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Abstract. In this paper we analyze a two-level preconditioner for finite element systems aris-
ing in approximations of second order elliptic boundary value problems by Crouzeix-Raviart
non-conforming triangular linear elements. This study is focused on the efficient implemen-
tation of the modified incomplete LU factorization MIC(0) as a preconditioner in the PCG
iterative method for the linear algebraic system. A special attention is given to the implemen-
tation of the method as a scalable parallel algorithm.
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1 Introduction

In this paper we consider the elliptic boundary value problem

Lu ≡ −∇ · (a(x)∇u(x)) = f(x) in Ω,
u = 0 on ΓD,

(a(x)∇u(x)) · n = 0 on ΓN ,
(1)

where Ω is a convex polygonal domain in IR2, f(x) is a given function in L2(Ω), a(x) = [aij(x)]2i,j=1

is a symmetric and uniformly positive definite matrix in Ω, n is the outward unit vector normal to
the boundary Γ = ∂Ω, and Γ = Γ̄D ∪ Γ̄N . We assume that the entries aij(x) are piece-wise smooth
functions on Ω̄. In the paper we use the terminology of the flow in porous media and we refer to u
as a pressure and −a(x)∇u(x) as a velocity vector.

The problem (1) can be discretized by the finite volume method, the Galerkin finite element
method (conforming or non-conforming) or the mixed finite element method. Each of these methods
has its advantages and disadvantages when the problem (1) is used in a particular application. For
example, for application related to highly heterogeneous porous media the finite volume and mixed
finite element methods have proven to be accurate and locally mass conservative. While applying
the mixed FEM to problem (1) the continuity of the velocity normal to the boundary between two
adjacent finite element could be enforced by Lagrange multipliers. In [2] Arnold and Brezzi have
demonstrated that after the elimination of the unknowns representing the pressure and the velocity
from the algebraic system the resulting Schur system for the Lagrange multipliers is equivalent to a
discretization of (1) by Galerkin method using linear non-conforming finite elements. Namely, in[2]
is shown that the lowest-order Raviart-Thomas mixed finite element approximations are equivalent
to the usual Crouzeix-Raviart non-conforming linear finite element approximations when the non-
conforming space is augmented with cubic bubbles. Further, such a relationship between the mixed
and non-conforming finite element methods has been studied and simplified for various finite element
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spaces (see, e.g. [1, 6]). The work in this direction resulted also in construction of efficient iterative
methods for solving mixed FE systems (see, e.g., [7–9]).

Galerkin method based on non-conforming Crouzeix-Raviart linear triangular finite elements has
been also used in the construction of so called locking-free approximations for parameter-dependent
problems. Furthermore, the stiffness matrix has a regular sparsity structure such that in each row
the number of non-zero entries is at most five.

Therefore, the development of efficient and parallelizable solution methods for non-conforming
finite element (FEM) systems is an important problem with a range of applications in scientific
computations and engineering. In this paper we construct and study a preconditioner for the algebraic
system obtained from discretization of (1) by non-conforming finite element. Our preconditioner is
based on MIC(0) factorization of the modified finite element stiffness matrix so that the condition
number of the preconditioned system is independent of the possible jumps in the coefficients of the
differential equation. Our analysis is done for problems in 2-D domains under the condition that the
jumps are aligned with the finite element partition. The study uses the main ideas of the recently
proposed highly parallelizable and efficient preconditioners based on MIC(0) for linear conforming
and rotated bilinear non-conforming finite elements (see, e.g. [5, 10]).

The rest of the paper is organized as follows. In Sections 2 and 3 we introduce the finite element
approximation and the two-level algorithm. In Section 4 we propose a locally modified sparse approx-
imation of the Schur complement and prove that the preconditioned Schur system has a condition
number that is bounded uniformly with respect to both the problem size and the possible jumps
of the coefficients. The algorithm has been analyzed in the case of coefficient and mesh isotropy.
Further, in Section 5 we derive estimates for the execution time on a multiprocessor computer sys-
tem which shows a good parallel scalability for large scale problems. Finally, in Section 6 we present
numerical results on a test problem that shows that the proposed parallel preconditioner preserves
the robustness and the computational efficiency of the standard MIC(0) factorization algorithm.

