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Abstract. We consider standard finite volume piecewise linear approximations for second order
elliptic boundary value problems on a nonconvex polygonal domain. Based on sharp shift estimates,
we derive error estimations in H1-, L2- and L∞-norms, taking into consideration the regularity of
the data. Numerical experiments and counterexamples illustrate the theoretical results.
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1. Introduction. We analyze the standard finite volume element method for the
discretization of second order linear elliptic PDEs on a nonconvex polygonal domain
Ω ⊂ R

2. Namely, for a given function f , we seek u such that

Lu ≡ −div(A∇u) = f in Ω, and u = 0 on ∂Ω(1.1)

with A = (aij)
2
i,j=1 a given symmetric matrix function with real-value entries aij ∈

W 1
∞, 1 ≤ i, j ≤ 2. We assume that the matrix A is uniformly positive definite in Ω,

i.e., there exists a positive constant α0 such that

ξTA(x)ξ ≥ α0ξ
T ξ ∀ξ ∈ R

2, ∀x ∈ Ω̄.(1.2)

The class of finite volume methods is based on some approximation of the balance
relation

−
∫
∂b

A∇u · nds =

∫
b

f dx,(1.3)

which is valid for any subdomain b ⊂ Ω. Here n denotes the outer unit normal vector
to the boundary of b.

There are various approaches to the finite volume method. One, the finite volume
element method, uses a finite element partition of Ω, where the solution space con-
sists of continuous piecewise linear functions, a collection of vertex-centered control
volumes, and a test space of piecewise constant functions over the control volumes
(cf., e.g., [6, 10, 25, 28]). A second approach, usually called the finite volume differ-
ence method, uses cell-centered grids and approximates the derivatives in the balance
equation by finite differences (cf., e.g., [22, 29, 33]). Another approach uses mixed
reformulation of the problem [12, 16]. The first approach is quite close to the finite
element method but nevertheless has some new properties that make it attractive for
the applications [1, 20]. The second approach is closer to the classical finite difference
method and extends it to more general than rectangular meshes. It is used mostly on
perpendicular bisection or Voronoi type meshes. Approximations on such rectangular
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Fig. 1.1. Left-hand side: A sample region with dotted lines indicating the corresponding box
bz. Right-hand side: A triangle K partitioned into three subregions Kz.

and triangular meshes were studied, for example, in [34] and [26], respectively. The
third approach is close to mixed and hybrid finite element methods and can deal,
for example, with irregular quadrilateral and hexahedral cells [12, 30]. Finite volume
discretizations for more general convection-diffusion-reaction problems were studied
by many authors. For a comprehensive presentation and more references of existing
results we refer to the monographs on the finite volume difference method [22] and
on the finite volume element method [28], and for various applications on the special
issue [21].

We shall consider a finite volume element discretization of (1.1), in the standard
conforming space of piecewise linear functions,

Xh = {χ ∈ C(Ω) : χ|K is linear ∀K ∈ Th and χ|∂Ω = 0}

with {Th}0<h<1 a given family of triangulations of Ω with h denoting the maximum
diameter of the triangles of Th. For simplicity we shall assume that Th is a quasi-
uniform triangulation. However, this assumption is only required to show L∞-norm
error estimates. For L2- and H1-norm error estimations, nondegenerate triangulations
[9, equation (4.4.16)] are sufficient.

The finite volume problem will satisfy a relation similar to (1.3) for b in a finite
collection of subregions of Ω called control volumes, the number of which will be
equal to the dimension of the finite element space Xh. These control volumes are
constructed in the following way: Let zK be the barycenter of K ∈ Th. We connect
zK with line segments to the midpoints of the edges of K, thus partitioning K into
three quadrilaterals Kz, z ∈ Zh(K), where Zh(K) are the vertices of K. Then with
each vertex z ∈ Zh = ∪K∈Th

Zh(K) we associate a control volume (also called a
box) bz, which consists of the union of the subregions Kz, sharing the vertex z (see
Figure 1.1). We denote the set of interior vertices of Zh by Z0

h.
The finite volume element method is then to find uh ∈ Xh such that

−
∫
∂bz

(A∇uh) · nds =

∫
bz

f dx, ∀z ∈ Z0
h.(1.4)

Before we start our description of this work we introduce some notation. We will
use the standard notation for the Sobolev spaces W s

p and Hs = W s
2 (cf. [2]). Namely,

Lp(V ), 1 ≤ p < ∞, denotes the space of p-integrable real functions over V ⊂ R
2,

(·, ·)V the inner product in L2(V ), | · |Hs(V ) and ‖ · ‖Hs(V ) the seminorm and norm,

respectively, in Hs(V ), | · |W s
p (V ) and ‖ · ‖W s

p (V ) the seminorm and norm, respectively,
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in W s
p (V ), p ≥ 1, and s ∈ R. In addition, if V = Ω we suppress the index V , and if

p = 2 and s = 0 we also suppress these indexes and denote ‖ · ‖W 0
2

= ‖ · ‖. Further,

we shall denote with p′ the adjoint of p, i.e., 1
p + 1

p′ = 1, p > 1.

We begin with some comments. It is well known that in the case of a polygonal
Ω, if f ∈ Lp, 1 < p < ∞, then the solution u of (1.1) is not always in W 2

p (cf., e.g.,
[24] and section 2). However, it is always in W 2

p̄ or in a fractional order space H1+s

for some 0 < s < 1, where s and p̄, given in section 2, depend on both the maximal
interior angle of Ω and p. In short, for p large, s and p̄ depend on the maximal interior
angle, while for p close to 1, they depend on p.

In this paper we study the influence of the corner singularities imposed by the
nonconvex polygonal domain Ω and the possible insufficient regularity of the right-
hand side f , say, f ∈ Lp(Ω), p < 2, or f ∈ H−�(Ω), 0 ≤ � < 1/2, on the convergence
rate of the finite volume element method. For domains with smooth boundary and
convex polygonal domains, H1- and L2-norm error estimates were derived in [15] and
[23], respectively, taking into account the regularity of f .

Note that we use the conservative version of the method, namely the right-hand
side of the scheme is computed by the L2–inner product of f with the characteristic
functions of the finite volumes (or equivalently by the duality between H� and H−�

for 0 ≤ � < 1/2). The reason for � < 1/2 is that (1.4) makes sense for at least f ∈ L1.
For results concerning finite volume schemes for problems with more singular f , i.e.,
f ∈ H−1, we refer to [19], where an approximation of

∫
b
f is considered.

As a model for our analysis we shall consider the corresponding Galerkin finite
element method, which is to find uh ∈ Xh such that

a(uh, χ) = (f, χ), ∀χ ∈ Xh,(1.5)

with a(·, ·) the bilinear form defined by

a(v, w) =

∫
Ω

A∇v · ∇w dx.

It is known that uh satisfies (cf., e.g., [3, 8] and [9, Chapter 12])

‖u− uh‖ + hδ‖u− uh‖H1 ≤ Chs+δ

{‖u‖H1+s ,
‖u‖W 2

p̄
, any δ < π/ω,(1.6)

where s is given by (2.4) or (2.6), p̄ by (2.3), and ω denotes the biggest interior angle
of Ω (cf. section 2). Note that the convergence rate of the finite element method (1.5)
is optimal in the H1-norm and suboptimal in the L2-norm, since Xh has the following
approximation properties (cf., e.g., [9, p. 285]):

inf
χ∈Xh

(‖v − χ‖ + h‖v − χ‖H1) ≤
{
Ch1+s‖v‖H1+s , ∀v ∈ H1+s ∩H1

0 , 0 < s < 1,

Ch3−2/p‖v‖W 2
p
, ∀v ∈ W 2

p ∩H1
0 , 1 ≤ p ≤ 2.

(1.7)

In the literature there are various techniques for improving the convergence rate of a
finite element method in nonconvex domains, e.g., mesh refinement, augmenting the
basis functions with appropriate singular functions (cf., e.g., [8, 11]). Also, recently
in [18] such a method was analyzed for some finite volume element methods. Here,
we are interested in the analysis of (1.4) in a mesh Th, which does not have any prior
knowledge of the singularity imposed by the domain.
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Table 1.1

Theoretical convergence rate of the finite volume element method versus the finite element
method in a nonconvex polygonal domain, when the exact solution u of problem (1.1) is in H1+s,
where s is defined by (2.4) or (2.6), and any δ < π/ω.

pω = 2/(2 − π/ω), s0 = 1 − π/ω H1-norm L2-norm L∞-norm

p̃ω = 2pω/(3pω − 2) FVE FE FVE FE FVE FE

pω < 2 1 < p < p̃ω s + δ

p̃ω < pω p̃ω < p < pω min(1, s + δ)

f ∈ Lp pω ≤ p 1

1 < α < p̃ω s s + δ s + δ ≈ s

f ∈ W t
α p̃ω ≤ α ≤ 2 min(s + δ, 1 + t)

s0 < 1/2 � < s0 1 − �

f ∈ H−� s0 < � < 1/2 1 − �

In Theorems 4.3 and 5.2, we show optimal order H1-norm error estimates for the
finite volume element method (1.4), if f ∈ Lp, p > 1, and f ∈ H−�, � ∈ (0, 1/2).
Thus, the finite element (1.5) and finite volume element method (1.4) converge with
the same rate in the H1-norm.

