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Abstract. We analyze the spatially semidiscrete piecewise linear finite volume element
method for parabolic equations in a convex polygonal domain in the plane. Our approach
is based on the properties of the standard finite element Ritz projection and also of the
elliptic projection defined by the bilinear form associated with the variational formulation
of the finite volume element method. Because the domain is polygonal special attention
has to be paid to the limited regularity of the exact solution. We give sufficient conditions
in terms of data which yield optimal order error estimates in L2 and H1. The convergence
rate in the L∞ norm is suboptimal, the same as in the corresponding finite element
method, and almost optimal away from the corners. We also briefly consider the lumped
mass modification and the backward Euler fully discrete method.

1. Introduction

We consider the model initial–boundary value problem

ut + Lu = f, in Ω, t ≥ 0,

u = 0, on ∂Ω, t ≥ 0,(1.1)

u(0) = u0, in Ω,

where Ω is a bounded, convex, polygonal domain in �
2 and Lu ≡ −div(A∇u), with

A = (aij)
2
i,j=1 a real–valued positive definite smooth matrix function.

We shall study spatially semidiscrete approximations of (1.1) by the finite volume
element method, which for brevity we will refer to as the finite volume method below.
The approximate solution will be sought in the piecewise linear finite element space

Xh ≡ Xh(Ω) = {χ ∈ C(Ω) : χ|K linear, ∀K ∈ Th; χ|∂Ω = 0},
where {Th}0<h<1 is a family of regular triangulations of Ω, with h denoting the maximum
diameter of the triangles of Th.

We begin by recalling the semidiscrete Galerkin finite element method, which is to find
uh(t) ∈ Xh such that, with (·, ·) the inner product in L2(Ω),

(uh,t, χ) + a(uh, χ) = (f, χ), ∀χ ∈ Xh, t ≥ 0,

uh(0) = u0
h,

(1.2)
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Figure 1. Left: A union of triangles that have a common vertex z; the
dotted line shows the boundary of the corresponding control volume Vz.
Right: A triangle K partitioned into the three subregions Kz.

where u0
h ∈ Xh is a given approximation of u0 and the bilinear form a(·, ·) is defined by

a(v, w) =

∫
Ω

A∇v · ∇w dx, for v, w ∈ H1
0 (Ω).

The finite volume method relies on a local conservation property associated with the
differential equation. Namely, integrating (1.1) over any region V ⊂ Ω and using Green’s
formula, we obtain ∫

V

ut dx−
∫

∂V

(A∇u) · n ds =

∫
V

f dx, t ≥ 0,(1.3)

where n denotes the unit exterior norm to ∂V .
The semidiscrete finite volume problem will satisfy a relation similar to (1.3) for V in

a finite collection of subregions of Ω called control volumes, the number of which will
be equal to the dimension of the finite element space Xh. These control volumes are
constructed in the following way. Let zK be the barycenter of K ∈ Th. We connect zK
with line segments to the midpoints of the edges of K, thus partitioning K into three
quadrilaterals Kz, z ∈ Zh(K), where Zh(K) are the vertices of K. Then with each vertex
z ∈ Zh = ∪K∈Th

Zh(K) we associate a control volume Vz, which consists of the union
of the subregions Kz, sharing the vertex z (see Figure 1). We denote the set of interior
vertices of Zh by Z0

h.
The semidiscrete finite volume method is then to find uh(t) ∈ Xh for t ≥ 0 such that∫

Vz

uh,t dx−
∫

∂Vz

(A∇uh) · n ds =

∫
Vz

f dx, ∀z ∈ Z0
h, t ≥ 0,

uh(0) = u0
h,

(1.4)

with u0
h ∈ Xh a given approximation of u0.

This version of the finite volume method is also referred to as the vertex centered finite
volume method. Similar discretization techniques have been analyzed for a various linear
and nonlinear evolution problems, cf., e.g., [2, 11, 18].

The finite volume problem (1.4) can be rewritten in a variational form similar to the
finite element problem (1.2). For this purpose we introduce the finite dimensional space

Yh = {η ∈ L2(Ω) : η|Vz = constant, ∀z ∈ Z0
h; η|Vz = 0, ∀z ∈ ∂Ω}.
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For an arbitrary η ∈ Yh, we multiply the integral relation in (1.4) by η(z) and sum over
all z ∈ Z0

h to obtain the Petrov–Galerkin formulation, to find uh(t) ∈ Xh for t ≥ 0 such
that

(uh,t, η) + ah(uh, η) = (f, η), ∀η ∈ Yh, t ≥ 0,

uh(0) = u0
h,

(1.5)

where the bilinear form ah(·, ·) : Xh × Yh → � is defined by

(1.6) ah(v, η) = −
∑
z∈Z0

h

η(z)

∫
∂Vz

(A∇v) · n ds, v ∈ Xh, η ∈ Yh.

Obviously, ah(v, η) may be defined by (1.6) also for v ∈ H2(Ω), and using Green’s formula
we easily see that

(1.7) ah(v, η) = (Lv, η), for v ∈ H2(Ω), η ∈ Yh.

In the same way as for the finite element method, the finite volume method (1.5) may be
written as a system of ordinary differential equations. In fact, let {Φz}z∈Z0

h
be the standard

“pyramid” basis of Xh, with Φz(w) = 1 if w = z and Φz(w) = 0 if w 	= z, w ∈ Z0
h, and

let {Ψz}z∈Z0
h

be the associated basis of Yh consisting of the characteristic functions of the

control volumes Vz. Writing uh(t) =
∑

z∈Z0
h
αz(t)Φz , (1.5) then takes the form

(1.8) Mα′(t) + Sα(t) = f̃(t), ∀t ≥ 0, with α(0) = α̃,

where M = (mzw) and S = (szw) are the associated mass and stiffness matrices, respec-

tively, with mzw = (Φz ,Ψw) and szw = ah(Φz,Ψw), and where α(t), α̃, and f̃(t) have
elements αz(t), (u0,Ψz), and (f(t),Ψz). It is easy to see that M is symmetric and that
both M and S are positive definite, see Section 3 below.

We shall denote by Lp(V ) the p–integrable real–valued functions over V ⊂ �
2 , (·, ·)V

the inner product in L2(V ), and ‖ · ‖W s
p (V ) the norm in the Sobolev space W s

p (V ), s ≥ 0. If

V = Ω we suppress the index V , and if p = 2 we write Hs = W s
2 and ‖·‖ = ‖ · ‖L2

. Finally,
we denote by Lq(0, T ;W s

p ), 1 ≤ p, q ≤ ∞, s ≥ 0, the space of functions v(t) : [0, T ] 
→ W s
p

such that ‖u(t)‖W s
p
∈ Lq(0, T ) (see, e.g. [12, p. 285]).

