
Numerical study of the performance of
preconditioners based on algebraic multigrid

method and approximate sparse inverses

Veselin Dobrev, Richard Ewing, Raytcho Lazarov, and Joseph Pasciak ∗

Abstract

Application of algebraic multigrid method and approximate sparse inverses are
applied as preconditioners for large algebraic systems arising in approximation of
diffusion-reaction problems in 3-dimensional complex domains. Here we report
the results of numerical experiments when using highly graded and locally refined
meshes for problems with non-homogeneous and anisotropic coefficients that have
small features and almost singular solutions. For the discretization of the domain
and the finite element approximation we have used the system AGGIEFEM, a uni-
versal computational tool for PDEs developed in the VIGRE seminar in Introduction
to Scientific Computing at TAMU. For solving the algebraic system we have used
ParaSails and BoomerAMG preconditioners that are part of the HYPRE (High
Performance Preconditioners) library developed in CASC at Lawrence Livermore
National Laboratory.

1 Introduction

In this report we summarize the results of computational experiments intended to test
and compare different types of preconditioners for solving large-scale systems of linear
equations arising from the discretization of 3-D self-adjoint elliptic partial differential
equations. Our aim was to make test problems that are related to realistic situations in
the modeling of flows in porous media that have some specific characteristics:

• the domain has a complex structure in both geometry and physics involving the
porous media;

• the media inside the domain has layered structure and the diffusion coefficients vary
by orders of magnitude from one layer to another;

∗This research has been supported by Saudi Aramco Oil Company through a gift grant to the Institute
of Scientific Computation, TAMU

1

• the layers have different thicknesses: there are layers with thickness comparable to
the size of the domain as well as ones that are very thin;

• the very thin layers might be highly anisotropic (the permeability in the vertical
direction is much lower); and

• there are small features inside the domain, these are needle-like regions with very
high permeability.

All of these characteristics of the differential equation give rise (after discretization) to
large ill-conditioned linear systems of equations, which are computationally challenging
to solve, especially if considered as an intermediate step in a non-linear and/or time
dependent iteration.

To accurately capture the jumps of the coefficients, we consider discretizations on
unstructured meshes that are aligned with the jumps. Because of the character of these
jumps, such discretizations generate elements that are in general not quasi-uniform: very
small or very large elements and also geometrically anisotropic (thin) elements (inside the
thin layers). Additionally, since the typical solutions of such equations have singularities,
we also consider locally refined meshes.

For the purpose of our tests, we consider a set of meshes with varying mesh sizes (both
globally and locally) which give rise to linear systems with a relatively wide range of sizes.
In our comparison of the preconditioners, we consider the two stages that are involved in
their use:

• construction of the preconditioner – measured in terms of the setup time;

• solving the linear system – measured in number of iterations needed for the iterative
method to converge and the total time for solving.

We measure these characteristics of the preconditioners on our set of test problems, and
we solve them on 1, 2, 4, 6, and 8 processors. Thus, we can measure the scalability with
respect to the size of the problem as well as the parallel efficiency.

We tested the following two preconditioners from the HYPRE (High Performance
Preconditioners) library developed in Lawrence Livermore National Laboratory 1:

• ParaSails – parallel implementation of a sparse approximate inverse preconditioner
(see the references [3] and [4]) and

• BoomerAMG – parallel implementation of algebraic multigrid (see, e.g. [5, 6, 7].

In both cases, the default set of parameters of the preconditioners was used.
In all computations, the preconditioned conjugate gradient (PCG) method was used

with the default (for the HYPRE implementation of PCG) absolute stopping criterion

1http://www.llnl.gov/CASC

2

and tolerance 10−9. All computations were performed on a SGI ORIGIN 2000 computer
with 8 MIPS R10000 processors running at 250MHz with 4MB L2 cache and total main
memory of 4GB.

The algebraic multigrid (AMG) was first introduced in the 1980’s [1, 2, 9]. The main
advantage of the AMG algorithm when compared to standard multigrid is that it does
not require access to any additional information (such as hierarchy of grids, coarse-grid
and interpolation matrices) — the algorithm constructs them itself. Thus, it is applicable
to linear systems arising from the discretization of PDEs on large unstructured grids. In
the same time its performance is comparable to the performance of standard multigrid.
Also, AMG has been successfully applied to problems with large jumps in the coefficients
and/or anisotropic coefficients as well as to non-symmetric problems.

