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ABSTRACT

Adaptive Methods

for Finite Volume Approximations� �May �����

Stanimire Zdravkov Tomov	 B�S�	 So�a University Saint Kliment Ohridski	 Bulgaria


M�S�	 Texas A�M University

Chair of Advisory Committee� Dr� Raytcho Lazarov

In this dissertation we construct	 theoretically justify	 and test computational

methods and tools that ��� yield reliable error control of the �nite volume discretiza�

tion of convection�diusion�reaction problems in ��D and ��D on unstructured grids	

and ��� use parallel computational resources e�ciently� We achieve balance between

obtaining reliable control of the error and e�cient use of the available computational

resources by an adaptive process of parallel local grid re�nement based on a posteriori

error analysis�

In our a posteriori error analysis we exploit the ideas known from the �nite el�

ement method� Namely	 we use estimators based on local residuals	 local Dirichlet

or Neumann problems	 and Zienkiewicz�Zhu type estimators� We have constructed

such estimators for �nite volume approximations and have theoretically justi�ed them

by proving	 under appropriate assumptions	 that they provide both lower and upper

bounds for the error� The equivalence of the error and the estimated error is depen�

dent on certain constants� The constants� dependence on the problem�s parameters is

discussed� The analysis is performed in global H�	 L�	 and energy norms� Of special

interest are problems with large convection� For these problems the standard approx�

imation techniques give oscillating numerical results and mass disbalance� Dierent

up�wind approximations	 that give a desired stabilization of the discretization	 are
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discussed and taken into account in the a posteriori error estimators� The results	 ob�

tained for steady�state convection�diusion�reaction problems	 are extended to time

dependent problems�

The dissertation also carries out extensive numerical testing of the theoretical

results� There are two groups of numerical experiments� The �rst group contains

experiments with known exact solutions	 for which case the exact error is compared

with the numerical results from the error estimators� The second group deals with

problems with unknown exact solutions� Also	 we have included tests to study the

behavior of the error estimators for problems varying from pure diusion to large

convection�

Furthermore	 we introduce the parallel local grid re�nement algorithms that we

implemented into a parallel grid generation tool� Parallel grid generation is essential

for the e�cient parallel implementation of the adaptive methods and plays an impor�

tant role in numerical simulations that rely on high performance parallel computers�

This part of the dissertation includes element re�nement�de�re�nement algorithms	

techniques to maintain load balance	 general issues in developing parallel �nite vol�

ume �or �nite element� code based on domain decomposition	 ways to maintain mesh

conformity on the dierent re�nement levels	 data structures	 etc�

In general	 we conclude that the ideas from the �nite element a posteriori error

analysis theory can be successfully used in deriving reliable error estimators for the

�nite volume method� The e�ciency of the error estimators and the parallel grid

re�nement techniques that we derived is supported by various numerical experiments�
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contour curves of the pressure on level �� � � � � � � � � � � � � � � � � ���

�� Concentration distribution in a non�homogeneous reservoir with

a well
 �top� the ��D mesh with ����� nodes in half of the domain

obtained after � levels of re�nement
 �bottom� contour curves of

the concentration in the plane x� � �� � � � � � � � � � � � � � � � � � ���
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CHAPTER I

INTRODUCTION

Today�s technological advances facilitate and stimulate the research requiring very

large scale computations� For example	 the numerical discretization of �uid �ow and

transport in porous media	 elastic and plastic deformations	 heat and mass transfer	

electro�magnetics	 may yield linear systems with millions of unknowns	 and hence

leads to large scale computations� Considering the cost of these large scale computa�

tions	 it is natural to raise the following two questions�

First	 are these computations really necessary� In the case of numerical solutions

of partial dierential equations �PDEs�	 this question relates to the problem of esti�

mating and controlling the error due to the discretization� In other words	 this is a

problem of determining the accuracy and the reliability of the computational method�

The second question is whether the available computational resources are used

e�ciently� This is related to the fact that very often the solution of a problem of

practical importance exhibits local behavior due to discontinuities of the coe�cients	

localized sources	 and boundary data	 as well as singularities due to corners	 bound�

ary layers	 or non�linear behavior� In such cases the overall accuracy of the numerical

approximation deteriorates and an obvious remedy that would increase the e�ciency

would be to re�ne the computational mesh in the regions of such singular behavior�

Problems that arise are� ��� to determine the regions of singular behavior of the so�

lution and ��� to re�ne the mesh in a balanced manner	 so that the overall accuracy

is uniform in the whole domain� Furthermore	 when discussing large scale computa�

tions	 one may face hardware problems due to fundamental physical limitations on

This dissertation follows the style and format of SIAM Journal of Numerical Analysis
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both system memory and computer processing speed� The usual remedy for such

problems is the use of parallel machines�

���� Objectives

The above discussion motivates the following three main goals of this dissertation�

� to develop methods for reliable control of the error due to the discretization of
the continuous problem	

� to develop methods and strategies for e�cient use of the available computational
resources	 and

� to implement these methods and strategies into an e�cient computational

methodology for solving convection�diusion�reaction problems�

���� Approach

We achieve balance between the �rst two goals by using adaptive methods with feed�

back from the computations� That is	 we do local grid re�nement based on a posteriori

error analysis� The a posteriori error analysis provides e�ciently computable stop�

ping criterion guaranteeing error control� Further	 this analysis is a basis for various

grid re�nement strategies in case the stopping criterion is not satis�ed�

An alternative of a posteriori error control	 which we will not discuss in the dis�

sertation	 is the asymptotic analysis of the unknown solution and various techniques

for obtaining expansions with respect to the parameters of the PDE problem� This

information then can be used to construct a priori the type of the mesh� For large

classes of problems this will lead to Shishkin	 Bahvalov	 and other meshes �see	 for

example	 the monographs of Miller	 O�Riordan	 and Shishkin ����	 Roos	 Stynes	
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and Tobiska ����	 or the survey paper of Roos ������ This type of technique is very suc�

cessful for steady�state singularly perturbed problems and leads to excellent results

when combined with relevant computational methods� Mostly the grids are piece�

wise uniform	 which can also reduce the storage requirement and the solution cost�

However	 a priori �tted meshes have certain limitations when it comes to embedding

the numerical method in a general computational procedure for multidimensional

problems� In such cases a posteriori error analysis and adaptive grid re�nement are

essentially the only practical alternative�

Adaptive methods	 and more precisely	 adaptive methods for �nite element ap�

proximations	 have been extensively used and studied in the past �� years with em�

phasis on both the theoretical and computational aspects of the methods� Concerning

the theoretical aspects	 the research in the area starts with the pioneering paper of

Babuska and Rheinboldt ��� and continues with studies devoted to the so called Resid�

ual Based method �see the survey paper of Verf�urth ������ In this approach certain

local residuals are evaluated and then the a posteriori error indicator is obtained by

solving local Dirichlet or Neumann problems	 taking the residuals as data ��	 ��� An�

other approach of the method uses the Galerkin orthogonality	 a priori interpolation

estimates	 and global stability in order to get error estimators in global L�� and H��

norms �see	 for example	 ������ Furthermore	 solving appropriate dual problems leads

to error estimators controlling various kinds of error functionals ����� Solving �nite

element problems in an enriched function space �by hierarchical bases� gives rise to

the so called Hierarchical Based error estimators ���� There are also error estimators

that control the error or its gradient in the maximum norm� Such estimators are

based on optimal a priori estimates for the error in maximum norm ����� Another er�

ror indicator	 which is widely �and in most cases heuristically� used in many adaptive

�nite element codes	 is the Zienkiewicz�Zhu �often called ZZ� error estimator ���	 ����
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This estimator is based on post�processing of the computed solution gradient in order

to get a better approximation	 which is later used instead of the exact gradient to

bound the energy norm of the error� Some analysis of the method can be found in

���� and the literature cited there�

In this dissertation we study adaptive methods for �nite volume approximations�

There are few works related to a posteriori error estimates for �nite volume methods�

In an early work ���	 Angermann has studied a balanced a posteriori error estimate

for �nite volume discretizations for convection�diusion equations in ��D on Voronoi

meshes� His basic error estimator is derived using the idea of a previous work ��� on

�nite element method	 but contains two new terms	 which he has studied� In this

dissertation we take a similar path� Namely	 the error estimates for the �nite volume

method are derived using the relation and similarities between the �nite volume and

