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Abstract. In this paper we consider upscaling of multiphase flow in porous media. We
propose numerical techniques for upscaling of pressure and saturation equations. Ex-
tensions and applications of these approaches are considered in this paper. Numerical
examples are presented.

1. Introduction

The modeling of multiphase flow in porous formations is important for both environmen-
tal remediation and the management of petroleum reservoirs. Practical situations involving
multiphase flow include the dispersal of a non-aqueous phase liquid in an aquifer or the
displacement of a non-aqueous phase liquid by water. In the subsurface, these processes are
complicated by the effects of permeability heterogeneity on the flow and transport. Simu-
lation models, if they are to provide realistic predictions, must accurately account for these
effects. However, because permeability heterogeneity occurs at many different length scales,
numerical flow models cannot in general resolve all of the variation of scales. Therefore,
approaches are needed for representing the effects of subgrid scale variations on larger scale
flow results.

On the fine (fully resolved) scale, the subsurface flow and transport of N components can
be described in terms of an elliptic (for incompressible systems) pressure equation coupled
to a sequence of N−1 hyperbolic (in the absence of dispersive and capillary pressure effects)
conservation laws. In this paper we address the upscaling of both pressure and saturation
equations.

Traditional approaches for scale up of pressure equations generally involve the calculation
of effective media properties. In these approaches the fine scale information is built into the
effective media parameters, and then the problem on the coarse scale is solved. We refer
to [5, 10, 19, 20] for more discussion on upscaled modeling in multiphase flows. Recently, a
number of approaches have been proposed in which the methods have the ability to capture
the small scales effect on the large scale solution without directly resolving the small scale
details [1, 13, 23, 24]. In particular, a number of approaches have been introduced where
the coupling of small scale information is performed through a numerical formulation of
the global problem by incorporating the fine features of the problem into base elements. In
this work we develop a similar approach using finite volume framework. Because of their
conservative feature, finite volume methods are often preferred in applications such as flow

Date: July 17, 2003.

1



2 V. GINTING, R. EWING, Y. EFENDIEV, AND R. LAZAROV

in porous media. Our methodology is similar to multiscale finite element methods [18, 23].
We discuss numerical implementation as well as some applications of our approach.

Though there are a number of technical issues associated with subgrid models for the
pressure equation, the lack of robustness of existing coarse scale models is largely due to
the treatment of the hyperbolic transport equations. Previous approaches for the coarse
scale modeling of transport in heterogeneous oil reservoirs include the use of pseudo rela-
tive permeabilities [3, 7, 31, 32], the application of nonuniform or flow-based coarse grids
[12], and the use of volume averaging and higher moments [10, 16, 17]. Our methodology
for subgrid upscaling of the hyperbolic (or convection dominated) equations uses volume
averaging techniques. In particular, we employ perturbation analysis to derive the macro-
diffusion that represents the effects of subgrid heterogeneities. Numerical computation of
macro-diffusion is addressed in this paper. The macro-diffusion, in particular, can be writ-
ten as a covariance between the velocity fluctuations and fine scale quantity that represents
the length of fine scale trajectories. For the computation of fine scale quantities, we use de-
tailed information that is contained in multiscale base functions. Further application of our
subgrid upscaling approaches to other porous media flow problems such as multiphase flow
in unsaturated/saturated media (Richards’ equation) is discussed. Numerical example is
presented. The theoretical considerations of the approaches are brief and will be presented
elsewhere.

The paper is organized as follows. In the next section we discuss the main upscaling
procedures that will be used, and section 3 is devoted to the numerical results.

2. Fine and Coarse Scale Models

We consider two phase flow in a reservoir Ω under the assumption that the displacement
is dominated by viscous effects; i.e., we neglect the effects of gravity, compressibility, and
capillary pressure. Porosity will be considered to be constant. The two phases will be
referred to as water and oil, designated by subscripts w and o, respectively. We write
Darcy’s law, with all quantities dimensionless, for each phase as follows:

(2.1) vj = −krj(S)
µj

k · ∇p,

where vj is the phase velocity, k is the permeability tensor, krj is the relative permeability
to phase j (j = o, w), µj is its corresponding viscosity, S is the water saturation (volume
fraction), and p is pressure. In this work, a single set of relative permeability curves is
used and k is taken to be a diagonal tensor, diag(kx, kz). Combining Darcy’s law with a
statement of conservation of mass allows us to express the governing equations in terms of
the so-called pressure and saturation equations:

(2.2) ∇ · (λ(S)k · ∇p) = q,

(2.3)
∂S

∂t
+ v · ∇f(S) = 0,
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where λ is the total mobility, q is a source term, f is the flux function of water, and v is
the total velocity, which are respectively given by:

(2.4) λ(S) =
krw(S)
µw

+
kro(S)
µo

,

(2.5) f(S) =
krw(S)/µw

krw(S)/µw + kro(S)/µo
,

(2.6) v = vw + vo = −λ(S)k · ∇p.
The above descriptions are referred to as the fine model of the two phase flow problem.