However, as in the convex case (cf., e.g., [13, 27]), the situation in the L2-norm
error estimate is quite different. The convergence rate in the L2-norm of the finite
volume element method (1.4) is suboptimal and lower than the corresponding finite el-
ement method. In Theorem 4.3, for f ∈ Lp, p > 1, we show L2-norm error estimations
where the order cannot be higher than 1. However, assuming additional regularity
for f , namely, f ∈ W t

α, t ∈ (0, 1], α ∈ (1, 2], we are able to show, in Theorem 4.6,
L2-norm error estimations that, depending on α and t, could be of the same order as
the finite element method. For example, this is true for α or t sufficiently close to 1.
Also, in Theorem 4.8 we derive almost optimal order L∞-norm error estimates.

In section 5, we consider the case where f ∈ H−�, � ∈ (0, 1/2) with A = I and
show optimal order H1-norm, suboptimal L2-norm, and almost optimal L∞-norm
error estimates. In Theorem 5.2, we show again that the convergence rate of the
finite volume element method (1.4) in the L2-norm is suboptimal and lower than the
corresponding suboptimal rate of the finite element method.

In Table 1.1, we summarize the theoretical results concerning the convergence
rate of the finite volume element method in the H1-, L2-, and L∞-norms obtained
in sections 4 and 5 and compare them with the corresponding known results for the
finite element method. According to (1.6) the rate of the finite element method in
the H1-norm and L2-norm is s and s + δ, respectively, for any δ < π/ω and s given
by either (2.4) or (2.6), depending on whether f ∈ Lp or f ∈ H−�. Note that if we
assume that f ∈ W t

α, with t ∈ (0, 1] and α ∈ (1, 2], both methods give the same
convergence rate, if α < p̃ω = 2pω/(3pω − 2) with pω = 2/(2 − π/ω). Otherwise, this
is determined by min(s + π/ω, 1 + t).

Also, in section 7 we present some numerical results for Poisson’s equation on a
Γ-shaped domain. The particular examples we consider justify the theoretical results
of Theorems 4.3, 4.6, and 4.8. However, these do not show the lower convergence rate
in the L2-norm of Theorem 4.3, which occurs if f ∈ Lp, p > 1, and f /∈ W t

α, for any
α ∈ (1, 2] and t ∈ (0, 1). To show that the L2-norm estimates of Theorems 4.3 and
5.2 are sharp, following [27], we consider two counterexamples.

A short presentation of parts of this work can be found in [14]. For simplicity we
choose not to include convection terms in the differential equation (1.1). But they
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Ω

Fig. 2.1. A nonconvex domain Ω.

can be included provided they are bounded and the diffusion term is dominating. A
brief description of this paper is the following: In section 2 we give, in short, known
sharp regularity estimates for the exact solution of problems (1.1) and (2.1), based on
[24, 4]. In section 3 we present the finite volume element method. In sections 4 and 5,
we analyze the finite volume element method (1.4) and derive error estimates in the
H1-, L2- and L∞-norms. The approach follows the one developed in [13] and uses
known sharp regularity results for the solutions of elliptic boundary value problems
(cf. [24]). In section 6, we derive some auxiliary results, needed in proving Theorems
4.3, 4.6, 4.8, 5.2, 5.4, and 5.5. Finally in section 7, we present numerical examples
that illustrate the theoretical results of section 4.

2. Preliminaries. Let us first consider the Dirichlet problem for Poisson’s equa-
tion: Given f ∈ Lp, p > 1, find a function u : Ω → R

2 such that

−∆u = f, in Ω, and u = 0 on ∂Ω(2.1)

with Ω a bounded, nonconvex, polygonal domain in R
2. For simplicity we assume

that Ω has only one interior angle greater than π, namely ω ∈ (π, 2π) (cf. Figure 2.1).
It is well known that for such domains there exists a unique solution u ∈ H1

0 of (2.1).
The solution u could be represented in the form u = uS + uR, where uR ∈

W 2
p ∩H1

0 , and uS = crλm 1√
ωλm

sin(λmθ)η(reiθ), expressed in polar coordinates (r, θ)

with respect to the vertex S0 with angle ω (cf. [24]). Here c is a constant, λm = mπ
ω ,

m ∈ N, and η is a cutoff function which is one near S0 and zero away from S0. A
crucial role in determining the regularity of the solution u of (1.1) is played by the
constant pω ≡ 2

2−π/ω . According to [24, p. 233],

if f ∈ Lp, p > 1, then u ∈ W 2
p̄ ,(2.2)

where

p̄ =

{
p, p < pω,
γ, any γ < pω, p ≥ pω,

pω ≡ 2

2 − π/ω
.(2.3)

Using also the imbedding W 2
p̄ ⊂ H1+s, for s = 2−2/p̄ (cf., e.g., [24, p. 34]), we obtain

the following:

if f ∈ Lp, p > 1, then u ∈ H1+s, for s = 2 − 2

p̄
.(2.4)

Also, for problem (2.1) we have (cf., e.g., [4]),

if f ∈ H−�, 0 ≤ � ≤ 1, then u ∈ H1+s,(2.5)
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where

s =

{
1 − �, s0 < � ≤ 1,
δ, any δ < π/ω, 0 ≤ � ≤ s0,

s0 =
2

p0
− 1 = 1 − π

ω
.(2.6)

For the more general problem (1.1), similar results hold. Let S be a vertex of Ω, and
denote the corresponding interior angle of Ω by ω(S). Let A and T be matrices such

that A = (aij(S))
2
i,j=1 and −T AT T = I, and let ωA(S) be the angle at the vertex

T S of the transformed domain T Ω = {T x : x ∈ Ω}. Define

ω = max
S

ωA(S) and pω =
2

2 − π/ω
.

3. The finite volume element method. In order to analyze the finite volume
element method (1.4) we shall need to rewrite it in a variational form resembling the
one for the finite element problem (1.5) (cf., e.g., [13]). For this purpose we introduce
the space

Yh = {η ∈ L2(Ω) : η|bz is constant, z ∈ Z0
h, η|bz = 0 if z ∈ ∂Ω}.

For an arbitrary η ∈ Yh we multiply the integral relation (1.4) by η(z) and sum over
all z ∈ Z0

h. Thus we obtain the following Petrov–Galerkin formulation of the finite
volume element method: Find uh ∈ Xh such that

ah(uh, η) = (f, η), ∀η ∈ Yh,(3.1)

where the bilinear form ah(·, ·) : Xh × Yh → R is defined by

ah(v, η) = −
∑
z∈Z0

h

η(z)

∫
∂bz

(A∇v) · nds, v ∈ Xh, η ∈ Yh.(3.2)

Further, we consider the interpolation operator Ih : C(Ω) → Yh, defined by

Ihv =
∑
z∈Z0

h

v(z)ϕz,(3.3)

where ϕz is the characteristic function of bz. Then, we can rewrite (1.4) as

ah(uh, Ihχ) =
∑
z∈Z0

h

χ(z)

∫
bz

f dx, ∀χ ∈ Xh.(3.4)

Note that for every f ∈ Lp and χ ∈ Xh,

(f, Ihχ) =
∑
z∈Zh

χ(z)

∫
Ω

fϕz dx =
∑
z∈Z0

h

χ(z)

∫
bz

f dx.(3.5)

Thus (3.4) can be written equivalently in the form

ah(uh, Ihχ) = (f, Ihχ), ∀χ ∈ Xh.(3.6)

Existence of uh follows from the fact that ah is coercive, for h sufficiently small (cf.,
e.g., [13] or [28, Theorem 3.2.1]),

∃ c0 > 0 : c0|χ|2H1 ≤ ah(χ, Ihχ), ∀χ ∈ Xh.
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Then this, the local stability of Ih,

‖Ihχ‖Lp(K) ≤ C‖χ‖Lp(K), ∀χ ∈ Xh, K ∈ Th, p > 1,

and the Sobolev imbedding

‖χ‖Lp
≤ C‖χ‖H1 , ∀χ ∈ Xh, p > 1,

give the stability of the finite volume scheme (3.6),

‖uh‖H1 ≤ C‖f‖Lp
, p > 1.(3.7)

Also, note that if A(x) is a constant matrix over each finite element K ∈ Th, then
ah(χ, Ihψ) = a(χ, ψ), ∀χ, ψ ∈ Xh (cf., e.g., [27]). In particular, if A = I, we have

ah(χ, Ihψ) = a(χ, ψ) =

∫
Ω

∇χ · ∇ψ dx, ∀χ, ψ ∈ Xh(3.8)

(cf., e.g., [6]). Thus, (3.6) takes the form

a(uh, χ) = (f, Ihχ), ∀χ ∈ Xh.(3.9)

In the case of general matrix A(x), the identity (3.8) is not valid. However,
following [13], we are able to rewrite ah in a form similar to a. Indeed, we transform
the left-hand side of (1.4) using integration by parts to get, for z ∈ Z0

h and K ∈ Th,∫
Kz

Lχdx +

∫
∂Kz∩∂K

A∇χ · nds = −
∫
∂Kz∩∂bz

A∇χ · nds, ∀χ ∈ Xh.