�nite element methods� Following this approach	 estimators based on local residu�

als	 local Dirichlet or Neumann problems	 and Zienkiewicz�Zhu type estimators are

constructed and theoretically justi�ed by proving	 under certain assumptions	 that

they provide both lower and upper bounds for the error� The equivalence of the error

and the estimated error depends on certain constants	 whose dependence on the prob�

lem�s parameters is discussed� The analysis is performed in globalH�	 L�	 and energy

norms� The theory of the �nite volume methods is still being developed� This raises

some di�culties in establishing an independent a posteriori error analysis for �nite

volume approximations� For instance	 optimal order a�priori L��error estimates with

minimal regularity of the solution are not known for the �nite volume methods for

elliptic equations� Optimal W ��p�error estimates for elliptic and parabolic problems

have been obtained in the recent studies ���	 ��� for � � p � ��
Our interest in �nite volume methods �FVM� is based on their attractiveness for

the numerical simulation of various conservation laws� FVM	 as the �nite element



�

methods	 have the following appealing features

� they may be used on general domains


� they may be used on both structured and unstructured meshes


� they lead to �good� approximation schemes�

Additionally	 since FVMs are based on a �balance� approach �see Chapter II�	 they

feature local conservation of numerical �uxes� This property makes them natural

to use for modeling when �ux and �mass� conservation are important� For example	

FV methods have been extensively used in �uid mechanics	 heat and mass transfer	

etc� Here we use �nite volume discretization of steady�state convection�diusion�

reaction problems in ����D on unstructured grids� Such model problems arise	 for

example	 from simulation of �uid �ow and transport in porous media� In that case

the unknown quantity may represent the concentration of a chemical dissolved and

distributed in water due to processes of advection	 diusion	 and absorption� The

solution of such problems exhibits local behavior	 which is due to discontinuity in the

boundary data and the coe�cients of the dierential equations	 and�or other local

phenomena �for example extraction�injection wells	 etc��� Applying adaptive methods

to such problems is bene�cial and in many cases essential for accurate computations�

Of special interest is the case of problems with large convection� Then the standard

�nite volume approximation techniques give oscillating numerical results and mass

disbalance� For such problems we are interested in approximation methods which

produce solutions satisfying the maximum principle and are locally conservative� Such

schemes are also known as monotone schemes �see	 e�g� ���	 ����� A well�known

su�cient condition for a scheme to be monotone is that the corresponding stiness

matrix is an M�matrix �see ���� p� ���	 p� ��� and ���� p� ����� In Chapter II we
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introduce an upwind approximation for both � and ��D problems that is locally mass

conservative and gives the desired stabilization� The upwinding is taken into account

in the derived a posteriori error estimators� Other good choices of monotone upwind

schemes known from the �nite element analysis are Tabata�s scheme ����	 which is

based on upstream weighting approximation of the convection term and produces

good computational results on quite general grids	 the stream�line upwind Galerkin

method �SUPG scheme� of Franca	 Frey	 and Hughes ����	 and the scheme of Xu

and Zikatanov ����	 which constructs a �nite element discretization by an appropriate

averaging of the dierential equation coe�cients on the element edges�

In addition	 the results obtained for steady�state convection�diusion�reaction

problems are extended to time�dependent problems� Our approach is similar to the

one taken by Eriksson et al� in ���� and ����� The approximation is done in the

following manner� First	 we discretize in space using the �nite volume method and

then discretize in time using the discontinuous Galerkin method� The a posteriori

error estimator derived has terms indicating a posteriori the error due to the space

discretization �as in the steady�state case� and additional terms measuring the error

produced by the time discretization�

An important part of this dissertation	 as stated at the beginning	 is the practical

implementation of the adaptive methods on particular computer architectures� The

implementation problems are related to computer science in more than one way� We

need special data structures and algorithms	 have to resolve management issues	 etc�

The di�culties arise from the three speci�c requirements	 targeted in our implemen�

tation� They are described below�

First	 our computations are mainly targeted to ��D problems� The local re�ne�

ment procedures in ��D are signi�cantly more complicated to implement than in ��D�

For ��D problems we consider tetrahedral meshes and the re�nement is done by bi�



�

section using the algorithm described by Arnold et al� in ���� We prefer this approach

since it �ts our data structures well� Moreover	 a repeated application of the algo�

rithm does not lead to mesh degeneration� This algorithm is suitable for parallel

adaptive mesh re�nement� Also	 one can control the mesh growth factor between the

re�nement levels� More about unstructured mesh generation can be found in ���� and

the literature cited there� Alternatives for tetrahedral bisection can be found in the

literature cited in ���� For ��D problems we use triangles and re�ne them	 depending

on how fast we want the mesh size to grow	 by uniform splitting into four or bisection�

The details are given in Chapter V�

Second	 we consider time dependent problems	 which in general will require dere�

�nement mesh procedures as well� To dere�ne the mesh one needs to know the re�

�nement history of the mesh� We keep this history in tree data structure for every

element from the starting coarse mesh� This is convenient and requires minimum

memory for a dere�nement process�

And third	 we require the computations to be done in parallel� In order to get ef�

�cient parallelization of the adaptive methods we have to address various issues� The

�rst one	 and probably the most important	 is the selection of the solver for the result�

ing �from the discretization� algebraic system� Since the �nite volume discretizations

lead to sparse systems	 it is natural to consider iterative methods for their solution�

The storage needed to assemble the global matrix �in sparse format� is the same in

both direct and iterative solution methods	 but the direct methods may produce an

arbitrary amount of �ll�ins that for ��D problems might be prohibitively high� Also	

since matrix�vector operations can be e�ciently parallelized	 all iterative solvers can

highly bene�t the parallelism	 while the direct methods need sophisticated techniques

to extract limited parallelism� One disadvantage of the iterative methods is that the

rate of convergence is problem dependent and may be unacceptably slow� Therefore	
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another issue that we address	 is how to maintain data structures that provide a base

for acceleration of the iterative methods by preconditioning techniques� When iter�

ative methods are parallelized on a multiprocessor system the data distribution and

the communications are of greatest importance for an e�cient execution� Both the

data distribution and the communication scheme are usually determined before the

execution of the solver by preprocessing� There are many ways to achieve this� It

seems that the most popular and e�cient way is the use of Domain Decomposition

data distribution techniques� This is the method of our choice�

Domain decomposition methods use a divide�and�conquer concept whose main

idea is to split the global problem into sub�problems	 solve them concurrently	 and

somehow merge or combine the local solutions in order to get the global one� This

idea translates into the following� �rst	 �nding a splitting of the global mesh
 second	

mapping every subdomain of the splitting to a processor	 and performing independent

computations on each subdomain
 and third	 transferring data when necessary� Cru�

cial for the e�cient parallel execution of software based on this technique is obviously

the quality of the splitting� It should be such that

� there is load balance among the processors	 and

� the interface between the subdomains is minimal in a certain sense�

In order to have load balance over the processors	 the number of elements on each

processor should be almost equal	 and in order to reduce the communication	 the

number of nodes on the boundary between the sub�domains should be minimal� Do�

main Decomposition techniques address the question of preconditioning� These are

undoubtedly one of the best known and most promising methods	 which also take

advantage of the parallelism� We exploit the multilevel structure obtained in the pro�

cess of consecutive local re�nements by implementing data structures and procedures
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utilizing the development of multigrid type preconditioners�

Another main issue concerning the e�cient parallelization of adaptive methods

is the parallel mesh generation� Parallel grid generation tools play an important

role in the scienti�c research that requires the power of high performance parallel

computers� Challenges to be solved are maintaining the mesh conforming between

the subdomains on the dierent re�nement levels	 maintaining the load balance	 etc�

We have tested dierent strategies to maintain the load balance� One is to use a

posteriori error estimates as weights in an element based initial splitting of the coarse

mesh into sub�domains� The idea is that if the error is balanced over the subdomains	

then the local re�nements that follow will produce computational mesh with number

of tetrahedrons balanced over the subdomains� This strategy does not work for time�

dependent problems where we consider element �migration� between the subdomains�

The load balance is computed among the elements on the starting mesh with weights

being the number of �children� that they have� If a coarse element has to migrate to

a neighboring subdomain it is sent along with its children� Such a strategy reduces

the number of transfers between the subdomains	 reduces the size of the graph to be

partitioned �actually it stays the same with only the weights changing�	 and makes

the dere�nement easier than if elements from the �nest level were to migrate�

���� Outline

This dissertation has four main components�

�� Introductory part


�� A posteriori error estimators


�� Parallel mesh re�nement
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�� Numerical results�

The introductory part consists of two chapters� First	 the general form for the

problem of interest	 convection�diusion�reaction problem	 and its �nite volume dis�

cretization are introduced in Chapter II� Second	 in Chapter III	 we give an intro�

duction to adaptive methods� We presents a general adaptive methods framework

and also	 since we use the ideas from the �nite element method	 a review of the a

posteriori error analysis for the �nite element method�

The a posteriori error estimators are presented in Chapter IV� The chapter

contains the construction and theoretical justi�cation of several a posteriori error

estimators for �nite volume approximations� Namely	 we have estimators based on

��� local residuals	 ��� local Dirichlet and Neumann problems	 and ��� Zienkiewicz�

Zhu type estimators� This chapter also contains the extension of the results obtained

for steady state problems to transient problems�

The parallel mesh re�nement strategies are discussed in Chapter V� The al�

gorithms and the implementation issues concerning the development of parallel grid

generation tools are explained� This includes re�nement and dere�nement algorithms	

techniques to maintain load balance	 general issues in developing parallel �nite ele�

ment�volume codes based on domain decomposition	 ways to maintain mesh confor�

mity on the dierent re�nement levels	 data structures	 etc�

The numerical results are presented in Chapter VI� This part contains various

experiments that numerically illustrate the theory that we developed� There are two

groups of experiments� The �rst group contains numerical experiments for model

problems with known exact solutions� Here the exact error is compared with the

numerical results from the error estimators that we have developed� The second

group of experiments is for more realistic problems with unknown exact solution�
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Namely	 we consider various convection�diusion�reaction equations with boundary

layers and singular solutions due to corners of the boundary or discontinuity of the

coe�cients� We show the numerical behavior of the error estimators for problems

varying from large convection to large diusion� Also	 we consider realistic model

problems with applications to steady state �uid �ows in ��D�

Finally	 in Chapter VII	 we give a summary of the work presented	 conclusions	

possible extensions and future research plans�
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CHAPTER II