Next, we wish to develop a coarse scale description for two phase flow in heterogeneous
porous media. Previous approaches for upscaling such systems are discussed by many
authors; e.g., [6, 3, 10, 15]. In most upscaling procedures, the coarse scale pressure equation
is of the same form as the fine scale equation (2.2), but with an equivalent grid block
permeability tensor k∗ replacing k. For a given coarse scale grid block, the tensor k∗
is generally computed through the solution of the pressure equation over the local fine
scale region corresponding to the particular coarse block [9]. Coarse grid k∗ computed
in this manner have been shown to provide accurate solutions to the coarse grid pressure
equation. We note that some upscaling procedures additionally introduce a different coarse
grid functionality for λ, though this does not appear to be essential in our formulation.

In this work, the proposed coarse model is upscaling the pressure equation (2.2) to ob-
tain the velocity field on the coarse grid and use it in (2.3) to resolve the saturation on
the coarse grid. A finite volume element method is implemented to upscale the pressure
equation (2.2). Finite volume is chosen, because, by its construction, it enjoys the numer-
ical local conservation which is important in groundwater and reservoir simulations. We
note that similar procedure for this pressure equation upscaling has been implemented in
[25]. First, we describe briefly several geometrical terminologies related to the method.
Let Kh denote the collection of coarse elements/rectangles K, whose side lengths in x- and
z-direction, respectively, are hx and hz, and the maximum of those two is h. We describe
the construction of the control volumes as follows. Consider a coarse element K, and let
ξK be its center. The element K is divided into four rectangles of equal area by connecting
ξK to the midpoints of the element’s edges. We denote these quadrilaterals by Kξ, where
ξ ∈ Zh(K) are the vertices of K. Also, we denote by Zh =

⋃
K Zh(K) the collection of all

vertices and by Z0
h ⊂ Zh the vertices which do not lie on the Dirichlet boundary of Ω. The

control volume Vξ is defined as the union of the quadrilaterals Kξ sharing the vertex ξ.
The key idea of the method is the construction of base functions on the coarse grids

such that these base functions capture the small scale information on each of these coarse
grids. The method that we use follows its finite element counterpart presented in [23]. The
base functions are constructed from the solution of the leading order homogeneous elliptic
equation on each coarse element with some specified boundary conditions. Thus, if we
consider a coarse element K that has d vertices, the local base functions φi, i = 1, · · · , d are
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set to satisfy the following elliptic problem:

−∇ · (k · ∇φi) = 0 inK

φi = gi on ∂K,
(2.7)

for some function gi defined on the boundary of the coarse element K. Hou et al. [23] have
demonstrated that a careful choice of boundary condition would guarantee the performance
of the base functions to incorporate the local information and, hence, improve the accuracy
of the method. In this paper, the function gi for each i varies linearly along ∂K. Thus, for
example, in case of a constant diagonal tensor, the solution of (2.7) would be a standard
linear/bilinear base function. We note that as usual we require φi(ξj) = δij . Finally, a
nodal base function associated with the vertex ξ in the domain Ω are constructed from the
combination of the local base functions that share this ξ and zero elsewhere. These nodal
base functions are denoted by {ψξ}ξ∈Z0

h
.

