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ABSTRACT. A finite volume discretization of elliptic problems with discontinuous co-
efficients (interface problems) is presented. This approzimation ensures second order
truncation error for the fluzes. It uses a minimal stencil (5 points in 2-D and 7 points
in 3-D) for the case when each interface is orthogonal to one of the coordinate azes
on a mesh that, in general, is not required to be aligned with the interfaces.
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1. Introduction

Elliptic problems with discontinuous coefficients, called often interface prob-
lems, arise naturally in mathematical modeling of heat and mass transfer pro-
cesses, diffusion in composite materials, flow in porous media, etc. The gov-
erning equation in this case can be written as

—V(KVu) = f(x) forxeQ 1]
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subject to various boundary conditions. Here Q C R" is a bounded polyhedra,
K (x) is a symmetric and uniformly in € positive definite matrix which may
have a jump discontinuity across a given surface I'. The flux vector, W, is
defined as

W =-KVu.

The assumption that the solution and the normal component of the flux are
continuous through the interface, is physical and is mostly used to close the
mathematical problem. In our notations, this condition is written as follows:

[u] =[W.n] =0, forxel, [2]

where n stands for the outer normal to the interface I', and [#] denotes the
jump of ¢. This interface condition is often called perfect contact condition.

A straightforward application of the finite volume method to a generic in-
terface problem results in a scheme which uses harmonic averaging of the coeffi-
cient (see, for example, [SAM-77, WES-91]). Inspecting this scheme, one easily
sees that the normal component of the flux at the interface is discretized with
a local truncation error O(h). From the recent works, devoted to discretization
of interface problems, we refer to [CAI-02, ARB-98, ILI-98, KNY-01, EWI-99].
Cai, Douglas, and Park [CAI-02] derive high order finite volume discretizations
for interface problems, however, on a much larger stencil. Arbogast, et al.
[ARB-98] introduce enhanced cell-centered discretizations, which reduce the
work, required by mixed hybrid finite element method. Both, diagonal and
full tensor coefficients are considered. In the case of diagonal tensor and dis-
continuous coefficients their scheme reproduces harmonic averaging discretiza-
tion. Knyazev and Widlund [KNY-01] use Lavrentiev regularization in order
to obtain uniform with respect to jump of coefficients a posteriori error esti-
mate. Their method ensures O(h) accuracy for the fluxes. Ewing, Li, and
Lin [EWI-99] make an extension of immersed interface idea to finite element
discretization and recreate harmonic averaging of the discontinuous coefficients.

In this paper we present a modification of the classical finite volume dis-
cretization of interface problems, so that the normal component of the flux in
the derived scheme has O(h?)-local truncation error. We assume that the in-
terfaces are perpendicular to a coordinate axis, but, in general, are not aligned
with cell faces. This work exploits two known approaches: (i) coupled dis-
cretization of fluxes in a cell [ILI-02, EWI-01], and (ii) use of the governing
equation at the interface [ILI-98]. In the first case, the normal component of
the flux is assumed to be continuously differentiable in normal direction at the
interface. In the second case, the discretizations are derived for uniform grid,
when the interface is aligned with a cell face. In this paper, we combine both
approaches and derive a second order discretization of the flux without addi-
tional smoothness requirements. The only restriction in this case is that we
assume that the diffusivity coefficient is piecewise constant.
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In general, our approach can be viewed as a defect correction of the stan-
dard scheme with harmonic averaging of the coefficient, since it takes into
account the next term in the Taylor expansion of the flux. This correction
does preserve the standard (2n + 1)-point overall stencil and uses data only
from the neighboring 2™ cells. The elimination of the O(h) term is based on
some ideas from explicit jump immersed interface method (EJIIM) (see for de-
tails [LEV-95, WIE-98]). Recall, that in EJIIM the unknown jumps across the
interface are new variables. Here we want to account explicitly for the jump of
the normal derivative of the normal component of the flux. However, instead
of introducing new variable, as done in EJIIM, we approximate this jump with
O(h). To get such approximation, we use the equation at the interface. Fur-
ther, we derive approximation to each of the flux components, and combine
them with a finite volume discretization of the continuity equation written in
terms of the fluxes. That is, we discretize the mixed form of the governing
equations, while IIM and EJIIM discretize directly the second order equation.
The discretization of the mixed form has two advantages: (i) we obtain O(h?)
local truncation error for the flux discretization, and O(h?) accuracy for the
fluxes; (ii) we obtain a coefficient in front of the remainder which is bounded in-
dependently of the jump discontinuity of coefficients so that our discretization
is not sensitive to the jump.