The application of an algorithm to the solution of problems involving very large num-
ber of unknowns naturally leads to the necessity of parallelizing that algorithm. The
original formulation of AMG contained part (the coarse-grid selection) that is sequential
in nature. To overcome this drawback new coarsening algorithms were proposed [5, 6].
Subsequently, these algorithms as well as some other approaches were implemented in the
HYPRE library with the name BoomerAMG. Their description along with a wide range
of numerical experiments can be found in [7].

2 Description of the Model Problem

We consider the following model problem:

−∇ · (k · ∇u) = 0, in Ω

n · (k · ∇u) = 0, on ΓN

u = u0, on ΓD,

where the domain Ω is the cube Ω = (−1, 1)3. The domain includes a well in its center
Ω5 = (−0.01, 0.01)2 × (0, 1),and has 4 layers with different thicknesses (see Figure 1),

Ω1 = {Ω ∩ {0.5 < z < 1}} \ Ω5

Ω2 = {Ω ∩ {0.45 < z < 0.5}} \ Ω5

Ω3 = {Ω ∩ {0.2 < z < 0.45}} \ Ω5

Ω4 = {Ω ∩ {−1 < z < 0.2}} \ Ω5.

The Dirichlet part of the boundary, ΓD, consists of the bottom of the domain and the top
of the well, i.e. ΓD = ∂Ω ∩ {{z = −1} ∪ ∂Ω5}, while the rest of the boundary forms the
Neumann boundary ΓN = ∂Ω \ ΓD. The permeability coefficient k has different values in
the different layers and inside the well:

k(x, y, z) = ki(x, y, z) for (x, y, z) ∈ Ωi, i = 1, 2, 3, 4, 5

3

Figure 1: Plot of the domain with the subdomains

namely

k1 = diag(4, 1, 1),

k2 = diag(0.2, 0.2, 0.01),

k3 = diag(1, 3, 1),

k4 = diag(1, 1, 1),

k5 = diag(104, 104, 104).

The Dirichlet boundary conditions are

u0 =

{
1, on ΓD ∩ {z = −1} (bottom of the domain)

2, on ΓD ∩ {z = 1} (top of the well).

This problem is a prototype of a steady-state flow in layered porous media with a well
that penetrates part of the reservoir.

3 Discretizations of the Problem

The domain Ω was discretized into tetrahedra using the mesh generator NETGEN 2 (see
also [8, 10]). The mesh was generated in such a way that each tetrahedron is contained

2http://www.sfb013.uni-linz.ac.at/~joachim/netgen/

4

Figure 2: Cross section of the initial discretization of the domain, i.e., mesh 0 − 0

completely in just one subdomain, which means that the mesh is aligned with the jumps
of the coefficient k (see Figure 2.) Starting with this initial mesh, the mesh “m − n” (or
discretization on the domain) is obtained by two steps:

• m times uniform refinement of the whole mesh (each tetrahedron is divided into 8
tetrahedra on each step) and then

• (n − m) times refinement of all tetrahedra inside the well (i.e., in subdomain Ω5)
while the tetrahedra in the other subdomains are refined only to maintain the mesh
conforming.

We considered the meshes “m − n” for m = 0, 1, 2, and n = m, . . . , 4. The character-
istics of the mesh, such as number of finite elements, number of mesh points, and number
of finite elements in the “well”-region are given in Table 1.

4 Computational Results with ParaSails

All figures in this Section have logarithmic scale axes in both x and y directions. Thus,
the functions c.xα are represented as straight lines with slope α and also a function f(x)
that is bounded from below by c1.x

α and from above by c2.x
α and has its graph situated

between the two parallel lines representing the graphs of the functions ci.x
α, i = 1, 2. So,

to illustrate such behavior of the plotted quantities, we include the graph of a function
c.xα for some particular α.

