see [2, 4] for details):

(2.5) (χ, Ihφ) = (φ, Ihχ) , ∀χ, φ ∈ Xh,

c1‖χ‖2 ≤ |||χ|||2 ≤ c2‖χ‖2, ∀χ ∈ Xh, c2 > c1 > 0, |||χ|||2 = (χ, Ihχ) ,(2.6)

(2.7)
∫

K
Ihχ dx =

∫
K

χ dx, ∀χ ∈ Xh, for any K ∈ Th,

(2.8)
∫

e
Ihχ ds =

∫
e
χ ds, ∀χ ∈ Xh, for any side e of K ∈ Th,

(2.9) ‖Ihχ‖L∞(e) ≤ ‖χ‖L∞(e), ∀χ ∈ Xh, for any side e of K ∈ Th,

(2.10) ‖χ − Ihχ‖Lp(K) ≤ ChK |χ|W 1
p (K), ∀χ ∈ Xh, 1 ≤ p < ∞.

3. A Two-Scale Finite Volume Element Method with Oversampling

This section is devoted to the formulation of two-scale finite volume element method for
solving (2.1) and its necessary venue for the analysis. In subsection 3.1 we briefly review a
homogenization theory that will be needed for this purpose. The detail of oversampling is
presented in subsection 3.2. Then the formulation of the finite volume element method is
elaborated in subsection 3.3. In the following, the Einstein summation is assumed wherever
it applies.
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3.1. Overview of homogenization theory. Here we review some results from homog-
enization theory. First we define Nk(y), k = 1, 2 to be the periodic solution in the unit
square Y with 〈Nk〉Y = 0 that satisfies the equation

(3.1) ∇y · (A(y)∇yNk(y)) = −∇y
i Aik(y).

Here ∇y is the gradient with respect to the variable y and ∇y
i is the i-th component of the

∇y. By homogenization theory (cf. [18]), the solution of (2.1) can be expanded as

(3.2) uε = u0 + ε Nk(x/ε)∇ku0 + ε θu,

where ∇k is the k-th component of ∇. The function u0 is the solution of the following
homogenized boundary value problem:

−∇ · (A∗∇u0) = f in Ω,

u0 = 0 on ∂Ω,
(3.3)

where the entries of A∗, denoted by A∗
ij , is expressed as

(3.4) A∗
ij =

∫
Y

Aik

(
δkj + ∇y

kNj

)
dy.

Regarding θu, we have the following estimate [18]:

Lemma 3.1. Let θu be the corrector in (3.2). Then there exists a constant C > 0 indepen-
dent of ε such that

(3.5) ε |θu|1 ≤ C
√

ε.

3.2. Oversampling and construction of the solution space. In this subsection we
present the oversampling strategy that will be combined with the finite volume element
method. We construct an intermediate basis functions

{
ψi

ε, i = 1, 2, 3
}

in an oversampled
triangle domain S ⊃ K, diam(S) > 2hK by solving

(3.6) Lε ψi
ε = −∇ · (A(x/ε)∇ψi

ε

)
= 0 in S,

where ψi
ε is piecewise linear along ∂S, and ψi

ε(sj) = δij , with sj, j = 1, 2, 3 being the vertices
of S (see Figure 2). It follows from this construction that ψi

ε exhibit similar structure to uε.
To be specific, ψi

ε has the following asymptotic expansion:

(3.7) ψi
ε = ψi

0 + ε Nk(x/ε)∇kψ
i
0 + ε θi,

where ψi
0 is the linear homogenized part of ψi

ε. Furthermore, we may write θi = ηk∇kψ
i
0,

where ηk, k = 1, 2, satisfy the following problem:
∇ · (A(x/ε)∇ηk) = 0 in S

ηk = Nk on ∂S.
(3.8)

The function ηk enjoys the following property [10]:

Lemma 3.2. Let K ∈ Th such that K ⊂ S. There exists a constant C > 0 independent of
ε and hK such that

(3.9) ‖∇ηk‖L∞(K) ≤
C

hK
.
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Figure 2. Oversampling of basis functions on a substantially larger domain
than triangle K.

Next, the basis functions
{
φi

ε, i = 1, 2, 3
}

on K are constructed by linear combination of{
ψi

ε, i = 1, 2, 3
}
:

(3.10) φi
ε =

3∑
j=1

cijψ
j
ε .

Substituting (3.7) to (3.10), we see that φi
ε can be expanded as follows:

(3.11) φi
ε = φi

0 + ε Nk(x/ε)∇kφ
i
0 + ε cij θj,

where

(3.12) φi
0 =

3∑
j=1

cij ψj
0.

The constants cij are obtained by setting φi
0(zj) = δij which gives a system of linear equa-

tion. It is straightforward to see that the 3 × 3 matrix in this linear system is invertible.
Furthermore, since the oversampled domain S is not extremely larger than the triangle K,
the matrix is well conditioned. Now we denote the space of the approximate solution by
Vh, which is defined as the space spanned by φi

ε|K . We note that by this construction, the
basis functions are not continuous across ∂K. We also set the basis functions to be zero on
∂Ω. Consequently Vh is no longer a subset of H1(Ω).