Having described the base functions, we denote by V h the space of our approximate
pressure solution which is spanned by the base functions {ψξ}ξ∈Z0

h
. Now, we may formulate

the finite dimensional problem corresponding to finite volume element formulation of (2.2).
A statement of mass conservation on a control volume Vξ is formed from (2.2), where now
the approximate solution is written as a linear combination of the base functions. Assembly
of this conservation statement for all control volumes would give the corresponding linear
system of equations that can be solved accordingly. It is obvious that the number of the
control volumes Vξ has to be equal to the dimension of the space V h. The resulting linear
system has incorporated the fine scale information through the involvement of the nodal
base functions on the approximate solution. To be specific, the problem now is to seek
ph ∈ V h with ph =

∑
ξ∈Z0

h
pξψξ such that

(2.8)
∫

∂Vξ

λ(S)k · ∇ph · �n dl =
∫

Vξ

q dA,

for every control volume Vξ ⊂ Ω. Here �n defines the normal vector on the boundary of the
control volume, ∂Vξ and S is the fine scale saturation field. We note that concerning the
base functions, a vertex-centered finite volume difference is used to solve (2.7) along with a
harmonic average to approximate the permeability k at the edges of fine control volumes.

As mentioned earlier, the pressure solution may then be used to compute the total ve-
locity field at the coarse scale level, denoted by v = (vx, vz) via (2.6). In general, the
following equations are used to compute the velocities in horizontal and vertical directions,
respectively:

(2.9) vx = − 1
hz

∑
ξ∈Z0

h

pξ

(∫
E
λ(S)kx

∂ψξ

∂x
dz

)
,

(2.10) vz = − 1
hx

∑
ξ∈Z0

h

pξ

(∫
E
λ(S)kz

∂ψξ

∂z
dx

)
,
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where E is the edge of Vξ. Furthermore, for the control volumes Vξ adjacent to Dirichlet
boundary (which are half control volumes), we can derive the velocity approximation using
the conservation statement derived from (2.2) on Vξ. One of the terms involved is the
integration along part of Dirichlet boundary, while the rest of the three terms are known
from the adjacent internal control volumes calculations. The integration of forcing function
may be approximated by midpoint rule. This way, we have the following equations (l, b, r,
and t stand for left, bottom, right, and top, respectively):

vl
x = vr

x + 0.5 hx/hz

(
vt

z − vb
z

)
− 0.5 hx q for left Dirichlet boundary,

vb
z = vt

z + 0.5 hz/hx

(
vr

x − vl
x

)
− 0.5 hz q for bottom Dirichlet boundary.

(2.11)

The right and the top Dirichlet boundary conditions are defined similarly. It has been well
known that these approximations give a second order accuracy to the velocity computation.
We have analyzed both numerically and analytically our two-scale finite volume methods
and the results will be published elsewhere [22].

In this paper we will consider two different coarse models for the saturation equation.
One of them is a simple/primitive model where we use only the coarse scale velocity to
update the saturation field on the coarse grid, i.e.,

(2.12)
∂S

∂t
+ v · ∇f(S) = 0.

In this case no upscaling of the saturation equation is performed. This kind of technique in
conjunction with the upscaling of absolute permeability is commonly used in applications
(e.g., [12, 11, 10]). The difference of our approach is that the coupling of the small scales
is performed through the finite volume element formulation of the global problem and the
small scale information of the velocity field can be easily recovered. Within this upscaling
framework, we use S instead of S in (2.8). If the saturation profile is smooth, this approx-
imation is of first order. In the coarse blocks where the discontinuities of S are present, we
need to modify the stiffness matrix corresponding to these blocks. The latter requires the
values of the fine scale saturation. In our computation we will not do this. We simply use
λ(S) in (2.8).

In addition to the above described coarse model, we will also revisit a coarse model on
the saturation proposed by [17], which uses λ(S) = 1 and f(S) = S. This model was
derived using perturbation argument for (2.3), in which the saturation, S, and the velocity,
v, on the fine scale are assumed to be the sum of their volume-averaged and fluctuating
components,

(2.13) v = v + v′, S = S + S ′.

Here, the overbar quantities designate the volume average of fine scale quantities over coarse
blocks. For simplicity we will assume that the coarse blocks are rectangular, which allows
us to state that (cf. [33])

∇f = ∇f.
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Substituting (2.13) into the saturation equation for single phase and averaging over coarse
blocks, we obtain

(2.14)
∂S

∂t
+ v · ∇S + v′ · ∇S′ = 0.

The term v′ · ∇S′ represents subgrid effects due to the heterogeneities of convection. This
term can be modeled using the equation for S′ that is derived by subtracting (2.14) from
the fine scale equation (2.3)

∂S′

∂t
+ v · ∇S′ + v′ · ∇S + v′ · ∇S′ = v′ · ∇S′.