2 Finite element discretization

The domain Ω is partitioned using triangular elements. The partition is denoted by Th and is assumed
to be quasi-uniform with a characteristic mesh-size h. Most of our analysis is valid for general tensors
a(x), but here we restrict our considerations to the a(x) being a scalar function. The partition Th is
aligned with the discontinuities of the coefficient a(x) so that over each element e ∈ Th the function
a(x) is smooth. Further, we assume that Th is generated by first partitioning Ω into quadrilaterals
Q and then splitting each quadrilateral into two triangles by one of its diagonals, see Figure 1. To
simplify our considerations we assume that the splitting into quadrilaterals is topologically equivalent
to a square mesh.

The weak formulation of the above problem reads as follows: given f ∈ L2(Ω) find u ∈ H1
D(Ω) =

{v ∈ H1(Ω) : v = 0 on ΓD}, satisfying

A(u, v) = (f, v) ∀v ∈ H1
D(Ω), where A(u, v) =

∫
Ω

a(x)∇u(x) · ∇v(x)dx. (2)

We shall discretize this problem by using Crouzeix-Raviart non-conforming linear triangular finite
elements. The finite element space Vh consists of piece wise linear functions over Th determined by
their values in the midpoints of the edges of the triangles. The nodal basis functions of Vh have a
support of no more than two neighboring triangles where the corresponding node is the midpoint of
their common side. Then the finite element formulation is: find uh ∈ Vh, satisfying

Ah(uh, vh) = (f, vh) ∀vh ∈ Vh, where Ah(uh, vh) =
∑
e∈Th

∫
e

a(e)∇uh · ∇vhdx. (3)

Here a(e) is defined as the integral averaged value of a(x) over each e ∈ Th. We note that we
allow strong coefficient jumps across the boundaries between the adjacent finite elements. Now, the



standard computational procedure leads to the linear system of equations

Au = f , (4)

where A is the corresponding global stiffness matrix and u ∈ IRN is the vector of the unknown nodal
values of uh. The matrix A is sparse, symmetric and positive definite. For large scale problems, the
preconditioned conjugate gradient (PCG) method is known to be the best solution method. The
goal of this study is to present a robust and parallelizable preconditioner for the system (4).

3 The two-level algorithm

Since the triangulation Th is obtained by diagonal-wise subdividing each cell Q into two triangles,
see Figure 1 (a), we can partition the grid nodes into two groups. The first group contains the centers
of the quadrilateral super-elements Q ⊂ Ω (the midpoints of the diagonals that split Q into two
triangles) and the second group contains the rest of the nodes. With respect to this splitting, A
admits the following two-by-two block partitioning that can be written also in a block-factored form

A =
[

A11 A12

A21 A22

]
=

[
A11 0
A21 S

] [
I A−1

11 A12

0 I

]
, (5)

where S stands for the related Schur complement. Obviously, A11 is a diagonal matrix so that the
Schur complement S can be assembled from the corresponding super-element Schur complements
SQ = A22;Q − A21;QA−1

11;QA12;Q, i.e.