The above approach was perhaps first formulated in the Petrov-Galerkin framework,
employing two different meshes to define the solution space and the test space, for elliptic
equations of second order, by Bank and Rose [3], Cai [6], and Süli [22]. This approach
allows us to analyze the error by using some of the tools developed in the finite element
method theory. In the existing literature the error estimates for the finite volume method
are usually derived for solutions that are sufficiently smooth, cf., e.g., [2, 9, 11, 14, 18].
However, in many applications the solutions are not smooth due to, e.g., nonsmooth
diffusion coefficient (this is often called an interface problem), nonsmooth right-hand
side, incompatible initial data, and domains with nonsmooth boundaries, e.g., polygonal
domains.

Recently, Ewing et al. [13], Droniou and Galouët [10], and two of the present authors
[8] considered finite volume schemes for elliptic problems with nonsmooth right-hand side,
namely f ∈ H−�(Ω) with � > 0. In this paper we present an error analysis of the finite
volume method for parabolic problems in convex polygonal domains.
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We begin with some comments about error estimates for the finite element method
(1.2); details will be given in Section 2 below. It is well known, cf., e.g., [23, Chapter 1],
that

(1.9) ‖uh(t) − u(t)‖ ≤ ‖u0
h − u0‖ + Ch2

(
‖u0‖H2 +

∫ t

0

‖ut‖H2 dτ
)
, t ≥ 0,

where we assume that u is smooth enough for the right-hand side to be finite. This error
bound is shown in [23] for domains with smooth boundary, but the proof is valid also for
a polygonal domain. If u0

h is chosen so that ‖u0
h −u0‖ ≤ Ch2‖u0‖H2 , the first term on the

right may be bounded by the second. In the sequel we shall often make such particular
choices, to avoid having to account for this term.

In the proof of (1.9) one splits the error as uh − u = (uh −Rhu) + (Rhu− u) where Rh

denotes the standard Ritz projection Rh : H1
0 → Xh defined by

(1.10) a(Rhu, χ) = a(u, χ), ∀χ ∈ Xh.

It is well known that Rh has the approximation property

‖Rhv − v‖Hj ≤ Ch�−j‖v‖H� , ∀v ∈ H� ∩H1
0 , j = 0, 1, � = 1, 2.(1.11)

Before we continue with the known results for the finite volume method we remark that
error bounds in this area are normally given in terms of norms of the exact solution of the
problem, such as is the case in (1.9). In the case of a domain with smooth boundary it is
well known that the regularity required of the exact solution can be attained by assuming
enough regularity of the data. Thus there is no great need to express the error bounds in
terms of data, which would be an unnecessary complication in the analysis.

In the case of a polygonal domain the situation is different. The corners of the domain
then give rise to singularities in the solution that are present regardless of the smoothness
of the data. It then becomes an essential part of the analysis to show that the norms
appearing in a proposed optimal order error estimate can be guaranteed to be finite
under the appropriate smoothness and possible additional assumptions on data. Such
an additional assumption could be a compatibility relation between f and u0 on ∂Ω for
t = 0. We have therefore chosen here to express our error estimates in terms of norms of
data, sometimes supplemented with compatibility conditions.

As an example, in order for (1.9) to show a O(h2) error estimate we need to show that
ut ∈ L1(0, T ;H2) for some T > 0. We recall that since the domain is convex, we have the
elliptic regularity estimate (see, e.g., [15])

(1.12) ‖u‖H2 ≤ C‖Lu‖.

Using this together with the differential equation (1.1) we shall show

(1.13)

∫ t

0

‖ut‖H2 dτ ≤ CT ε
−1(‖g0‖Hε +

∫ t

0

‖ft‖Hε dτ), t ≤ T,

for ε ∈ (0, 1/2), where g0 = ut(0) = f(0) − Lu0. Thus the L2 error in (1.9) is of order
O(h2) for t ≤ T if u0 ∈ H2 and the right–hand side of (1.13) is finite. We note that no
artificial boundary conditions need to be satisfied by f , when ε < 1/2.
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In Section 3 we turn to the finite volume method (1.5). It was shown in Ewing, Lazarov,
and Lin [14] and Li, Chen, and Wu [16] that, for p > 1 and u0

h appropriately chosen,

‖uh(t) − u(t)‖ ≤ Ch2
(
‖u0‖W 3

p
+

∫ t

0

‖ut‖W 3
p
dτ

)
, t ≥ 0.(1.14)

This time the proof uses a splitting of the error based on the elliptic projection operator
R̃h : H2 ∩H1

0 → Xh defined by

(1.15) ah(R̃hv, η) = ah(v, η), ∀η ∈ Yh.

In Chou and Li [9] and Li, Chen, and Wu [16] it was shown that

(1.16) ‖R̃hv − v‖ ≤ Ch2‖v‖W 3
p
, for p > 1.

The right–hand side here is bounded for p close to 1, which is expressed by the elliptic
regularity estimate, cf. [15, Chapter 5],

(1.17) ‖v‖W 3
p
≤ Cp‖Lv‖W 1

p
, 1 < p < p0 ≤ 2, v ∈ W 3

p ∩H1
0 ,

where p0 is defined in the following way: Let S be a vertex of Ω, and denote the corre-
sponding interior angle of Ω by ω(S). Let A and T be matrices such that A = (aij(S))2

i,j=1

and T AT T = I, and let ωA(S) be the angle at the vertex T S of the transformed domain
T Ω = {T x : x ∈ Ω}. Define

(1.18) ω = max
S

ωA(S), β = π/ω, and p0 = 2/(3 − β).

We remark that ω < π, and that ωA(S) = ω(S) if L = −∆. Note that for a general
convex polygonal domain (1.17) does not hold for p = 2. To obtain a O(h2) error bound
for the finite volume method (1.5), we shall demonstrate this time that, with g1 = utt(0) =
ft(0) − Lg0, we have for p < p0,

(1.19)

∫ t

0

‖ut‖W 3
p
dτ ≤ C

(
‖g1‖Lp

+

∫ t

0

‖ftt‖Lp
dτ

)
, t ≤ T.

Section 4 is devoted to an alternative way to obtain a O(h2) error bound for the finite
volume method (1.5), under slightly different regularity assumptions, which is to base the

analysis on the standard Ritz projection Rh defined in (1.10) rather than R̃h from (1.15).
In this case we are able to show

‖uh(t) − u(t)‖ ≤ Ch2
(
‖u0‖H2 +

(∫ t

0

(‖ut‖2
H2 + ‖f‖2

H1)dτ
)1/2

)
, t ≤ T.

After establishing the a priori estimate∫ t

0

‖ut‖2
H2 dτ ≤ C(‖g0‖2

H1 +

∫ t

0

‖ft‖2 dτ), t ≤ T,

under the compatibility condition g0 = 0 on ∂Ω, we obtain the desired O(h2) error bound,
under slightly different conditions than those in (1.19).