This equation can be solved along the characteristics dx/dt = v by neglecting higher order
terms. Carrying out the calculations in an analogous manner to the ones performed in [17],
we can easily obtain the following coarse scale saturation equation:

(2.15)
∂S

∂t
+ v · ∇S = ∇ ·D(x, t)∇S(x, t),

where D(x, t) is the macro-diffusive tensor, whose entries are written as

(2.16) Dij(x, t) =
[∫ t

0
v′i(x)v′j(x(τ))dτ

]
.

Next, it can be easily shown that the coefficient of diffusion can be approximated up to the
first order by

Dij(x, t) = v′i(x)Lj ,

where Lj is the displacement of the particle in j direction that starts at point x and
travels with velocity −v. The diffusion term in the coarse model for the saturation field
(2.15) represents the effects of the small scales on the large ones. Note that the diffusion
coefficient is a correlation between the velocity perturbation and the displacement. This
is different from [17], where the diffusion is taken to be proportional to the length of the
coarse scale trajectory. Using our upscaling methodology for the pressure equation, we can
recover the small scale features of the velocity field that allows us to compute the fine scale
displacement.

For the nonlinear flux, f(S), we can use a similar argument by expanding f(S) = f(S)+
fS(S)S′ + . . . . In this expansion we will take into account only linear terms and assume
that the flux is nearly linear. This case is similar to the linear case, and the analysis can
be carried out in an analogous manner. The resulting coarse scale equation has the form

(2.17)
∂S

∂t
+ v · ∇S = ∇ · fS(S)2D(x, t)∇S(x, t),

where D(x, t) is the macro-diffusive tensor corresponding to the linear flow. This formula-
tion has been derived within stochastic framework in [26]. We note that the higher order
terms in the expansion of f(S) may result in other effects that have not been studied exten-
sively to the best of our knowledge. In [16] the authors use a similar formulation, though
their implementation is different from ours. A couple of numerical examples for nonlinear
flux f(S) with λ(S) = 1 will be presented.
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3. Numerical Results

We now present numerical results that demonstrate the accuracy and limitation of our
model compared to the fine scale model. As in [17], the systems considered are representa-
tive of cross sections in the subsurface. We therefore set the system length in the horizontal
direction x (Lx) to be greater than the formation thickness (Lz); in the results presented
below, Lx/Lz = 5. The fine model uses 120 × 120 rectangular elements. The absolute
permeability is set to be diag(k, k). Thus, the fine grid permeability fields are 121× 121 re-
alizations of prescribed overall variance (quantified via σ2, the variance of log k), correlation
structure, and covariance model. We consider models generated using GSLIB algorithms
[8], characterized by spherical and exponential variograms [30, 8]. The dimension of the
coarse models range from 10 × 10 to 40 × 40 elements and are generated using a uniform
coarsening of the fine grid description.

For the spherical and exponential variogram models, the dimensionless correlation lengths
(nondimensionalized by Lx and Lz, respectively) are designated by lx and lz. As discussed in
[17], because our dispersivity model is pre-asymptotic, we do not expect it to be applicable
to the case of very small lx. Therefore, in the results below, we restrict ourselves to lx ≥ 0.1.

We set the relative permeabilities of oil and water to be simple quadratic functions of
their respective saturations; i.e., krw = S2 and kro = (1 − S)2, where S is the water
saturation. Specifically for the first two examples, where we deal with pressure dependence
on the saturation, we set our viscosity ratio µo/µw = 5. In all cases we fix pressure and
saturation (S = 1) at the inlet edge of the model (x = 0) and also fix pressure at the outlet
(x = Lx). The top and bottom boundaries are closed to flow. Results are presented in
terms of the fraction of oil in the produced fluid (denoted by F , where F = qo/q, with qo
being the volumetric flow rate of oil produced at the outlet edge and q the volumetric flow
rate of total fluid produced at the outlet edge) versus pore volumes injected (PVI). PVI is
analogous to dimensionless time and is defined as qt/Vp, where t is dimensional time and
Vp is the total pore volume of the system. In this study, we applied our models to a variety
of permeability fields.