S =
∑

Q∈Th

LT
QSQLQ,

where LQ stands for the restriction mapping of the global vector of unknowns to the local one
corresponding to a macroelement Q containing two triangles. Such a procedure is called static con-
densation. We now introduce SQ, the local stiffness matrix for Q (in fact, this is the local Schur
complement matrix), and its approximation BQ:

SQ =

⎡
⎢⎢⎣

s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44

⎤
⎥⎥⎦ , BQ =

⎡
⎢⎢⎣

b11 s12 0 s14

s21 b22 s23 0
0 s32 b33 s34

s41 0 s43 b44

⎤
⎥⎥⎦ . (6)

Here b11 = s11 + s13, b22 = s22 + s24, b33 = s33 + s31, b44 = s44 + s42, which ensures that SQ and BQ

have equal rowsums. The definition of BQ corresponds to the node numbering as shown in Figure
1. Here the dash lines represent the connectivity pattern of (b) the local Schur complement SQ and
(c) its locally modified sparse approximation BQ. Assembling the local matrices BQ we get

B =
∑

Q∈Th

LT
QBQLQ. (7)

The structure of B could be interpreted as a skewed five point stencil. In a very general setting S
and B are spectrally equivalent.

After the static condensation step, the initial problem (4) is reduced to the solution of a system
with the Schur complement matrix S. At this point we apply the PCG method with a preconditioner
C defined as a MIC(0) factorization (see, e.g., [4]) of B, that is, C = CMIC(0)(B). This needs of course
B to allow for a stable MIC(0) factorization, which will be shown in Section 4.
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Fig. 1. (a) Node numbering of the super-element Q; (b) Connectivity pattern of SQ; (c) Connectivity pattern
of BQ.

4 Condition number analysis for a square mesh

The model problem we analyze in this section is set on a uniform square mesh. Then the element
stiffness matrix corresponding to the triangle element e ∈ Th has the form

Ae = 2ae

⎡
⎣ 2 −1 −1
−1 1 0
−1 0 1

⎤
⎦ . (8)

Let us assume now that the square super-element Q contains of the triangles e1 and e2 where the
element-wise averaged diffusion coefficients are respectively a1 and a2. Then the matrices needed for
our local analysis are as follows:

SQ =
1

a1 + a2

⎡
⎢⎢⎣

a2
1 + 2a1a2 −a2

1 −a1a2 −a1a2

−a2
1 a2

1 + 2a1a2 −a1a2 −a1a2

−a1a2 −a1a2 a2
2 + 2a1a2 −a2

2

−a1a2 −a1a2 −a2
2 a2

2 + 2a1a2

⎤
⎥⎥⎦ , (9)

BQ =
1

a1 + a2

⎡
⎢⎢⎣

a2
1 + a1a2 −a2

1 0 −a1a2

−a2
1 a2

1 + a1a2 −a1a2 0
0 −a1a2 a2

2 + a1a2 −a2
2

−a1a2 0 −a2
2 a2

2 + a1a2

⎤
⎥⎥⎦ . (10)

We consider now the local eigenvalue problem: find λ ∈ R and 0 �= w ∈ IR4 such that

SQw = λBQw. (11)

Obviously Ker(SQ) = Ker(BQ) = Span{e} where e = (1, 1, 1, 1)t. Thus, (11) reduces to a 3 × 3
eigenvalue problem. Then using the substitution ν = a/b, µ = 1−λ we get the following characteristic
equation for µ

det

⎡
⎣ν + (ν2 + ν)µ −ν2µ −ν

−ν2µ ν + (ν2 + ν)µ −νµ
−ν −νµ ν + (1 + ν)µ

⎤
⎦ = 0. (12)

A further simple computation shows that µ1 = 0 and µ2 = µ3 = −1, and therefore λ1 = 1,
λ2 = λ3 = 2. The global condition number estimate follows directly from the presented local analysis.
Namely, we have

vT Sv =
∑

Q∈Th

vT LT
QSQLQv ≤ 2

∑
Q∈Th

vT LT
QBQLQv = 2vT Bv

and, similarly, vT Sv ≤ vT Bv. The result of our local analysis is summarized in the following
theorem:



Theorem 1. Consider the non-conforming FEM problem (3) on a square mesh. Then:

(i) the sparse approximation B of the Schur complement S satisfies the conditions for a stable
MIC(0) factorization;