In Section 5 we apply the technique of Section 4 to derive error bounds in H1 and L∞
norms. In the latter case we show a bound of the form

(1.20) ‖uh(t) − u(t)‖L∞ ≤ CT,γ(u
0, f) hγ, t ≤ T, for any γ < β.
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We remark that a O(h2 log 1
h
) uniform bound for the error was shown in [9] under the

assumption that u ∈ L∞(0, T ;H3) for T > 0, in the case of a smooth boundary. However,
as indicated above, this is not a realistic assumption for a polygonal domain. However, the
significant loss of convergence rate expressed in (1.20) only takes place near the corners of
Ω, and away from these we are able to show a O(h2 log 1

h
) maximum–norm error bound.

In Section 6 we consider a lumped mass finite volume element method. In this case
the method looses the property of being locally conservative. For a constant coefficient
matrix A, it reduces to a linear system with the same left-hand side as the corresponding
lumped mass finite element method. We analyze the lumped mass method using the
elliptic projection Rh and obtain the same error bounds as for (1.5).

Finally, in Section 7, we show that our approach also applies to fully discrete schemes.
As an example we analyze the backward Euler finite volume element method.

2. The Finite Element Method

In this section, as a guide to the proofs of our subsequent error bounds for the finite
volume method, we shall show the following result for the standard finite element method.

Theorem 2.1. Let uh and u be the solutions of (1.2) and (1.1), respectively, and assume
that u0 = 0 on ∂Ω and ε ∈ (0, 1/2). Then, if u0

h = Rhu
0,

‖uh(t) − u(t)‖ ≤ CT,ε(u
0, f)h2, t ≤ T,(2.1)

where

CT,ε(u
0, f) = CT

(
‖u0‖H2 + ε−1

(
‖g0‖Hε +

∫ t

0

‖ft‖Hε dτ
))
.

Proof. In a standard way we split the error uh − u using the Ritz projection Rhu, defined
in (1.10), as

uh − u = (uh − Rhu) + (Rhu− u) = ϑ+ 
.

In view of (1.11) we have

(2.2) ‖
(t)‖ ≤ Ch2‖u(t)‖H2 ≤ Ch2(‖u0‖H2 +

∫ t

0

‖ut‖H2 dτ), t ≥ 0.

In order to bound ϑ, we note that by our definitions

(ϑt, χ) + a(ϑ, χ) = −(
t, χ), ∀χ ∈ Xh.

Choosing χ = ϑ and using the positivity of a(ϑ, ϑ), (1.11), and the fact that ϑ(0) = 0, we
easily find

‖ϑ(t)‖ ≤ C

∫ t

0

‖
t‖ dτ ≤ Ch2

∫ t

0

‖ut‖H2 dτ, t ≥ 0.

Thus, together with (2.2) we have

‖uh(t) − u(t)‖ ≤ Ch2(‖u0‖H2 +

∫ t

0

‖ut‖H2 dτ), t ≥ 0.
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The theorem therefore follows from the inequality (1.13) which we now proceed to show.
For this we use the elliptic regularity estimate (1.12) and differentiate (1.1) to obtain

(2.3) ‖ut‖H2 ≤ C‖Lut‖ ≤ C(‖utt‖ + ‖ft‖).
After integration it now remains to show

(2.4)

∫ t

0

‖utt‖ dτ ≤ CT ε
−1(‖g0‖Hε +

∫ t

0

‖ft‖Hε dτ), t ≤ T.

Recall that, by Duhamel’s principle, we have

(2.5) u(t) = E(t)u0 +

∫ t

0

E(t− s)f(s) ds = E(t)u0 +

∫ t

0

E(s)f(t− s) ds,

where E(t) denotes the solution operator of the homogeneous case (f = 0) of (1.1). It is
well-known that E(t) is the analytic semigroup e−Lt in L2 generated by −L, and that

(2.6) ‖E(t)v‖ ≤ C‖v‖ and ‖E ′(t)v‖ ≤ Ct−1‖v‖,
where the inequalities easily follow, using Parseval’s relation, by writing

E(t)v =
∞∑

j=1

e−λjt(v, φj)φj,

with {λj} and {φj} the eigenvalues and eigenfunctions of L.
Differentiating (2.5) twice in time we find

(2.7) ut(t) = E(t)g0 +

∫ t

0

E(t− s)ft(s) ds,

and

(2.8) utt(t) = E ′(t)g0 + ft(t) +

∫ t

0

E ′(t− s)ft(s) ds.

Here we have that for ε ∈ (0, 1/2)

(2.9) ‖E ′(t)v‖ ≤ Ct−1+ε/2‖v‖Hε , t > 0.

For this we first note that

(2.10) ‖E ′(t)v‖ ≤ C‖E(t)Lv‖ ≤ C‖v‖H2 , ∀v ∈ H2 ∩H1
0 .

By interpolation between this estimate and the second estimate in (2.6), (2.9) follows upon
noting that [L2, H

2 ∩H1
0 ]ε/2,2 = Hε, cf., e.g., [15, Corollary 1.4.4.5]. Here [X, Y ]θ,q, 0 ≤

θ ≤ 1, 1 ≤ q ≤ ∞, denote the Banach spaces intermediate between X and Y defined by
the K–functional, which are used in interpolation theory, cf., e.g., [4, Chapter 5]. Finally,
applying (2.9) in (2.8) we find∫ t

0

‖utt‖ dτ ≤ C
(∫ t

0

τ−1+ε/2‖g0‖Hε dτ +

∫ t

0

‖ft‖ dτ

+

∫ t

0

∫ τ

0

(τ − s)−1+ε/2‖ft(s)‖Hε ds dτ
)

≤ Ctε/2ε−1(‖g0‖Hε +

∫ t

0

‖ft‖Hε dτ), t ≥ 0.

(2.11)
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which shows (2.4) and hence (1.13). This completes the proof. �

Note that since (2.9) has been obtained by interpolation between L2 and H2 ∩H1
0 , the

argument requires that v = 0 on ∂Ω, if ε ∈ (1/2, 2), but not for ε ∈ (0, 1/2). Thus,
in addition to reducing the regularity requirements on g0 and ft, compared to direct
application of (2.10), using (2.9) makes it possible to avoid imposing unnatural boundary
conditions on these functions.

3. The Finite Volume Method

In this section we begin, for completeness, by recalling some known preliminary material
concerning the finite volume method, cf. [3], [7], [9], [11], [16], and [17], and then proceed
with an error bound. The proof of the latter follows the lines of Theorem 2.1 for the finite
element method, but uses the elliptic projection associated with the finite volume bilinear
form.

For the analysis we introduce the interpolation operator Ih : C(Ω) → Yh, defined by

Ihv =
∑
z∈Z0

h

v(z)Ψz,

where as before Ψz is the characteristic function of Vz. We note that Ih : Xh → Yh is
a bijection and bounded with respect to the L2−norm, and that Ψz = IhΦz for z ∈ Z0

h.
Further, the bilinear form (χ, Ihψ) is symmetric positive definite, thus an inner product
on Xh, and the corresponding discrete norm is equivalent to the L2−norm, uniformly in
h, i.e., with c > 0,

(3.1) c‖χ‖ ≤ |||χ||| ≤ C‖χ‖, ∀χ ∈ Xh, where |||χ||| ≡ (χ, Ihχ)1/2.

