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Abstract

The parallel properties of three fast direct solution methods for linear sys-
tems with separable block tridiagonal matrices and a related C/MPI code are
studied. Fast algorithm for separation of variables and two variants of the gen-
eralized marching algorithm are first summarized. The results from numerical
tests performed on two coarse-grained parallel architectures are then reported.
The obtained speed-up and efficiency coefficients are compared. The general
conclusion is that not always the best sequential solver has the best parallel
performance.

1 Introduction

A measure for the efficiency of a given sequential direct solver is its computational
complexity. The speed-up and efficiency coefficients play a key role in the analysis
of parallel algorithms. They are based on the times per processor for computations
Tcomp = N ∗ ta and communications Tcom = c1 ∗ ts + c2 ∗ tw. Here, N is the number of
operations, c1 characterizes the number of stages at which communications are needed
and c2 is the amount of the transferred words. Both c1 and c2 can be constants or
functions of the number of processors and/or the size of the problem. The parameters

∗This research has been supported in part by the USA National Science Foundation under Grant
DMS 9973328, by the Bulgarian Ministry of Education and Science under Grant MU-I-901/99 and
by the Center of Excellence BIS-21 Grant ICA1-2000-70016

1



ta, ts and tw depend on the parallel computer. The largest one of them is ts and
it could be hundreds and even thousands times larger than tw. That is why one
and the same parallel solver may have different behavior on machines with different
characteristics.

Our goal was to compare the performance of three direct solvers on two of the
coarse-grained parallel architectures available in Texas A&M University. We sum-
marize in this report results obtained on SGI Origin 2000 and Beowulf cluster. Par-
allelizations of fast algorithm for separation of variables (FSV), and two variants
of generalized marching (GM) algorithm - GMF and GMS, based respectively on
FSV and on incomplete solution technique for problems with sparse right-hand sides
(SRHS) instead of FSV, are considered. The algorithm FSV is proposed in [14]. Its
parallelization aspects for Poisson equation on nonuniform mesh are analyzed in [12].
Here we consider slightly different variant proposed in [6]. The GM algorithm is first
developed in [2, 3] and later reformulated in [13] using SRHS and FSV. The algorithm
GMS is introduced in [7], where the parallel properties of both GMF and GMS are
theoretically studied.

In the rest part of the report, we first present briefly the algorithms (Section 2)
and their parallel implementation (Section 3). In Section 4 are compared not only
the obtained speed-up and efficiency coefficients, but also the measured cpu-times.
The general conclusion is that although GMS is the slowest sequential algorithm,
its parallel implementation PGMS has better properties and on some machines it is
asymptotically the best one among the considered solvers.

2 Fast Separable Solvers

We start the exposition in this Section with formulation of the problem. After that the
technique for incomplete solution of problems with sparse right–hand sides (SRHS)
originated in Banegas [1], Proskurowski [11] and Kuznetsov [9] is described, since
it is a principal step used at different stages in each of the studied solvers. More
theoretical aspects of the problems with sparsity are investigated by Kuznetsov in [8].
We next present briefly the fast algorithm for separation of variables (FSV) and the
generalized marching (GM) algorithm originated in Bank and Rose [3] and Bank [2].
The two considered variants of GM, denoted for brevity GMF and GMS are based on
FSV and SRHS respectively. All of the studied solvers take advantage of the special
separable sparse structure of the stiffness matrix.
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2.1 Formulation of the problem

A separable second order elliptic equation with non-constant coefficients is considered:∣∣∣∣∣∣∣
−

2∑
s=1

∂

∂xs

(
as(xs)

∂u

∂xs

)
= f(x), x = (x1, x2) ∈ Ω = (0, 1)2

u = 0, on ∂Ω

. (1)