5

of FEs # of FE in Ω5 # of unknowns

0 − 0 7,339 147 1,475

0 − 1 25,939 1,176 4,847

0 − 2 52,514 9,408 9,481

0 − 3 173,806 75,264 30,361

0 − 4 892,252 602,112 152,438

1 − 1 58,712 1,176 10,693

1 − 2 82,048 9,408 14,799

1 − 3 202,358 75,264 35,543

1 − 4 920,592 602,112 157,626

2 − 2 469,696 9,408 81,717

2 − 3 580,352 75,264 100,854

2 − 4 1,291,124 602,112 221,700

Table 1: Mesh characteristics

In Figure 3, the number of the iterations in the PCG method, Nit, (as a function of
the size of the system of linear equations, N) are given for all test problems and when
p = 1, 2, 4, 6, and 8 processors were used. Clearly, the graphs for different p overlap, which
means that the ParaSails preconditioner is independent of the number of processors used.
The dashed line illustrates the observed dependence of the number of the iterations on
the size of the problem:

Nit ∼ c.
√

N.

In Figure 4, the time for the construction of the preconditioner, tc, (or setup time) is
given as a function of N . Here, we see that:

tc ∼ c(p).N,

where c(p) is a function depending on the number of processors, p.
In Figure 5, the time for solving the linear system with the PCG, ts, is given as a

function of the size of the system, N . In this case, the observed dependence is:

ts ∼ c(p).N
3
2 ,

which is natural in view of the dependency of Nit on N .
Next, we explore how the setup time, tc, and the solution time, ts, depend on the

number of the processors, p. Since both these times change considerably with the change
of N , we plot the results only for the largest three problems. Figures 6 and 7 give tc and
ts correspondingly as functions of p. Taking into account our earlier observations, we see
that for the setup time we have the relation:

tc ∼ c.N√
p

.

6

10
3

10
4

10
5

10
6

10
1

10
2

10
3

Number of unknowns, N

N
um

be
r

of
 it

er
at

io
ns

, P
ar

aS
ai

ls

1 proc
2 proc
4 proc
6 proc
8 proc
c.N0.5

Figure 3: Number of iterations on a multi-processor computer

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

Number of unknowns, N

P
ar

aS
ai

ls
 s

et
up

 ti
m

e,
 s

ec
.

1 proc
2 proc
4 proc
6 proc
8 proc
c.N

Figure 4: Setup time

7

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

Number of unknowns, N

P
ar

aS
ai

ls
 ti

m
e

fo
r

so
lv

in
g,

 s
ec

.

1 proc
2 proc
4 proc
6 proc
8 proc
c.N1.5

Figure 5: Time for solving

It is more difficult to determine the dependency of ts on p, but one good choice is:

ts ∼ c.N
3
2

pα
, with 1/2 < α < 1.

5 Computational Results with BoomerAMG

For BoomerAMG, we consider an algebraic problem with the same characteristics as in
the case of ParaSails.

The number of iterations in the PCG algorithm is given in Figure 8. The plot is
quite chaotic, but still we can observe two facts: the preconditioner (and therefore the
number of the iterations) changes a little when the number of the processors used in the
computation is changed, and more importantly the number of the iterations is bounded:
for any size of the problem, N , and any number of processors, p, it is less than 17.

In Figure 9 we give the setup time, tc, as a function of the size of the problem, N , and
for the different values of p. We can clearly see that the setup time depends linearly on
the size of the problem

tc ∼ c(p).N,

but the dependency on the number of processors is more difficult to determine. For all
problems, the fastest setup time was on one processor. Another observation is that for
the smallest problem, the time is increasing with the number of the processors, whereas
for the largest problem, the time decreases when p increases from 2 to 8, which is what
one usually expects. In Figure 11, the setup time as a function of p is given for the

8

1 2 4 6 8

10

15

20

30

Number of processors, p

P
ar

aS
ai

ls
 ti

m
e

fo
r

se
tu

p,
 s

ec
.

N=152,438
N=157,626
N=221,700
c.p−1
c.p−0.5

Figure 6: Parallel efficiency of setup

1 2 4 6 8

100

200

400

Number of processors, p

P
ar

aS
ai

ls
 ti

m
e

fo
r

so
lv

in
g,

 s
ec

.

N=152,438
N=157,626
N=221,700
c.p−1
c.p−0.5

Figure 7: Parallel efficiency of solving

9

10
3

10
4

10
5

10
6

10

11

12

13

14

15

16

17

Number of unknowns, N

N
um

be
r

of
 it

er
at

io
ns

, B
oo

m
er

A
M

G

1 proc
2 proc
4 proc
6 proc
8 proc

Figure 8: Number of iterations

largest three problems. From these plots, we cannot draw any definite conclusion about
the dependency of tc on p.