Our first example in Figure 1 is for the case lx = 0.4, lz = 0.04, and σ = 1.5. An
exponential variogram is used to generate the permeability realization. In the following
two figures, the 120 × 120 fine model is represented by solid lines, while the coarse models
are represented by the dashed lines and dotted lines, depending on the coarse model’s
dimension. On the left plot, the coarse model were run on 10 × 10 elements (dotted lines)
and 30×30 elements (dashed lines). On the right plot, the coarse model were run on 20×20
elements (dotted lines) and 40×40 elements (dashed lines). In both of these plots, the coarse
model overpredicts the breakthrough time and continues to overpredict the production of
the displaced fluid until PVI ≈ 1. After that time the comparison shows that the coarse
model agrees reasonably well with the fine model. Also, it can be observed that the larger
coarse models are more accurate in general. For example, the 40 × 40 coarse scale model
gives a reasonable approximation of the fine scale model.

For the second example, we consider an isotropic field. Figure 2 shows comparison of
the fractional flow for case lx = 0.1, lz = 0.1, and σ = 1.0. Both plots in this figure
show a good agreement between the fine model and coarse model, regardless of the coarse
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model dimensions. In conclusion, we would like to note that our coarse scale model tends
to perform better for smaller correlation length. In particular, for the upscaling of high
correlation length cases, we need larger coarse scale models. This difficulty can be relieved
by introducing the nonuniform coarsening, which is a subject of further research.

Another important aspect that requires consideration is the ability of the coarse model
to predict the saturation contour. In the following, we compare the saturation contours
obtained from fine and coarse models with the same two permeability field scenarios as in
the previous figures. The saturation contours are compared in the following fashion: the
fine scale model result is averaged onto the coarse grid and then is overlapped with the
result from the coarse model of 20 × 20 elements. In the subsequent figures, the following
description is used: the upper plot shows S = 0.10, the middle plot shows S = 0.30, and
the lower plot shows S = 0.50.

Figure 3 gives comparison of saturation contours at PVI = 0.15, which is before break-
through time. In general, the coarse model is able to predict the trends exhibited by the
fine model, although for smaller values of saturation, it cannot quite follow the fingering
indicated by the fine model as evident in upper and middle plots. For a higher value of
saturation, however, the coarse model can follow the fingering indicated by the fine model
as seen in lower plot. Similar behavior is shown in Figure 4 for isotropic field with lx = 0.1,
lz = 0.1, and σ = 1. These comparisons also show that the coarse model predicts the
contour of saturation better for lower correlation lengths compared to the case with higher
correlation length along the main flow direction, lx = 0.4, lz = 0.04, and σ = 1.5.

At this stage, we present several numerical results of our coarse model with the macro-
diffusion as described in Section 2. Comparison is made between this transport coarse model
with the primitive model, cf. (2.12). As opposed to the coarse model with macro-diffusion,
by its nature, the primitive model does not account for the subgrid effects on the coarse
grid. The macro-diffusion is computed using the approximation of the fine scale velocity
field by sampling the base functions.

The performance of this macro-diffusion model is exhibited in Figures 5 and 6. The
following notation and terminology are used in those two figures. The solid line represents
the fine model run on 120×120 elements, which as before, serves as a reference solution. The
dashed line represents the primitive coarse model (D=0), while the dotted line represents
the coarse model with macro-diffusion (with D). All coarse models are run on the 10 × 10
elements.

Figure 5 shows the macro-diffusion model performance in the case of a linear flux function,
f(S) = S and λ(S) = 1. The plot on the left corresponds to the isotropic permeability field
with lx = 0.1, lz = 0.1, and σ = 1.5, and the plot on the right corresponds to permeability
field with lx = 0.40, lz = 0.04, and σ = 1.5. For the isotropic case (left plot), it is
evident from this figure that although the performance of the primitive coarse model seems
to agree reasonably well with the fine model (specifically on the breakthrough time), the
coarse model with macro-diffusion does improve the overall prediction. Conversely, when
the correlation length is larger along the main flow direction (right plot), where now the
diffusion caused by heterogeneity is stronger, the coarse model with macro-diffusion gives
a better prediction compared to the primitive model.
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The performance of the coarse model with macro-diffusion in the case of nonlinear flux
function is shown in Figure 6. Here we have used f(S) = 5S2/(5S2+(1−S)2) and λ(S) = 1.
Again, the plot on the left corresponds to isotropic permeability field with lx = 0.1, lz = 0.1,
and σ = 1.5, and the plot on the right corresponds to permeability field with lx = 0.40,
lz = 0.04, and σ = 1.5. The significance of the macro-diffusion model in these two plots are
obvious, in that the macro-diffusion model circumvents the primitive model in predicting
the production on and shortly after the breakthrough. Also in this nonlinear flux function
case, the model does not seem to be sensitive to the prescribed correlation structures.