In fact, for z and w neighboring vertices in Z0
h, we have, with Wz = supp Φz,

mzw = (Φz,Ψw) =

∫
Wz∩Vw

Φz dx =
7

36
|Wz ∩ Vw| =

7

108
|Wz ∩Ww|

which is symmetric in z and w. From this we find

(3.2)
∑
w �=z

mzw ≤ 7

18
|Vz|,

with equality when z is not a neighbor of a vertex of ∂Ω. Since

(3.3) mzz =

∫
Vz

Φz dx =
11

18
|Vz|,

we conclude that the mass matrix M, cf. (1.8), is diagonally dominant which easily shows
(3.1).

The bilinear form ah(·, ·) of (1.6) may equivalently be written as

(3.4) ah(χ, η) =
∑
K

(
(Lχ, η)K + (A∇χ · n, η)∂K

)
, ∀χ ∈ Xh, η ∈ Yh.

Indeed, by integration by parts, we obtain, for z ∈ Z0
h and K ∈ Th,∫

Kz

Lχdx +

∫
∂Kz∩∂K

A∇χ · n ds = −
∫

∂Kz∩∂Vz

A∇χ · n ds.
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and (3.4) hence follows by multiplication by η(z) and by summation first over the triangles
that have z as a vertex and then over the vertices z ∈ Z0

h. Also, we easily see that, for
any side e of a triangle in Th,∫

e

Ihχ ds =

∫
e

χ ds, ∀χ ∈ Xh.

Therefore, in the case of a constant coefficient matrix A we have

(3.5) ah(χ, Ihψ) = a(χ, ψ), ∀χ, ψ ∈ Xh,

since Lχ = 0. For a smooth variable coefficient matrix A, one easily finds, cf., e.g., [7,
Lemma 5.2], [17, Lemma 2],

|a(χ, ψ) − ah(χ, Ihψ)| ≤ Ch‖χ‖H1 ‖ψ‖H1 , ∀χ, ψ ∈ Xh.

It follows that there exist positive constants c and h0 such that

(3.6) ah(χ, Ihχ) ≥ c‖χ‖2
H1 , ∀χ ∈ Xh, h < h0.

In particular, this shows that the stiffness matrix S, cf. (1.8), is positive definite.
In view of the above, the Petrov-Galerkin equation in (1.5) may also be written in

Galerkin form,

(uh,t, Ihχ) + ah(uh, Ihχ) = (f, Ihχ), ∀χ ∈ Xh, t ≥ 0.

We now turn to the error estimate for the finite volume method.

Theorem 3.1. Let uh and u be the solutions of (1.5) and (1.1), respectively, and assume
that u0 = g0 = 0 on ∂Ω and 1 < p < p0, with p0 as in (1.18). Then, if u0

h = R̃hu
0, where

R̃h is the elliptic projection defined by (1.15),

‖uh(t) − u(t)‖ ≤ CT,p(u
0, f)h2, t ≤ T,(3.7)

where

CT,p(u
0, f) = C̄T,p

(
‖u0‖W 3

p
+ ‖g1‖Lp

+

∫ t

0

(‖ft‖W 1
p

+ ‖ftt‖Lp
) dτ

)
.

Proof. For the convenience of the reader we briefly show the error estimate (1.14) from

[14, 16]. This time we write uh − u = (uh − R̃hu) + (R̃hu− u) ≡ ϑ̃+ 
̃. In view of (1.16)
we have

(3.8) ‖
̃(t)‖ ≤ Ch2‖u(t)‖W 3
p
≤ Ch2(‖u0‖W 3

p
+

∫ t

0

‖ut‖W 3
p
dτ), t ≥ 0.

In order to bound ϑ̃ we note that

(ϑ̃t, η) + ah(ϑ̃, η) = −(
̃t, η), ∀η ∈ Yh.

Choosing η = Ihϑ̃ and using the positivity of ah(ϑ̃, Ihϑ̃), (1.16), and the fact that ϑ̃(0) = 0,
we find easily

‖ϑ̃(t)‖ ≤ C

∫ t

0

‖
̃t‖ dτ ≤ Ch2

∫ t

0

‖ut‖W 3
p
dτ, t ≥ 0.
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Together with (3.8) and (1.17), this shows at once

‖uh(t) − u(t)‖ ≤ Ch2
(
‖u0‖W 3

p
+

∫ t

0

(‖utt‖W 1
p

+ ‖ft‖W 1
p
) dτ

)
, t ≥ 0.

To prove the theorem it now remains to demonstrate the regularity estimate∫ t

0

‖utt‖W 1
p
dτ ≤ C

(
‖g1‖Lp

+

∫ t

0

‖ftt‖Lp
dτ

)
, t ≤ T.

If g0 ∈ W 2
p ∩H1

0 , g1 ∈ Lp, and ftt ∈ L1(0, T ;Lp), differentiation in time of (2.7) shows

(3.9) utt(t) = E(t)g1 +

∫ t

0

E(t− s)ftt(s) ds, t ≥ 0,

where we have used ft(0) − Lg0 = ft(0) − Lut(0) = utt(0) = g1. One can show that E(t)
is an analytic semigroup not only in L2 but also in Lp, for 1 < p <∞, so that

(3.10) ‖E(t)v‖Lp
≤ C‖v‖Lp

and ‖E ′(t)v‖Lp
≤ Cpt

−1‖v‖Lp
, 1 < p <∞.

This is proved in [19, Theorem 3.6, Chapter 7] for a domain with smooth boundary, but
the arguments are easily seen to be valid also for a polygonal domain. In view of (3.10)
and (1.17), we have for p < p0, cf. (1.17),

‖E(t)v‖W 2
p
≤ C‖LE(t)v‖Lp

≤ C‖E′(t)v‖Lp
≤ Ct−1‖v‖Lp

.

By interpolation between this and the first estimate in (3.10), and noting that [Lp,W
2
p ]

1/2,1
⊂

W 1
p , cf. [4, Chapter 5], [5, Chapter 12], we get

(3.11) ‖E(t)v‖W 1
p
≤ C‖E(t)v‖[Lp,W 2

p ]
1/2,1

≤ Ct−1/2‖v‖Lp
.

Therefore∫ t

0

‖utt‖W 1
p
dτ ≤ C

(∫ t

0

τ−1/2‖g1‖Lp
dτ +

∫ t

0

∫ τ

0

(τ − s)−1/2‖ftt(s)‖Lp
ds dτ

)

≤ Ct1/2(‖g1‖Lp
+

∫ t

0

‖ftt‖Lp
dτ), t > 0. �

We remark that instead the factor t−1/2 in the right–hand side of (3.11), one could
have an estimate with t−1+ε as in (2.9) in the proof of Theorem 2.1. However, since the
estimate would then involve negative norms, we will refrain from elaborating on this.

4. Alternative Analysis of the finite volume method

In this section we give an alternative analysis of the finite volume method (1.5), in
which the elliptic projection employed is the standard Ritz projection rather than the one
based on the bilinear form ah(·, ·). This time we shall show the following error estimate.