The results for the solution time, ts, are presented in Figure 10, where we can see that
the dependency of ts on the size N is linear

ts ∼ c(p).N .

Once again the dependency on p is different for the different sizes of the corresponding
linear system: for the smallest problem the solution time increases with p, whereas for
the largest problem, it decreases when p increases. In Figure 12, the dependency of ts on
p for the largest three problems is given, and at least for the largest problem, ts decreases
proportionally to 1/

√
p.

6 Comparison of ParaSails and BoomerAMG

We compare the two preconditioners by plotting the ratios (either BoomerAMG/ParaSails
or ParaSails/BoomerAMG) of the measured times: setup time, solution time and in
addition, the total time, i.e., setup time plus solution time, tc + ts.

We start with the comparison of the setup times, which is given in Figure 13. We see
that for small problems on one processor, BoomerAMG is faster, but with the increasing
of the size of the problem and the number of processors used, ParaSails is getting better
and in most of the considered cases, its setup time is smaller.

The solution times are compared in Figure 14. The graphics show that for small prob-
lems ParaSails is faster, but with the increase of the size of the problem BoomerAMG is

10

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

Number of unknowns, N

B
oo

m
er

A
M

G
 s

et
up

 ti
m

e,
 s

ec
.

1 proc
2 proc
4 proc
6 proc
8 proc
c.N

Figure 9: Setup time

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

Number of unknowns, N

B
oo

m
er

A
M

G
 ti

m
e

fo
r

so
lv

in
g,

 s
ec

.

1 proc
2 proc
4 proc
6 proc
8 proc
c.N

Figure 10: Time for solving

11

1 2 4 6 8

40

60

90

120

Number of processors, p

B
oo

m
er

A
M

G
 ti

m
e

fo
r

se
tu

p,
 s

ec
.

N=152,438
N=157,626
N=221,700
c.p−0.5

Figure 11: Parallel efficiency of the setup part

1 2 4 6 8

30

40

50

60

70

Number of processors, p

B
oo

m
er

A
M

G
 ti

m
e

fo
r

so
lv

in
g,

 s
ec

.

N=152,438
N=157,626
N=221,700
c.p−1
c.p−0.5

Figure 12: Parallel efficiency of the solution part

12

10
3

10
4

10
5

10
6

0

1

2

3

4

5

6

7

8

9

10

Number of unknowns, N

B
oo

m
er

A
M

G
 /

P
ar

aS
ai

ls
 s

et
up

 ti
m

e

1 proc
2 proc
4 proc
6 proc
8 proc
ratio 1

Figure 13: Ratio of setup time (BoomerAMG/ParaSails)

performing better. Another observation is that with the increase of the number of pro-
cessors, the time for solving with ParaSails decreases faster than that with BoomerAMG,
and therefore, as seen in the Figure 14, the plotted ratios decrease.

The comparison of the total (setup + solution) times is presented in Figure 15. For
the most of the problems on one and two processors, BoomerAMG performs better than
ParaSails. If more processors are used, the latter has the advantage for most of the
problems. Exceptions are the largest problem and some other large problems where
BoomerAMG is again faster.

In the next three Figures, we present the comparison of the three times as functions
of the number of processors. We consider the results only for the largest three problems.

The ratios of the setup times are given in Figure 16. In all cases, ParaSails is better:
on one processor it is about 50% faster and with the increase of p its advantage increases
and on 6 and 8 processors it is about 8 to 10 times faster.

The comparison of the time for solving is given in Figure 17. Here, BoomerAMG
has the advantage in all cases, but the ratios decrease with the increase of the number
of processors, p, that is the solution time with ParaSails decreases faster than that with
BoomerAMG.

In Figure 18, the ratios of the total times are presented. On one processor, Boomer-
AMG is about 4 to 5 times faster, but with the increase of p, its big advantage decreases,
and on 6 and 8 processors, the times of the two preconditioners are comparable with a
difference that is within 30%.