To summarize, these computations reveal that the macro-diffusion resulting from the
heterogeneity in the flow affects the coarse grid model, which may not be easily disregarded.
Moreover, although solely based on the first order approximation, our proposed macro-
diffusion model gives a reasonably well performance compared to the widely used primitive
model.

Finally, we note that the viscous coupling is not taken into account in the macrodis-
persion model. In [2, 21] the authors investigated the viscous coupling and their findings
indicate that the distinct dispersive regimes can occur depending on the relative strength
of nonlinearity and heterogeneity. In particular, the viscosity ratio plays an important role
in the stability of the fingering [2]. In the future we plan to use these results for developing
new upscaling techniques for two-phase flow. For these approaches the upscaled mobil-
ity functions, λ∗(S), that is different from λ(S), will be employed. More general mobility
functions, λ∗(S,∇S), that depends on both S and ∇S, will be also considered. We have
employed the latter in a different upscaling framework in one of our previous works [14].

Another important class of flow in porous media problems is the unsaturated/saturated
water flow governed by Richards’ equation [4, 29]. This equation comes up from the sim-
plification of the two phase water-air flow problem, where it is assumed that the temporal
variation of the water saturation/water content is significantly larger than the temporal
variation of the water pressure, and that the air phase is infinitely mobile so that the air
pressure remains constant in the atmospheric level. The typical Richards’ equation that we
consider here is the so-called mixed formulation, in which the mass storage and transport
are expressed in terms of water content and pressure head, respectively:

(3.18)
∂θ(p)
∂t

−∇ · (kkrw(p)∇p) − ∂ (kzkrw(p))
∂z

= 0,

where p denotes the water pressure head, θ(p) denotes the water content that depends on
the pressure head p.

The two-scale finite volume method described in Section 2 is applied to (3.18), where
the resulting coarse model employs the same base functions as the linear problem. This
approximation is motivated by the homogenization results of this class of equation [27, 28].
The analysis and more detailed description of this application will appear elsewhere.

One numerical example that we consider is a typical water infiltration shown in Figure
7. A fixed pressure is given on the top and bottom boundaries, and there is no flow on
the lateral boundaries. A vertically linear initial pressure is imposed in the domain. The
permeability field is generated with lx = 0.1, lz = 0.1, and σ = 1.5. The water content and
the relative permeability use exponential model, i.e., θ(p) = exp(p) and krw(p) = exp(p).
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We note that the nonlinearity of Richards’ equation is handled using the Picard iteration
first proposed in [4]. The figure shows comparison of the water pressure plotted on 257×257
grids obtained using the fine model (left) and the coarse model (right). The fine model uses
256 × 256 elements, while the coarse model uses 32 × 32 elements. It is apparent from the
figure that the coarse model agrees with the fine model.

4. Summary

In this paper we considered subgrid models for porous media flows. Upscaling proce-
dures have been proposed for some multiphase flow applications and numerical results are
presented. The numerical calculation of pressure and transport equations is accomplished
in a consistent manner, providing a unified coarse scale model. The model was applied to
a number of example cases involving heterogeneous permeability fields, varying linear and
nonlinear fine scale flux functions. In essentially all cases considered, the subgrid model
performed well on relatively coarse grids.

Acknowledgement

This work was partially supported by the NSF Grant EIA-0218229.

References

[1] T. Arbogast and S. L. Bryant. Numerical subgrid upscaling for waterflood simulations. TICAM Report
01-23, http://www.ticam.utexas.edu/reports/2001/index.html.

[2] V. Artus and B. Noetinger. Macrodispersion approach for upscaling two-phase, immiscible flows in
heterogeneous porous media. presented at the 8th European Conference for the Mathematics of Oil
Recovery, Freiberg, Germany, September 2002.

[3] J. W. Barker and S. Thibeau. A critical review of the use of pseudo-relative permeabilities for upscaling.
SPE Res. Eng., 12:138–143, 1997.

[4] M. A. Celia, E. T. Bouloutas, and R. L. Zarba. A general mass-conservative numerical solution for the
unsaturated flow equation. Water Resour. Res., pages 1483–1496, 1990.

[5] Z. Chen, R. E. Ewing, and Z. Shi, editors. Numerical treatment of multiphase flows in porous media,
volume 552 of Lecture Notes in Physics, Berlin, 2000. Springer-Verlag.