Thus, multiplying by ψ(z), ψ ∈ Xh, and summing over the triangles having z as a
vertex and then over the vertices z ∈ Z0

h, we obtain

ah(χ, Ihψ) =
∑
K

{(Lχ, Ihψ)K + (A∇χ · n, Ihψ)∂K}, ∀χ, ψ ∈ Xh.(3.10)

This is similar to

a(χ, ψ) ≡ (A∇χ,∇ψ) =
∑
K

{(Lχ,ψ)K + (A∇χ · n, ψ)∂K}, ∀χ, ψ ∈ Xh.

Due to this similarity and for convenience, in what follows we shall use (3.10) as a
definition of the bilinear form ah.

4. Nonsmooth data: Lp case. In this section we shall derive H1-, L2-, and
L∞-norm estimates of the error u−uh for f ∈ Lp, p > 1. First, we shall demonstrate
that the finite element method (1.5) and finite volume element method (3.6) have the
same convergence rate in the H1-norm. The L2-norm error estimate is quite different,
and we derive two separate results. First, we will show suboptimal order L2-norm
error estimates for f ∈ Lp, p > 1, where the order is less than in the corresponding
order for the finite element scheme (1.5). Next, assuming higher regularity for f ,
namely f ∈ W t

α, t ∈ (0, 1], α ∈ (1, 2], we will show again suboptimal order L2-norm
error estimates, but now depending on α and t, these could be of the same order as
the corresponding estimates of the finite element scheme. Finally, we show almost
optimal L∞-norm estimates of the error u− uh.
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For the analysis of the finite volume element method (3.6) we shall need to esti-
mate the errors εh and εa defined by

εh(f, χ) = (f, χ) − (f, Ihχ), ∀f ∈ Lp, χ ∈ Xh,

εa(χ, ψ) = a(χ, ψ) − ah(χ, Ihψ), ∀χ, ψ ∈ Xh.

In section 6 we will give the proof of the following two lemmas.
Lemma 4.1. There exists a constant C such that for every χ ∈ Xh,

|εh(f, χ)| ≤ Ch‖f‖Lp
|χ|W 1

p′
, ∀f ∈ Lp,

1

p
+

1

p′
= 1,(4.1)

|εh(f, χ)| ≤ Ch1+t‖f‖W t
p
|χ|W 1

p′
, ∀f ∈ W t

p, 0 < t ≤ 1.(4.2)

Lemma 4.2. Assume that A ∈ W 2
∞. Then there exists a positive constant C =

C(A) such that

|εa(ψ, χ)| ≤ Ch|ψ|W 1
p
|χ|W 1

p′
, ∀χ, ψ ∈ Xh,(4.3)

|εa(uh, χ)| ≤ Ch
(
‖∇(u− uh)‖L2

+ h‖u‖W 2
p̄

)
|χ|W 1

p̄′
, ∀χ ∈ Xh.(4.4)

Next, we derive H1- and L2-norm error estimates for the finite volume element
method (1.4).

Theorem 4.3. Let u and uh be the solutions of (1.1) and (1.4), respectively, with
f ∈ Lp, p > 1. Then, there exists a constant C, independent of h, such that

‖u− uh‖H1 ≤ C
(
hs‖u‖W 2

p̄
+ hmin(1,2−2/p)‖f‖Lp

)
≤ Chs‖f‖Lp

,(4.5)

‖u− uh‖ ≤ C
(
hs+δ‖u‖W 2

p̄
+ hmin (1,s+δ)‖f‖Lp

)
, for any δ < π/ω,(4.6)

with p̄ and s given by (2.3) and (2.4), respectively.
Remark 4.4. The H1-norm error estimation (4.5) is of optimal order (cf. (1.7)).

However, the L2-norm error estimation is not of the same order as the finite element
approximation (cf. (1.6)) for every p. For example, for p sufficiently close to 1,
s + δ < 1, thus, ‖u− uh‖ = O(hs+δ). However, for p ≥ 2, s = 2 − 2/p̄ ≈ π/ω.
Therefore, since s + δ ≈ 2π/ω > 1, ‖u− uh‖ = O(h). The most interesting outcome
of this theorem is that the convergence rate for the L2-norm is suboptimal and lower
than the rate of the finite element method (1.5). This estimate is sharp, as first
demonstrated by a counterexample in [27], for convex domains. Later in section 7 we
give a similar example to the one in [27], which shows the sharpness of the L2-error
estimate (4.6).

Proof. In view of (2.2), u ∈ W 2
p̄ , with p̄ defined by (2.3). Using the triangle

inequality,

‖u− uh‖H1 ≤ ‖u− χ‖H1 + ‖uh − χ‖H1 , ∀χ ∈ Xh,(4.7)

and the approximation properties (1.7) of Xh, it suffices to consider the last term of
(4.7). The positive definiteness of A, (1.2), gives

α0‖uh − χ‖2
H1 ≤ a(uh − χ, uh − χ), ∀χ ∈ Xh.(4.8)
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Thus, in view of

a(uh − χ, uh − χ) = a(u− uh, uh − χ) + a(u− χ, uh − χ)

≤ a(u− uh, uh − χ) + C‖u− χ‖H1 ‖uh − χ‖H1 , ∀χ ∈ Xh,

and (4.8), we get for every χ ∈ Xh,

‖uh − χ‖2
H1 ≤ C|a(u− uh, uh − χ)| + C‖u− χ‖2

H1 .(4.9)

In addition, using the definitions of εh and εa, we have

a(u− uh, uh − χ) = a(u, uh − χ) − ah(uh, Ih(uh − χ)) − εa(uh, uh − χ)

= εh(f, uh − χ) − εa(uh, uh − χ), ∀χ ∈ Xh.
(4.10)

Applying then, to this relation, (4.1), (4.3), and the inverse inequality

|χ|W 1
p′

≤ Ch2/p′−1|χ|H1 , p′ > 2, ∀χ ∈ Xh,

we obtain

|a(u− uh, uh − χ)| ≤ C(hmin (1,2−2/p)‖f‖Lp
+ h‖uh‖H1)‖uh − χ‖H1 .(4.11)

Thus, for h sufficiently small, this estimate, (3.7) and (4.9) yield

‖uh − χ‖H1 ≤ C‖u− χ‖H1 + Chmin (1,2−2/p)‖f‖Lp
, ∀χ ∈ Xh,(4.12)

which combined with (1.7) and (4.7) gives

‖u− uh‖H1 ≤ C
(
hs‖u‖W 2

p̄
+ hmin(1,2−2/p)‖f‖Lp

)
.

Using now the fact that for p < pω, s = 2 − 2/p and for p ≥ pω, s < min(1, 2 − 2/p),
we get

‖u− uh‖H1 ≤ Chs
(
‖u‖W 2

p̄
+ ‖f‖Lp

)
.(4.13)

Finally, employing the a priori regularity estimation of u, (2.2), we obtain the desired
estimate (4.5).

We now prove (4.6) by using a duality argument. We consider the following
auxiliary problem: Seek ϕ ∈ H1

0 such that

Lϕ = u− uh in Ω and ϕ = 0 on ∂Ω.(4.14)

In view of (2.2) and the fact that u − uh ∈ L2, we have ϕ ∈ W 2
γ , where γ < pω, i.e.

2/γ = 2 − π/ω + ε, with arbitrary small ε > 0, and satisfies the a priori estimate

‖ϕ‖W 2
γ
≤ C‖u− uh‖, γ < pω.(4.15)

Now let Πh : W 2
γ ∩H1

0 → Xh denote the standard nodal interpolation operator. It is
well known that Πh has the following approximation property (cf., e.g., [17, Theorem
3.1.6] and [2, Theorem 5.4]),

‖Πhv − v‖H1 ≤ Chπ/ω−ε‖v‖W 2
γ
, ∀v ∈ W 2

γ ∩H1
0 ,(4.16)
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and Πh is bounded in ‖ · ‖W 1
q

(cf., e.g., [17, Theorem 3.1.6] and [2, Theorem 5.4]),

‖Πhv‖W 1
q
≤ C‖v‖W 2

γ
, ∀v ∈ W 2

γ ∩H1
0 , q ≤ p′γ = 2γ/(2 − γ),(4.17)

where pγ = 2γ/(3γ − 2).
Using (4.14) and Green’s formula, we easily obtain

‖u− uh‖2
= −(u− uh, Lϕ) = a(u− uh, ϕ)

= a(u− uh, ϕ− Πhϕ) + a(u− uh,Πhϕ) := I + II.
(4.18)

The first term, I, can obviously be bounded in the following way by using (4.13) and
(4.16):

|I| ≤ C‖u− uh‖H1 ‖ϕ− Πhϕ‖H1 ≤ Chs+π/ω−ε
(
‖u‖W 2

p̄
+ ‖f‖Lp

)
‖ϕ‖W 2

γ
.(4.19)

Also, in view of (4.10), the second term, II, can be written in the form

II = a(u− uh,Πhϕ) = εh(f,Πhϕ) − εa(uh,Πhϕ).(4.20)

Then using (4.1) and (4.4), II can be estimated by

|II| ≤ Ch‖f‖Lp
|Πhϕ|W 1

p′
+ h

(
‖∇(u− uh)‖L2

+ h‖u‖W 2
p̄

)
|Πhϕ|W 1

p̄′
.(4.21)

In order to bound |Πhϕ|W 1
p′

and |Πhϕ|W 1
p̄′

in (4.21) we consider two different cases

for p: (1) p ≥ pγ = 2γ/(3γ − 2), and (2) 1 < p < pγ . We can easily see that pγ < pω.
Thus, in view of the definition of p̄ (cf. (2.3)), for p ≥ pγ we also have p̄ ≥ pγ and for
1 < p < pγ , p̄ < pγ .