It is discretized on rectangular n×m grid by finite differences or by piece-wise linear
finite elements on right–angled triangles. Using the identity n × n matrix In, the
tridiagonal, symmetric and positive definite matrices T = (ti,j)

n
i,j=1 and B = (bi,j)

m
i,j=1,

and the Kronecker product Cm1×n1 ⊗ Dm2×n2 = (ci,jD)m1
i=1

n1

j=1, C = (ci,j)
m1
i=1

n1

j=1 , the
obtained discrete problem with N = n m degrees of freedom is written in the form:

Ax ≡ (B ⊗ In + Im ⊗ T )x = f . (2)

Here x = (x1,x2, . . . ,xm)T , f = (f1, f2, . . . , fm)T , xj , fj ∈ Rn, j = 1, . . . , m and

A ≡

⎛⎜⎜⎜⎜⎝
T + b1,1 In b1,2 In 0

b2,1 In T + b2,2 In 0
. . .

. . .
...

0 . . . bm,m−1 In T + bm,m In

⎞⎟⎟⎟⎟⎠ .

Remark: When the boundary conditions are nonzero, i.e. u = µ(x), on ∂Ω, the
resulting system has the same form, but with slightly modified components of f .

2.2 Incomplete Solution Technique

The technique for incomplete solution of problems with sparse right–hand sides is
proposed independently by Banegas [1], Proskurowski [11] and Kuznetsov [9]. It is
assumed (for a reason to become clear later on) that the right–hand side f of the
system (2) has only d (d � m) nonzero block components and only r (r � m) block
entries of the solution are needed. Let for definiteness fj = 0 for j �= j1, j2, . . . , jd. To
find the needed components xj′1, xj′2 , . . . ,xj′r of the solution, the well-known algorithm
for discrete separation of variables is applied taking advantage of the right–hand side
sparsity:
Algorithm SRHS

Step 0. determine all the eigenvalues {λk}m
k=1 and the needed d̃ ≤ r + d entries,

{qk,j}, j = j1, , . . . , jd, and j = j
′
1, . . . , j

′
r, of all the eigenvectors {qk}m

k=1 of the
tridiagonal matrix B ;

Step 1. compute the Fourier coefficients βi,k of f ′i from the equations:
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βi,k = qT
k · f ′i =

d∑
s=1

qjs,kfi,js, i = 1, . . . , n, k = 1, . . . , m ;

Step 2. solve m n × n independent tridiagonal systems of linear equations:
(λk In + T ) ηk = βk, k = 1, . . . , m ;

Step 3. recover r components of the solution per lines using

xj =
m∑

k=1

qj,kηk , j = j′1, j
′
2, . . . , j

′
r

End {SRHS}.
As it is shown in [14], the Algorithm SRHS requires NSRHS ≈ 2(r+d)nm+5nm

arithmetic operations (ar. ops.) in the solution part and O(d̃m2) + 9m2 ar. ops. for
the computation of all the eigenvalues and the specified d̃ entries of all the eigenvectors
of the tridiagonal matrix B.

2.3 Fast Algorithm for Separation of Variables

The Algorithm FSV is proposed in [14]. A detailed description may be found in
[10], see also [4]. It consists of forward (FR) and backward (BR) recurrence. Let for
simplicity m = 2l − 1, l ∈ Z. At each step k of FR and BR, systems with specific
sparse right–hand sides are constructed and solved incompletely using Algorithm
SRHS. The compact form of FSV is:
Algorithm FSV

Step 1. Forward recurrence:
Set f (1) = f
for k = 1 to l − 1

for s = 1 to 2l−k solve A(k,s)x(k,s) = f (k,s)

incompletely, finding only x
(k,s)
1 , x

(k,s)
2k−1 , x

(k,s)
2k−1

end {loop on s}
for s = 1 to 2l−k − 1 compute

f
(k+1)
s2k = f

(k)
s2k − bs2k,s2k−1x

(k,s)
2k−1 − bs2k,s2k+1x

(k,s+1)
1

end {loop on s }
end {loop on k}

Step 2. Backward recurrence:
solve incompletely Ax(l) = f (l) only for x

(l)

2l−1 = x2l−1

for k = l − 1 down to 1
for s = 1 to 2l−k solve incompletely A(k,s)ŷ(k) = f̂ (k,s)

only for ŷ
(k)