Now we have the tool to expand the functions that belong to the space of our approximate
solution Vh. So consider vh

ε ∈ Vh. Since the expansion of the basis functions was conducted
on a triangle K, we will also have the asymptotic expansion for vε

h on K. First we write
vh
0 = vh

0 (zi)φi
0, zi ∈ Zh(K). Moreover, since θj = ηk∇kψ

j
0 we may define θh using the

following equivalent representations:

θh = vh
0 (zi) cij θj = vh

0 (zi) cij ηk ∇kψ
j
0 = vh

0 (zi) ηk ∇kφ
i
0 = ηk ∇kv

h
0 .(3.13)

Then by setting vh
ε = vh

0 (zi)φi
ε for zi ∈ Z(K), and using (3.11) and (3.13), we have the

following asymptotic expansion for vh
ε ∈ Vh:

(3.14) vh
ε = vh

0 + εNk(x/ε)∇kv
h
0 + εθh
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on each triangle K ∈ Th.

3.3. Formulation of the method. At this point, we are in a position to describe the
two-scale finite volume element method for (2.1) that incorporates the small scale features:
to seek uh

ε ∈ Vh that satisfies the following local conservation property:

(3.15) −
∫

∂Vz

(A(x/ε)∇uh
ε ) · �n ds =

∫
Vz

f dx, ∀ z ∈ Z0
h,

where �n is the unit normal vector pointing outward on ∂Vz. Obviously, this construction
requires that the number of control volumes Vz be equal to the dimension of Vh. We note
that this formulation may be equivalently written as the following variational problem: Find
uh

ε ∈ Vh such that

(3.16) aFV (uh
ε , χ) =

∑
z∈Z0

h

χ(z)
∫

Vz

f dx ∀χ ∈ Xh,

where the form aFV (·, ·) : H̃2
h × H2

h → R is defined by

(3.17) aFV (v, χ) = −
∑
z∈Z0

h

χ(z)
∫

∂Vz

(A(x/ε)∇v) · �nds,

with H̃2
h = H2(Ω) + Vh and H2

h = H2(Ω) + Xh. In [2] it has been shown that using the
interpolation operator Ih in (2.4), we have

(3.18)
∑
z∈Z0

h

χ(z)
∫

Vz

f dx = (f, Ihχ).

Now we can give another equivalent representation of aFV (v, χ). Consider a triangle K and
a control volume Vz such that K ∩ Vz �= ø. Then using Green’s formula we get∫

K∩Vz

Lεv dx = −
∫

∂K∩Vz

(A(x/ε)∇v) · �n ds −
∫

∂Vz∩K
(A(x/ε)∇v) · �n ds.(3.19)

This equality and the interpolation operator Ih allows us to get

aFV (v, χ) = −
∑

K∈Th

∑
z∈Zh(K)

∫
∂Vz∩K

(A(x/ε)∇v) · �n Ihχ ds

=
∑

K∈Th

{(
Lεv, Ihχ

)
K

+
(
(A(x/ε)∇v) · �n, Ihχ

)
∂K

}
.

(3.20)

By combining all these identities we may write the following equivalent Petrov-Galerkin
formulation of the two-scale finite volume element problem: Find uh

ε ∈ Vh such that

(3.21) aFV (uh
ε , χ) = (f, Ihχ) ∀χ ∈ Xh,

with aFV (·, ·) as in (3.20).
In the standard finite volume element method, there is well developed technique for the

error analysis based on the existing results from its standard finite element counterpart (see
[2, 4] for detail investigation). The main idea is in viewing the finite volume element as a
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perturbation of finite element method with the help of the interpolation operator Ih. This
way, one can tap into existing analysis in the Galerkin finite element method to derive the
error estimates for finite volume element method.

In this paper we will follow similar procedure. However, due to the specific construction
of the basis functions and the corresponding finite dimensional space of the approximate
solution Vh, that accounts for the scale features, we will employ Petrov-Galerkin formulation.
First, we introduce the Petrov-Galerkin formulation of the two-scale finite element problem
associated with (2.1): Find ũh

ε ∈ Vh such that

(3.22) aFE(ũh
ε , χ) = (f, χ) ∀χ ∈ Xh,

where

(3.23) aFE(vh
ε , χ) =

∑
K∈Th

(
A(x/ε)∇vh

ε ,∇χ
)
K

, ∀ vh
ε ∈ Vh, χ ∈ Xh.

By Green’s formula we may write aFE(·, ·) as

(3.24) aFE(vh
ε , χ) =

∑
K∈Th

{(
Lεv

h
ε , χ

)
K

+
(
A(x/ε)∇vh

ε · �n, χ
)
∂K

}
, ∀ vh

ε ∈ Vh, χ ∈ Xh.