Theorem 4.1. Let uh and u be the solutions of (1.5) and (1.1), respectively, and assume
u0 = g0 = 0 on ∂Ω and ε ∈ (0, 1/2). Then, if u0

h = Rhu
0, with Rh defined by (1.10), we

have for t ≤ T ,

(4.1) ‖uh(t) − u(t)‖ ≤ CT,ε(u
0, f)h2,
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where

CT,ε(u
0, f) = CT

(
‖u0‖H2 + ‖g0‖H1 + ε−1

∫ t

0

‖ft‖Hε dτ

+
(∫ t

0

(‖ft‖2 + ‖f‖2
H1) dτ

)1/2
)
.

Proof. This time we split the error as uh −u = (uh −Rhu)+ (Rhu−u) = ϑ+
. We could
use (2.2) and (1.13) to estimate 
 as before, but since we will need more regularity from
data in bounding θ than in the finite element method, we modify (2.11) by using ε = 1
in the term in g0 and obtain

‖
(t)‖ ≤ CTh
2
(
‖u0‖H2 + ‖g0‖H1 + ε−1

∫ t

0

‖ft‖Hε dτ
)
, t ≤ T.(4.2)

We now turn to the estimate for ϑ. Using (1.7), see that the error uh − u satisfies
((uh − u)t, η) + ah(uh − u, η) = 0 for all η ∈ Yh and thus we have for ϑ

(ϑt, η) + ah(ϑ, η) = −(
t, η) − ah(
, η), ∀η ∈ Yh.(4.3)

For the analysis we introduce the error functionals

εh(f, χ) = (f, χ) − (f, Ihχ), ∀f ∈ L2, χ ∈ Xh,(4.4)

εa(χ, ψ) = a(χ, ψ) − ah(χ, Ihψ), ∀χ, ψ ∈ Xh.

We note that

ah(Rhu, Ihϑ) = a(Rhu, ϑ) − εa(Rhu, ϑ) = a(u, ϑ) − εa(Rhu, ϑ)

= (Lu, ϑ) − εa(Rhu, ϑ),

and hence, since ah(u, Ihϑ) = (Lu, Ihϑ) by (1.7),

(4.5) ah(
, Ihϑ) = εh(Lu, ϑ) − εa(Rhu, ϑ).

Choosing η = Ihϑ in (4.3) we therefore have, since Lu = f − ut,

(4.6) (ϑt, Ihϑ) + ah(ϑ, Ihϑ) = −(
t, Ihϑ) + εh(ut − f, ϑ) + εa(Rhu, ϑ).

The following bounds for εh(·, ·) and εa(·, ·) are shown in [7, Lemmas 5.1 and 5.2].

Lemma 4.1. Let χ ∈ Xh, then

|εh(f, χ)| ≤ Chi+j‖f‖Hi ‖χ‖Hj , f ∈ H i, i, j = 0, 1,

|εa(Rhv, χ)| ≤ Chi+j‖v‖H1+i ‖χ‖Hj , v ∈ H1+i ∩H1
0 , i, j = 0, 1,

Using the symmetry of (χ, Ihψ) on Xh, together with (1.11) and (2.3) we therefore
obtain from (4.6)

1

2

d

dt
|||ϑ|||2 + ah(ϑ, Ihϑ)(4.7)

≤ C‖
t‖‖ϑ‖ + Ch2
(
‖ut‖H1 + ‖f‖H1 + ‖u‖H2

)
‖ϑ‖H1

≤ Ch2
(
‖ut‖H2 + ‖f‖H1

)
‖ϑ‖H1

≤ Ch2
(
‖utt‖ + ‖ft‖ + ‖f‖H1

)
‖ϑ‖H1 , t > 0.
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Using (3.6) to kick back ‖ϑ‖H1 , integrating, and using (3.1) we obtain, since ϑ(0) = 0,

(4.8) ‖ϑ(t)‖2 ≤ Ch4

∫ t

0

(‖utt‖2 + ‖ft‖2 + ‖f‖2
H1) dτ.

To complete the estimation of ϑ we now only need the regularity estimate

(4.9)

∫ t

0

‖utt‖2 dτ ≤ C(‖g0‖2
H1 +

∫ t

0

‖ft‖2 dτ), t ≤ T.

A more general such estimate is derived in Evans [12, Chapter 7], for ∂Ω smooth, using
the method of Galerkin approximations. In the special case we need, the regularity of
∂Ω is not required. Finally, by combining (4.2), (4.8), and (4.9), we obtain the desired
estimate (4.1). �

5. Some Other Estimates

In this section we shall use our technique from Section 4, based on the standard Ritz
projection, to derive error bounds also in H1 and L∞ norms. We begin with the bound
in H1.

Theorem 5.1. Let uh and u be the solutions of (1.5) and (1.1), respectively, and assume
that u0 = 0 on ∂Ω and ε ∈ (0, 1/2). Then, if u0

h = Rhu
0, with Rh defined in (1.10), we

have

(5.1) ‖uh(t) − u(t)‖H1 ≤ CT,ε(u
0, f)h, t ≤ T,

where

CT,ε(u
0, f) = CT

(
‖u0‖H2 + ‖g0‖ +

(∫ t

0

‖ft‖2 dτ
)1/2

+ ε−1
(
‖g0‖Hε +

∫ t

0

‖ft‖Hε dτ
))
.

Proof. In view of (1.11) we have

(5.2) ‖
(t)‖H1 ≤ Ch‖u(t)‖H2 ≤ Ch(‖u0‖H2 +

∫ t

0

‖ut‖H2 dτ), t ≥ 0.

Using (1.13) this shows that 
(t) is bounded as desired.
We now turn to the estimation of ϑ, using the identity (4.3) with η = Ihϑt. Since,

ah(χ, Ihψ) = a(χ, ψ) − εa(χ, ψ) then

ah(ϑ, Ihϑt) =
1

2

d

dt
a(ϑ, ϑ) − εa(ϑ, ϑt).

Thus, from (4.3) and (4.5) we get

|||ϑt|||2 +
1

2

d

dt
a(ϑ, ϑ) = −(
t, Ihϑt) + εa(ϑ, ϑt) − εh(Lu, ϑt) + εa(Rhu, ϑt).
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Substituting Lu = f − ut this yields

|||ϑt|||2 +
1

2

d

dt
a(ϑ, ϑ) = −(
t, Ihϑt) + εa(ϑ, ϑt) + εh(ut, ϑt)

− d

dt
εh(f, ϑ) + εh(ft, ϑ) + εa(Rhu, ϑt).

(5.3)

Integrating this relation over [0, t], t ≤ T , using the fact that ϑ(0) = 0, together with
(1.11), Lemma 4.1, (3.1), and (2.3), we find

‖ϑ(t)‖2
H1 ≤ Ch2

(
‖f(t)‖2 +

∫ t

0

(‖ut‖2
H1 + ‖u‖2

H2 + ‖ft‖2)dτ
)

+ C

∫ t

0

‖ϑ‖2
H1dτ.