2k−1

Then set x(2s−1)2k−1 = ŷ
(k)
2k−1 + x

(k,s)
2k−1

end {loop on s}
end {loop on k}
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End {FSV}.
The matrices A(k,s) consist of 2k − 1 blocks of order n and have the form A(k,s) =

I2k−1⊗T +B
(s)
k ⊗ In, s = 1, 2, . . . , 2l−k. They are constructed using the principal sub-

matrices B
(s)
k = tridiag{bsk+i,sk+i−1, bsk+i,sk+i, bsk+i,sk+i+1}2k−1

i=1 of B for sk = (s−1)2k.
The right–hand sides for the FR have one nonzero component (with index 2k−1)
and for the BR they are two such components (with indices 1 and 2k − 1). It is

important to note here that the update of the right–hand sides f
(k+1)
s2k for each k

requires components of the solution of the subsystems for the previous values of k.
The solution of the original system is consecutively recovered during the BR, based
on the data determined at previous stages.

2.4 Generalized Marching Algorithm

The GM algorithm is first proposed in [2, 3] and later reformulated in [13] using
the incomplete solution technique and Algorithm FSV. The standard march-
ing algorithm (Algorithm SM) is optimal in the sense that its computational
cost NSM ≈ 31nm depends linearly on the size of the discrete system. Unfor-
tunately it is unstable for large m (see [2, 3]) and hence is of practical interest
only for m � n. The GM algorithm is a stabilized version of Algorithm SM.
We assume that m + 1 = p(k + 1), for some integers p, k. The original system
(2) is first reordered and rewritten into two-by-two block form Ã with diagonal
blocks Ãi,i on the main diagonal. Applying block-Gaussian elimination, it is re-
duced to solution of two systems with Ã1,1 and one system with the Schur comple-
ment. Here Ã1,1 = blockdiag(A(k)

s )p
s=1, A(k)

s = Ik ⊗ T + B(k)
s ⊗ In, where B(k)

s =
tridiag(bks+i,ks+i−1 , bks+i,ks+i , bks+i,ks+i+1)

k
i=1 , ks = (s− 1)(k +1), s = 1, . . . , p . Hence,

each of the systems with Ã1,1 is equivalent to solution of p independent subproblems
with matrices A(k)

s , s = 1, . . . , p. The stability of SM at this stage is ensured by
choosing sufficiently large p.

The second step of GM, i.e. the system with the Schur complement, is equivalent
to solution of a system with the original matrix A and with a sparse right-hand side.
The algorithm GM is summarized as follows:
Algorithm GM

Step 1. for s = 1 to p
solve A(k)

s y(1)
s = f (1)

s using Algorithm SM
end {loop on s}
compute f̃ (2) = f (2) − Ã2,1 y(1);

Step 2. solve incompletely Ax̂ = f̂ , f̂i �= 0 for i = s(k + 1), (f̂i = f̃ (2)
s )

seeking only x̂s(k+1) = xs(k+1), s = 1, . . . , p − 1;

Step 3. compute f̃ (1) = f (1) − Ã1,2 x(2);
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Figure 1: Computational complexity of FSV, GMF and GMS, k = 7

for s = 1 to p
solve A(k)

s x(1)
s = f̃ (1)

s using Algorithm SM
end {loop on s}

End {GM}.
Step 2 of Algorithm GM, as it was proposed in [13], is handled by Algorithm

FSV. To find the required components of x only lp steps of Algorithm FSV are
applied - the last lp steps of FR and the first of BR. We refer to this variant of
GM as Algorithm GMF. It is asymptotically slightly faster than FSV. If we solve
the system at Step 2 simply using Algorithm SRHS, we will get more expensive
sequential solver referred as Algorithm GMS. This variant was proposed in [7] to
improve the parallelization properties of the GM algorithm. The advantages of GMS
in this respect are shown in the remaining part of the present report.