Moreover, by the construction of the basis functions of Vh we have

(3.25) (Lεv
h
ε , Ihχ)K = (Lεv

h
ε , χ)K = 0, ∀ vh

ε ∈ Vh, χ ∈ Xh.

Using (3.24) and (3.20), we may define the following bilinear form D : Vh × Xh → R:

D(vh
ε , χ) = aFE(vh

ε , χ) − aFV (vh
ε , Ihχ)

=
∑

K∈Th

(
(A(x/ε)∇vh

ε ) · �n, χ − Ihχ
)
∂K

(3.26)

This bilinear form characterizes the two-scale finite volume element method as the pertur-
bation of two-scale finite element method. Our aim now is to estimate (3.26) , and in turn
use the existing results of the two-scale finite element method to obtain the convergence of
the two-scale finite volume element method.

4. Convergence Analysis of the Method for case ε � h

As mentioned earlier, the analysis proceeds with quantification of the perturbation be-
tween the two-scale finite volume element method and its finite element counterpart. In this
section we estimate (3.26), show the inf-sup condition of the bilinear form guaranteeing the
existence and uniqueness of the solution, and prove the error estimate. First we establish
the following lemma that will be used in the subsequent proof. We define a 2 × 2 matrix
B(x/ε) such that its entries are written as

(4.1) Bij = Aij + ε Aik ∇kNj ,

where Nj is as in subsection 3.1.
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Lemma 4.1. Assume that there exists c2 > c1 > 0 such that

(4.2) c1|ξ|2 ≤ ξiBijξj ≤ c2|ξ|2 ∀ ξ ∈ R
2.

Then there exists C2 > C1 > 0 such that

(4.3) C1|∇vh
ε |K ≤ |∇vh

0 |K ≤ C2|∇vh
ε |K

for every vh
ε ∈ Vh and for each K ∈ Th.

Proof. In what follows all the estimates are taken over the triangle K. Using (3.14) and
(3.13) and noting that vh

0 is linear in K, we have the following equality:

Aij∇jv
h
ε = Aij∇jv

h
0 + Aij∇j

(
εNk∇kv

h
0

)
+ εAij∇jθ

h

= (Aij + εAik∇kNj + εAik∇kηj)∇jv
h
0

= (Bij + εAik∇kηj)∇jv
h
0 .

(4.4)

Multiplying (4.4) by ∇iv
h
0 we have

(4.5) ∇iv
h
0Aij∇jv

h
ε = ∇iv

h
0 (Bij + εAik∇kηj)∇jv

h
0 .

Now by Lemma 3.2 we may use the assumption (4.2) to the term Bij + εAik∇kηj, so that

(4.6) β |∇vh
0 | |∇vh

ε | ≥ ∇iv
h
0Aij∇jv

h
ε = ∇iv

h
0 (Bij + εAik∇kηj)∇jv

h
0 ≥ c1 |∇vh

0 |2,
from which we obtain the right hand side inequality of (4.3). Similarly, multiplying (4.4)
by ∇iv

h
ε , and by positive definiteness of A, we obtain the result for the left hand side of

(4.3). �

4.1. Estimate on the functional D. In this subsection we estimate the functional defined
in (3.26). By substituting (3.14) in (3.26) and noting that vh

0 in (3.14) is piecewise linear,
we may rewrite (3.26) in the form

D(vh
ε , χ) =

∑
K∈Th

((
B(x/ε)∇vh

0

) · �n, χ − Ihχ
)

∂K

+
∑

K∈Th

((
A(x/ε) ε∇θh

) · �n, χ − Ihχ
)

∂K

(4.7)

for any χ ∈ Xh where the entries of B are as in (4.1). The following two lemmas are devoted
to estimate the two terms in (4.7).

Lemma 4.2. Assume that the coefficient matrix A(y) is 1-periodic functions along each
edge e of a triangle K. Then for every χ ∈ Xh there exists constant C > 0 independent of
ε and h such that

(4.8)
∫

e
(B(x/ε)∇vh

0 ) · �n (χ − Ihχ)ds ≤ C
ε

h
|vh

ε |H1(K) |χ|H1(K)

for every edge e of a triangle K.
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Figure 3. Partition of an edge e into sub-segments Yε of size ε and possibly
two segments Yδ of size less than ε.