Using Gronwall’s lemma and the simple estimate

‖u(t)‖2
H2 ≤ C(‖ut(t)‖2 + ‖f(t)‖2) ≤ C

(
‖ut(t)‖2 + ‖f(0)‖2 +

∫ t

0

‖ft‖2 dτ
)
,

now gives

(5.4) ‖ϑ(t)‖2
H1 ≤ Ch2

(
‖f(0)‖2 +

∫ t

0

(‖ut‖2
H1 + ‖ft‖2) dτ

)
, t ≤ T.

Similarly to (4.9), one can show

(5.5)

∫ t

0

‖ut‖2
H1 dτ ≤ C

(
‖g0‖2 +

∫ t

0

‖ft‖2 dτ
)
, t ≤ T,

by slightly modifying the proof of the corresponding result in [12]. Combined with (5.4),
this shows the desired bound for ϑ(t). Together with (5.2) this completes the proof. �

We now turn to some error estimates in the maximum-norm. Writing as usual uh−u =
(uh − Rhu) + (Rhu− u) = ϑ + 
 we will show ‖ϑ‖L∞ = O(h2(log 1

h
)1/2). At a corner the

solution normally has a singularity, the strength of which depends on the angle at the
corner. Below we show that ‖
‖L∞ = O(hγ) for any γ < β = π/ω, cf. (1.18), and since
β > 1 we can take γ > 1 as well. In our first result below we show a global maximum-norm
error estimate of this order. This will be done using an analysis of Schatz [20] for the
elliptic problem in a polygonal domain. We remark that when the domain has a smooth
boundary it is known that ‖
‖L∞ = O(h2(log 1

h
)2), see [23, Chapter 5, Lemma 5.6]. The

loss of order of convergence only takes place near the corners, and in second result below
we show a bound of the same order on domains Ω0 ⊂ Ω, with Ω̄0 not containing any
vertex of Ω.

We now state and show the global error estimate.

Theorem 5.2. Let uh and u be the solutions of (1.5) and (1.1), respectively, and assume
u0 = g0 = 0 on ∂Ω, and that the family of triangulations {Th}0<h<1 is quasi–uniform.
Then if u0

h = Rhu
0 we have, for any γ < β,

‖uh(t)−u(t)‖L∞ ≤ CT,γ(u
0, f)hγ, t ≤ T,(5.6)
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where

CT,γ(u
0, f) = C̄T,γ

(
‖u0‖H2 + ‖g0‖L∞ + ‖g0‖H1 + ‖g1‖ + ‖f(0)‖L∞

+

∫ t

0

‖ft‖L∞ dτ +
(∫ t

0

(‖ft‖2
H1 + ‖ftt‖2)dτ

)1/2
)
.

Proof. We begin by showing that for 
 = Rhu− u we have

(5.7) ‖
(t)‖L∞ ≤ Cγh
γ
(
‖g0‖L∞ + ‖f(0)‖L∞ +

∫ t

0

‖ft‖L∞ dτ
)
.

We shall assume that 1 < γ < β < 2; the proof may easily be modified to cover the
case β ≥ 2. Letting δ = (β + γ)/2 we have in view of [20, (0.8)] that

‖
(t)‖L∞ ≤ Chδ log
1

h
‖u(t)‖C1,δ−1 ≤ Chγ‖u(t)‖C1,δ−1,

where C1,α is the space of continuously differentiable functions whose first order derivative
fulfill a uniform Hölder condition of order α. A standard imbedding argument, cf., e.g.,
[15, Theorem 1.4.5.2], shows

‖u(t)‖C1,δ−1 ≤ Cγ‖u(t)‖W 2
p
, with p = 2/(2 − δ),

and since p < 2/(2 − β), we have the elliptic regularity estimate, cf., e.g, [15, Theorem
5.2.7],

(5.8) ‖u‖W 2
p
≤ C‖Lu‖Lp

.

Combining (2.7) and ‖E(t)‖L∞ ≤ 1, we obtain

‖
(t)‖L∞ ≤ Cγh
γ‖Lu‖L∞ ≤ Cγh

γ
(
‖ut(t)‖L∞ + ‖f(t)‖L∞

)

≤ Cγh
γ
(
‖g0‖L∞ + ‖f(0)‖L∞ +

∫ t

0

‖ft‖L∞ dτ
)
.

As indicated above, in the case that ∂Ω is smooth, we have ‖
‖L∞ = O(h2(log 1
h
)2).

This is seen by using the estimates

(5.9) ‖
‖L∞ ≤ C log
1

h
‖Ihu− u‖L∞ ≤ Ch2−2/p log

1

h
‖u‖W 2

p

where the error bound for the interpolant is easily obtained by the Bramble Hilbert lemma,
cf., e.g., [5, (4.4.29)], the elliptic regularity estimate

(5.10) ‖u‖W 2
p
≤ Cp‖Lu‖Lp

, 2 ≤ p <∞,

and choosing p = log 1
h
, cf. [23, Lemma 5.6]. The estimate (5.10) does not hold for

polygonal domains for p large, cf. [15, Remark 4.3.2.6].
We now turn to the required estimate for ϑ = uh −Rhu. We will show

‖ϑ(t)‖L∞ ≤ Ch2(log
1

h

)1/2
(
‖u0‖H2 + ‖g0‖H1 + ‖g1‖

+
(∫ t

0

(‖ft‖2
H1 + ‖ftt‖2) dτ

)1/2
)
.

(5.11)
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In view of the well-known inequality, cf., e.g., [23, Chapter 5],

‖χ‖L∞ ≤ C
(
log

1

h

)1/2‖∇χ‖, ∀χ ∈ Xh,

it suffices to demonstrate

‖ϑ(t)‖H1 ≤ Ch2
(
‖u0‖H2 + ‖g0‖H1 + ‖g1‖ +

(∫ t

0

(‖ft‖2
H1 + ‖ftt‖2) dτ

)1/2
)
.

For this we rewrite (5.3) as

|||ϑt|||2 +
1

2

d

dt
a(ϑ, ϑ) = −(
t, Ihϑt) + εa(ϑ, ϑt)

+
d

dt
εh(ut − f, ϑ) − εh(utt − ft, ϑ) +

d

dt
εa(Rhu, ϑ) − εa(Rhut, ϑ).

Since ϑ(0) = 0, (1.11), Lemma 4.1, (3.1), and (4.8) give, for t ≥ 0,

‖ϑ(t)‖2
H1 ≤ Ch4

(
‖ut(t)‖2

H1 + ‖u(t)‖2
H2 + ‖f(t)‖2

H1

+

∫ t

0

(‖utt‖2
H1 + ‖ut‖2

H2 + ‖ft‖2
H1)dτ

)
+ C

∫ t

0

‖ϑ‖2
H1dτ,

and by Gronwall’s lemma and obvious estimates we now have, for t ≤ T ,

‖ϑ(t)‖2
H1 ≤ Ch4

(
‖u0‖2

H2 + ‖g0‖2
H1 +

∫ t

0

(‖utt‖2
H1 + ‖ft‖2

H1) dτ
)
.