2. Modified finite volume discretization

We begin our presentation with one-dimensional problem on (0,1) and in
order to simplify the notations, we assume that the grid is uniform. Then,
W =W and x = x. Further, we use the notations x; = ih, Tir =i+ %h,
where, h is the step-size. Integrating the differential equation over the volume
(x; +1 :UF%) we get the following equation for each internal node z;:

=Wy = [ @ 3]

Our aim is to derive O(h?)-approximations to Wiy and W;_ 1.

Suppose, there exist an interface at the point z¢, z; < ¢ < ;41 so that
z¢ = x; + 0 h. For definiteness, we consider the case 0 < # < £. Recall that
the case when the interface is aligned with cell faces, § = %, is covered by
[ILI-98]. Obviously, z; —x¢ = =6 h, zip1 —2¢ = (1 —0) h, z¢ — 71 =
(0 — %) h. The discretization of W; +1 is done in several steps. First we expand
u; around the interface point. Next we use interface conditions in order to
transform derivatives from the left of the interface into derivatives form the
right of the interface. Further, these are expanded around x, L The obtained
expansion is combined with the expansion of u;;; around z,, 1 in order to
obtain a discretization for the flux at z; 41 The obtained approximation to
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Wi, 1 has O(h) local truncation error. In order to account explicitely for this
O(h) term, we use the equation at the interface as well as the approach for

coupled discretization of fluxes.
Let us now explain some details of our approach. Expand u; to get:
BU§, 1
Ox 2 Ox?

Here and below we_ (ug4+) denotes the limit of u(z) when z tends to z¢ from
below (above). Further, we expand the first two terms in the right hand side
around the point x;, 1 and use the fact that the solution and the normal com-

Uj = Ug— —0h

ponent of the flux across the interface are continuous, i.e. u¢_ = ugq and
Wg_ = W£+
1o Ouigy 1 Lo o it3 3
ui = Uyl +(0—§)hw+§(0—§) h o2 + O(h?)
ki1 auiJrl 1 82ui+l 1 5 ;9 62U§,
—0 h —2+@-=)h 2 =60° h® ———.
k; ( Oz + 2) Oz + 2 0z2

Rearranging the terms in the equality above, we obtain

6—-L @
Ui = Ujl —h <k'i+12 _k_) Wi+%

1 1
_h2 l (9_ 5)2 . 0 (9_ 5) 6W£+ _ 192 B2 BW& +O(h3).
2 ki k; Oz 2 Oz
Combining the above expansion of u; with an expansion of u;;, around x;, 1
and rearranging terms, we get an approximation to the flux in the form:

Uit1 — Uj
L 4]
h L—@-5% 66—\ aw, 6% OWe_
H 4 2 2 &+ 7 £ 2
TRty 5 [( bk ) o "k ar | T
where we have used the harmonic average
1-9 6\ ' ki ki

kH L = v _ 7 41 ) 5

i+ <ki+1 * k) 1=0) ki + 0kt Bl

Neglecting the O(h)-term in (4), we get the standard harmonic averaging based
discretization to the flux W 1. In order to obtain an O(h?)-approximation to
the flux, we have to account for the O(h)-term. In 1-D case it can be done, as-
suming that the equation is satisfied at the interface. An O(h?)-approximation
to the flux W, +1 is given in this case by the expression

Uij+1 — Uy

— _1H
Wi+% - ki+% h
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h(s—0-12 60—} 6
+kﬁ%§[<4 ](€i+1 . * (kz 2)> f§+—k—if§}- 6]

In 2-D and in 3-D the situation is much more complicated. Consider, for
brevity, 2-D case. Again, in order to simplify the notation, denote by x = (z,y),
W = (WM W) and by (z;,y;) the grid nodes. Further, assume that there
is one interface along the line (z; + 6h,y) := (z¢,y). Now we rewrite the
expression for the flux in the following form

1 _ _.H Wit1,j — Uij 2
Wit = ki A +O(h7)
awH oW
+ ho [(1=6) kij + 2(6=3) kivrg] —52L =0 kiv1j —5 7]
2 1—-6)Fki; + 6 Fkiyaj '
(1) oW

Our aim is to express % and % by known quantities, at least as
an O(h) approximation. For this purpose, we will derive below two linear
algebraic equations with respect to these two unknowns. First, suppose that
the governing equation is satisfied on the interface and rewrite it as:

(2) (1) (2) (1)
Wevy _ . Wy OWeZs _ P OWe_; 5]
ay E+,7 or ay §—.J or

Further, assume the solution is twice continuously differentiable in tangential
direction at the interface (z¢,y). The condition for continuity of the solution
on the interface, u(ze4,y) = u(re—,y), will imply:

(2) (2)
0 (Ouey;\ _ 0 (Que i\ . Wer; OV, 9]
5 (o | e .