Proof. Since the matrix A is 1-periodic along the edge, so is the matrix B defined by (4.1).
Choose a constant matrix B̃ whose entries will be determined later. Since ∇vh

0 ·�n is constant
on e, by (2.8) we have∫

e

(
B(x/ε)∇vh

0

) · �n (χ − Ihχ) ds =
∫

e

(
(B(x/ε) − B̃)∇vh

0

) · �n (χ − Ihχ) ds

= ni ∇jv
h
0

∫
e
(Bij(x/ε) − B̃ij) (χ − Ihχ) ds,

(4.9)

where we have used Einstein’s summation on the last line. We note that Ihχ is discontinuous
along the edge e. Let zl and zr be the two vertices connected by edge e, and zm be the
point of discontinuity (which is the midpoint e), and thus the integration in (4.9) may be
broken up into integration along (zl, zm) plus integration along (zm, zr). Starting from zm

we may break up the segment (zl, zm) into a number of sub-segments Yε each of which has
size ε and possibly one sub-segment Yδ of size δ < ε (see Figure 3). Similar partition may be
implemented for segment (zm, zr). This partition implies that the integration in (4.9) may
be broken up into the sum of integral over all the sub-segments. Now it is obvious that the
matrix B is periodic with respect to the sub-segment Yε. In what follows we will estimate
the integral (4.9) over the sub-segments Yε and Yδ. We choose the matrix B̃ to have the
following entries:

(4.10) B̃ij =
1

|Yε|
∫

Yε

Bij ds

Obviously the estimate for integral over Yδ is straightforward, since we have |Bij − B̃ij |
bounded, and |χ − Ihχ| ≤ C |∇χ| ε in Y ′

ε . Hence,

(4.11)
∫

Yδ

(Bij − B̃ij) (χ − Ihχ) ds ≤ C
ε2

h
|χ|H1(K),

where we have used the inverse inequality for χ. Moreover, by choosing B̃ as in (4.10), we
have the following indentity:

(4.12)
∫

Yε

(Bij − B̃ij) (χ − Ihχ) ds =
∫

Yε

(Bij − B̃ij)χ ds =
∫

Yε

(Bij − B̃ij) (χ − χ̃) ds,
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where

(4.13) χ̃ =
1

|Yε|
∫

Yε

χ ds

Consequently, Poincare-Friedrich inequality and scaling argument gives us

(4.14) ‖Bij − B̃ij‖L2(Yε) ≤ C
√

ε ‖∇yBij‖L2(0,1) ≤ C
√

ε.

Furthermore, due to the fact that χ is linear on the edge e, we also have

(4.15) ‖χ − χ̃‖L2(Yε) ≤ C ε3/2 |∇χ|.

Hence, using (4.12), Cauchy-Schwarz inequality, (4.14), and (4.15) we have the following
estimate: ∫

Yε

(Bij − B̃ij) (χ − Ihχ) ds ≤ ‖Bij − B̃ij‖L2(Yε) ‖χ − χ̃‖L2(Yε)

≤ C ε2 |∇χ|

≤ C
ε2

h
|χ|H1(K),

(4.16)

Now we may sum over all Yε and Y ′
ε and note that all terms on the (4.11) and (4.16) are

independent of ε except the ε itself. Thus,∫ zm

zl

(Bij − B̃ij) (χ − Ihχ) ds =
∑
Yε,Y ′

ε

∫
Yε

(Bij − B̃ij) (χ − Ihχ) ds

≤ C
ε

h
|χ|H1(K)

∑
Yε,Y ′

ε

ε

≤ C ε |χ|H1(K)

(4.17)

The same procedure described above may be implemented for (zm, zr) so that summing up
result from these two segments and applying inverse inequality to vh

0 give us

ni ∇jv
h
0

∫
e
(Bij(x/ε) − B̃ij) (χ − Ihχ) ds ≤ C

ε

h
|vh

0 |H1(K) |χ|H1(K).(4.18)

Then the right hand side of (4.3) in Lemma 4.1 finishes up the proof. �

Lemma 4.3. Let e be an edge of triangle K, and θh be as in (3.13). Then for every χ ∈ Xh

there exists constant C > 0 independent of ε and h such that

(4.19)
∫

e
A(x/ε) ε∇θh · �n (χ − Ihχ) ds ≤ C

ε

h
|vh

ε |H1(K) |χ|H1(K).
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Proof. Using (3.13), Lemma 3.2, and the fact that χ is linear on e, we have∫
e

A(x/ε) ε∇θh · �n (χ − Ihχ) ds ≤ C
ε

h
|∇vh

0 |
∫

e
|χ − Ihχ|ds

≤ C
ε

h
|∇vh

0 |h ‖χ − Ihχ‖L∞(e)

≤ C
ε

h
|vh

0 |H1(K) |∇χ|h

≤ C
ε

h
|vh

0 |H1(K) |χ|H1(K),

(4.20)

where we have used inverse inequality for ∇vh
0 and ∇χ. Then right hand side of (4.3) in

Lemma 4.1 finishes up the proof. �
Theorem 4.1. For vh

ε ∈ Vh we have

(4.21) |D(vh
ε , χ)| ≤ Cd

ε

h
|vh

ε |1,h |χ|H1 ∀χ ∈ Xh.