To complete the proof we need the regularity estimate∫ t

0

‖utt‖2
H1 dτ ≤ C(‖g1‖2 +

∫ t

0

‖ftt‖2 dτ
)
, t ≤ T,

which can be found in [12] in the same way as (4.9).
We note that since we only require a O(hβ) estimate for ‖ϑ‖L∞, the regularity assump-

tions used in this part of the proof could be reduced. �

We now turn to the error away from the corners, and demonstrate that there we can
improve the convergence rate to essentially second order.

Theorem 5.3. Let Ω0 ⊂ Ω be such that Ω̄0 does not contain any vertex of Ω, and
assume the family of triangulations {Th}0<h<1 is quasi–uniform. Let uh and u be the
solutions of (1.5) and (1.1), respectively, and assume u0 = g0 = 0 on ∂Ω, ε ∈ (0, 1/2)
and 2 < p < 2/(2 − β). Then, if u0

h = Rhu
0, we have

(5.12) ‖uh(t) − u(t)‖L∞(Ω0) ≤ CT,p,ε(u
0, f)h2 log

1

h
, t ≤ T,

where

CT,p,ε(u
0, f) = CT,p

(
‖u0‖H2 + ‖g0‖H1 + ‖g1‖ + ‖f(t)‖W 1

p
+ ‖ft(0)‖

+

∫ t

0

‖ftt‖ dτ +
(∫ t

0

(‖ft‖2
H1 + ‖ftt‖2) dτ

)1/2
+ ε−1

∫ t

0

‖ft‖Hε dτ
)
.
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Proof. It follows from (5.11) in the proof of the previous theorem that ‖ϑ‖L∞ is bounded
as stated. It therefore suffices to consider 
, and for this we shall use the following lemma
which is a special case of a result from a forthcoming paper of Schatz [21].

Lemma 5.1. Let Ω be a convex polygonal domain in �
2 and let Ω0 ⊂ Ω1 ⊂ Ω, be such

that Ω1 does not contain any corners of Ω and the distance between ∂Ω1 ∩Ω and ∂Ω0 ∩Ω
is positive. Then, if vh ∈ Xh satisfies

a(vh − v, χ) = 0, ∀χ ∈ Xh,

we have, for any χ ∈ Xh,

‖vh − v‖L∞(Ω0) ≤ C
(
log

1

h
‖v − χ‖L∞(Ω1) + ‖vh − v‖L2

)
.

Let Ω2 and Ω3 be domains with Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ Ω and smooth boundaries and such
that Ω3 does not contain any corner of Ω. Assume further that the distances between
∂Ω3 ∩Ω, ∂Ω2 ∩Ω, and ∂Ω1 ∩Ω are positive. Let w be a smooth cutoff function such that
w|Ω2 = 1 and w|∂Ω3∩Ω = 0.

Let Īh : C(Ω) → Xh, be the standard nodal interpolant. Then in view of the interpo-
lation error estimate

‖Īhu− u‖L∞(Ω1) ≤ Ch2‖u‖W 2∞(Ω2),

Lemma 5.1 gives

‖ρ(t)‖L∞(Ω0) ≤ Ch2 log
1

h
‖u(t)‖W 2∞(Ω2) + C‖ρ(t)‖.

Since the last term is bounded as desired by (4.2) it now remains to bound the first term
on the right. Using first a Sobolev inequality and then an elliptic regularity estimate in
Ω3 (recalling that ∂Ω3 is smooth), and, finally, the elliptic regularity estimate (5.8) in Ω,
we have, with ũ = wu,

‖u‖W 2∞(Ω2) ≤ C‖u‖W 3
p (Ω2) ≤ C‖ũ‖W 3

p (Ω3) ≤ C‖Lũ‖W 1
p (Ω3)

≤ C(‖Lu‖W 1
p

+ ‖u‖W 2
p
) ≤ C‖Lu‖W 1

p
.

Using the differential equation, and then again a Sobolev inequality, followed by (2.3), we
find

‖Lu‖W 1
p
≤ C

(
‖f‖W 1

p
+ ‖ut‖W 1

p

)
≤ C

(
‖f‖W 1

p
+ ‖ut‖H2

)
≤ C

(
‖f‖W 1

p
+ ‖utt‖ + ‖ft‖

)
.

By (3.9), with ‖E(t)‖ ≤ 1, we hence find

‖u(t)‖W 2∞(Ω2) ≤ C
(
‖f(t)‖W 1

p
+ ‖g1‖ + ‖ft(0)‖ +

∫ t

0

‖ftt‖ dτ
)
,

which completes the proof of the desired estimate for ρ and hence of the theorem. �
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6. The Lumped Mass Finite Volume Method

In addition to the finite volume method (1.5) studied above we consider also a lumped
mass variant of this method, which we define by approximating the first integral in (1.4)
by means of a simple quadrature formula. We thus seek uh(t) ∈ Xh satisfying

uh,t(z, t)|Vz| −
∫

∂Vz

(A∇uh) · n ds =

∫
Vz

f dx, ∀z ∈ Z0
h, t ≥ 0,

uh(0) = u0
h.

(6.1)

Note that this discrete scheme is no longer locally conservative.
In order to rewrite (6.1) in variational form we consider the quadrature formula

QK,h(f) =
1

3
|K|

∑
z∈Zh(K)

f(z) ≈
∫

K

f dx, for K ∈ Th,

and the associated bilinear form in Xh × Yh,

(χ, ψ)h =
∑

K∈Th

QK,h(χψ) =
∑
z∈Z0

h

χ(z)ψ(z)|Vz|, ∀χ ∈ Xh, ψ ∈ Yh.

We note that ‖χ‖h := (χ, Ihχ)
1/2
h is a norm in Xh which is equivalent with the L2–norm,

uniformly in h, i.e., with c > 0,

(6.2) c‖χ‖ ≤ ‖χ‖h ≤ C‖χ‖, ∀χ ∈ Xh.

For an arbitrary η ∈ Yh, by multiplying (6.1) by η(z) and summing over all z ∈ Z0
h, we

obtain the Petrov-Galerkin formulation

(uh,t, η)h + ah(uh, η) = (f, η), ∀η ∈ Yh, t ≥ 0.(6.3)

For this analogue of (1.5) the mass matrix M in (1.8) is replaced by the diagonal

matrix M = (mzz) where mzz = ‖Φz‖2
h. The name lumped mass method is inherited

from its analogue for the finite element equation (1.2) and is motivated by the fact that
with Wz = supp Φz and Vz = supp Ψz we have, except when z is a neighbor of a boundary
vertex, Wz ⊂ ∪wVw and hence, cf. also (3.2) and (3.3),

∑
w∈Z0

h

mzw = (Φz,
∑

w

Ψw) =

∫
∪wVw

Φz dx = |Vz| = mzz.

When z has a neighbor on ∂Ω we have mzz >
∑

w∈Z0
h
mzw.