Let us first consider the case p ≥ pγ . Then we have p′ ≤ p′γ and p̄′ ≤ p′γ so for
the respective norms of Πhϕ in (4.21) we can apply the estimate (4.17). Using also
(4.13) we get

|II| ≤ C(h‖f‖Lp
+ h1+s(‖u‖W 2

p̄
+ ‖f‖Lp

))‖ϕ‖W 2
γ

≤ C(h‖f‖Lp
+ h1+s‖u‖W 2

p̄
)‖ϕ‖W 2

γ
.

(4.22)

Combining now this estimation with (4.19), (4.15), and (4.18), we obtain the desired
estimate (4.6), for p ≥ pγ .

In the remaining case 1 < p < pγ we cannot directly employ (4.17) for the
estimation of II. However, the inverse inequality

|χ|W 1
q
≤ Ch2/q−2/p′

γ |χ|W 1
p′γ
, q > p′γ , ∀χ ∈ Xh,

and (4.17), give

|Πhv|W 1
q
≤ Ch2/q−1+π/ω−ε‖v‖W 2

γ
, ∀v ∈ W 2

γ ∩H1
0 , q > p′γ .(4.23)

Using now this estimation in (4.21) and the fact that for 1 < p < pγ , 2/p′ = 2−2/p =
s, we get

|II| ≤ Ch2/p′+π/ω−ε
(
‖f‖Lp

+ h‖u‖W 2
p̄

)
‖ϕ‖W 2

γ

≤ Chs+π/ω−ε
(
‖f‖Lp

+ hs‖u‖W 2
p̄

)
‖ϕ‖W 2

γ
.

(4.24)
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Then, combining this estimation with (4.19), (4.15), and (4.18), we obtain

‖u− uh‖ ≤ Chs+δ(‖u‖W 2
p̄

+ ‖f‖Lp
).

Finally, (4.6) follows from the fact that for 1 < p < pγ , s = 2− 2
p < 2− 2

pγ
= 2

γ − 1 =

1 − π
ω + ε.
Remark 4.5. For the proof of Theorems 4.3 and 4.6 it is not necessary to assume

a quasi-uniform mesh Th. This is done in order to simplify the proof, and it is only
required for the validity of the inverse inequalities that are used. This assumption
can be avoided by applying local inverse inequalities which hold in more general
triangulations.

Next, we shall demonstrate that under some additional assumptions on the smooth-
ness of the data the convergence rate in the L2-norm can be improved and be equal
to the rate of the corresponding finite element method.

Theorem 4.6. Let u and uh be the solutions of (1.1) and (1.4), respectively.
Assume that f ∈ W t

α, 1 < α ≤ 2, 0 < t ≤ 1, and A ∈ W 2
∞. Then there exists a

constant C, independent of h, such that

‖u− uh‖ ≤ C(hs+δ‖f‖Lp
+ h1+t+min(0,1−2/α+δ)‖f‖W t

a
), for any δ < π/ω,(4.25)

with p = 2α/(2 − tα) and p̄ and s given by (2.3) and (2.4), respectively.
Remark 4.7. For α < p̃ω = 2pω

3pω−2 , we have 2/α > 1+π/ω. Thus 1+t+min(0, 1−
2/α+ δ) = 2 + t− 2/α+ δ = 2− 2/p+ δ ≥ s+ δ. Therefore, ‖u−uh‖ = O(hs+δ), i.e.,
in this case the L2-norm error estimate of the finite volume element method has the
same convergence rate as the corresponding finite element method. If α ≥ p̃ω, i.e.,
2/α ≤ 1 + δ, then the order of ‖u− uh‖ is min(s + δ, 1 + t).

Proof. The proof will be similar to the one for (4.6). First, let us note that
since f ∈ W t

α, we have by imbedding (cf. [2, Theorem 7.57]) that f ∈ Lp, with
p = 2α/(2 − tα). Thus, in view of (2.2), u ∈ W 2

p̄ with p̄ given by (2.3).
Let again γ < pω, such that 2/γ = 2 − π/ω + ε, with arbitrary small ε > 0, and

let ϕ ∈ W 2
γ ∩H1

0 be the solution of the auxiliary problem (4.14). Obviously, in order
to show a higher order L2-norm error estimation of u−uh, we need to derive “better”
bounds for I and II of (4.18). It is obvious that the estimation of I, (4.19), derived
in Theorem 4.3 is of the desired order. Thus, it suffices to show a better estimate for
II than the ones derived in Theorem 4.3 (cf. (4.22) and (4.24)).

Using (4.2) and (4.4) in (4.20), we get

|II| ≤ C(h1+t‖f‖W t
α
|Πhϕ|W 1

α′
+ h1+s‖f‖Lp

|Πhϕ|W 1
p̄′

).(4.26)

Similarly, as in Theorem 4.3 we need to derive bounds for

|Πhϕ|W 1
α′

and |Πhϕ|W 1
p̄′
,

and we will need to consider various cases for α and p with respect to pγ = 2γ/(3γ−2).
Since p = 2α/(2 − tα), we can easily see that p > α; thus we have the following

three cases: (1) p > α ≥ pγ , (2) p ≥ pγ > α, and (3) pγ > p > α.
First, we consider the case p > α ≥ pγ . For such p, according to (2.3), we have

p̄ > pγ . Thus, using (4.17) in (4.26), and the fact that 1/2 < π/ω < 1, we get

|II| ≤ C(h1+t‖f‖W t
α

+ hs+π/ω−ε‖f‖Lp
)‖ϕ‖W 2

γ
.(4.27)
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Therefore, combining this estimation, (4.19), (4.15), (4.18), and the fact that if α > pγ ,
then 2/α < 2/pγ = 1 + π/ω − ε, we obtain the desired result, (4.25), in the case
p > α ≥ pγ .

Now let p ≥ pγ > α. Again we can easily see that p̄ ≥ pγ . Therefore, applying
(4.23) and (4.17) in (4.26) and using the fact that 1/2 < π/ω < 1, we obtain

|II| ≤ C(ht+2/α′+π/ω−ε‖f‖W t
α

+ h1+s‖f‖Lp
)‖ϕ‖W 2

γ

≤ C(h1+t+1−2/α+π/ω−ε‖f‖W t
α

+ hs+π/ω−ε‖f‖Lp
)‖ϕ‖W 2

γ
.

(4.28)

Therefore, combining this estimation, (4.19), (4.15), (4.18), and the fact that if α ≤ pγ ,
then 2/α > 1 + π/ω − ε, we obtain the desired result, (4.25), if p > pγ ≥ α.

In the remaining case pγ > p > α, we have p̄ = p < pγ . Thus, applying (4.23) in
(4.26) and using the fact that 1/2 < π/ω < 1, we have

|II| ≤ C(ht+2/α′+π/ω−ε‖f‖W t
α

+ h2/p′+π/ω−ε+s‖f‖Lp
)‖ϕ‖W 2

γ

≤ C(h1+t+1−2/α+π/ω−ε‖f‖W t
α

+ hs+π/ω−ε‖f‖Lp
)‖ϕ‖W 2

γ
.

(4.29)

Therefore, combining this estimation, (4.19), (4.15), and (4.18) we obtain the
desired result, (4.25), for the remaining case pγ ≥ p > α.

Finally, we will show an almost optimal L∞-norm error estimate.
Theorem 4.8. Let u and uh be the solutions of (1.1) and (1.4), respectively, with

f ∈ Lp, p > 1, and A ∈ W 2
∞. Then there exists a constant C, independent of h, such

that

‖u− uh‖L∞
≤ Chs log

1

h
‖f‖Lp

.(4.30)

Proof. We split the error u − uh by adding and subtracting the Galerkin finite
element approximation uh (cf. (1.5)); thus u − uh = (u − uh) + (uh − uh). The
estimation of ‖u− uh‖L∞

is well known (cf., e.g., [32]). However, we shall briefly
demonstrate it.

In view of [32, equation (0.8)] and the standard imbedding W 2
p̄ ⊂ C0,2−2/p̄ (cf.,

e.g., [24, Theorem 1.4.5.2]), we have

‖u− uh‖L∞
≤ Chs log

1

h
‖u‖C0,s ≤ Chs log

1

h
‖u‖W 2

p̄
,

where s = 2 − 2/p̄ and Cm,� is the space of m times continuously differentiable
functions whose mth order derivative fulfills a uniform Hölder condition of order �.

Then, combining this with the elliptic regularity estimate,

‖u‖W 2
p̄
≤ Cp̄‖f‖Lp

(4.31)

(cf. [24, Theorem 5.2.7]), we obtain

‖u− uh‖L∞
≤ Cp̄h

s log
1

h
‖f‖Lp , p > 1.(4.32)

We turn now to the estimation of ‖uh − uh‖L∞
. Let x0 ∈ K0 ∈ Th such that

‖uh − uh‖L∞
= |(uh − uh)(x0)| and δx0 = δ ∈ C∞

0 (Ω) a regularized Dirac δ-function
satisfying

(δ, χ) = χ(x0), ∀χ ∈ Xh.
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For such a function δ (cf., e.g., [9]) we have

supp δ ⊂ B = {x ∈ Ω : |x− x0| ≤ h/2},
∫

Ω

δ = 1, 0 ≤ δ ≤ Ch−2,

‖δ‖Lp
≤ Ch2(1−p)/p, 1 < p < ∞.