2.5 Computational Complexity

The above described solvers require the following amount of arithmetic operations:

Algorithm FSV NFSV ≈ 24nm(log m − 1) − 9nm

Algorithm GMF NGMF ≈ 62pkn + 24nm(log p − 1) − 9nm

Algorithm GMS NGMS ≈ 62pkn + 4pnm + nm

In Figure 1 they are plotted in logarithmic scale for the case k = 7. Algorithm
GMF is always slightly faster than Algorithm FSV. For some sizes of the discrete
problem (4 < l < 8, m = 2l − 1) Algorithm GMS is faster than both FSV and
GMF, but asymptotically it is the slowest one.
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Unfortunately, the variable size of the subsystems solved incompletely in FSV lead
to some difficulties in the parallelization of both FSV and GMF. They are discussed
in the next Section together with the advantages of GMS.

3 Parallel Implementation

How are the data and the computations distributed among the processors? What are
the type and the amount of communications inspired by this division? How good is
the developed solver? These are the questions treated in this Section for each of our
methods. The parallelizations of the algorithms FSV, GMF and GMS are referred
as PFSV, PGMF and PGMS respectively. More detailed description of these parallel
solvers together with a comparison of their advantages and disadvantages may be
found in [6, 7].

3.1 Initial Data in Each Processor

Let us have NP = 2np processors enumerated from 0 to NP − 1. Let us also assume
that m + 1 = 2l = p(k + 1), p = 2lp, k + 1 = 2lk, l = lk + lp, (l, lp, lk ∈ Z). For FSV
and both variants of GM, the computational domain is decomposed into number of
strips equal to the number of processors. Their length is LSTRIP = 2l−np except
the last one, which length is LSTRIP − 1. The nature of the considered solvers,
in particular the size and the structure of the systems solved incompletely, requires
the data related to these strips to be duplicated in some of the processors. It is
done in two different ways illustrated in Figure 2 - one for PGMS and one for PFSV
and PGMF. Algorithm PGMS requires the data to be duplicated only in the master

LSTRIP−1LSTRIP

1:
2:
3:
4:
5:
6:
7:

0: 0:
1:
2:
3:
4:
5:
6:
7:

LSTRIP LSTRIP−1

PFSV, PGMF PGMS

Figure 2: Initial data in each processor, P=8

processor 0, while for the remaining algorithms it should also be done in a specific
manner in all even numbered processors.

So the initial data is generated as follows: Each processor contains the whole
matrix T and the elements of the matrix B corresponding to one or more successive
strips (see Fig. 2). For PFSV and PGMF also parts of the right–hand side have to
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be duplicated, while for PGMS it is enough that each processor has the components
of f only for one strip. The first advantage of PGMS is the less required memory for
the initial data.

3.2 Parallel Implementation of FSV

Both FR and BR of PFSV are divided into two stages. First one corresponds to the
values of k for which sequential SRHS is used. The second one is for the case when
the size of the subsystems solved incompletely is larger than LSTRIP and a parallel
implementation of SRHS (PSRHS) should be used to improve the load balance of
the computer system. This means that each of the loops on k (see Algorithm
FSV) should be divided into two parts, namely k = 1, . . . , l − np and k = l − np +
1, . . . , l−1 for FR and in the reverse order for BR. All the processors have to complete
equal amount of computations since for a given k in fact they have to solve 2l−k−np

subsystems with SRHS in the first stage and one subsystem with PSRHS (described
in the next Section) for the second one.

For the first stage of FR the communications are local – one component of the
solution and one component of the right–hand side have to be sent from the processor
myid to myid−1. For the second stage the same data have to be transferred, but now
between processors which are not neighbors. Additional global communications are
required in PSRHS. For the case k = l, . . . , l − np + 1 of BR, except communications
for PSRHS, only one component of the solution should be transferred, but to all
processors which will need it. For the other case no communications are required.