MODEL PROBLEMS AND THEIR DISCRETIZATIONS

Our main interest is in engineering and physics conservative problems� These are

problems of determining the distribution of a certain quantity	 having some conser�

vation properties	 in time and space� Examples may be problems from �uid me�

chanics	 heat and mass transfer	 electro�magnetics	 etc� The mathematical model for

these problems consists of conservation laws	 which usually are convection�diusion�

reaction dierential equations	 and constitutive relation	 used to close the system of

unknowns introduced by the conservation laws ���	 ��	 ���� In �uid dynamics	 for

example	 conservation and constitutive laws may model the distribution of a contam�

inant	 dissolved and distributed in water in a porous media	 due to the processes of

convection	 diusion	 and reaction�

This chapter starts with a motivation for our interest in conservative problems

�Section ����� This includes a brief description of the conservation type of problems

�Subsection ������ and locally conservative approximation methods �Subsection �������

In Section ��� we specify the form and the assumptions about the conservative prob�

lems that we are interested in� We consider in dierent subsections correspondingly

steady state and transient problems� The last section	 Section ���	 introduces the

discretizations used for the numerical solutions of the continuous problems described

in the previous section�

���� Motivation for our study

This section gives a brief motivation for our interest in the �nite volume methods� The

choice is motivated by the problems described in Subsection ������ These problems

are conservative and it is natural	 and in many cases essential that their numerical
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approximation be locally conservative �see Subsection �������

������ Conservation problems

The distribution of quantities in time and space depends on various physical processes

and can be modeled by using the underlying physical principles� An important class of

physical principles	 that is in the basis of many computational models in engineering

and physics	 expresses the conservation of a certain quantity� Examples of quantities

and corresponding conservation principles are

� mass � mass is neither created nor destroyed


� energy � energy is neither created nor destroyed


� momentum � the rate of change of momentum is proportional to the applied

force �Newton�s second law��

The conservation principles give rise to various conservation laws	 which usually take

the following general integral form

d

dt

Z
V

q�x� t� dx �

Z
�V

��x� t� � n ds �

Z
V

F �q� x� t� dx� �����

where V is any �xed su�ciently regular subregion of a domain  	 q is the quantity

being preserved	 x and t are correspondingly the space and time variables� The �rst

term on the left represents the rate of increase of q in V 	 the second is the rate

at which q is crossing �V in outward direction� The vector function ��x� t�	 often

called vector �ux	 expresses the mechanism in which q�x� t� is distributed in space�

Examples for various mechanisms are given below� The term on the right gives the

rate of creation or loss of the substance q� The scalar function F �q� x� t�	 often called

source term	 according to the problem area may model heat source	 chemical reaction	
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production�injection well	 etc�

Functions q	 �	 and F 	 used in equation �����	 are usually related trough some

scalar or vector unknown� The relations	 often called constitutive laws	 are used to

close the system of unknowns introduced by models of global physical principles	 like

the conservation principles	 discussed above� For example	 for models of �ows in

porous media q	 �	 and F may be related to one of the following two quantities�

�� The pressure p� For incompressible �ow q � 	p	 where 	 is the mass density of

the �uid and the constitutive law is the Darcy�s law

��x� t� �� �Drp�

Here D is n � n tensor �matrix� representing the permeability of the porous

media �see ������ In the groundwater hydrology literature the normalized tensor

D is called hydraulic conductivity�

�� The mass concentration C� In this case q � C and

��x� t� �� �ArC � bC� F � f�x� t�� c�x� t�C�

Here A is n � n tensor �matrix� representing the diusion�dispersion distribu�

tion mechanism of C in the domain  	 the convection vector b represents the

distribution of C due to �ow	 usually of water	 of direction and magnitude given

by b	 and c�x� t� � � represents the absorption rate by the media �see ������

In our analysis we relate q	 �	 and F to a scalar function u�x� t�� We take q �� u�x� t�	

��x� t� �� �Aru� bu� �����

and

F �q� x� t� �� f�x� t�� c�x� t�u�
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where A is a n � n tensor	 b is a n�dimensional vector function	 and f is a scalar

function�

������ Locally conservative approximation methods

We are interested in numerical methods that

� may be used on general domains


� may be used on both structured and unstructured meshes


� may be used for conservation problems and lead to �good� approximation

schemes�

By �good� scheme we mean both cheap	 i�e�	 a scheme that is easy to compute

and implement for complex problems	 and robust	 i�e�	 a scheme that is stable even

for particularly di�cult problems	 such as problems with discontinuous coe�cients	

nonlinearities	 etc�

Remark II�� For su�ciently regular �� for example � � �H�� ��n� the integral form

����� can be transformed into a di�erential form� First� we apply the Divergence

theorem to get Z
V

�
�

�t
u�r � � � cu

�
dx �

Z
V

f dx

for any su�ciently regular V �  � Then� using the last fact and the localization

theorem �see �	
��� we get

�

�t
u�x� t� �r � ��x� t� � cu � f�x� t�� �����

Thus	 we often write the conservation laws ����� in their dierential form ������

One of the requirements for the numerical methods is stability for a class of problems
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that include problems with discontinuous coe�cients and nonlinearities� For such

problems	 the solution u and the coe�cients of ����� are not smooth enough in order

to derive the dierential form ����� �see Remark II��� and although we use it	 we

understand it in its weak sense �����	 which is the more natural point of view of the

conservation laws� Equation ����� can be interpreted as a local balance of the quantity

u�x� t�� It is natural and in many cases essential that the numerical methods for such

locally conservative problems also be locally conservative�

The �nite volume methods	 like the conservation laws that they usually discretize	

are build on the same balance approach and hence they are locally conservative�

To de�ne the �nite volume space discretization one splits the domain  into non�

overlapping �nite volumes Vi and looks for uh�t� � uh��� t� in a discrete space Sh for
each t	 satisfying Z

Vi

�

�t
uh dx�

Z
�Vi

�h � n ds�

Z
Vi

cuh dx �

Z
Vi

f dx

for every i� Such de�nition yields a method that	 as stated in the goals	 may be

used on general domains and on both structured and unstructured meshes� It is easy

to compute and implement for complex problems	 and as given by the �nite volume

theory	 is stable even for di�cult problems such as problems with nonlinearities and

discontinuous coe�cients�

Dierent choices for the discretization of  and u give rise to various �nite

volume methods	 which is discussed at the beginning of the �nite volume discretization

Section ���� Section ��� also presents a more rigorous de�nition of the �nite volume

element method that we use in the dissertation�
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���� Model problems

Our main theoretical a posteriori error analysis results are for steady state prob�

lems	 and more precisely	 steady state convection�diusion�reaction problems� Their

general form is introduced in Subsection ������ The techniques and the theoretical

results obtained for such problems are extended to linear time dependent problems�

The general form of the time dependent problems that we consider is introduced in

Subsection ������

������ Steady state problems

We consider the following convection�diusion�reaction problem � Find u � u�x� such

that �����������������������

Lu �� �r �Aru�r � �bu� � cu � f� in  �

u � �� on !D�

��Aru � bu� � n � gN � on !inN �

�Aru � n � �� on !outN �

�����

Here  is a bounded polygonal domain in Rn	 n � �� � with boundary ! �� � 	

A � A�x� is a n � n symmetric	 bounded and uniformly positive de�nite matrix

in  	 n � n�x� is the unit vector pointing outward and normal to !	 b � b�x� �

�b��x�� � � � � bn�x�� is a given vector function	 c � c�x� is the given absorption�reaction

coe�cient	 and f � f�x� is a given source function� We have also used the notation

ru for the gradient of a scalar function u and r � b for the divergence of a vector
function b in Rn� The boundary of  	 !	 is split into Dirichlet !D and Neumann !N

parts� Furthermore	 the Neumann boundary is divided into two parts� !N � !
in
N	!outN 	

where !inN � fx � !N � n�x� � b�x� � �g and !outN � fx � !N � n�x� � b�x� � �g� We
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assume that !D has positive measure�

We use the Hilbert space H�
D� � � fv � H�� � � vj�D � �g and the standard

L�� and H��norms�

jjujj � �u� u����� jjujj��� �� jjujj� � f�u� u� � �ru�ru�g����

where ��� �� is the inner product in L�� ��

We shall use the weak formulation of problem ������ First	 we introduce the

bilinear form a��� ��	 de�ned on H�
D� ��H�

D� � as

a�u� v� �� �Aru� bu�rv� � �cu� v� �
Z

�out
N

b � n u vds� �����

Then	 we de�ne the linear form F ��� on H�
D� � as

F �v� �� �f� v��
Z
�inN

gNvds�

The problems that we discuss in the dissertation satisfy the following assumption�

Assumption II�� The coe�cients of problem ����� are such that the following con

ditions are satis�ed�

� the bilinear form a��� �� is coercive in H�
D� �� i�e�� there is a constant c� 
 � s�t�

a�u� u� � c�jjujj��� 
u � H�
D� �


� the bilinear form a��� �� is bounded in H�
D� �� i�e�� there is a constant c� 
 � s�t�

a�u� v� � c�jjujj�jjvjj�� 
u� v � H�
D� �


� the linear form F ��� is bounded in H�
D� �� i�e�� there is a constant c� 
 � s�t�

F �u� � c�jjujj��
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Remark II�� A su�cient condition for the coercivity of the bilinear form is

c�x� �
�

�
r � b�x� � � for all x �  �

Indeed� since b �n � � on !inN � b �n � � on !outN � and using the divergence theorem� we

consequently getZ
�out
N

b � n u�ds � �

�

Z
�out
N

b � n u�ds � �

�

Z
�

b � n u�ds

�
�

�

Z
�

r � �bu��dx � �

�
��r � b� u� u� � �b u�ru��

Using ���	�� the above inequality� the stated su�cient condition� the uniform positive

de�niteness of the tensor A� and Poincare�s inequality �!D has positive measure�� we

get coercivity

a�u� u� � �Aru�ru� � �cu� �

�
r � b u� u� � C�ru�ru� � c�jjujj���

Problem ����� has the following weak form� Find u � H�
D� � such that

a�u� v� � F �v� for all v � H�
D� �� �����

Its solution is called weak �or generalized� solution of ����� in H�
D� �� Assuming

�II���	 Lax�Milgram lemma gives that the weak solution exists and is unique�

In our computations we also use the standard energy norm notation jjujj�a �
a�u� u��
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������ Transient problems

We consider the following transient convection�diusion�reaction problem � Find u �

u�x� t�	 x �  and t � ��� T �	 T 
 � such that���������������������������������

Lu �� �
�t
u�r � Aru�r � �bu� � cu � f� x �  � t � ��� T ��

u � �� x � !D� t � ��� T ��

��Aru � bu� � n � gN � x � !inN �t�� t � ��� T ��

�Aru � n � �� x � !outN �t�� t � ��� T ��

u�x� �� � u��x�� x �  �

�����

Here	 similarly to the steady�state case	  is a bounded polygonal domain in Rn	 n �

�� � with boundary ! �� � 	 A � A�x� t� is a n�n symmetric	 bounded and uniformly
positive de�nite matrix in  ���� T �	 n is the unit vector pointing outward and normal
to !	 b � b�x� t� � �b��x� t�� � � � � bn�x� t�� is a given vector function	 c � c�x� t� is the

given absorption�reaction coe�cient	 and f � f�x� t� is a given source function� We

have also used the notationru for the space gradient of a scalar function u andr�b for
the space divergence of a vector function b in Rn� The boundary of  	 !	 is split into

Dirichlet !D and Neumann !N parts� Furthermore	 the Neumann boundary is divided

into two parts� !N � !inN �t� 	 !outN �t�	 where !inN �t� � fx � !N � n�x� � b�x� t� � �g
and !outN �t� � fx � !N � n�x� � b�x� t� � �g� The initial condition	 u��x�	 is a given
function such that u��x� � � for x � !D� We assume that !D has positive measure�

To analyze the solvability and to derive the a posteriori error estimators in the

subsequent chapters	 as in the steady state case	 we need the weak formulation of

problem ������ We de�ne the bilinear form a��� �� on H�
D� ��H�

D� � at time t � ��� T �



��

as

a�u� v� �� �Aru� bu�rv� � �cu� v� �
Z

�out
N

	t


b � n u vds

and the linear form F ��� on H�
D� � at time t � ��� T � as

F �v� �� �f� v��
Z

�in
N
	t


gNvds�

Problem ����� has the following weak form� Find u�x� t�	 x �  and t � ��� T � such
that �������

� "u� v� � a�u� v� � F �v� for all v � H�
D� �� t � ��� T �

u�x� �� � u��x� for all x �  �
�����

Here we use the notation "u � �
�t
u�

���� Finite volume discretization

In this section we derive the �nite volume element discretization of the model problems

described in the previous section� This is the approximation that we use in our a

posteriori error analysis�

There are many particular realizations of the general idea described above that

will produce �nite volume methods� The most general classi�cation is obtained de�

pending on the choice of � ��� the �nite volumes and ��� the discrete space to which

the approximate solution belongs� The domain  is meshed and depending on whether

the �nite volumes are the elements from the original splitting or volumes around the

vertices of the original splitting	 we have correspondingly cell�centered and vertex�

centered �nite volume methods� For the vertex�centered �nite volumes	 depending

on whether the discrete space is piecewise constant over the �nite volumes or piece�

wise linear over the original mesh	 we have correspondingly vertex�centered �nite
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volume di�erence methods or vertex�centered �nite volume element methods� The

cell�centered �nite volumes can lead to cell�centered �nite volume di�erence methods

or mixed methods �when the �ux � is introduced as an additional unknown��

The stability of the �nite volume methods often depends on the way the �ux

surface integrals are approximated� The most important example is for �uxes with

strong convection part� For such cases a straightforward approximation of the �ux

integrals often yields oscillating solutions� Therefore	 it is not surprising that dierent

�ux approximations also serve as benchmarks in the classi�cation of the �nite volume

methods� The most popular approach is to use various upwind schemes �see ���	 �����

The upwinding makes the discrete problem stable but reduces the accuracy� Another

approach to approximate the �uxes is to look for solution that is aligned to the

streamlines of the convection part� This gives rise to the so called exponentially

�tted �nite volume element methods �see ���	 �����

������ Discrete spaces and grids de�nitions

We assume that  	 a polygonal domain	 is partitioned into triangles �in ��D� or tetra�

hedra �in ��D� called �nite elements and denoted by K� The elements are considered

to be closed sets and the splitting is denoted by T � We assume that the partition T
is aligned with !D	 !

in
N 	 !

out
N 	 and with the jumps in the coe�cients A	 c	 and f � Also	

we assume that T is locally quasi�uniform	 that is for K � T 	 measure�K� � C	�K�n

with a constant C independent of the partition	 where 	�K� is the radius of the

largest ball contained in K� In the context of locally re�ned grids	 this means that

the neighboring �nite elements are of approximately the same size whereas elements

that are far away may have dierent size�

We introduce the set Nh �� fp � p a vertex of element K � T g and de�ne N�
h as

the set of all vertices from Nh	 except those on !D� For a given vertex xi	 we denote
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by #�i� the index set of all neighbors of xi in Nh	 i�e�	 all vertices that are connected

to xi by an edge�

To derive the �nite volume element approximation	 we need the so�called dual

partitioning of  into �nite volumes� For a given �nite element partitioning T 	 we
construct a dual mesh T � �based upon T �	 whose elements are called control volumes�
In the �nite volume methods there are various ways to introduce the control volumes�

Almost all approaches can be described in the following general scheme� In each

element K � T 	 a point q is selected� For the ��D case �and similarly in ��D�	 on

each of the four faces xixjxk of K a point xijk is selected and on each of the six

edges xixj a point xij is selected� Then q is connected to the points xijk	 and in the

corresponding faces	 the points xijk are connected to the points xij by straight lines

�see Figure ��� The control volumes are associated to the vertices xi � Nh� Control

volume associated with vertex xi is denoted by Vi and de�ned as the union of the

�quarter� elements K � T 	 which have xi as a vertex �see Figure ��� The interface
between two control volumes	 Vi and Vj	 is denoted by �ij�

In our ��D computations we use the case when q is the medicenter of the element	

xijk are the medicenters of the corresponding faces	 and xij are the middle of the

corresponding edges �as shown on Figure ���

For the ��D case	 except choosing q to be the medicenter of K	 we use the

construction of the control volumes in which the point q is the circumcenter of the

elementK	 i�e�	 the center of the circumscribed circle ofK and xij are the midpoints of

the edges ofK� This type of control volume forms the so�called Voronoi meshes� Then

obviously	 �ij are the perpendicular bisectors of the three edges of K �see Figure ���

This construction requires that all �nite elements are triangles of acute type	 which

we shall assume whenever such triangulation is used�
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Fig� �� Left� Finite element and �nite volume partitions in ��D
 Right� Contribution

from one element to control volume Vi	 �ij and �ik in ��D
 Point q is the

element�s medicenter and internal points for the faces are the medicenters of

the faces�

We de�ne the linear �nite element space Sh as

Sh � fv � C� � � vjK is linear for all K � T and vj�D � �g

and its dual volume element space S�h by

S�h � fv � L�� � � vjV is constant for all V � T � and vj�D � �g�

Obviously	 Sh � spanf�i�x� � xi � N�
hg and S�h �spanf�i�x� � xi � N�

hg	 where �i
is the standard nodal linear basis function associated with the node xi and �i is the

characteristic function of the volume Vi� Let Ih � C� � � Sh be the interpolation

operator and I�h � C� � � S�h and P �
h � C� � � S�h be the piece�wise constant
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x
x

i
j

xij

Vi

γ ij

xi

βi

Fig� �� Control volumes with circumcenters as internal points �Voronoi meshes� and

interface �ij of Vi and Vj� The right picture shows the segments �i in bold�

interpolation and projection operators	 respectively� That is

Ihu �
X
xi�Nh

u�xi��i�x��

I�hu �
X
xi�Nh

u�xi��i�x��

and

P �
hu �

X
xi�Nh

$ui�i�x��

Here	 $ui is the averaged value of u over the volume Vi	 i�e�	

$ui �
�

jVij
Z
Vi

u dx�

In fact Ih makes also sense as an interpolation operator from S�h to Sh	 namely Ihv
� �

Sh and Ihv
��xi� � v��xi��
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������ Standard approximation on general grids

The discrete �nite volume element approximation uh of ����� is the solution to the

problem� Find uh � Sh such that

ah�uh� v
�� �� A�uh� v

�� � C�uh� v
�� � F �v��� for all v� � S�h� �����

Here the bilinear form A�uh� v
�� is de�ned on Sh � S�h and the linear form F �v�� on

S�h	 and are given by

A�uh� v
�� ��

X
xi�N�

h

v�i

������
Z

�Vin�N

Aruh � nds�
Z
Vi

cuhdx

����� ������

and

F �v�� ��
X
xi�N�

h

v�i

�����
Z
Vi

fdx�
Z

�Vi��inN

gNds

����� � ������

We use two dierent approximations for computing C�uh� v
��� The �rst one is a

straightforward evaluation of C�uh� v
���

C�uh� v
�� �

X
xi�N�

h

v�i

Z
�Vin�inN

b � nuhds� uh � Sh� v� � S�h� ������

Such approximation can be used for moderate convection �elds and dominant dif�

fusion� For large convection �or small diusion� this approximation gives oscillating

numerical results	 which we would like to avoid� For such problems we are interested

in approximation methods that produce solutions satisfying the maximum principle

and are locally conservative� Such schemes are also known as monotone schemes �see	

e�g� ���	 ����� A well�known su�cient condition for a scheme to be monotone is that

the corresponding stiness matrix is an M�matrix �see ���� p����	 p���� and ����

p������
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������ Upwind approximation on general grids

For problems with large convection we introduce upwind approximation that is locally

mass conservative and gives the desired stabilization� It is done in the following way�

We split the integral over �Vi on integrals over �ij � �Vi � �Vj �see Figure �� and

introduce out��ow and in�ow parts of the boundary of the volume Vi� This splitting

can be characterized by the quantities �b�n�� � max��� b�n� and �b�n�� � min��� b�n�	
where n is the outer unit vector normal to �Vi� This approximation of the convection

form C�uh� v
�� is denoted by Cup�uh� v

�� and is given by the following expression

Cup�uh� v
�� �

P
xi�N�

h

v�i

����� P
j��	i


Z
�ij

�b � n��uh�xi� � �b � n��uh�xj� ds

�

Z
�outN ��Vi

b � nuh�xi� ds

����� �

������

The �nite volume element approximation uh of ����� becomes the solution to the

problem� Find uh � Sh such that

auph �uh� v
�� �� A�uh� v

�� � Cup�uh� v
�� � F �v��� for all v� � S�h� ������

This is an extension of the classical upwind approximation of the convection term

and is closely related to the discontinuous Galerkin approximation �see ����� or to

the Tabata scheme for Galerkin �nite element method ����� It is also related to the

scheme on Voronoi meshes derived by Mishev in ����� A dierent type of weighted

upwind approximation on Voronoi meshes in ��D has been studied in ����

Concerning the solvability and the approximation properties of the introduced

�nite volume element discretizations we will make the following remark�

Remark II�� Let u and uh be the exact solution of ����� and the �nite volume el
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ement approximation ������ respectively� Then the following a priori error estimate

can be found in ���� �
� ��� ���� There is a constant C 
 �� independent of h� such

that

jju� uhjj� � Chjjujj�� ������

The estimate follows from an argument similar to Strang�s second lemma in the �nite

element analysis �for upwind approximation� see �	��� p� ����� This estimate follows

easily from the technique used in the a posteriori error analysis in Chapter IV�

������ Implicit �nite volume discretization for transient problems

First	 we discretize in space using the �nite volume techniques described in subsections

����� and ������ Then	 we discretize in time using the discontinuous Galerkin method�

The discontinuous Galerkin method is based on �nite element discretization in time

using discrete space of piecewise�polynomials �see for example ���	 ����� Namely	 for

a non�negative integer r	 we look for the discrete solution uh�x� t� in space

St
h �� fv�x� t� � vjIn �

rX
i��

vit
i� vi � Sh� n � �� � � � �Mg�

where In	 n � �� � � � �M are the time intervals	 on which ��� T � is discretized� We

denote the time levels by t�� � � � � tM 	 so that In � �tn��� tn�� The test space is

S��th �� fv��x� t� � v�jIn � S�hg�

The discrete problem is � Find uh�x� t� � St
h such that

MP
n��

Z
In

�� "uh� v
�� � ah�uh� v

��� dt�
MP
n��

��un��h �� v��n��� �

TZ
�

F �v�� dt ������

for any v� � S��th 	 where the upper indices denote the time level	 �u
n��
h � is the jump

between the limit from above un��h�� � lim
����

uh�x� tn�� � � and the limit from below
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un��h�� � lim
����

uh�x� tn����	 i�e�	 �un��h � � un��h�� �un��h�� � Also	 we have denoted u
�
h�� � u�

and v��n � v�jIn� Note that formulation ������ is equivalent to � Find uh�x� t� � St
h

such that Z
In

�� "uh� v
�� � ah�uh� v

��� dt� ��un��h �� v�� �
Z
In

F �v�� dt

for any v� � S�h	 n � �� � � � �M �

In this dissertation we consider the case r � �	 which yields the following implicit

scheme � Find unh � Sh such that

�unh � un��h � v�� �tn ah�uh� v
�� �

Z
In

F �v�� dt ������

for any v� � S�h	 n � �� � � � �M 	 where u�h � u� and tn � jInj � tn � tn�� is the

local time step� This approximation is similar to the one that uses backward Euler

discretization in time� The dierence is that for the Euler case the integrals over In

are approximated by the mid�point rule�
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CHAPTER III

ADAPTIVE METHODS

This chapter is an introduction to adaptive methods for partial dierential equations�

The two main goals of the adaptive methods are

� to get reliable control of the error due to the discretization of the considered
PDE	 and

� to use the available computational resources e�ciently�

First of all	 when discussing evaluation of the discretization error	 we have to de�

termine the measure in which the error to be evaluated� Possibilities are global L�	

H�	 or energy norms �see for example ��	 �	 �	 ��	 ��	 ��	 ��	 ���	 etc��� Also	 in

many cases the error quantity of physical interest may be local	 like pointwise er�

ror or stress values	 mean value over a domain of interest	 line integrals of certain

directional derivatives over the domain boundary	 etc� In such cases the quantity

of interest may be de�ned as a bounded linear functional and the error estimator

obtained by using duality techniques ���	 ���� We illustrate this in Subsection ������

In general	 the class of applications will determine what are the quantities in

which we need to control the error� In this dissertation we consider a posteriori

error estimators for global L� norm	 H� semi�norm	 and energy norm for convection�

diusion�reaction problems� We denote the global norm of interest by jjj � jjj and
de�ne the exact discretization error e as

e �� u� uh�

where u is the solution of the weak formulation of the considered problem and uh the

solution of its discretization�
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A posteriori error estimators �or indicators� give a computable estimation for

the error e in the prescribed norm jjj � jjj� The estimates are based on the discrete
solution uh and the data associated with the PDE problem �coe�cients	 boundary

conditions	 and right hand side�� The estimated error in the jjj � jjj norm is denoted

by 	 �or sometimes by jjjehjjj� and is usually obtained by locally evaluating the error
for every element K � T � The locally computed values for the error over each K are

denoted by 	K �or jjjehjjjK�	 so that

	 �

sX
K�T

	�K�

The a posteriori error indicators are used in the following setting� Suppose we

want to �nd a discrete solution uh such that

� for a given error tolerance eTOL

jjjejjj � eTOL


� the available computational resources are used e�ciently�

To do so	 we need error estimators satisfying

jjjejjj � Cjjjehjjj �����

and

cjjjehjjjK � jjjejjj�	K
� �����

where c and C are known and independent of h constants	 ��K� is a certain patch

of neighboring to K elements� The �rst inequality states that the error estimation is

globally reliable� This means that if a local mesh re�nement procedure insures that

Cjjjehjjj � eTOL	 then jjjejjj � eTOL is guaranteed� The second inequality gives that

the error estimation is locally e�cient	 which guarantees that the mesh is not over�
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re�ned in order to get the desired error control jjjejjj � eTOL� Summing ����� over all

the elements K � T gives global lower bound of the error� In general	 the inequalities

����� and ����� are di�cult to get� The estimators that are usually obtained involve

additional terms on the right hand sides of the inequalities� These additional terms

are of �higher� order under certain regularity requirements	 in which case they can

be neglected�

A property of the error estimators	 relevant to inequalities ����� and �����	 is

their e�ciency index �also called e�ectivity index�	 de�ned below�

De�nition III�� The e�ciency index � of an error estimator is de�ned as

� ��
jjjehjjj
jjjejjj �

If c � � � C with constants c and C independent of the mesh size h	 then we say

that the error estimator is equivalent to the error� The estimator is asymptotically

exact if lim
h��

� � ��

The rest of this chapter is organized as follows� First	 in Section ���	 we present

an adaptive computational framework that guarantees error control in a global jjj � jjj
norm� We present two generic algorithms�

� adaptive methods for steady state problems	 and

� adaptive methods for transient problems�

Next section	 Section ���	 gives a numerical motivation of why and when the use of

adaptive methods is important� The last section	 Section ���	 is about the mathe�

matical aspects of the adaptive methods	 or more precisely we make a review of the

main a posteriori error estimators known from the �nite element method� Some of

the �nite element analysis ideas	 as stated in the introduction	 are used to derive
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and theoretically justify a posteriori error estimators for the �nite volume method �in

Chapter IV��

���� A general adaptive methods framework

In this section we present the adaptive mesh re�nement strategies for both steady

state �Subsection ������ and transient problems �Subsection ������� Common for

these two strategies are the following main components�

� �nding e�ciently computable stopping criterion guaranteeing error control	 and

� mesh modi�cation strategies in case stopping is not satis�ed�

The generic steps in the algorithms are subject to a detailed study in Chapters IV

and V�

������ Adaptive methods for steady�state problems

Algorithm III�� describes the general adaptive strategy for steady�state problems	

which we have used in our study and implementation�

Algorithm III�� For a given �nite element partition T � desired error tolerance

eTOL� and norm in which the tolerance to be achieved� say jjj � jjj� do the following �

�� compute the discrete �nite volume approximation uh�

�� for any �nite element K � T � using a posteriori error analysis� compute the

error estimate 	K�

�� mark those elements K� for which 	K � eTOL�
p
N � where N is the number of

elements in T �

�� if 	 
 eTOL re�ne the marked elements�
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	� additionally re�ne until a conforming mesh is reached�

�� repeat the above process until no elements have been re�ned�

The above procedure yields error control and adapted mesh	 which are the goals of

the adaptive algorithms� The algorithm tries to equilibrate the error among the �nite

elements	 which heuristically yields mesh re�nement with overall accuracy uniform in

the whole domain�

Variations of the algorithm are possible� For example	 in step �	 one can mark

elements for which 	K � PeTOL�
p
N 	 where P is a certain percent of N � Another

alternative is always to mark a �xed percent of the elements with highest 	K � Also	

step � can be missing for approximations allowing the presence of the so called slave

nodes�

������ Adaptive methods for transient problems

We give below the general adaptive strategy for transient problems	 which we have

used in our implementation� The error control is in the global L�� � norm�

Algorithm III�� For a given �nite element partition T � time interval ��� T �� and

error tolerance eTOL� such that

max
t���T �

jje�t�jj � eTOL

to be achieved� do the following �

�� set time step k � � and compute the discrete �nite volume approximation uh�tk�

on time step t� � � as the L
� projection of the initial condition into the discrete

solution space using adaptive Algorithm III���

�� set an initial time step t� for example t � � j�j
N
���n� n � �� � for correspond

ingly a � or �D problem�
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�� set k � k � ��

�� compute uh�tk� on time step tk � tk�� �t�

	� for any K � T � using a posteriori error analysis� estimate 	K �jjeh�tk�jjK�
by evaluating its space 	SK and time 	TK components� 	K � 	SK � 	TK �see the

description below��

�� mark elements with 	SK � eTOL
�
p
N

for re�nement and elements with 	SK � PeTOLp
N

for dere�nement� where N is the number of elements in T � and P is a certain

percent of N �


� compute 	S ��
r P

K�T
�	SK�

� and 	T ��
rP

K�T
�	TK�

��

�� if 	S � eTOL
�

and 	T � eTOL
�

set t � �t
�

and go to step ��

�� if 	S � eTOL
�

and 	T � eTOL
�

re�ne the marked elements and go to step ��

��� if 	S � eTOL
�

and 	T � eTOL
�

re�ne the marked elements� set t � �t
�
and go to

step ��

��� if tk � T dere�ne the marked elements� set t � �t and go to step ��

As in the previous case	 the above procedure yields error control and heuristi�

cally an optimal mesh� The a posteriori error estimators can be computed element

by element� They have separate terms	 giving indication for the error that is cor�

respondingly due to the space and time discretization� Concerning the space re�ne�

ment�dere�nement	 the algorithm tries to equilibrate 	SK among the �nite elements	

and concerning the time re�nement�dere�nement	 the algorithm tries to equilibrate

the total space and time components of the a posteriori error estimate� Such proce�

dure heuristically yields a mesh re�nement with overall accuracy uniform in time and

space�
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Variations of the algorithm	 similar to the ones from the steady�state case	 are

possible�

���� A numerical motivation for adaptive grid re�nement

Here we include a numerical motivation of why and when the use of adaptive methods

is important� We consider three elliptic problems in ��D with exact solutions r���sin��
�

�Problem ��	 r���sin��
�
�Problem ��	 and r���sin �

�
�Problem ��	 i�e�	 the problems have

dierent regularity being correspondingly in H������� � H� �full elliptic regularity�	

H�������	 and H�������	 where  
 � may be arbitrary small�

We start re�ning two identical meshes� The �rst one is re�ned uniformly and

the second is re�ned locally �using a posteriori error analysis� until certain error

tolerance is achieved on the resulting meshes and compare the size of the obtained

discrete problems� Figure � summarizes the obtained numerical results�

One can see that for problems with full regularity the meshes obtained by uni�

form and adaptive re�nement are identical	 so there is no bene�t in using local grid

re�nement� However	 for problems with less then full regularity	 one can highly ben�

e�t from the local re�nement� To solve Problem � with error less then ������� in H�

norm one needs ���� degrees of freedom in the adaptive case	 compared to ������

in the uniform re�nement case� For more singular solutions	 Problem �	 the dier�

ence becomes even bigger� To obtain error tolerance of ������ in H� one needs ����

degrees of freedom in the adaptive case	 compared to again ������ in the uniform

re�nement case�
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Fig� �� Exact error eh	 for solutions u � H������� �Problem ��	 u � H������� �Problem

��	 and u � H������� �Problem ��	 plotted against the degrees of freedom on

a log�log scale for uniformly re�ned grid and locally re�ned grid based on a

posteriori error estimates�
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���� Review of some adaptive �nite element methods

In the context of the �nite element method there are two main techniques for the

error reduction� One is based on increasing the order of the algebraic polynomials

used in the approximation process	 the so called �p�version� of the �nite element

method �p�re�nement�	 while the other uses polynomials of the same degree	 but

adaptively re�nes the grid �by decreasing the mesh size h�	 the so called �h�version�

adaptive re�nement �h�re�nement�� We are concerned with evaluating the error and

its reduction by h�re�nement�

In this section we make a short review of the main a posteriori error analy�

sis techniques for the �nite element method� We give the ideas behind seven well

known and widely used error indicators based on the h�version of the �nite element

method� Namely	 we present estimators based on ��� local residuals	 ��� Zienkiewicz�

Zhu type averaging�projection	 ��� solution of local Dirichlet�Neumann problems	 ���

dual problems	 ��� hierarchical re�nement	 ��� second derivatives	 and ��� gradient

indicator�

In Subsection ����� we give a general framework for deriving a posteriori error

estimators� This framework is a basis for error estimators based on local residuals	

dual problems	 and solutions of local Dirichlet�Neumann problems	 which have been

extensively used and studied in the past �� years �see ��	 �	 �	 ��	 ��	 ��	 ��	 ��	 �����

������ A general a posteriori error analysis framework

Here we present a general approach �as given in ����� for deriving a posteriori error

estimates for partial dierential equations�

We consider the problem

Lu � f� �����
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where L � S � S � is a linear operator on a Hilbert space S with norm jj � jjS	 S � is the
dual of S with norm jj � jjS�	 and f � S �� We assume that S � L� � S �� The Galerkin

formulation of ����� is � �nd uh � Sh � S such that

� Luh� vh 
 � � f� vh 
 
vh � Sh� �����

where Sh is a �nite dimensional subspace of Sh and � f� v 
	 often called duality

pairing between S � and S	 denotes the value of the continuous linear functional f � S �

taken at v � S�

We solve the Galerkin approximation given above	 and try to get an estimation

for the error e � u � uh in the global L
� norm jj � jj� Since L is linear on S we get

Lu� Luh � Le and consequently the Galerkin orthogonality

� Le� vh 
 � � 
vh � Sh�

The derivation of the error estimator has the following main steps�

� de�ne the residual R �� f � Luh and �nd v � S as the solution of the dual

problem

� �� L�v 
 � �e� �� for any � � S


� use the Galerkin orthogonality to consequently get

jjejj� � � e� L�v 
 � � Le� v 
 � � Le� v � vh 


� � R� v � vh 
 � jjRjjS� jjv � vhjjS

for any vh � Sh


� choose vh � Sh such that

jjv � vhjjS � Cih
� jjvjjH��
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where Ci is some constant	 h is the mesh size of the discretization	 � � � and

jj � jjH� is the norm in Hilbert space H�


� prove stability estimate for the dual problem

jjvjjH� � Csjjejj�

where Cs is some stability constant


� combine the above to �nally get the a posteriori error estimate

jjejj � CiCsh
�jjRjjS��

This general idea is implemented in several of the a posteriori error indicators ex�

plained below�

Remark III�� Note that although the idea is presented for error estimate in the L�

norm one can use it with small modi�cations for global jj�jjS norm� or proper �energy�

norm relateded to the di�erential operator L�

In the following subsections we de�ne and give the ideas behind seven a posteriori

error estimators� For simplicity we describe these estimators for the Dirichlet problem����� �r � Aru � f in  

u � � on � �
�����

where	 as we set before	  is a bounded polygonal domain in Rn	 n � �� �	 A � A�x� is

a n�n symmetric	 bounded and uniformly positive de�nite matrix in  	 and f � f�x�

is a given source function� The weak formulation of problem �����	 �nd u � H�
� � �

such that

a�u� v� �� �Aru�rv� � �f� v� for any v � H�
� � ��
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is discretized and solved by the Galerkin �nite element method�

������ Residual based �RB� error estimator

Estimates of this type were �rst introduced by Babuska and Rheinboldt ��	 ��� Here

we describe the residual method �denoted by RB Re�nement� as given by Becker et

al� in ���	 ��� and Verf�urth in ����� This method is based on equilibrating certain

residuals� The Galerkin orthogonality a�e� vh� � � for all vh � Sh and integration by

parts yield the identity

a�e� v� �
X
K�T

	
�f �r � Aruh� v � vh�K � �

�
�n � �Aruh�� v � vh��K



for any v � H�

� 	 where �Aruh� denotes the jump of Aruh across the element boundary	
�u� v�K �

R
K

uv dx	 �u� v��K �
R
�K

uv ds	 and vh � Sh is a suitable approximation of v�

We apply H�older�s inequality on each element to get

a�e� v� �
X
K�T

	K �K�v�� where �����

	K �� hKjjf �r � AruhjjK � �
�
h
���
K jjn � �Aruh�jj�K�

�K�v� �� max
n
h��K jjv � vhjjK� h����K jjv � vhjj�K

o
�

Next	 one should use the local approximation properties of the space Sh to estimate

�K�v�� Namely	 we use the concept of quasi interpolation �see	 e�g� ���	 ��	 ���� and

proceed as follows� Let ��K� be a patch of all �nite elements that share a vertex

with K� Using the local L��projection �see ����	 formulas ����� and ������	 we can �nd

vh � Sh such that

h��K jjv � vhjjK � h
����
K jjv � vhjj�K � jjrvhjjK � Cijjrvjj�	K
� �����
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i�e�	 �K�v� � Cijjrvjj�	K
� We take v � e in �����	 apply the discrete Schwarz�

inequality	 use the derived for �K�e� bound	 and obvious manipulations to �nally get

the following a posteriori upper bound for the error

jjejj� � CCI

�X
K�T

	�K

����

� �����

where C depends on the coercivity constant of the form a��� �� and CI � max
K�T

CI�K�

������ Zienkiewicz�Zhu �ZZ� type estimators

This type error estimators were introduced by Zienkiewicz and Zhu ���	 ���	 and are

also known as ZZ estimators� They are based on easy to compute local projections

or averaging	 making them very appealing for implementation in the adaptive mesh

re�nement software� Their e�ciency for various elliptic problems has been numer�

ically con�rmed in many practical applications �see	 for example	 the references in

the survey paper ������ Theoretical study can be found	 for example	 in ���� and the

literature cited therein�

The ZZ indicator uses the diusive �ux � � �Aru and its �nite element approx�
imation �h � �Aruh� A recovered �ux ��h � �Sh�n is computed by smoothing the
discontinuous along the element boundaries numerical �ux �h� The smoothing may

be done by nodal averaging of �h	 i�e�	 �
�
h is computed at a given node by averaging

�h from the elements that share the considered node	 or L�� � projection of �h into

�Sh�
n� The computation of the global L�� � projection is expensive and one often

uses �lumping� of the mass matrix to de�ne ��h at vertices xi of the mesh as

��h�xi� � � �

jKij
X
K�Ki

jKj AruhjK�

where Ki is the union of elements sharing vertex xi� Heuristically	 the continuous at
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the vertices ��h is a better approximation to � than �h and is used to represent �	 for

example in

jjejj�a � �Are�re� � �A���� � �h�� � � �h��

to get the error indicator �A�����h � �h�� �
�
h � �h� in the energy norm�

������ Error estimators based on solution of local Dirichlet�Neumann problems

Estimators based on solution of certain local Dirichlet�Neumann problems are well

known and studied �see ��	 ��	 ��	 ����� They provide	 up to higher order terms	

local lower and global upper bounds for the error� The proof is usually based on

establishing equivalence to the residual type error estimators�

The local Neumann problems are de�ned for every K � T as� �nd uN such that�����������
�r � AruN � f �r � Aruh in K

uN � � on �K � � �

ruN � n � �Aruh � n� on �K n � �

�����

The local Dirichlet problems are de�ned for every internal vertex xi of the mesh T
as� �nd uD such that ����� �r � AruD � f in Ki

uD � uh on �Ki�
������

where Ki is the set of all elements K � T sharing vertex xi�

The local Neumann problems are discretized and solved in spaces SK	 consist�

ing of the so called �bubble� functions	 which are polynomials associated with the

edge�face�element midpoints and are � at the elements� vertices� Also	 the functions

in SK are � on � � If we denote the discrete solution by uN�h	 the error estimator is

given by jjruN�hjjK for every K � T �
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The local Dirichlet problems are discretized and solved in spaces Si	 consisting

of bubble functions on the elements K � Ki	 and � on �Ki� If we denote the discrete

solution by uD�h	 the error estimator is given by jjruD�h � ruhjjKi
for every vertex

xi of the mesh T �

������ Error estimators based on dual problems

The asymptotic exactness of the RB estimator from Subsection ����� can be lost when

applying the H�older�s inequality in ������ For example	 this is the case for problems

with strongly varying coe�cients	 convection dominated problems	 etc� Also	 the

estimator may not be appropriate for controlling local quantities of the error �point

values	 line integrals	 etc��� Such de�ciency is inherited for almost all Residual Based

error indicators based on local computations and is caused by the fact that they do not

control the error propagation or do it partially	 of course	 for reasons of computational

e�ciency� The sharpness of the error estimates could be improved and the question

is how much one is willing to spend on the computations to �nd the exact error�

In the residual method based on duality one increases the sharpness of the error

estimators �which may be designed for dierent quantities of the error� by solving

dual problems for the quantity of interest and using the obtained solution to compute

better weighting factors �K in ������ The general idea is as follows �also	 see for

example ���	 ����� Consider the dual problem� Find %e � H�
� � � such that

a�v� %e� � J�v� for any v � H�
� � ��

where J��� is a bounded linear error functional de�ned on H�
�� �	 which combined

with the assumptions for the bilinear form �II��� guarantees exitance and uniqueness

of solution %e by the Lax�Milgram lemma� For example	 if one wants to control the
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error at point x	 one chooses J�v� �� �
jB�j

R
B�

vdx	 where B� is a ball around x of radius �

Substituting v � e and  � eTOL into the above equation yields J�e� � e�x��O�e�TOL�
for e su�ciently smooth� Using the same approach as in ����� gives

jJ�e�j �
X
K�T

	K�K�%e��

The easiest way to estimate the weights wK�%e� is to use one of the a priori error

estimates

�K�%e� � CI�Kjjr%ejj�	K
� �K�%e� � CI�KhK jj%ejjH�	K
�

The �rst inequality follow from ������ The second inequality is valid if the exact

solution is su�ciently regular and to prove it we use the approximation properties of

the nodal interpolant�

Improvements	 which lead to another increase in the computational cost	 deal

with techniques for direct evaluation of the residual in �����	 i�e�	 the quantity before

applying H�older�s inequality �for more details we refer to ������

������ Hierarchical �HB� re�nement

For the hierarchical bases method ��� the �nite element space Sh is enriched by certain

hierarchical basis functions� The enriched space is denoted by $Sh � Sh � Bh	 where

Bh is the span of the additional basis functions� Usually Bh is composed of bubble

functions�

The HB error estimator $eh � $Sh is de�ned as the solution of

a� $eh� v� � �f� v�� a�uh� v� for all v � Bh� ������

It can be proved	 under two assumptions	 that $eh is equivalent to the error eh in

jj � jja up to constants of order one� The assumptions are
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�� Saturation assumption � denote by $uh � $Sh the solution of a�$uh� v� � �f� v� for

any v � $Sh and assume

jju� $uhjj� � �jju� uhjj� �

where � � � is independent of h �which is usually satis�ed because of the higher

order approximation��

�� Strengthen Cauchy inequality � assume that for all v � Sh and w � Bh

a�v� w� � �jjvjj� jjwjj� �

where � � � is independent of h �which is true for Bh being bubble functions��

Remark III�� Computationally� to simplify the evaluation of the error estimator

even further� one can replace the symmetric and positive de�nite �s�p�d�� bilinear

form a��� �� in ������ with another s�p�d� bilinear form b��� �� that is easier to invert

and is �equivalent� to a��� ��� The equivalence is in the sense that there are independent

of h positive constants c� and c� such that c� � a	v�v

b	v�v


� c� for any v � Bh� For more

details see ������

������ Error estimator based on second derivative �SD�

This technique �see ����� aims to control the gradient of the error in the maximum

norm �denoted by SD re�nement�� The error control is based on an optimal a priori

estimate of the form

jjr�u� uh�jj��� � C�max
K�T

hK sup
j�j��� x�K

jD�u�x�j � ������

where D� is the multi�index notation for derivatives of order j�j	 C� is a positive

constant	 assumed to be known� The goal to control the right hand side of ������
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with a tolerance � leads to a choice of hK such that C�hK sup
j�j��� x�K

jD�u�x�j � �� The

quantity sup
j�j��� x�K

jD�u�x�j	 denoted as D�
H�u

h
K�	 is approximated locally by using

local dierence quotients of uh �

D�
H�u

h
K� � max
j�j��� K��N	K


jD�uh�PK��D�uh�PK��j
jPK � PK�j � ������

where N�K� is the set of neighboring to K �nite elements	 PK is the center of gravity

of K�

������ Error indicator based on the gradient

This is a very simple and easy to implement error indicator� It is de�ned locally for

every element K � T by

	K �� jjruhjjK�

It leads to mesh re�nement at places where the L� norm of of the discrete gradient

ruh is �big�� It does not give indication for the global error�
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CHAPTER IV