(ii) the matrices B and S are spectrally equivalent, namely the following estimate for the relative
condition number holds uniformly with respect to any possible jumps of the diffusion coefficients

κ
(
B−1S

)
≤ 2. (13)

5 Parallel preconditioning algorithm

In this section we study the possibility to parallelize the proposed method. The first step, i.e. the
static condensation, is local and therefore can be performed fully in parallel. This is the reason to
focus our attention on the PCG solution of the reduced system with the Schur complement S. Let
us recall that the preconditioner was introduced as C = CMIC(0)(B). Each PCG iteration consists
of one solution of a system with the matrix C, one matrix vector multiplication with the original
matrix S, two inner products, and three linked vector triads of the form v := αv + u. Therefore
the computational complexity of one PCG iteration is given by N it

PCG ≈ N (C−1v) +N (Sv) + 10N.
Then, for the algorithm introduced in Section 3 we find N (C−1v) ≈ 11N, N (Sv) ≈ 13N, and finally

N it
PCG ≈ 34N. (14)

As we see, the algorithm under consideration is relatively cheap where the solution of the precondi-
tioned system takes less then one third of the total cost.

It is well known that MIC(0) is an inherently sequential algorithm. In the general case, the
solution of the arising triangular systems is typically recursive. Below we overcome this disadvantage
by a special construction of the matrix B. For simplicity of the presentation we consider the model
problem in a square Ω = (0, 1)2 on a square mesh with a mesh size h = 1/n (subsequently each
square is split into two triangles to get Th). The structure of the matrices S and B is illustrated on
Figure 2 where each of the diagonal blocks corresponds to one vertical line of the mesh if a column-
wise numbering of the unknowns has been used. The big advantage of the introduced matrix B is
that all of its diagonal blocks are diagonal. In this case, the implementation of the PCG solution
step C−1v is fully parallel within each of these blocks.

BS

Fig. 2. Sparsity pattern of the matrices S and B, Ω = (0, 1)2.

To establish the theoretical performance characteristics of the preconditioner, a simple general
model for the arithmetic and the communication times is applied (see, e.g., [11]). We assume that
the computations and communications do not overlap, and therefore, the parallel execution time
is the sum of the computation and communication times. We also assume that the execution of



M arithmetic operations on one processor takes time Ta = Mta, where ta is the average unit
time to perform one arithmetic operation on one processor (no vectorization). We assume that the
communication time to transfer M data elements from one processor to another can be approximated
by Tcom = �(ts + Mtc), where ts is the start-up time and tc is the incremental time necessary for
each of M elements to be sent, and � is the graph distance between the processors.
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Fig. 3. Strip-wise data distribution between the processors.

Further, we consider a distributed memory parallel algorithm where the number of processors is
p, and n = mp for some natural number m. The computational domain is split in p equally sized
strips where the processor Pk is responsible for computations related to the k-th strip. Then, we get
the following expressions for the communication times related to C−1v and Sv

Tcom(C−1v) = 6n(ts + tc), Tcom(Sv) = 2ts + (3n + 1)tc.

Note that the above communications are completely local and do not depend on the number of
processors p assuming that Pk and Pk+1 are neighbors. The linked triads are free of communications.
The inner product can be performed using one broadcasting and one gathering global communication
but they do not contribute to the leading terms of the total parallel time and will not be considered
in our analysis. This setting leads to the following expression for the parallel time per one PCG
iteration

Tp = T it
p ≈ 2n(n + 1)

p
ta + 6nts + 9ntc. (15)

¿From (15) we conclude that the parallel algorithm is asymptotically optimal and

lim
n→∞

Sp = p, lim
n→∞

Ep = 1,

where the parallel speed-up and the parallel efficiency are given in the usual form Sp = T1/Tp, and
Ep = Sp/p.

Remark 1. A more realistic analysis of the parallel performance needs some specific information
about the behavior of the introduced average timing parameters ta, ts and tc. The key point here is
that a good parallel scalability could be expected only if n >> pts/ta.