Proof. Considering (4.7), we may break up the integral over ∂K into the sum of integral
over the edges e. Then the estimate is obtained by straightforward application of Lemmas
4.2 and 4.3. �
4.2. Inf-Sup conditions and error estimates. We start by establishing the inf-sup con-
dition of the finite element bilinear form. Similar proof has also been conducted in [21].
Moreover, in [21] the authors derived an L2 error estimate for the two-scale nonconforming
Petrov-Galerkin finite element and demonstrated the smallness of the nonconforming error.

Lemma 4.4. Assume that (4.2) holds. Then the finite element bilinear form (3.23) satisfies
the inf-sup condition, i.e., for vh

ε ∈ Vh we have

(4.22) sup
χ∈Xh

aFE(vh
ε , χ)

‖χ‖H1

≥ Cfe ‖vh
ε ‖1,h

for some constant Cfe > 0 independent of ε, h.

Proof. Let us define a 2 × 2 matrix M(x/ε) whose entries are defined as

(4.23) Mij = Bij + εAik∇kηj ,

where Bij , ∇k and ηj are as in section 3.1. By using the expansion (3.14) and noting that
vh
0 is piecewise linear, we may write (3.24) as

(4.24) aFE(vh
ε , χ) =

∑
K∈Th

(
M(x/ε)∇vh

0 ,∇χ
)
K

.

Now by Lemma 3.2 we may use the assumption (4.2) to the term Mij = Bij + εAik∇kηj ,
and thus by taking χ = vh

0 we have

(4.25) sup
χ∈Xh

aFE(vh
ε , χ)

‖χ‖H1

≥ C
|vh

0 |21,h

‖vh
0 ‖1,h

.

Left hand side of (4.3) in Lemma 4.1 and the Poincaré-Friedrichs inequality finish up the
proof. �
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This inf-sup condition guarantees that there exists a unique solution to our two-scale
finite element problem. Now we may establish a variation of Céa’s Lemma written in the
theorem below.

Theorem 4.2. Let uε and ũh
ε be the solutions of (2.1) and (3.22), respectively. Then

(4.26) ‖uε − ũh
ε ‖1,h ≤ (1 + Cfe) inf

vh
ε ∈Vh

‖uε − vh
ε ‖1,h.

Proof. Let vh
ε ∈ Vh and χ ∈ Xh. We have aFE(ũh

ε − vh
ε , χ) = aFE(uε − vh

ε , χ)+aFE(ũh
ε , χ)−

(f, χ), where the last two terms cancel each other. Using this fact and in view of Lemma
4.4 we have

‖ũh
ε − vh

ε ‖1,h ≤ Cfe sup
χ∈Xh

aFE(uε − vh
ε , χ)

‖χ‖H1

≤ Cfe‖uε − vh
ε ‖1,h.

(4.27)

The result follows from the triangle inequality ‖uε − ũh
ε ‖1,h ≤ ‖uε − vh

ε ‖1,h + ‖ũh
ε − vh

ε ‖1,h

and by taking the infimum over all elements of Vh. �

Next lemma is devoted to establishing the inf-sup condition of the two-scale finite volume
element bilinear form. The proof uses a standard procedure for the finite volume element
method perturbation argument.

Lemma 4.5. For sufficiently small ratio ε/h the finite volume element bilinear form (3.20)
satisfies inf-sup condition, i.e., for vh

ε ∈ Vh there exists a constant Cfv > 0 such that

(4.28) sup
χ∈Xh

aFV (vh
ε , Ihχ)

‖χ‖H1

≥ Cfv ‖vh
ε ‖1,h.

Proof. Using (3.26) we may write

(4.29) aFV (vh
ε , Ihχ) = aFE(vh

ε , χ) − D(vh
ε , χ)

By Lemma 4.4 and Theorem 4.1 we have

(4.30) sup
χ∈Xh

aFV (vh
ε , Ihχ)

‖χ‖H1

≥
(
Cfe − Cd

ε

h

)
‖vh

ε ‖1,h.

Thus for sufficiently small ε/h we have Cfv = Cfe − Cd ε/h positive. �

Hence, as in the finite element case, we guarantee the existence and uniqueness of the two-
scale finite volume element solution by this inf-sup condition. We note that the following
lemma is a consequence of Lemma 4.5.

Lemma 4.6. Let uh
ε ∈ Vh be the solution of (3.21) associated with (2.1). Then

(4.31) ‖uh
ε ‖1,h ≤ C‖f‖.
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Proof. By Lemma 4.5 and (3.21) we have

(4.32) Cfv‖uh
ε ‖1,h ≤ sup

χ∈Xh

(f, Ihχ)
‖χ‖H1

.

Now using Cauchy-Schwarz inequality and (2.6) we have the result. �

Next we show that the difference between the two-scale finite volume element and two-
scale finite element solutions is small.

Lemma 4.7. Let uh
ε ∈ Vh be the solution of (3.21), and ũh

ε ∈ Vh be the solution of (3.22),
both associated with (2.1). Then we have

(4.33) ‖ũh
ε − uh

ε ‖1,h ≤
(
C1 h + C2

ε

h

)
‖f‖.