Also let us consider the corresponding regularized Green’s function G ∈ H1
0 , defined

by

a(G, v) = (δ, v), ∀v ∈ H1
0 .(4.33)

Then, we have

‖uh − uh‖L∞
= (δ, uh − uh) = a(G, uh − uh) = a(Gh, uh − uh)

= a(u− uh, Gh) = εh(f,Gh) − εa(uh, Gh),
(4.34)

where Gh ∈ Xh is the finite element approximation of G, i.e.,

a(G,χ) = a(Gh, χ), ∀χ ∈ Xh.

Further, using (4.1), (4.3), and the inverse inequality

|χ|W 1
q
≤ Ch2/q−1|χ|H1 , ∀χ ∈ Xh, q > 2,

in (4.34) we obtain

‖uh − uh‖L∞
≤ C

{
h
(
‖∇(u− uh)‖L2

+ h‖u‖W 2
p̄

)
|Gh|W 1

p̄′
+ h‖f‖Lp

|Gh|W 1
p′

}
≤ C

{
h2−2/p̄

(
‖∇(u− uh)‖L2

+ h‖u‖W 2
p̄

)
+ hmin(1,2−2/p)‖f‖Lp

}
‖Gh‖H1 ,

(4.35)

with p > 1. In addition, in view of [31, Lemma 3.1] we get

‖Gh‖H1 ≤ C‖∇G‖L2
≤ C

1

(q − 1)1/2
‖δ‖Lq

(4.36)

with q ↓ 1. Choosing now q = 1 + (log 1
h )−1 we have

‖Gh‖H1 ≤ C

(
log

1

h

)1/2

.(4.37)

Combining now (4.34)–(4.37) and Theorem 4.3, we obtain

‖uh − uh‖L∞
≤ Ch2s

(
log

1

h

)1/2

‖u‖W 2
p̄

+ Chmin(1,2−2/p)

(
log

1

h

)1/2

‖f‖Lp
.(4.38)

From this, (4.31), and (4.32) we get the desired estimation (4.30).
Remark 4.9. Assuming f ∈ L∞ will not improve the convergence rate in (4.30),

we can easily see that in this case (4.38) does not contribute terms of order higher
than 1. However, (4.32) gives terms of order almost 2−2/p̄, which is less than 1. Also,
if we assume f ∈ W t

α, then similarly as in Theorem 4.6 we can show ‖uh − uh‖L∞
=

O(h1+t), but again the error ‖u− uh‖L∞
will be at most of order 2 − 2/p̄.
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5. Nonsmooth data: H−� case. In this section we will consider problem (2.1),
i.e., A = I, and we shall derive H1-, L2- and L∞-norm estimates of the error u− uh

for f ∈ H−�, � ∈ (0, 1/2). We will show optimal H1-, suboptimal L2-, and almost
optimal L∞-norm error estimates. The H1- and L∞-norm estimations are of the same
order with the corresponding estimations for the finite element scheme, whereas the
L2-norm estimates are smaller.

This time for the analysis of the finite volume element method (3.6) we shall need
in addition the following lemma, which we prove in section 6.

Lemma 5.1. There exists a constant C such that for every χ ∈ Xh,

|εh(f, χ)| ≤ Ch1−�‖f‖H−� |χ|H1 , ∀f ∈ H−�, 0 < � < 1/2.(5.1)

Theorem 5.2. Let u and uh be the solutions of (2.1) and (1.4), respectively, with
f ∈ H−�, 0 ≤ � < 1/2. Then there exists a constant C, independent of h, such that

‖u− uh‖H1 ≤ C
(
hs‖u‖H1+s + h1−�‖f‖H−�

)
≤ Chs‖f‖H−� ,(5.2)

‖u− uh‖ ≤ C
(
hs+δ‖u‖H1+s + h1−�‖f‖H−�

)
, any δ < π/ω.(5.3)

Remark 5.3. The convergence rate of the H1-norm is of optimal order (cf. (1.7)).
However, since s + δ > 1 ≥ 1 − �, for δ arbitrarily close to π/ω and δ < π/ω,
the convergence rate in the L2-norm is suboptimal and lower than the rate of the
corresponding finite element method (cf. (1.5)). Later in section 7 we give an example
similar to the one in [27], which shows the sharpness of the L2-error estimate (5.3).

Proof. The proof is similar as in Theorem 4.3, thus it suffices to estimate the first
term of the right-hand side of (4.9). If f ∈ H−�, with 0 < � < 1/2, then in view of
(2.5), u ∈ H1+s, with s defined by (2.6). Since A = I, εa ≡ 0. Therefore, using (5.1)
in (4.10) we obtain

|a(u− uh, uh − χ)| ≤ Ch1−�‖f‖H−� |uh − χ|H1 , ∀χ ∈ Xh.(5.4)

Then, in view of the approximation property (1.7) of Xh we get

‖u− uh‖H1 ≤ C
(
hs‖u‖H1+s + h1−�‖f‖H−�

)
.

Using now the fact that for s0 < � < 1/2, s = 1 − � (cf. (2.6)), and for 0 ≤ � ≤ s0,
s < 1 − �, and the a priori regularity estimate (2.5), we obtain the desired estimate
(5.2).

We now turn to (5.3). Using again the same arguments as in Theorem 4.3 it
suffices to estimate term II of (4.18). Let again γ < pω, such that 2/γ = 2−π/ω+ ε,
with arbitrarily small ε > 0, and let ϕ ∈ W 2

γ ∩ H1
0 be the solution of the auxiliary

problem (4.14). Combining (4.10) and (5.1), we have

|II| ≤ Ch1−�‖f‖H−� |Πhϕ|H1 .(5.5)

Finally, since, pγ < 2, we can employ (4.17) in the estimation above, and then com-
bining (4.18), (4.16), (5.2), and (4.15), we obtain the desired estimate (5.3).

In Theorem 5.2 we demonstrated that ‖u−uh‖H1 ≈ Chs, for u ∈ H1+s, s < π/ω.
In general, we know that u /∈ H1+π/ω, even if f is smooth. In Theorem 5.4, we will
show that for f ∈ H−�, with � ∈ (0, s0), ‖u − uh‖H1 ≈ C�h

π/ω, where the constant
C� blows up when � → s0. This is a slight improvement of the result of Theorem 5.2,
which in this case gives ‖u− uh‖H1 ≈ Chπ/ω−ε with ε > 0 arbitrarily small. Here we
use the technique developed in [5].
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Theorem 5.4. Let u and uh be the solutions of (2.1) and (1.4), respectively, with
f ∈ H−�, 0 ≤ � < s0. Then there exists a constant C, independent of h, such that

‖u− uh‖H1 ≤ C
1

s0 − �
hπ/ω‖f‖H−� .(5.6)

Proof. Obviously, if f ∈ H−�, with 0 ≤ � < s0, then f ∈ H−�̃, �̃ ∈ (s0, 1/2). Then
according to Theorem 5.2, we have that

‖u− uh‖H1 ≤ Ch1−�̃
(
‖u‖H2−�̃ + ‖f‖H−�̃

)
.(5.7)

Also, since u ∈ H2−�̃, we have

(f, v) = a(u, v) ≤ ‖u‖H2−�̃‖v‖H �̃ , ∀v ∈ H1
0 ;(5.8)

thus, ‖f‖H−�̃ ≤ ‖u‖H2−�̃ , which in view of (5.7) gives

‖u− uh‖H1 ≤ Ch1−�̃‖u‖H2−�̃ .(5.9)

In addition, we can easily see that if u ∈ H2 ∩H1
0 ,

‖u− uh‖H1 ≤ Ch‖u‖H2 .(5.10)

Then, by interpolation between (5.9) and (5.10), we get

‖u− uh‖H1 ≤ Ch1−s0‖u‖X ,(5.11)

where X = [H2 ∩H1
0 , H

2−�̃ ∩H1
0 ]s0/�̃,∞. Here [V,W ]θ,q, 0 ≤ θ ≤ 1, 1 ≤ q ≤ ∞,

denote the Banach spaces intermediate between V and W defined by the K-functional,
which are used in interpolation theory (cf., e.g., [7, Chapter 5]). Denote now with L2,ψ

the orthogonal space with respect to the L2-inner–product to the space spanned by
the function ψ = ϕ + uR, where ϕ = r−π/ω sin(ϑπ/ω)η, and uR ∈ H1

0 the variational
solution of −∆uR = ∆ϕ. Then, in view of [5, Theorem 4.1], we have

‖u‖X ≤ C‖f‖Y(5.12)

with Y = [L2,ψ, H
−�̃]s0/�̃,∞; thus

‖u− uh‖H1 ≤ Ch1−s0‖f‖Y .(5.13)

Further, since �̃ > s0, [L2,ψ, H
−1]�̃,2 = [L2, H

−1]�̃,2 = H−�̃ (cf., e.g., [5, equation

(3.16)]). Therefore, in view of the reiteration theorem for the interpolation of spaces
(cf., e.g., [7, Chapter 5]), we get

Y = [L2,ψ, H
−1]s0,∞.(5.14)

In addition, in view of [5, Theorem 3.1 and Remark 3.1], we have

‖f‖[L2,ψ,H−1]
s0,∞

≤ C
1

s0 − �
‖f‖H−� , ∀f ∈ H−�.(5.15)

Thus, combining (5.13)–(5.15) we get the desired estimate.
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Finally, we will show an almost optimal L∞-norm error estimate.
Theorem 5.5. Let u and uh be the solutions of (2.1) and (1.4), respectively, with

f ∈ H−�, 0 < � < 1/2. Then there exists a constant C, independent of h, such that

‖u− uh‖L∞
≤ Chs log

1

h
‖f‖H−� .(5.16)

Proof. The proof is similar to the one for Theorem 4.8. Hence, we will derive
bounds for ‖u− uh‖L∞

and ‖uh − uh‖L∞
.