6 Numerical tests

The numerical tests presented below illustrate the PCG convergence rate of the studied MIC(0)
preconditioning algorithms when the size of the discrete problem and the coefficient jumps are varied.
A relative stopping criterion (C−1 rnit , rnit )/(C−1 r0 , r0 ) < ε is used in the PCG algorithm, where ri



stands for the residual at the i-th iteration step, (·, ·) is the standard Euclidean inner product, and
ε = 10−6. The computational domain is the unit square Ω = (0, 1)2 where homogeneous Dirichlet
boundary conditions are assumed at the bottom side. A uniform mesh is used, where h = 1/n, and
the size of the discrete problem is N = 2n(n + 1). Let Ω = Ω1

⋃
Ω2,

Ω2 := {n − 1
2

h ≤ x1 ≤ n + 1
2

h, x2 >
n + 1

4
h},

and let ai be the problem coefficient corresponding to Ωi, i = 1, 2. In what follows a1 = 1. This
test problem allows us to examine the influence of the coefficient jumps on the number of iterations.
Note that the coefficient jumps are highly localized since the width of the domain Ω2 is just one
mesh-size.

a

a1

2

Fig. 4. Test problem: n = 15, Ω2 := {7/15 ≤ x1 ≤ 8/15, x2 > 4/15}.

Table 1. PCG iterations: MIC(0) factorization of S and B.

h = 1/n problemsize nSS
it nSB

it

n N L ≡ −∆ a2 = 103 L ≡ −∆ a2 = 103

7 112 10 16 11 17
15 480 16 29 17 30
31 1984 23 47 24 52
63 8064 34 73 35 81

127 32512 50 117 49 129

Two model tests are reported in Table 1 where: (a) a2 = 1 or the differential operator L is the
Laplacian −∆ and (b) a2 = 103. We investigate also the influence of approximation of the Schur
complement matrix S by the introduced sparse approximation B. We denote by nSS

it and nSB
it the

number of iterations obtained when MIC(0) factorization of S and B are used as preconditioners of
S.

The qualitative analysis of the results given in Table 1 shows that: (a) the number of iterations
in all cases is O(n1/2) = O(N1/4), namely, it grows proportionally to

√
n in agreement with the

properties of the MIC(0) factorization of S; (b) the number of iterations nSS
it and nSB

it are practically
the same for both the model problem and for the problem with large jumps in the coefficients. Note
that the obtained results are considerably better than what we have as a prediction from the uniform
estimate of Theorem 1.



Table 2. PCG iterations for n = 65, varying a2, and MIC(0) factorization of B

a2 1 10 102 103 104

nSB
it 35 45 62 81 93

The impact of the coefficient jump on the number of PCG iterations for a fixed 63 × 63-mesh
is presented in Table 2. We see some increase of the iterations with a2. Nevertheless, the obtained
results can be viewed as very promising taking into account that the jump is not only very large,
but it is also highly localized within a strip of width h.

7 Concluding remarks

In this paper we have proposed a new two-level preconditioner for Crouzeix-Raviart non-conforming
finite element approximation of second order elliptic equations. Our study is motivated by two
factors. First, the Crouzeix-Raviart non-conforming finite elements produce algebraic systems that
are equivalent to the Schur complement system for the Lagrange multipliers arising from the mixed
finite element method for Raviart-Thomas elements (see, e.g. [1, 2, 6]). Second, a class of highly
parallelizable and efficient preconditioners based on MIC(0) have been proposed recently for linear
conforming and rotated bilinear non-conforming finite elements (see, e.g. [5, 10]).

Our further plans include a generalization to 3-D problems on tetrahedral meshes and problems
with orthotropy. These are much more complicated problems but we expect to extend our study to
such problems and to be able to construct, test, and implement efficient preconditioners with similar
theoretical and computational properties.
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