13

10
3

10
4

10
5

10
6

0

1

2

3

4

5

6

7

Number of unknowns, N

P
ar

aS
ai

ls
 /

B
oo

m
er

A
M

G
 ti

m
e

fo
r

so
lv

in
g

1 proc
2 proc
4 proc
6 proc
8 proc
ratio 1

Figure 14: Ratio of time for solving (ParaSails/BoomerAMG)

10
3

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of unknowns, N

P
ar

aS
ai

ls
 /

B
oo

m
er

A
M

G
 to

ta
l t

im
e

1 proc
2 proc
4 proc
6 proc
8 proc
ratio 1

Figure 15: Ratio of total time (ParaSails/BoomerAMG)

14

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

10

Number of processors, p

B
oo

m
er

A
M

G
 /

P
ar

aS
ai

ls
 s

et
up

 ti
m

e

N=152,438
N=157,626
N=221,700
ratio 1

Figure 16: Ratio of setup time (BoomerAMG/ParaSails)

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

Number of processors, p

P
ar

aS
ai

ls
 /

B
oo

m
er

A
M

G
 ti

m
e

fo
r

so
lv

in
g

N=152,438
N=157,626
N=221,700
ratio 1

Figure 17: Ratio of time for solving (ParaSails/BoomerAMG)

15

1 2 3 4 5 6 7 8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of processors, p

B
oo

m
er

A
M

G
 /

P
ar

aS
ai

ls
 to

ta
l t

im
e

N=152,438
N=157,626
N=221,700
ratio 1

Figure 18: Ratio of total time (BoomerAMG/ParaSails)

7 Sensitivity of the preconditioners to increase of the

anisotropy of the permiability coefficient

In this section we consider a slightly modified model problem, namely we increase the
anisotropy in the thin layer Ω2 from 5% to 1%, i. e. we set

k2 = diag(0.2, 0.2, 0.002)

and we also interchange the Dirichlet boundary conditions on the top of the “well” region
Ω5 and on the bottom of the domain:

u0 =

{
2, on ΓD ∩ {z = −1} (bottom of the domain)

1, on ΓD ∩ {z = 1} (top of the well).

In Tables 2 – 7 the raw results (on 1, 4, and 8 processors) for both the original model
problem and the modified one are given.

The effect of the increase of the anisotropy on the performance of ParaSails and
BoomerAMG (in terms of number of iterations, setup time, and solution time) is bet-
ter illustrated on Figures 19 – 24 where we plot the ratios of the corresponding quantities
– “result with 1%” / “result with 5%”.

For ParaSails the increase of the number of the iterations is relatively small – it is at
most 3.5%, the change in the setup time is between −10% and +15%, and the change in
the solution time is between −10% and +17%. Note that the ratios are closer to 1 for the
large problems.

16

iter setup solve
problem 5% 1% 5% 1% 5% 1%

0 − 0 63 65 0.27 0.28 0.12 0.12
0 − 1 117 120 0.69 0.69 0.75 0.77
0 − 2 194 196 1.24 1.24 2.48 2.51
0 − 3 355 358 3.96 3.93 22.92 22.60
0 − 4 717 719 21.93 21.86 279.41 290.62
1 − 1 152 154 1.45 1.45 2.34 2.32
1 − 2 225 225 1.96 1.96 5.52 5.41
1 − 3 383 389 4.63 4.70 28.60 29.75
1 − 4 732 735 22.55 22.52 296.10 301.01
2 − 2 323 326 11.88 11.85 64.58 66.24
2 − 3 476 484 14.37 14.38 119.06 122.62
2 − 4 809 820 32.80 32.56 485.30 481.69

Table 2: ParaSails, p = 1

The relative change in the number of the iterations for BoomerAMG is larger than
that for ParaSails – it is between −30% and +30%, but in absolute terms the difference is
small – at most 3 iterations. The change in the setup time is in the range −15% – +10%,
and it is closer to 0% for the large problems. The change in the solution time is between
−30% and +25% which is mainly due to the change in the iteration numbers.

8 Notations

Ω – domain
Ωi – various subdomains (layers, “well” subregion, etc.)
Γ – boundary of Ω
ΓD – part of the boundary Ω where Dirichlet boundary conditions are specified
ΓN – part of the boundary Ω where Neumann boundary conditions are specified
N – size of the linear system of equations
Nit – number of iterations for solving the linear system
p – number of processors
tc – time for setting up the precondotioner
ts – time for solving the linear system