Proof. First we introduce a bilinear form

(4.34) d(f, χ) = (f, χ − Ihχ) ∀ f ∈ L2, χ ∈ Xh.

This bilinear form has the following approximation property [2, Lemma 5.1]:

(4.35) |d(f, χ)| ≤ C h ‖f‖ ‖χ‖H1 .

Using (4.34) and (3.26), we may write

(4.36) aFE(ũh
ε − uh

ε , χ) = d(f, χ) − D(uh
ε , χ) ∀χ ∈ Xh.

The terms on the right hand side of this equation are estimated in (4.35) and Theorem 4.1.
Dividing both sides by ‖χ‖H1 and taking supremum over all χ we have

(4.37) sup
χ∈Xh

aFE(ũh
ε − uh

ε , χ)
‖χ‖H1

≤
(
C1h‖f‖ + Cd

ε

h
‖uh

ε ‖1,h

)
.

But Lemma 4.6 guarantees the boundedness of uh
ε , and thus by Lemma 4.5 we have the

result. �

Theorem 4.3. Let uε and uh
ε be the solutions of (2.1) and (3.21), respectively. Then,

(4.38) ‖uε − uh
ε ‖1,h ≤

(
C1 h + C2

ε

h

)
‖f‖ + C3 inf

vh
ε ∈Vh

‖uε − vh
ε ‖1,h.

Proof. Let ũh
ε be be the solution of (3.22). Using triangle inequality we have

(4.39) ‖uε − uh
ε ‖1,h ≤ ‖uε − ũh

ε ‖1,h + ‖ũh
ε − uh

ε ‖1,h.
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In view of Lemma 4.7 it suffices to prove the first part. Now let vh
ε ∈ Vh. By triangle

inequality, Lemma 4.4 and orthogonality of aFE(·, ·) we have

‖uε − ũh
ε ‖1,h ≤ ‖uε − vh

ε ‖1,h + ‖ũh
ε − vh

ε ‖1,h

≤ ‖uε − vh
ε ‖1,h + sup

χ∈Xh

aFE(ũh
ε − vh

ε , χ)
‖χ‖H1

= ‖uε − vh
ε ‖1,h + sup

χ∈Xh

aFE(uε − vh
ε , χ)

‖χ‖H1

≤ C‖uε − vh
ε ‖1,h.

(4.40)

Since vh
ε ∈ Vh is arbitrary, we may take the infimum over all elements of Vh, and the desired

estimate follows. �

Lemma 4.8. Let uε be the solution of (2.1). Choose vh
ε an element of Vh such that for each

triangle K ∈ Th vh
0 (z) = u0(z), z ∈ Zh(K), i.e., the homogenized part of vh

ε coincides with
the homogenized part of uε on the vertices of the triangles. Then there exists a constant
C > 0 independent of ε and h such that

(4.41) ‖uε − vh
ε ‖1,h ≤ C

(
h |u0|H2 +

ε

h
|u0|H1 +

√
ε
)

.

Proof. By definition of the norm, it suffices to establish the estimate over a triangle K.
Using the expansion (3.2) and (3.14), we have

(4.42) uε − vh
ε = (u0 − vh

0 ) + εNk∇k(u0 − vh
0 ) + ε θu + ε θh.

It has been well known that since vh
0 is linear on K, the following estimate holds:

(4.43) |u0 − vh
0 |H1(K) ≤ C h |u0|H2(K).

Now since Aij ∈ W 1
p (Y ), ε∇Nk is locally bounded. Hence

|εNk∇k(u0 − vh
0 )|H1(K) ≤ max

{
ε ‖∇N1‖L∞(K), ε ‖∇N2‖L∞(K)

} |u0 − vh
0 |H1(K)

≤ C h |u0|H2(K).
(4.44)

Next using (3.13) and applying Lemma 3.2, we have

ε2 |θh|2H1(K) ≤ ε2

∫
K
|∇ηk|2 |∇kv

h
0 |2 dx ≤ C

ε2

h2
|vh

0 |2H1(K).(4.45)

Moreover, it is clear that using triangle inequality, (4.43) we have

|vh
0 |H1(K) ≤ C h|u0|H2(K) + |u0|H1(K).

Finally, summing up over all triangles K ∈ Th and using Lemma 3.1 to estimate θu, we
obtain the desired estimate.

�

From Theorem 4.2, Theorem 4.3 Lemma 4.8 we immediately obtain the following:
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Corollary 4.1. Let uε and ũh
ε be the solutions of (2.1) and (3.22), respectively. Then there

exists a constant C > 0 independent of ε and h such that

(4.46) ‖uε − ũh
ε ‖1,h ≤ C1 h + C2

ε

h
+ C3

√
ε.