3.3 Parallel Implementation of SRHS

Parallelization of Algorithm SRHS is required in all of the considered solvers. In
PGMS it is called only once, while in PFSV and PGMF it is done for each k of the
second stage of FR and BR. The input and the output data of PSRHS is handled in
two slightly different ways – one for PGMS and one for the remaining solvers. Hence
some additional communications are to be performed in the second case. The version
of PSRHS, schematically presented below, is used in PGMS.
Algorithm PSRHS

Step 0. compute {qk, λk} (preprocessing step);
Step 1. compute βi,k i = 1, . . . , n, k = 1, . . . , m ,

⎛⎜⎜⎜⎝
P0 P1 P2 P3

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

P0

P1

P2

P3

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
P0 P1 P2 P3

⎞⎟⎟⎟⎠ ;
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Fn×d Qd×m Betan×m

Step 2. solve (λk In + T ) ηk = βk, k = 1, . . . , m/NP ;
Step 3. recover xj , j = j′1, j

′
2, . . . , j

′
r ,

xj =

⎛⎜⎜⎜⎝
P0 P1 P2 P3

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

P0

P1

P2

P3

⎞⎟⎟⎟⎟⎠ .

Qm×m Vm

End {PSRHS}.
In the preprocessing step the master solves the eigenproblem and distributes the

data in the required way. Computations and communications at Step 1 are the same as
if we have to perform matrix × matrix multiplication. The data for this multiplication
is distributed as follows: Left matrix is divided in strips by columns, right - by rows,
and the product should be distributed among processors again in strips by columns.
This multiplication requires global collective communications (scatter and reduce =
gather + broadcast). Computations are divided into equal parts. For the next Step
2 each processor have to solve m/NP independent tridiagonal systems without any
communications. The third step is performed in similar way as Step 1 with the only
difference that the second matrix and the result are now column vectors.

3.4 Parallel Implementation of GM

Both algorithms PGMF and PGMS may be presented in a compact form as follows:
Algorithm PGM

Step 1. solve p / NP systems with A(k)
s using Algorithm SM;

communications one to one: 1 vector of size n;
compute f̃ (2);

Step 2. solve incompletely Ax̂ = f̂ using Algorithm PSRHS (for PGMS)
or Algorithm PFSV (for PGMF);

Step 3. communications one to one: 1 vector of size n;
compute f̃ (1);
solve p / NP systems with A(k)

s using Algorithm SM;
End {PGM}.

The first and the last steps are solution of p/NP systems with Algorithm SM,
i.e. all the processors perform equal amount of work. To compute the related right–
hand sides one vector of size n has to be transferred to one of the neighbors. Step 2
is handled either by PFSV or by PSRHS, which were discussed above. Note that the
number of stages in PGMS at which communications are needed is a constant, while
in PFSV and PGMF it depends on both size of the problem and used processors.
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4 Numerical Tests

We implemented the presented parallel solvers in C using MPI standard. The achieved
performance on two coarse-grained parallel platforms, referred to as Grendel and Be-
owulf, is analyzed. Grendel is a Silicon Graphics Origin 2000 with 8 R10000 processors
at 250MHz, 4MB L2 cache and 4GB of RAM. Beowulf is a Beowulf cluster of 16 Digi-
tal (Compaq) Personal Workstations 500au with one EV56 processor at 500MHz and
128MB RAM per node, connected via 100Mbps switched Ethernet. To illustrate the
properties of the considered algorithms and the related code on both machines, we
present here results obtained for the case of variable coefficients of the problem (1).

Test example: The coefficients are a1(x1) = 1 + x2
1, a2(x2) = e−x2 . The function

u(x1, x2) = (1−x1)x1x2(1−x2) is taken for the solution u(x1, x2) and the right-hand
side f(x1, x2) = 2x2(1 − x2)(3x

2
1 − x1 + 1) + e−x2x1(1 − x1)(3 − 2x2) corresponds to

the above data.
The related discrete problem has N = n2 degrees of freedom. It is obtained by

five-point difference scheme applied on uniform n × n mesh with mesh parameter
h = 1/(n + 1), and m = n. We use the decomposition n + 1 = p(k + 1) for various
p and k ∈ Z. All the algorithms are direct and the error of the solution is in fact
the error of the FDM approximation plus round-off. We compare in Table 1 the