We will now show that the L2–norm error bound of Theorem 4.1 remains valid for the
lumped mass method (6.3).

Theorem 6.1. Let uh and u be the solutions of (6.3) and (1.1), respectively, and assume
u0 = g0 = 0 on ∂Ω, and ε ∈ (0, 1/2). Then, if u0

h = Rhu
0, the error bound (4.1) holds.

Proof. In view of our earlier estimate (4.2) for ρ = Rhu − u, it suffices to bound ϑ =
uh − Rhu, which now satisfies

(6.4) (ϑt, η)h + ah(ϑ, η) = −(
t, η) − ah(
, η) + ε̄h(Rhut, η), ∀η ∈ Yh,
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where ε̄h(·, ·) is the quadrature error defined by

ε̄h(χ, η) = (χ, η) − (χ, η)h, ∀χ ∈ Xh, η ∈ Yh.

Note that the equation (6.4) differs from (4.3) only in the first term on the left and in the
addition of the last one on the right. We note that the above definition of (χ, ψ)h may
be used also for ψ ∈ Xh, and that (χ, ψ)h = (χ, Ihψ)h for χ, ψ ∈ Xh. We therefore have,
using the notation (4.4),

ε̄h(χ, Ihψ) = −εh(χ, ψ) +
(
(χ, ψ) − (χ, ψ)h

)
.

It follows from, e.g., [23, Lemma 15.1], that

|(χ, ψ)h − (χ, ψ)| ≤ Ch2‖χ‖H1‖ψ‖H1 , ∀χ, ψ ∈ Xh.

and hence, using also Lemma 4.1, that

(6.5) |ε̄h(Rhut, Ihϑ)| ≤ Ch2‖ut‖H1‖ϑ‖H1.

Therefore, setting η = Ihϑ in (6.4), and using (6.2) and (6.5), we obtain (4.8) as before,
which shows the theorem. �

We remark that the error bounds of Theorems 5.1, 5.2, and 5.3 also hold for the solution
uh of (6.3). In fact, the estimates for 
 in the proofs of these theorems remain unchanged,
and the bounds for ϑ in Section 5 may be shown from (6.4) similarly to the corresponding
bounds in Theorem 6.1.

As in Theorem 3.1, instead of using Rh we could use R̃h to obtain an L2–norm error
estimate for the solution uh of (6.3). In such a case ϑ̃ = R̃hu− u would satisfy

(ϑ̃t, η)h + ah(ϑ̃, η) = −(
̃t, η) − ε̄h(R̃hut, η), ∀η ∈ Yh.

and, in view of (6.2), (6.5), and (1.17) we would now obtain

‖ϑ̃(t)‖2 ≤ Ch4
(∫ t

0

(‖utt‖2
W 1

p
+ ‖ft‖2

W 1
p
) dτ

)
, for p < p0.

However, since stronger assumptions on ft than those in (4.8) are required to bound the
integral, we shall not elaborate on this choice.

We recall that with the above notation the lumped mass finite element method for (1.1)
is

(6.6) (uh,t, χ)
h

+ a(uh, χ) = (f, χ), ∀χ ∈ Xh, t ≥ 0.

We remark that in the case of a constant coefficient matrix A, the left sides of (6.6) and
(6.3) with η = Ihχ are the same, cf. (3.5), so that the two lumped mass methods differ
only in the treatment of the inhomogeneous term.

7. Fully Discrete Methods

In this section, for completeness, we will show by an example that our approach to the
finite volume method applies also to fully discrete schemes. We consider the backward
Euler method for the discretization in time of (1.5). Letting k be the time step, Un the
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approximation in Xh of u(t) at t = tn = nk, and ∂̄Un = (Un − Un−1)/k, this method is
defined by

(∂̄Un, η) + ah(U
n, η) = (f(tn), η), ∀η ∈ Yh, n ≥ 1,

U0 = u0
h.

(7.1)

We then have the following error estimate.

Theorem 7.1. Let Un and u(tn) be the solutions of (7.1) and (1.1), respectively, and
assume u0 = g0 = 0 on ∂Ω and ε ∈ (0, 1/2). Then, if U 0 = Rhu

0, we have

‖Un − u(tn)‖ ≤ CT,ε(u
0, f)h2 + C̄T (u0, f)k, tn ≤ T,(7.2)

where

CT,ε(u
0, f) = CT

(
‖u0‖H2 + ‖g0‖H1 + ε−1

∫ tn

0

‖ft‖Hε dτ +
(
k

n∑
j=0

‖f j‖2

H1

) 1
2

)

and

C̄T (u0, f) = C̄T

(
‖g0‖H1 +

(∫ tn

0

‖ft‖2 dτ
) 1

2

)
.

Proof. We write

Un − u(tn) = (Un − Rhu(tn)) + (Rhu(tn) − u(tn)) ≡ ϑn + 
n.

and since the estimate for ρn = ρ(tn) is the same as before, it suffices to bound ϑn. We
have

(∂̄ϑn, η) + ah(ϑ
n, η) = −(∂̄
n, η) − ah(


n, η) + (un
t − ∂̄un, η), ∀η ∈ Yh.

Choosing η = Ihϑ
n we obtain, with ||| · ||| defined in (3.1), cf. (4.6),

1

2k
(|||ϑn|||2 − |||ϑn−1|||2) +

1

2k
|||ϑn − ϑn−1|||2 + ah(ϑ

n, Ihϑ
n)

= −(∂̄
n, Ihϑ
n) + εh(u

n
t − fn, ϑn) + εa(Rhu

n, ϑn) + (un
t − ∂̄un, Ihϑ

n)

= −(∂̄
n, Ihϑ
n) + εh(∂̄u

n − fn, ϑn) + εa(Rhu
n, ϑn) + (un

t − ∂̄un, ϑn)

The three first terms on the right are bounded, as in (4.7), by

Ch2(‖∂̄un‖H2 + ‖un‖H2 + ‖fn‖H1)‖ϑn‖H1

≤ Ch2
(
k−1

∫ tn

tn−1

‖ut‖H2dτ + ‖un‖H2 + ‖fn‖H1

)
‖ϑn‖H1

and the fourth by

‖un
t − ∂̄un‖ ‖ϑn‖ ≤ C

∫ tn

tn−1

‖utt‖dτ ‖ϑn‖H1 ≤ C
(
k

∫ tn

tn−1

‖utt‖2dτ
) 1

2‖ϑn‖H1,
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so that, after multiplication by 2k and kicking back ‖ϑn‖H1 ,

|||ϑn|||2 − |||ϑn−1|||2 ≤ Ch4
(∫ tn

tn−1

‖ut‖2
H2dτ + k(‖un‖2

H2 + ‖fn‖2
H1)

)

+ Ck2

∫ tn

tn−1

‖utt‖2dτ.

In view of (3.1), using ‖ut‖H2 ≤ C(‖utt‖ + ‖ft‖) together with (4.9), and since ϑ0 = 0,
summation completes the proof. �
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