Corollary 4.2. Let uε and uh
ε be the solutions of (2.1) and (3.21), respectively. Then there

exists a constant C > 0 independent of ε and h such that

(4.47) ‖uε − uh
ε ‖1,h ≤ C1 h + C2

ε

h
+ C3

√
ε.

Therefore, both finite element and finite volume element for two-scale method have the
same asymptotic convergence rates.

5. Numerical Examples

In this section we present numerical experiments to assess the performance of the two-
scale finite volume element method. A convergence test of the method is reported which is
followed by an application to flow in porous media. In all of these computations, we have
used finely resolved numerical solutions obtained using finite volume method as reference
solutions. This is because it is extremely hard to come up with a boundary value problem
which has an exact solution. All the examples below use a unit square domain, Ω =
(0, 1) × (0, 1).

5.1. Convergence Test. For the convergence test, the methods are tested by solving (2.1)
with the periodic coefficient cf. [15]

A(x/ε) =
2 + 1.8 sin(2πx1/ε)
2 + 1.8 cos(2πx2/ε)

+
2 + sin(2πx2/ε)

2 + 1.8 cos(2πx1/ε)

and
f = −1.

The computation is implemented on a uniform rectangular mesh. Here N is the number of
coarse elements in each direction and n the number in each direction of sub-elements in a
coarse element.

In the following, the error is denoted by e = uε − uh
ε , TS-FV denotes the two-scale

finite volume element method using conforming basis functions and TS-FV-O denotes the
two-scale finite volume element method with oversampling strategy. To investigate the
interaction between the components of error written in Corrolary 4.2, we show three sets
of scenario whose results are listed in three different tables. The first scenario deals with a
constant ε while varying the number of coarse elements N . For this, the reference solution
is resolved on a mesh with 2048 elements in each direction. On the other hand, the second
scenario deals with a constant ratio ε/h and a constant number of sub-elements n. Thus
once an ε is given, the number of coarse element may be obtained from the specified ratio.
Consequently, for each case in this second scenario, the number of total elements used to
resolve the reference solution would be different. Finally, the third scenario uses a constant
number of coarse elements N , while varying the ε (and consequently varying n also).
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Table 1. Comparison of H1 seminorm of solution error for ε = 0.005.

N n
TS-FV TS-FV-O
|e|1 |e|1 Rate

32 64 2.142806 × 10−2 8.188009 × 10−3 -
64 32 2.926952 × 10−2 4.114026 × 10−3 0.993

128 16 4.473100 × 10−2 2.288907 × 10−3 0.846
256 8 5.951678 × 10−2 1.911220 × 10−3 0.260

Table 2. Comparison of H1 seminorm of error for ε/h = 0.64 and n = 16.

N ε
TS-FV TS-FV-O
|e|1 |e|1 Rate

16 0.040 5.031755 × 10−2 2.419640 × 10−2 -
32 0.020 4.510508 × 10−2 8.427971 × 10−3 1.522
64 0.010 4.475054 × 10−2 4.388929 × 10−3 0.941

128 0.005 4.473100 × 10−2 2.288907 × 10−3 0.939

All results pertaining to the error of the solution in H1 norm are listed in Tables 1, 2, and
3. In general we see a significant improvement using the oversampling strategy (TS-FV-O).
Table 1 shows comparison of the H1 norm of the error of the approximation taken against
the number of elements N and n with a constant ε equal to 0.005. Obviously, TS-FV
gives the worst results for fixed N × n with n decreasing since we have introduced more
intercourse finite element boundaries, which in turn generate some errors. It may be seen
from Table 1, that when preserving the ε, and letting the h decreases, the convergence in
TS-FV-O (also in TS-FV) deteriorates when ε/h ≈ 1. It should be pointed out that for
cases around this regime, Corrolary 4.2 might not be true anymore. In Table 2 we present
the corresponding error in the case of the ratio ε/h = 0.64 and n = 16. From Table 2
we see that the first order convergence for TS-FV-O is relatively maintained irrespective
of the value of h. This phenomenon gives a hint that the O(ε) constant (C3) in Corrolary
4.2 is smaller than the O(h) constant (C1). Finally Table 3 gives the comparison for a
constant N = 32 and varying ε. The table indicates that the TS-FV-O errors do not change
significantly compared to TS-FV errors, which suggests that the O(ε/h) is more dominant
in TS-FV than in TS-FV-O. This fact shows that the oversampling strategy has reduced
the resonance error inherent in the original two-scale method. Similar comparisons for L2

norm errors are presented in Tables 4, 5, and 6. It is apparent that they exhibit similar
behaviors as in H1 norm. This finding is consistent with the investigation conducted by the
authors of [21].

5.2. Application to Flow in Porous Media. In this subsection we present an application
of the two-scale finite volume element method to a flow in porous medium. The problem
considered is typical representation of a cross section of a subsurface. In this case, (2.1)
governs a pressure distribution over the domain. As before we set our domain Ω = (0, 1) ×
(0, 1), with a given pressure on the left and right boundaries, i.e., u(x1 = 0, x2) = 1, and
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Table 3. Comparison of H1 seminorm of error for N = 32.