This time using [32, equation (0.8)] and the standard imbedding H1+s ⊂ C0,s

(cf., e.g., [24, Theorem 1.4.5.2]), we have

‖u− uh‖L∞
≤ Chs log

1

h
‖u‖C0,s ≤ Chs log

1

h
‖u‖H1+s .

Then, combining this with the elliptic regularity estimate,

‖u‖H1+s ≤ C�‖f‖H−�

(cf. [4]), we obtain

‖u− uh‖L∞
≤ C�h

s log
1

h
‖f‖H−� , 0 ≤ � < 1/2.(5.17)

We turn now to the estimation of ‖uh − uh‖L∞
. Since A = I, (4.34) gives

‖uh − uh‖L∞
= εh(f,Gh),(5.18)

where Gh ∈ Xh is the finite element approximation of the regularized Green function
G (cf. (4.33)). Then, using Lemma 5.1 and (4.37), we obtain

‖uh − uh‖L∞
≤ Ch1−�

(
log

1

h

)1/2

‖f‖H−� .

From this and (5.17) we get the desired estimation (5.16).

6. Auxiliary results. In this section we shall prove Lemmas 4.1, 4.2, and 5.1
of the previous sections.

Proof of Lemma 4.1. We can easily see that the interpolation operator Ih satisfies
the property

‖χ− Ihχ‖qLq(K) =
∑

z∈Zh(K

∫
Kz

(χ− χ(z))q dx

≤ hq
K |χ|qW 1

q (K), ∀χ ∈ Xh, q > 1,(6.1)

with Zh(K) the set of the vertices of K. Also, since in the construction of the control
volumes we choose zK to be the barycenter of K, we have∫

K

χdx =

∫
K

Ihχdx, ∀K ∈ Th, ∀χ ∈ Xh.(6.2)

In view of (6.1), (4.1) follows easily. Let now f̄K be the mean value of f in K. Thus,

‖f − f̄K‖Lp(K) ≤ ChK |f |W 1
p (K), ∀f ∈ W 1

p (K), p > 1.(6.3)
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Then, by interpolation of this estimate and ‖f − f̄K‖Lp(K) ≤ C‖f‖Lp(K), we get, for

f ∈ W t
p(K), p > 1, and 0 < t ≤ 1

‖f − f̄K‖Lp(K) ≤ Cht
K |f |W t

p(K).(6.4)

Since f̄K is constant over K, due to (6.2), we have

(f, χ− Ihχ)K = (f − f̄K , χ− Ihχ)K , ∀χ ∈ Xh.

Thus, due to this, (6.4), and (6.1), we get for every χ ∈ Xh,

|(f, χ− Ihχ)K | = |(f − f̄K , χ− Ihχ)K | ≤ Ch1+t
K |f |W t

p(K) |χ|W 1
p′ (K),

which concludes the proof of (4.2).
We now turn to the proof of Lemma 4.2. For this we shall need the following

auxiliary result.
Lemma 6.1. Let K be a triangle and e a side of K. Then for ϕ ∈ W 1

p (K), p > 1,
there exists a constant C independent of K such that∣∣∣∣

∫
e

ϕ(χ− Ihχ) ds

∣∣∣∣ ≤ Ch|ϕ|W 1
p (K)|χ|W 1

p′ (K), ∀χ ∈ P1(K).

Proof of Lemma 6.1. It is obvious that, for c constant, Ihc = c and∫
e

Ihχds =

∫
e

χds, ∀χ ∈ Xh, ∀e ∈ Eh.(6.5)

Thus, we have for every χ ∈ P1(K) and ϕ ∈ L2(e),∫
e

ϕ(χ− Ihχ) ds =

∫
e

(ϕ− c1)(χ− c2 − Ih(χ− c2)) ds,

for all constants c1, c2 ∈ R, K ∈ Th, and e ∈ Eh(K). Using now in the relation above
the fact that ‖Ihχ‖L∞(e) ≤ ‖χ‖L∞(e) and a local inverse inequality, we get for all

constants c1, c2 ∈ R, χ ∈ P1(K), and ϕ ∈ W 1
p (K),

∣∣∣∣
∫
e

ϕ(χ− Ihχ) ds

∣∣∣∣ ≤ ‖ϕ− c1‖Lp(e)‖χ− c2 − Ih(χ− c2)‖Lp′ (e)

≤ h1/p′

e ‖ϕ− c1‖Lp(e) ‖χ− c2 − Ih(χ− c2)‖L∞(e)

≤ Ch1/p′

e ‖ϕ− c1‖Lp(e)‖χ− c2‖L∞(e)

≤ C‖ϕ− c1‖Lp(e) ‖χ− c2‖Lp′ (e)

(6.6)

with he = |e|. In view of the Bramble–Hilbert lemma and a standard homogeneity
argument, we can easily show

inf
c∈R

‖ϕ− c‖Lp(e) ≤ Ch1−1/p
e |ϕ|W 1

p (K), ∀ϕ ∈ W 1
p (K), p > 1.

Finally, combining this with (6.6) we obtain the desired estimate.
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We now turn to the proof of Lemma 4.2.
Proof of Lemma 4.2. First we will show (4.3). In view of Green’s formula, we

have

εa(ψ, χ) =
∑
K

(Lψ, χ− Ihχ)K +
∑
K

(A∇ψ · n, χ− Ihχ)∂K = I + II.(6.7)

For the first term we have from (6.1),

|I| ≤ C
∑
K

‖Lψ‖Lp(K) ‖χ− Ihχ‖Lp′ (K) ≤ C
∑
K

hK |ψ|W 1
p (K) |χ|W 1

p′ (K).

The bound for II follows at once from Lemma 6.1 since |A∇ψ ·n|W 1
p (K) ≤ C|ψ|W 1

p (K).

We now turn to (4.4). Let ψ = uh in (6.7) and (∇A)K be the average over K.
Then in view of (6.1)–(6.3) we have for every χ ∈ Xh,

(Luh, χ− Ihχ)K = ([∇A− (∇A)K ]∇uh, χ− Ihχ))K ≤ Ch2
K |uh|W 1

p̄ (K) |χ|W 1
p̄′ (K)

with p̄ given by (2.3). From the estimation above we easily obtain the desired bound
for I. Let now Eh(K) be the set of edges of K ∈ Th and Āe = A(me), where me is
the midpoint of the edge e. We will show that for every χ ∈ Xh,

II =
∑
K

∑
e∈Eh(K)

((A− Āe)∇(uh − u) · n, χ− Ihχ)e.(6.8)

Provided that this holds, we may apply Lemma 6.1 and the estimate

|(A− Āe)∇(uh − u)|W 1
p̄ (K) ≤ C

(
‖∇(u− uh)‖L2(K) + h‖u‖W 2

p̄ (K)

)
(6.9)

to obtain

|II| ≤ Ch
(
‖∇(u− uh)‖L2

+ h‖u‖W 2
p̄

)
|χ|W 1

p̄′
, ∀χ ∈ Xh,

which gives the desired estimate for II. Therefore, it remains to prove (6.8). We will
show, for every ψ ∈ Xh,∑

K

(A∇u · n, ψ − Ihψ)∂K =
∑
K

∑
e∈Eh(K)

(Āe∇u · n, ψ − Ihψ)e = 0.(6.10)

In the first sum we have by Green’s formula for every ψ ∈ Xh,∑
K

(A∇u · n, ψ)∂K =
∑
K

(A∇u,∇ψ)K − (Lu, ψ)K = (A∇u,∇ψ) − (Lu, ψ) = 0.

In addition,
∑

K (A∇u · n, Ihψ)∂K = 0 because Ihψ is piecewise constant on each
interior edge e and A∇u · n is continuous across e (in the trace sense), and Ihψ = 0
on ∂Ω. Since the first sum in (6.10) vanishes for each smooth A and is continuous in
A on L1(∪∂K), the second sum is the limit of sums with a smooth A and, therefore,
also vanishes. Finally, since Āe∇uh · n is constant on each e, in view of (6.5) we have∑

K

∑
e∈Eh(K)

(Āe∇uh · n, χ− Ihχ)e = 0, ∀χ ∈ Xh.
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It remains now to prove Lemma 5.1.
Proof of Lemma 5.1. In view of the definition of εh, it suffices to show

|χ− Ihχ|H� ≤ Ch1−�‖∇χ‖L2
, 0 < � < 1/2.