17

iter setup solve
problem 5% 1% 5% 1% 5% 1%

0 − 0 12 10 0.13 0.14 0.14 0.12
0 − 1 12 11 0.50 0.50 0.55 0.53
0 − 2 11 11 1.11 1.14 1.45 1.46
0 − 3 16 13 4.39 4.42 9.15 7.70
0 − 4 13 14 32.42 33.07 47.52 51.95
1 − 1 14 11 1.07 1.09 1.67 1.37
1 − 2 14 13 1.68 1.71 2.76 2.54
1 − 3 12 15 5.18 5.10 8.29 9.99
1 − 4 12 13 33.19 33.50 45.74 49.28
2 − 2 13 14 15.18 15.33 24.60 26.30
2 − 3 12 12 19.46 19.36 29.04 29.38
2 − 4 13 14 50.11 50.01 69.81 77.47

Table 3: BoomerAMG, p = 1

iter setup solve
problem 5% 1% 5% 1% 5% 1%

0 − 0 63 64 0.30 0.34 0.10 0.10
0 − 1 117 120 0.51 0.51 0.44 0.45
0 − 2 194 196 0.78 0.74 1.28 1.23
0 − 3 355 358 2.19 2.13 7.18 7.64
0 − 4 717 719 11.72 11.76 135.09 133.82
1 − 1 152 154 0.88 0.89 1.11 1.12
1 − 2 225 225 1.04 1.05 2.09 2.15
1 − 3 383 388 2.13 2.12 8.25 8.43
1 − 4 732 735 11.78 11.91 135.34 136.26
2 − 2 323 326 6.38 6.46 26.47 26.08
2 − 3 476 484 7.56 7.78 55.73 57.53
2 − 4 809 820 16.20 16.17 210.86 213.89

Table 4: ParaSails, p = 4

18

iter setup solve
problem 5% 1% 5% 1% 5% 1%

0 − 0 11 9 0.23 0.24 0.22 0.20
0 − 1 10 10 0.80 0.80 0.43 0.39
0 − 2 12 12 1.93 1.89 0.97 0.96
0 − 3 12 14 8.79 8.75 3.90 4.36
0 − 4 16 15 95.84 95.56 35.81 33.45
1 − 1 11 11 2.00 1.96 0.83 0.86
1 − 2 11 12 2.72 2.67 1.24 1.34
1 − 3 13 14 8.20 8.09 3.86 4.12
1 − 4 16 15 96.96 95.61 36.11 33.83
2 − 2 14 13 33.86 33.72 13.38 12.47
2 − 3 13 13 41.87 41.57 15.42 15.37
2 − 4 14 14 118.34 117.73 39.93 39.48

Table 5: BoomerAMG, p = 4

iter setup solve
problem 5% 1% 5% 1% 5% 1%

0 − 0 63 65 0.33 0.30 0.24 0.28
0 − 1 117 120 0.53 0.50 0.71 0.65
0 − 2 194 196 0.72 0.68 1.28 1.28
0 − 3 355 358 1.81 1.92 5.66 5.66
0 − 4 717 719 8.11 8.02 76.26 79.04
1 − 1 152 154 0.85 0.89 1.17 1.11
1 − 2 225 225 0.83 0.85 2.01 1.90
1 − 3 383 388 1.73 1.72 6.88 6.84
1 − 4 732 735 8.27 8.10 77.64 77.97
2 − 2 323 326 4.57 4.84 17.13 17.23
2 − 3 476 484 5.05 4.96 31.86 32.07
2 − 4 809 820 10.68 10.65 126.14 130.36

Table 6: ParaSails, p = 8

19

iter setup solve
problem 5% 1% 5% 1% 5% 1%

0 − 0 10 8 0.58 0.51 0.86 0.66
0 − 1 10 11 1.62 1.46 1.11 1.08
0 − 2 13 13 2.31 2.53 1.40 1.39
0 − 3 17 14 8.37 8.34 4.30 3.53
0 − 4 16 16 80.26 79.63 27.09 27.20
1 − 1 11 12 2.79 2.74 1.42 1.44
1 − 2 12 12 3.24 3.46 2.06 1.99
1 − 3 13 13 8.61 8.72 3.64 3.53
1 − 4 15 15 68.50 68.15 24.03 23.96
2 − 2 14 13 36.10 35.70 12.06 11.27
2 − 3 13 14 41.99 41.50 13.06 13.75
2 − 4 13 16 87.57 86.45 25.07 29.90