,J ay — Nit1,j5 ay

k. .
Denote by A = A1 ; = Z,j—l] Substituting (8) in (9), we obtain the relation:
: 0.

aw(l) ) aw(i) ]
feri— =5t =M femi— =5 |- [10]
awh) awt)

We need one more relation between g;“] and (95;’3 . To derive it, consider

expansions of Wi(i)l i and Wi(i)l i around the interface point (z¢,y;):
2 2

o (1)_

1 g 1 Weri 2

Wi, =Wel; + (=0+35)h — O(h?),
(1)

oW .
1 ) 1 €=, 5
WD =Wl + (=0—5)h —o O(h?).
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From these expansions we obtain

(1) M W
1 Wy 1, oW, i+3.j i3,
(-6 + 5) e + 0+ 5) o = W + O(h). [11]

Thus, we have a system of two equations, (11) and (10), with respect to two
unknowns. We solve the system and obtain:

—1 7D (1)
an(i),J _ T+(A797 f) + Ah (WiJ’,%,j - Wifé,j) o(h 19

owl A6 f) + W - )
= S o), 18]
O P(0.6) B

where p(\,0) :=0+1 + X\ (-0+3) and

1

ro=ro (A0, 0) = =0-5) (A femy — fer),

ry =71 (N6, f) = —(0 + %) A fe—j — feri)-

Recall, that we are considering now the case 0 < 0 < %, therefore all

expressions are well defined. Note, that we can replace fs_ ; and fe4 ; with
each their O(h) approximation, for example, f; ; and fi1,;. Now we can return
to the general expression for the flux given by (7). Substituting there (12) and
(13), we obtain the desired approximation of the flux with O(h?).

n H  Mit1,j = Uij
Wiy =~ Fipy - h
hé ((1 — 0)kw + (0 - %)ki+l,j) |:T‘+()\,0, f) +A hil(Wl(i)%,J - Z(i)%d)]
2 (L=Okij + Okiv1) [0 +3) + A (=0 +5)]

 he Okit1,) [r,()\,(),f) + hil(Wi(i)%J_Wi(i)%J)] + O
2 (1—0)ki; + ki) [0+1) + A (=0+1)] '

Note, that the obtained expression involves some linear combination of
Wi+l,; and Wi_%J. It is similar to the equation used in deriving Improved
harmonic averaging scheme in [EWI-01]. The flux components through op-
posite sides were discretized in a couple there, and here we can proceed in

S . . 1
the same way. We can derive similar second order approximations for Wi(,); e
3

w® W@_l. Let us introduce notations ¢ = ¢(#, A) and fi+%7j:

ij+3i ig—3
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61(1—6)+ (26 — DA A — O

PutsON =GR e i
f . Q((]. — O)ki,j + (20 — ]-)kiJrl,j) ry — ((]. — e)kl + 6 ki+1) r_ 15
i+%’j - 2 ((1 —0) kz +0 ki+1)p(>\,0) [ ]

In a similar way, expressions for ¢; 1 ;, ¢; ;1 1, ¢; ;_1 and for fl__ g fz,j+2

fi,j—% will be obtained, if there will exist interfaces between respective grid

nodes. Note, that ¢, 1 ; = 0 and fi 1.; = 0 if there is no interface beteen
z;—1,; and z; ;. Then the derived finite volume discretization of the interface
problem (1) can be written as follows:

—1
A=yt i) (kH Yit1,j = Uij  pm Wi — Uz’—u)

hy 4.7 hy i—%.j hy
_ —1
_ ( ¢i’j+% + ¢’m‘f%) kH Uij+1 — Ui,j k,H WUij — Ui
ho ij+3 ho =% ho

fl7]+fz+ ]+f7,7—]+f’]+% f ,%-

3. Discussion

It can be shown, that ¢ is uniformly bounded, |$(6,A)] < %. This means,
that the derived here scheme satisfies the maximum principle. We expect to
provide a theoretical proof for O(h?)-convergence rate of the flux.

Our numerical experiments on various model problems showed that the
derived in this paper discretization is much more accurate, compare to other
schemes, including the scheme with standard harmonic averaging. Some of the
results can be found in [EWI-01, ILI-98].

Also we have considered the Problem I from [KNY-01]. In this example,
the unit square is halved so that the diffusion coefficient k(x) takes value 1 and
k = const in both halves, respectively. The exact solution of the problem is
given by

@ )_{ ka(z — 0.5)y(y — 1), 0<z<050<y<l o
Y=Y —@-05)(z—yly—1), 05<z<1,0<y<l

The reported error in [KNY-01] is of order 10~! for h = 107!, and decreases
lineraly with the decrease of h. Our scheme reproduces ezactly the solution
in the grid nodes. This can be explained by the fact, that the remainder
term in our discretization depends on third order partial derivatives, which are
definitely zero in this case.
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