The fractional order seminorm | · |H� is given by

|w|2H� =

∫
Ω

∫
Ω

|w(x) − w(y)|2

|x− y|2(1+�)
dy dx;(6.11)

therefore,

|χ− Ihχ|2H� =
∑

z,w∈Zh

∫
bz

∫
bw

|(χ− Ihχ)(x) − (χ− Ihχ)(y)|2

|x− y|2(1+�)
dy dx

≤ 4
∑

z,w∈Zh
z �=w

∫
bz

∫
bw

|∇χ(z)|2 |x− z|2

|x− y|2(1+�)
dy dx

+
∑
z∈Zh

∫
bz

∫
bz

|∇χ(z)|2|x− y|−2+2(1−�)
dy dx = 4I + II.

For the estimation of II we rewrite the integral with respect to the y variable in polar
coordinates (r, θ) having as center x; thus |x− y| = r and∫

bz

|x− y|−2+2(1−�)
dy ≤ C

∫ h

0

r(1−�)p−2+1 dr = Ch2(1−�).

Therefore, ∫
bz

∫
bz

|∇χ|2|x− y|−2+2(1−�)
dy dx ≤ Ch2(1−�)‖∇χ‖2

L2(bz),(6.12)

which gives the desired estimate for II. Let us consider now z �= w and fix temporarily
an x ∈ Kz. Using again polar coordinates with center x we estimate the integral with
respect to y,∫

bw

|x− y|−2(1+�)
dy ≤ C

∫ ∞

r0(x)

r1−2(1+�) dr ≤ Cr−2�
0 (x) = III,

where r0(x) = dist(x, bw). Let us assume that vertices z and w are in a different
triangle and |r0(x)| > kh; therefore, |III| ≤ C|r0(x)|−2� ≤ Ch−2�. Thus,∫

bz

∫
bw

|∇χ(z)|2|x− z|2|x− y|−2(1+�)
dy dx ≤ Ch2(1−�)‖∇χ‖2

L2(bz).(6.13)

Finally, let us consider the case that z �= w and are vertices of the same triangle K.
Then r0(x) could be arbitrarily small and in order for∫

bz

r0(x)−2�(x) dx < +∞,

we need to assume that � < 1/2. In a such case, we have∫
bz

∫
bw

|∇χ(z)|2|x− z|2|x− y|−2(1+�)
dy dx ≤ Ch2

∫
bz

|∇χ(z)|2r2�
0 (x) dx.(6.14)
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Next we will estimate the right-hand side of the relation above. For this, it suffices to
bound

∫
Kz

|∇χ(z)|2r2�
0 . Let us denote with x1 and x2 the two coefficients of a point

x in Kz and introduce a rotation and translation of the (x1, x2)-coordinate system to
(x̃1, x̃2), where x̃1-axis is the common edge Kz ∩Kw. We can easily see that for any
point in x ∈ Kz,

r0(x) = dist(x, bw) ≥ dist((x̃1, 0), bw) = x̃1.

Therefore, r−2�
0 (x) ≤ x̃−2�

1 , ∀x ∈ Kz. Then

h2

∫
Kz

|∇χ(z)|2r−2�
0 (x) dx ≤ Ch2|∇χ(z)|2

∫ h

0

∫ h

0

x̃−2�
1 dx̃1 dx̃2

≤ Ch2(1−�)‖∇χ‖2
L2(Kz),

assuming � < 1/2. Hence, the relation above and (6.14) give∫
bz

∫
bw

|∇χ(z)|2|x− z|2|x− y|−2(1+�)
dy dx ≤ Ch2(1−�)‖∇χ‖2

L2(bz).

Combining this with (6.12) and (6.13), we obtain the desired estimate.

7. Numerical results. In this section we will illustrate on several numerical
examples the theoretical results of section 4. Our examples are similar to the ones
considered in [8, 27].

First, we will show that the theoretical L2-norm convergence rate of Theorem 4.6
is satisfied for the model Dirichlet boundary value problem for the Poisson equations
in a Γ-shaped domain (cf. Figure 7.1), with vertices (0, 0), (1, 0), (1, 1), (−1, 1),
(−1,−1), and (0,−1). As in [8], we consider the following two singular functions for
this Γ-shaped domain:

S1(r, θ) = φ(r)r2/3 sin

(
2

3
θ

)
, S2(r, θ) = φ(r)rβ sin

(
2

3
θ

)
,

where β ∈ (0, 1) and φ is a cutoff function defined by

φ(r) =

⎧⎨
⎩

1 0 ≤ r ≤ 1/4,
−192r5 + 480r4 − 440r3 + 180r2 − 135

4 r + 27
8 , 1/4 ≤ r ≤ 3/4,

0 3/4 ≤ r.

(-1,1) (1,1)

(1,0)

(0,-1)(-1,-1)

y

x
1/4

3/4

(0,0)

Fig. 7.1. A Γ-shaped domain.
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Table 7.1

Approximate theoretical convergence rate for exact solution u = S1 + S2 + (x− x3)(y2 − y4).

β

pω = 3/2, p̃ω = 6/5 1/3 1/2 2/3 3/4

f (−∆u) almost in W t
α W

10/66
11/10

W
1/6
6/5

W
4/3
6/5

W
5/12
6/5

rate in H1-norm = s 1/3 1/2 2/3 2/3

s + 2/3, (α < p̃ω) s + 2
3

= 1

rate in L2–norm ≈ min(s + 2/3, 1 + t), (α ≥ p̃ω) s + 2
3

= 7
6

s + 2
3

= 4
3

s + 2
3

= 4
3

rate in L∞-norm ≈ s 1/3 1/2 2/3 2/3

For f = −∆(S1 + S2) + 6x(y2 − y4) + (x − x3)(12y2 − 2) the exact solution is u =
S1 + S2 + (x− x3)(y2 − y4). We can easily see that

∆(S1 + S2) = φ(r)(β2 − (2/3)2)rβ−2 sin

(
2

3
θ

)
+ (2β + 1)φ′(r)rβ−1 sin

(
2

3
θ

)

+φ′′(r)rβ sin

(
2

3
θ

)
+

7

3
φ′(r)r−1/3 sin

(
2

3
θ

)
+ φ′′(r)r2/3 sin

(
2

3
θ

)
.

Since φ is a smooth cutoff function and 6x(y2−y4)+(x−x3)(12y2−2) is a polynomial,
the nonsmoothness of f results from −∆(S1 + S2) and for β ∈ (0, 1) this is dictated
from the term rβ−2, except in the case β = 2/3, where the leading term is r−1/3.

According to [24, Theorem 1.4.5.3], if a function g can be written as g = rγϕ(ϑ),
in polar coordinates, where ϕ is smooth function, then g ∈ W t

α, with t > 0 and α > 1,

for γ > t − 2/α. Thus, applying this to f , we have that f is almost in W
β−2+2/α
α ,

with α ∈ (1, 2/(2−β)), for β �= 2/3, and f ∈ W
−1/3+2/α
α , with α ∈ (1, 6), for β = 2/3.

In addition, in view of the imbedding Lp ⊂ W t
a, with p = 2α/(2 − tα), for β �= 2/3,

then f ∈ Lp, with p = 2/(2 − β), and for β = 2/3, f ∈ L6.
Since we have considered a Γ-shaped domain, the largest interior angle is 3π/2;

therefore, pω = 2/(2 − (π/ 3π
2 )) = 3/2. Thus, in view of (2.2), the solution u of the

Poisson problem is almost in W 2
p̄ , with p̄ = min(2/(2− β), 3/2), or else u is almost in

H1+s with s = min(β, 2/3).
For example, we consider β = 1/3, 1/2, 2/3, and 3/4. Then f is almost in the

Sobolev spaces W
10/66
11/10 , W

1/6
6/5 , W

4/3
6/5 , and W

5/12
6/5 for β = 1/3, 1/2, 2/3, and 3/4,

respectively. In Table 7.1 we present the theoretical and in Tables 7.2 and 7.3 the
computed rates of convergence of the finite volume element method which illustrate
the results of Theorem 4.6. The computation is done in the following way: For a given
triangulation with number of nodes N and stepsize 2h, we compute the finite volume
solution and the norms of the errors ‖u− u2h‖T , where T = H1, L2, L∞. Then we
split each triangle into four similar triangles and compute the solution uh and the
corresponding norms of the errors, ‖u− uh‖T . Then the computed rates are given

by log2
‖u−u2h‖T

‖u−uh‖T
. This procedure is repeated up to seven levels of refinement. The

integrals in the finite volume formulation were approximated with a 13-point Gaussian
quadrature. For the solution of the corresponding linear system we used a multigrid
preconditioner.

One may argue that the suboptimal order of the L2-norm error estimates in
Theorems 4.3 and 5.4 of the finite volume element method might be an artifact of
the proof and expect the same rate as in the finite element method. However, this
is not correct. In what follows, we consider a counterexample which is based on a
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Table 7.2

Experimental convergence rate for β = 1
3

and β = 1
2
.