[6] M. A. Christie. Upscaling for reservoir simulation. J. Pet. Tech., pages 1004–1010, 1996.
[7] N. H. Darman, G. E. Pickup, and K. S. Sorbie. A comparison of two-phase dynamic upscaling methods

based on fluid potentials. Computational Geosciences, 6:5–27, 2002.
[8] C. V. Deutsch and A. G. Journel. GSLIB: Geostatistical software library and user’s guide, 2nd edition.

Oxford University Press, New York, 1998.
[9] L. J. Durlofsky. Numerical calculation of equivalent grid block permeability tensors for heterogeneous

porous media. Water Resour. Res., 27:699–708, 1991.
[10] L. J. Durlofsky. Coarse scale models of two phase flow in heterogeneous reservoirs: Volume averaged

equations and their relationship to the existing upscaling techniques. Computational Geosciences, 2:73–
92, 1998.

[11] L. J. Durlofsky, R. A. Behrens, R. C. Jones, and A. Bernath. Scale up of heterogeneous three dimensional
reservoir descriptions. SPE paper 30709, 1996.

[12] L. J. Durlofsky, R. C. Jones, and W. J. Milliken. A nonuniform coarsening approach for the scale up of
displacement processes in heterogeneous media. Advances in Water Resources, 20:335–347, 1997.

[13] W. E and B. Engquist. The heterogeneous multi-scale methods. Comm. Math. Sci., 1(1), 2003.
[14] Y. Efendiev and L. Durlofsky. Accurate subgrid models for two phase flow in heterogeneous reservoirs.

paper SPE 79680 presented at the SPE Reservoir Simulation Symposium, Houston, June 3-5, 2003.



UPSCALED MODELING IN MULTIPHASE FLOW APPLICATIONS 11

[15] Y. R. Efendiev. Exact upscaling of transport in porous media and its applications. IMA Preprint Series,
1724, October, 2000, http://www.ima.umn.edu/preprints/oct2000/oct2000.html.

[16] Y. R. Efendiev and L. J. Durlofsky. Numerical modeling of subgrid heterogeneity in two phase flow
simulations. Water Resour. Res., 38(8), 2002.

[17] Y. R. Efendiev, L. J. Durlofsky, and S. H. Lee. Modeling of subgrid effects in coarse scale simulations
of transport in heterogeneous porous media. Water Resour. Res., 36:2031–2041, 2000.

[18] Y. R. Efendiev, T. Y. Hou, and X. H. Wu. Convergence of a nonconforming multiscale finite element
method. SIAM J. Num. Anal., 37:888–910, 2000.

[19] R. E. Ewing. Mathematical modeling and large-scale computing in energy and environmental research.
In The merging of disciplines: new directions in pure, applied, and computational mathematics (Laramie,
Wyo., 1985), pages 45–59. Springer, New York, 1986.

[20] R. E. Ewing. Upscaling of biological processes and multiphase flow in porous media. In Fluid flow and
transport in porous media: mathematical and numerical treatment (South Hadley, MA, 2001), volume
295 of Contemp. Math., pages 195–215. Amer. Math. Soc., Providence, RI, 2002.

[21] F. Furtado and F. Pereira. Crossover from nonlinearity controlled to heterogeneity controlled mixing in
two-phase porous media flows. Computational Geosciences, 7:115–135, 2003.

[22] V. Ginting. Analysis of a two-scale finite volume element for elliptic problem. preprint, to be submitted.
[23] T. Y. Hou and X. H. Wu. A multiscale finite element method for elliptic problems in composite materials

and porous media. Journal of Computational Physics, 134:169–189, 1997.
[24] T. Y. Hou, X. H. Wu, and Z. Cai. Convergence of a multiscale finite element method for elliptic problems

with rapidly oscillating coefficients. Math. Comp., 68(227):913–943, 1999.
[25] P. Jenny, S.H. Lee, and H.A. Tchelepi. Multi-scale finite-volume method for elliptic problems in sub-

surface flow simulation. Journal of Computational Physics, 187:47–67, 2003.
[26] P. Langlo and M. S. Espedal. Macrodispersion for two-phase, immisible flow in porous media. Advances

in Water Resources, 17:297–316, 1994.
[27] A. K. Nandakumaran and M. Rajesh. Homogenization of a nonlinear degenerate parabolic differential