Table 7: BoomerAMG, p = 8

10
3

10
4

10
5

10
6

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

Number of unknowns, N

Ite
ra

tio
ns

 in
cr

ea
se

, P
ar

aS
ai

ls

1 proc
2 proc
4 proc
6 proc
8 proc

Figure 19: Increase of iterations with ParaSails

20

10
3

10
4

10
5

10
6

0.9

0.95

1

1.05

1.1

1.15

Number of unknowns, N

S
et

up
 ti

m
e

in
cr

ea
se

, P
ar

aS
ai

ls

1 proc
2 proc
4 proc
6 proc
8 proc

Figure 20: Increase of setup time with ParaSails

10
3

10
4

10
5

10
6

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Number of unknowns, N

S
ol

ve
 ti

m
e

in
cr

ea
se

, P
ar

aS
ai

ls

1 proc
2 proc
4 proc
6 proc
8 proc

Figure 21: Increase of solve time with ParaSails

21

10
3

10
4

10
5

10
6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of unknowns, N

Ite
ra

tio
ns

 in
cr

ea
se

, B
oo

m
er

A
M

G

1 proc
2 proc
4 proc
6 proc
8 proc

Figure 22: Increase of iterations with BoomerAMG

10
3

10
4

10
5

10
6

0.85

0.9

0.95

1

1.05

1.1

Number of unknowns, N

S
et

up
 ti

m
e

in
cr

ea
se

, B
oo

m
er

A
M

G

1 proc
2 proc
4 proc
6 proc
8 proc

Figure 23: Increase of setup time with BoomerAMG

22

10
3

10
4

10
5

10
6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of unknowns, N

S
ol

ve
 ti

m
e

in
cr

ea
se

, B
oo

m
er

A
M

G

1 proc
2 proc
4 proc
6 proc
8 proc

Figure 24: Increase of solve time with BoomerAMG

References

[1] A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for auto-
matic multigrid solutions with application to geodetic computations, Report, Inst. for
Computational Studies, Fort Collins, Colo., October 1982.

[2] A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for sparse
matrix equations, in Sparsity and Its Applications, D. J. Evans, ed., Cambridge
University Press, Cambridge, 1984.

[3] Chow, E., Parallel Implementation and Practical Use of Sparse Approximate Inverses
With A Priori Sparsity Patterns, Int’l J. High Perf. Comput. Appl., 15, pages 56–74,
2001 (http://www.llnl.gov/CASC/linear_solvers/pubs.html)

[4] Chow, E., A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Pre-
conditioners, SIAM Journal on Scientific Computing, 21(5), pages 1804–1822, 2000
(http://www.llnl.gov/CASC/linear_solvers/pubs.html)

[5] Cleary, A. J., R. D. Falgout, V. E. Henson, J. E. Jones, Coarse-Grid Selec-
tion for Parallel Algebraic Multigrid, in Proc. of the Fifth International Sympo-
sium on Solving Irregularly Structured Problems in Parallel, volume 1457 of Lec-
ture Notes in Computer Science, pages 104–115, New York, 1998. Springer-Verlag.
(http://www.llnl.gov/CASC/hypre/pubs.html)

[6] Cleary, A. J., R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F.
McCormick, G. N. Miranda, and J. W. Ruge, Robustness and Scalability of Algebraic

23

Multigrid, SIAM Journal on Scientific Computing, 21(5), pages 1886–1908, 2000.
(http://www.llnl.gov/CASC/hypre/pubs.html)

[7] Henson, V. E. and U. M. Yang, BoomerAMG: a Parallel Algebraic Multigrid Solver
and Preconditioner, Applied Numerical Mathematics, 41, pages 155–177, 2002.
(http://www.llnl.gov/CASC/hypre/pubs.html)

[8] M. Kuhn, U. Langer and J. Schoeberl, Scientific Computing Tools for 3D Magnetic
Field Problems, SFB-Report No. 99-13, Johannes Kepler Universität Linz, Spezial-
forschungsbereich F013, 4020 Linz, Austria, 1999.

[9] J. W. Ruge and K. Stüben, Algebraic multigrid (AMG), in: S. F. McCormick, ed.,
Multigrid Methods, vol. 3 of Frontiers in Applied Mathematics (SIAM, Philadelphia,
1987) 73–130.

[10] J. Schoeberl, NETGEN - An advancing front 2D/3D-mesh generator based
on abstract rules, Computing and Visualization in Science, 1 (1997), 41–52.
(http://www.sfb013.uni-linz.ac.at/~joachim/netgen/)

24