ε n
TS-FV TS-FV-O
|e|1 |e|1

0.020 16 4.510508 × 10−2 8.427971 × 10−3

0.010 32 2.975713 × 10−2 8.195283 × 10−3

0.005 64 2.142806 × 10−2 8.188009 × 10−3

Table 4. Comparison of L2 norm of solution error for ε = 0.005.

N n
TS-FV TS-FV-O
‖e‖ ‖e‖ Rate

32 64 8.735775 × 10−5 1.938853 × 10−5 -
64 32 1.720292 × 10−4 4.812917 × 10−6 2.010

128 16 2.941193 × 10−4 2.336342 × 10−6 1.043
256 8 3.683877 × 10−4 6.251241 × 10−7 1.902

Table 5. Comparison of L2 norm of error for ε/h = 0.64, and n = 16.

N ε
TS-FV TS-FV-O
‖e‖ ‖e‖ Rate

16 0.040 3.898167 × 10−4 8.649052 × 10−5 -
32 0.020 3.172062 × 10−4 2.146057 × 10−5 2.011
64 0.010 2.986045 × 10−4 5.077901 × 10−6 2.079

128 0.005 2.941193 × 10−4 2.336342 × 10−6 1.120

Table 6. Comparison of L2 norm of error for N = 32.

ε n
TS-FV TS-FV-O
‖e‖ ‖e‖

0.020 16 3.172062 × 10−4 2.146057 × 10−5

0.010 32 2.086535 × 10−4 1.886330 × 10−5

0.005 64 8.735775 × 10−5 1.938853 × 10−5

u(x1 = 1, x2) = 0 while the top and bottom boundaries are closed to flow, i.e. ux2(x1, x2 =
0) = ux2(x1, x2 = 1) = 0. For this example, the finely resolved model uses 1024 × 1024
elements.

Moreover, the matrix A is set to be a diagonal matrix with Aii(x) = k(x), which is
called the absolute permeability. Instead of using a periodic functions, we use k(x) as a set
of randomly generated numbers realized in 1025 × 1025 grid points, given its correlation
structures (lx1 , and lx2), covariance model and overall variance quantified via σ2 which is
the variance of log k. We consider a GSLIB model developed in [6].

In the examples below, we concentrate on the anisotropic case, where in practical applica-
tion is the most difficult to upscale. We have used lx1 = 0.4 and lx2 = 0.01 with exponential
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Figure 4. Comparison of horizontal velocity for anisotropic absolute perme-
ability with σ = 1.5: (left) finely resolved model with 1024× 1024 elements,
(right) two-scale FVE with 64 × 64 coarse elements

Table 7. Results for anisotropic case, lx1 = 0.40, lx2 = 0.01, σ = 1.0.

N n e er (%) ex1 ex1,r (%)
32 32 2.260724 × 10−4 0.039 3.532075 × 10−2 1.97
64 16 1.198503 × 10−4 0.021 2.741758 × 10−2 1.53

128 8 8.155836 × 10−5 0.014 2.305173 × 10−2 1.28
256 4 5.907592 × 10−5 0.010 1.928818 × 10−2 1.07

Table 8. Results for anisotropic case, lx1 = 0.40, lx2 = 0.01, σ = 1.5.

N n e er (%) ex1 ex1,r (%)
32 32 8.140234 × 10−4 0.141 1.197157 × 10−1 3.80
64 16 4.406654 × 10−4 0.076 8.694687 × 10−2 2.76

128 8 3.198741 × 10−4 0.055 6.950237 × 10−2 2.20
256 4 2.022701 × 10−4 0.035 5.643796 × 10−2 1.79

covariance model, and σ = 1.0. Table 7 presents the pressure error e = ‖u − uh‖ and
the horizontal velocity error ex1 = ‖k(ux1 − uh

x1
)‖, and their corresponding relative errors,

er = e/‖u‖, and ex1,r = ex1/‖kux1‖. On the second example shown in Table 8, we use the
same correlation lengths and structures, and σ = 1.5. In all examples, we see that as h
decreases, the errors decrease as well. Comparison of the visualized horizontal velocities are
shown in Figure 4.
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6. Summary

In this paper we have proposed a two-scale finite volume element method for solving
a second order elliptic problem with fluctuating/heterogeneous coefficients. The method
has the advantages of capturing the small scale effects on the large one, and numerically
conservative on the coarse mesh. The analysis presented reveals that in the case of periodic
coefficients, the method converges to the homogenized solution as ε → 0. Although the
analysis of the method was performed for periodic structures, the method itself is not
limited only to this case. We have employed the two-scale finite volume element method for
several applications such as upscaling for multiphase flow problem and nonlinear convective
and parabolic equations [14].
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