equation. Electron. J. Differential Equations, 17:1–19 (electronic), 2001.
[28] A. Pankov. G-convergence and homogenization of nonlinear partial differential operators. Kluwer Aca-

demic Publishers, Dordrecht, 1997.
[29] L. A. Richards. Capillary conduction of liquids through porous mediums. Physics, 1:318–333, 1931.
[30] H. Wackernagle. Multivariate geostatistics: an introduction with applications. Springer, New York, 1998.
[31] T. C. Wallstrom, M. A. Christie, L. J. Durlofsky, and D. H. Sharp. Effective flux boundary conditions

for upscaling porous media equations. Transport in Porous Media, 46:139–153, 2002.
[32] T. C. Wallstrom, S. Hou, M. A. Christie, L. J. Durlofsky, D. H. Sharp, and Q. Zou. Application of

effective flux boundary conditions to two-phase upscaling in porous media. Transport in Porous Media,
46:155–178, 2002.

[33] W. Zijl and A. Trykozko. Numerical homogenization of two-phase flow in porous media. Comput.
Geosci., 6(1):49–71, 2002.



12 V. GINTING, R. EWING, Y. EFENDIEV, AND R. LAZAROV

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F

PVI

120x120
30x30
10x10

l
x
 = 0.40, l

z
 = 0.04, σ = 1.5

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PVI
F

120x120
40x40
20x20

l
x
 = 0.40, l

z
 = 0.04, σ = 1.5

Figure 1. Comparison of fractional flow of displaced fluid at the production
edge for the case lx = 0.4, lz = 0.04, and σ = 1.5 with exponential variogram,
and µo/µw = 5. Left plots are coarse model with 10×10 and 30×30 elements,
right plots are coarse model with 20 × 20 and 40 × 40 elements.
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Figure 2. Comparison of fractional flow of displaced fluid at the production
edge for the case lx = 0.1, lz = 0.1, and σ = 1.0 with spherical variogram,
and µo/µw = 5. Left plots are coarse model with 10 × 10 and 30 × 30
elements, right plots are coarse model with 20 × 20 and 40 × 40 elements.
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Figure 3. Comparison of saturation contours at PVI = 0.15 for the case
lx = 0.4, lz = 0.04, and σ = 1.5 with exponential variogram, and µo/µw = 5.
The solid lines represent the fine grid saturation after averaging onto the
coarse grid, while the dashed lines represent the coarse model with 20 × 20
elements. Upper plots are the contour of S = 0.10, middle plots are the
contour of S = 0.30, and lower plots are the contour of S = 0.50.
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Figure 4. Comparison of saturation contours at PVI = 0.15 for the case
lx = 0.1, lz = 0.1, and σ = 1.0 with spherical variogram, and µo/µw = 5.
The solid lines represent the fine grid saturation after averaging onto the
coarse grid, while the dashed lines represent the coarse model with 20 × 20
elements. Upper plots are the contour of S = 0.10, middle plots are the
contour of S = 0.30, and lower plots are the contour of S = 0.50.



UPSCALED MODELING IN MULTIPHASE FLOW APPLICATIONS 15

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PVI

F

l
x
 = 0.10, l

z
 = 0.10, σ = 1.5

120x120
10x10 (D=0)
10x10 (with D)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PVI
F

l
x
 = 0.40, l

z
 = 0.04, σ = 1.5

120x120
10x10 (D=0)
10x10 (with D)

Figure 5. Comparison of fractional flow of displaced fluid at the production
edge. The flux function used is linear, f(S) = S. All coarse models are run
on 10 × 10 elements. Plot on the left corresponds to lx = 0.1, lz = 0.1, and
σ = 1.5 with spherical variogram. Plot on the right corresponds to lx = 0.40,
lz = 0.04, and σ = 1.5 with spherical variogram.
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Figure 6. Comparison of fractional flow of displaced fluid at the production
edge. The flux function used is nonlinear, f(S) = 5S2

5S2+(1−S)2
. All coarse

models are run on 10×10 elements. Plot on the left corresponds to lx = 0.1,
lz = 0.1, and σ = 1.5 with spherical variogram. Plot on the right corresponds
to lx = 0.40, lz = 0.04, and σ = 1.5 with spherical variogram.
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Figure 7. Two-scale approximation of the Richards’ equation.Comparison
of water pressure between the fine model (left) and the coarse model (right).
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