Table 1: Results for the Sequential Algorithms

Platform n FSV GMF GMS ‖u − uh‖l2

k=3 k=7 k=3 k=7
255 3.12 3.02 2.90 1.99 1.02 8.43e-8

Grendel 511 19.01 19.29 11.66 18.64 7.94 2.11e-8
1023 87.62 87.49 73.61 117.79 86.03 5.27e-9
255 6.91 6.95 4.02 4.48 2.53 8.43e-8

Beowulf 511 28.57 28.42 16.88 23.04 12.79 2.11e-8
1023 121.33 120.67 74.45 133.99 72.65 5.27e-9

computation times in seconds for the sequential algorithms on both platforms. First
column tells the machine, and the second one - the value of n. The third column
presents the cpu-time for the FSV algorithm. Next four columns are grouped by two
and give the times for PGMF and PGMS for two different values of k, k = 3 and
k = 7. For larger k the standard marching algorithm for this example is not stable.
How the stability of SM affects the error for GMF is shown in [5]. In the last column
is the discrete l2 norm of the point-wise error of the computed solution, which up to a
round–off should be one and the same for all of the considered methods. All reported
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times in seconds in this section are the best ones obtained from 3 executions of the
code on a given machine. We observe that the times on Grendel are smaller in general
than those on Beowulf. But for both machines the behavior of the studied solvers is
similar. Times for k = 7 for both GMF and GMS are better than those for k = 3.
For small sized problems (n = 255, n = 511), the algorithm GMS is the fastest one.
But, as it was expected, for n = 1023 it is the slowest one. The times for FSV are
almost the same as those for k = 3 of GMF.

In the next two Tables 2 and 3 are reported the measured times for the related

Table 2: Results for the Parallel Algorithms on Grendel, k = 7

PFSV PGMF PGMS
n NP TNP SNP ENP TNP SNP ENP TNP SNP ENP

2 2.47 – – 1.60 – – 1.07 – –
255 4 1.42 1.74 0.87 0.89 1.80 0.90 0.63 1.70 0.85

8 1.08 2.29 0.57 0.65 2.46 0.62 0.37 2.89 0.72
2 16.86 – – 10.52 – – 7.59 – –

511 4 8.85 1.91 0.96 5.73 1.84 0.92 3.95 1.92 0.96
8 4.98 3.39 0.85 3.28 3.21 0.80 2.24 3.39 0.85
2 79.59 – – 49.53 – – 50.96 – –

1023 4 41.63 1.91 0.96 26.13 1.90 0.95 24.00 2.12 1.06
8 29.38 2.71 0.68 16.19 3.06 0.77 12.49 4.08 1.02

Table 3: Results for the Parallel Algorithms on Beowulf, k = 7

PFSV PGMF PGMS
n NP TNP SNP ENP TNP SNP ENP TNP SNP ENP

2 8.94 – – 6.31 – – 2.29 – –
255 4 3.90 2.29 1.15 2.72 2.32 1.16 1.74 1.32 0.66

8 2.31 3.87 0.97 1.55 4.07 1.02 1.11 2.06 0.52
2 47.52 – – 36.02 – – 13.28 – –

511 4 23.40 2.03 1.02 17.83 2.02 1.01 8.51 1.56 0.78
8 15.44 3.07 0.77 13.35 2.70 0.67 8.14 1.63 0.41
2 271.13 – – 227.04 – – 89.46 – –

1023 4 165.57 1.64 0.82 148.74 1.53 0.77 50.45 1.77 0.89
8 126.88 2.14 0.53 125.18 1.81 0.45 41.07 2.18 0.55
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parallel algorithms and the achieved speed-up and efficiency on Grendel and Beowulf
respectively. The format of both tables is the following: first column characterizes the
size of the problem – n is given where the number of unknowns is N = n2. The second
column shows the number NP of the used processors. The rest of the columns are in
groups of three – one for each algorithm. In each group first column stands for the
measured cpu-time. The case k = 7 is presented for the variants of the parallel GM.
The second column in each group is for the speed-up SNP = T2