β = 1/3 β = 1/2

# of nodes H1 L2 L∞ H1 L2 L∞

225 0.75 1.26 0.28 0.86 1.54 0.48
833 0.68 1.14 0.38 0.83 1.39 0.54
3201 0.59 1.09 0.38 0.81 1.32 0.54
12545 0.49 1.06 0.37 0.75 1.26 0.54
49665 0.42 1.04 0.36 0.69 1.23 0.54
197633 0.38 1.03 0.36 0.63 1.22 0.53
788481 0.37 1.02 0.35 0.60 1.21 0.53

Theoretical ≈ 0.33 1 0.33 0.5 1.17 0.5

Table 7.3

Experimental convergence rate for β = 2
3

and β = 3
4
.

β = 2/3 β = 3/4
# of nodes H1 L2 L∞ H1 L2 L∞

225 0.89 1.76 0.92 0.90 1.84 1.15
833 0.89 1.60 0.66 0.91 1.66 0.69
3201 0.91 1.55 0.67 0.93 1.63 0.70
12545 0.90 1.46 0.67 0.93 1.54 0.69
49665 0.87 1.41 0.67 0.91 1.47 0.69
197633 0.83 1.37 0.67 0.88 1.42 0.69
788481 0.79 1.36 0.67 0.85 1.40 0.69

Theoretical ≈ 0.66 1.33 0.66 0.66 1.33 0.66

similar argument given in [27]. The following arguments can easily be modified and
apply to a model problem in a convex domain. This can then be used to illustrate
the theoretical convergence rates derived in [14, 23].

First we will show that the L2-norm estimate in Theorem 4.3 is sharp. We consider
the model problem

−∆u = f in Ω, and u = 0 on ∂Ω,(7.1)

where f ∈ L2 and Ω is the Γ-shaped domain with vertices (0, 0), (2, 0), (2, 2), (−2, 2),
(−2,−2), and (0,−2). Since π/ω = 2/3, according to Theorem 4.3 we know that

‖u− uh‖H1 ≤ Chs‖f‖L2

with s = 2/3 − ε, ε > 0 arbitrarily small. Let us assume then that (4.6) is not true
and the finite volume and finite element methods converge in the L2-norm with the
same rate, i.e.,

‖u− uh‖L2
≤ Ch2s‖f‖L2

.

Obviously,

‖u− uh‖L2
= sup

φ∈L2\{0}

(u− uh, φ)

‖φ‖L2

.

Hence, our assumption leads to

|(u− uh, φ)| ≤ Ch2s‖φ‖L2
‖f‖L2

.(7.2)
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Fig. 7.2. An example of a triangulation. The successive uniform refinement occurs by splitting
the triangles into four.

Next, let us denote ψ ∈ H1+s ∩H1
0 the solution of the auxiliary problem

−∆ψ = φ in Ω, and ψ = 0 on ∂Ω.(7.3)

Thus,

(u− uh, φ) = a(u− uh, ψ) = a(u− uh, ψ − Πhψ) + a(u− uh,Πhψ),(7.4)

where Πhψ is the interpolant of ψ in Xh. Obviously, then

a(u− uh,Πhψ) = (f,Πhψ − IhΠhψ).(7.5)

We can easily see that

a(u− uh, ψ − Πhψ) ≤ Ch2s‖φ‖L2
‖f‖L2

.

Thus combining (7.2)–(7.5), we get

(f,Πhψ − IhΠhψ) ≤ Ch2s‖φ‖L2
‖f‖L2

.

Since f is an arbitrary function of L2, this leads to

‖Πhψ − IhΠhψ‖L2
≤ Ch2s‖φ‖L2

.

Hence,

‖ψ − IhΠhψ‖L2
≤ Ch2s‖φ‖L2

.

Then, since φ is also an arbitrary function, this should be true for any function
ψ ∈ H1+s ∩H1

0 . Therefore, let us consider a function ψ ∈ H1+s ∩H1
0 such that

ψ(x1, x2) = x1(1 − x1), (x1, x2) ∈ Ω1 = [1/2, 3/2] × [1/2, 3/2].(7.6)

For this ψ we should get

‖ψ − IhΠhψ‖L2(Ω1)
≤ Ch2s.(7.7)
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+

j+1
n2( )1
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1
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j )( 1
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n2

1
+ n2

j )(

Fig. 7.3. A sample square Kij . The two regions b1ij and b2ij are separated with the dashed line.

We discretize Ω1 into n2 equal size squares with length h = 1/n, and each square is
divided further into two right triangles in the same direction. Next, we construct the
relative control volumes by connecting the barycenter of its triangle with the middle
of the edges. Let us denote zij the vertices (1/2 + i/n, 1/2 + j/n), i, j = 0, . . . , n− 1.
Also, let Kij be the square [1/2 + i/n, 1/2 + (i+ 1)/n]× [1/2 + j/n, 1/2 + (j + 1)/n],
i, j = 1, . . . , n, and b1ij = Kij ∩ (bij ∪ bi(j+1)) and b2ij = Kij ∩ (b(i+1)j ∪ b(i+1)(j+1))
(cf. Figure 7.3). Then, since ψ depends only on x, IhψI has the same value on the
control volumes bij , j = 0, . . . , n − 1, for every i = 0, . . . , n − 1. For this reason, on
the square Kij , Ihψ = ψ(zij) on b1ij and Ihψ = ψ(z(i+1)j) on b2ij . Then we have

‖ψ − IhΠhψ‖2
L2(Ω1)

=

∫
Ω1

ψ2 dx1 dx2 +

∫
Ω1

(IhΠhψ)2 dx1 dx2

− 2

∫
Ω1

ψIhΠhψ dx1 dx2

=

∫ 3/2

1/2

x2
1(1 − x1)

2 dx1 +

n−1∑
i,j=0

(ψ2(zij)|b1ij | + ψ2(z(i+1)j)|b2ij |)

− 2

n−1∑
i,j=0

(
ψ(zij)

∫
b1ij

x1(1 − x1) dx1 dx2

+ψ(z(i+1)j)

∫
b2ij

x1(1 − x1) dx1 dx2

)

=
10

81n2
+

1

405n4
.

Finally, we have

‖ψ − IhΠhψ‖L2(Ω1)
=

√
10

9

1

n
+ o

(
1

n

)
= O(h).

Combining this with (7.7) we get a contradiction, since 2s ≈ 4/3.
Similar arguments can be used in order to show now the sharpness of the L2-norm

error estimate in Theorem 5.2. Thus, let us consider this time the model problem
(7.1), with f ∈ H−1/3.
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According to Theorem 5.2 we have that

‖u− uh‖H1 ≤ Chs‖f‖H−1/3 ,

with s = 2/3− ε, ε > 0, arbitrarily small. Let us assume that the L2-norm error esti-
mate in Theorem 5.4 does not hold and the finite volume and finite element methods
converge in L2-norm with the same rate, i.e.,

‖u− uh‖L2
≤ Ch2s‖f‖H−1/3 .

Repeating similar arguments as in the previous counterexample, the function ψ ∈
H1+s ∩H1

0 that satisfies (7.6) and (7.3) should also satisfy

‖Πhψ − IhΠhψ‖H1/3 ≤ Ch2s‖φ‖L2
.(7.8)

We discretize again Ω1 in the same way as before, into n2 equal size squares with
length h = 1/n, and each square is divided further into two right triangles in the
same direction. We construct the control volumes bij in the same manner as before
and denote zij the vertices (1/2 + i/n, 1/2 + j/n), i, j = 0, . . . , n− 1. Then, using the
definition of | · |H� (6.11), we can estimate ‖Πhψ − IhΠhψ‖H1/3(Ω1)

from below by

‖Πhψ − IhΠhψ‖2
H1/3(Ω1)

≥
n−1∑
i,j=1

∫
bzij

∫
bzij

|∇Πhψ(zij) · (x− y)|2

|x− y|2(1+1/3)
dy dx.(7.9)

Also, let x = (x1, x2), y = (y1, y2), and K̃ij = [1/2 + i/n, 1/2 + i/n + 1/3n] × [1/2 +
j/n, 1/2+j/n+1/3n], and since ψ is invariant in the x2-direction and |x−y| ≤

√
2/3n,

(7.9) gives

‖Πhψ − IhΠhψ‖2
H1/3(Ω1)

≥
n−1∑
i,j=1

∫
K̃ij

∫
K̃ij

|∇Πhψ(zij) · (x− y)|2

|x− y|2(1+1/3)
dy dx

≥
(

3n√
2

)2(1+1/3)

(n− 1)

n−1∑
i=1

∫
K̃i1

∫
K̃i1

∣∣∣∣∂Πhψ(zi1)

∂x1

∣∣∣∣
2

(x1 − y1)
2
dy dx.

(7.10)

Next, we can easily see that |∂Πhψ(zi1)
∂x1

| = (2i + 1)/n and∫
K̃i1

∫
K̃i1

(x1 − y1)
2
dy dx =

1

2 · 37n6
.

Thus,

n−1∑
i=1

∫
K̃i1

∫
K̃i1

∣∣∣∣∂Πhψ(zi1)

∂x1

∣∣∣∣
2

(x1 − y1)
2
dy dx ≥ 1

2 · 37n8

n−1∑
i=1

i2 =
n(n− 1)(2n− 1)

4 · 38n8
.

Finally, employing this in (7.10) we get

‖Πhψ − IhΠhψ‖H−1/3(Ω1)
≥ C

n2/3
+ o

(
1

n2/3

)
= O(h2/3).

Combining this with (7.8) we get a contradiction, since 2s ≈ 4/3.
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