TNP
and the third one is

for the efficiency ENP = 2 T2

NP TNP
. The theoretical upper bounds for the speed-up and

the efficiency for these cases are SNP ≤ NP
2

and ENP ≤ 1.
Let us first see what happens on Grendel (Table 2). The tendency for each of the

algorithms is that SNP and ENP increase for larger size of the problem, and E4 > E8.
There is an additional penalty in the speed-up (and the efficiency) for NP = 8 in
the case n = 1023 because Grendel has only 8 processors. The algorithm with best
speed-up for NP = 4 is changed when the value of n is varied. For the case NP = 8
the ”winner” is always PGMS. The cpu-times for PGMS are the smallest for all values
of n and NP .

Let us now look at the results on Beowulf (Table 3). Again cpu-times of PGMS are
the smallest in all cases, but behavior of the speed-up and the efficiency is completely
different. For algorithms PFSV and PGMF the efficiency decreases for larger values
of n, while for PGMS it increases. The ”winner” is again changed, but now PGMS is
the looser for n = 255, 511 and NP = 4, 8. For large sized problems, i.e. n = 1023,
PGMS has the best efficiency for both NP = 4, 8, although it is not close to the
theoretical upper bound.

In the last Table 4 are compared times for PGMF and PGMS on Grendel for

Table 4: Comparison of PGMF and PGMS on Grendel, k = 7, Ts2 - time for Step 2;
Tr - time for Step 1 + Step3; T c

i -time for communications (i=s2, r)

PGMF PGMS
n NP TNP Tr Ts2 T c

r T c
s2 TNP Tr Ts2 T c

r T c
s2

2 10.52 4.10 6.42 0.04 0.11 7.59 4.31 3.28 0.02 0.11
511 4 5.73 2.15 3.58 0.05 0.29 3.95 2.16 1.79 0.05 0.20

8 3.28 1.16 2.12 0.10 0.40 2.24 1.11 1.13 0.05 0.30

2 50.85 19.85 31.00 0.89 0.51 50.96 19.24 31.72 0.08 0.40
1023 4 26.69 10.22 16.47 0.91 0.73 24.00 9.31 14.69 0.11 0.77

8 16.19 6.50 9.69 1.93 1.42 12.49 4.76 7.73 0.11 1.34
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n = 511 and n = 1023. The second column tells the number of processors. Rest
of the columns form two groups – one for each algorithm. The time for the whole
algorithm is presented in the first one. The next two columns in each group show the
time Tr for Step 1 and 3 and Ts2 for Step 2 respectively. The last two columns are for
the communication time again for Step 1 and 3 (T c

r ) and for Step 2 (T c
s2). The time

Tr is almost one and the same for both versions of GM and for the smaller size of the
problem, Step 2 takes less time. Communication time is not very big on Grendel and
hence it does not affect the speed-up as much as the total number of its processors.

Unfortunately, there were some problems on Beowulf and we were not able to fill
similar table for it. Nevertheless, the presented results are enough to conclude that
sometimes the slowest of our sequential solvers has the best parallel performance.

5 Concluding Remarks

The parallel performance of three direct separable solvers was compared. The behav-
ior of the speed-up and efficiency of PFSV and PGMF was completely different on the
different platforms we considered. For PGMS it was one and the same, although the
values on Beowulf were smaller. The prediction that on some machines the slowest
sequential solver will have the best parallel performance was confirmed.

Plans for future work on this topic include: a) MPI/OpenMP modification of
the code (PFSV and both PGM); b)more experiments on (coarse- and fine-grained)
shared memory, distributed memory and heterogeneous systems; c) generalizations
of the considered solvers to 3D case; and d) development of efficient preconditioners
(sequential and parallel) on the base of FSV and both GM.
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