ADAPTIVE FINITE VOLUME METHODS

The previous chapter contains an overview of the main a posteriori error analysis

techniques	 which are used in the �nite element method� Here	 we continue the

analysis by extending the existing techniques to the �nite volume element method�

Again	 we achieve the goals of getting reliable error control and e�cient use of the

available computational resources by local mesh re�nement based on a posteriori error

analysis� We construct a posteriori error estimators that control the error in global

L�	 H�	 and energy norms	 and prove their reliability ����� and e�ciency ������

Since uh � Sh � H�
D� �	 the problem of �nding the exact error e � u � uh has

the following weak formulation � Find e � H�
D� � such that

a�e� v� � F �v�� a�uh� v� �� R�v� for all v � H�
D� �� �����

Most of the residual type error estimators solve ����� approximately	 using an enriched

�nite dimensional space S	 Sh � S � H�
D� �� Such space is usually obtained by adap�

tively re�ning the grid T �the so called h�re�nement� or by increasing the order of the

algebraic polynomials used in the approximation process �the so called p�re�nement��

Such global solution technique is computationally expensive and is usually replaced

by solving the problem locally� We saw dierent instances of implementing this idea

in Section ���	 while considering the �nite element approximations�

Throughout this chapter we use the notations and the assumptions introduced

in Chapter II�

We begin our analysis with the standard steady state approximations �Section

����� We �rst derive a �nite volume error representation �Subsection ������� The

representation uses residuals as in the �nite element case� We consider residual type
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error estimators �Subsection ������	 Zienkiewicz�Zhu type error estimators �Subsection

������	 estimators based on local Dirichlet�Neumann problems �Subsection ������	 and

estimators based on dual problems �Subsection ������� Furthermore	 in Section ���	

we consider the case of upwind approximations� In Section ��� we discuss the error

analysis for transient problems�

���� Estimators for standard steady�state approximations

Here we consider steady state problems	 discretized by the standard �nite volume

method	 described in Subsection ������ First	 we derive and analyze error estimators

in the energy norm	 which in our case is equivalent to the H� norm� The results for

L� norm are obtained in Subsection ����� trough duality techniques�

We will use the T ��piecewise integral mean e � P �
he of the error e � u � uh�

We denote by E the set of all interior edges�faces in T respectively in two�three

dimensions� For edges xixj we denote

�ij �� Vi � xixj�

Also	 for xi � N�
h	 let

�i �� Vi � E

�see Figure � for the �D case�� For any edge E � E and �ux � let ��� � n denote the
jump of � across E in normal to the edge E direction n� The orientation of n is not

important as long as the jump is in the same direction� In general	 if n is present in

boundary integrals	 it will denote the outward unit normal vector to that boundary�

The orientation will either not matter	 which will be the case of computing quantities

involving �ux jumps	 or will be pointing outward and normal to !	 which will be the

case of computing integrals over ! or part of !�
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In Chapter II we introduced the notation jj�jj �� jj�jjL�	�
� Furthermore	 jj�jjL�	K


and jj � jjL�	�
 will denote correspondingly the L� norm over elements K and surfaces

� � �E	!�� The corresponding inner�products will be denoted by ��� ��K and � �� � 
��

If the integrated quantity is de�ned element�wise	 for example the discontinuous over

the elements ruh	 the integrals should be considered as taken element�wise�
The meshes that we obtain in the re�nement process are locally re�ned� With

every element K � T 	 edge E � E 	 and volume Vi � T � we associate local	 and

proportional to their size	 mesh size and denote it correspondingly by hK	 hE	 and

hi� Note that since the mesh is locally quasi�uniform �assumption made in Section

����	 there exist global positive constants c and C such that if xi and E are vertex

and edge of an element K	 we have the inequalities

chi � hK � Chi and chE � hK � ChE� �����

We introduce a global discontinuous mesh size function h�x�	 x �  that takes values
hK 	 hE	 and hi depending on if x � K	 x � E	 or x � xi� Also	 concerning the local

mesh sizes	 if we have inequality of the form

a � Cb�

with C not depending on the local mesh size function h	 then we will often write it

for simplicity as

a � b�

Our analysis of the residual a posteriori error estimates is based on the abstract

framework in Section ���� The abstract linear operator L and the duality pairing

between S and S � in the Galerkin formulation ����� are given by the �nite volume

element formulation ������ An explicit formulation of the abstract linear operator R
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will be given in the next subsection� The equivalent �interpolation type� abstract

estimate �the one involving the constant Ci� is analyzed in Subsection ��������

������ Error representation in the energy norm

Lemma IV�� proves an important for our error analysis representation for the energy

of the error� The error is given as sums of local residuals over � ��� the elements

K � T 	 ��� the internal edges E � E 	 and ��� the Neumann boundary edges

E � !N � It is used in the a posteriori error analysis to give local indication on �how
far� is the approximation uh from the exact solution u�

Lemma IV�� Let the coe�cients of the convectiondi�usionreaction problem �����

be such that assumption �II��� is satis�ed� Then the energy norm jj � jja of the error

e � u�uh� where u is the solution of ����� and uh the solution of ������ is represented

as

kek�a �
X
K�T

Z
K

�f �r � �h � cuh��e� e� dx�
X
E�E

Z
E

���h� � n��e� e� ds

�
X
E��inN

Z
E

�gN � �h � n��e� e� ds�
X

E��outN

Z
E

Aruh � n�e� e� ds�

�����

where e is the T �piecewise integral mean P �
he�

Proof� We take v � e � H�
D� � in ����� and use the de�nition of a��� �� in ����� to

conclude that

a�e� e� � a�u� e�� a�uh� e�

�
X
K�T

Z
K

�f � cuh�e dx �
X
K�T

Z
K

�h � re dx



��

�
X
E��inN

Z
E

gN e ds�
X

E��out
N

Z
E

�b � n�uh e ds�

We integrate the terms in the second sum on the right hand side by parts on each

element K � T to getZ
K

�h � re dx �
Z
�K

��h � n�e ds�
Z
K

er � �h dx�

Taking sum over all elements yields the jump contributions ��h� � n on E � E �see
below� and eventually proves

a�e� e� �
X
K�T

Z
K

�f �r � �h � cuh�e dx�
X
E�E

Z
E

���h� � n�e ds

�
X
E��inN

Z
E

�gN � �h � n�e ds�
X

E��out
N

Z
E

Aruh � n e ds�

�����

Note that this is the assertion if the argument e is replaced by �e� e�	 i�e�	 it remains

to see that the preceding right�hand side vanishes if e is replaced by e� Using the

�nite volume formulation ������������ we get the following equality for each control

volume ViZ
�Vin�N

�h � n ds �

Z
Vi

�f � cuh� dx�
Z

�Vi��outN

�b � n�uh ds�
Z

�Vi��inN

gN ds� �����

We modify the integral on the right hand side by applying the Gau& divergence

theorem to each non�void K � Vi	 K � T 	 to getZ
�Vin�N

�h � n ds �
X
K�T

Z
K�Vi

r � �h dx�
Z
�i

��h� � n ds�
Z

�Vi��N

�h � n ds�



��

The dierence of the preceding two identities is multiplied by e�xi� and summed over

all control volumes� This results in

� �
X
K�T

Z
K

�f �r � �h � cuh�e dx�
X
E�E

Z
E

���h� � n�e ds

�
X
E��in

N

Z
E

�gN � �h � n�e ds�
X

E��out
N

Z
E

Aruh � n e ds�

The combination of the last result with equality ����� concludes the proof� �

The quantities

RK�x� �� �f �r � �h � cuh�

x�K

RE�x� �� ���h� � n�

x�E

Rin
E �x� �� �gN � �h � n�


x�E

� for E � !inN

Rout
E �x� �� �Aruh � n�


x�E

� for E � !outN

�����

have computable L� norms jjRKjjL�	K
	 jjREjjL�	E
	 jjRin
E jjL�	E
	 and jjRout

E jjL�	E
	 which
are used in the de�nition of the residual type error estimator from Subsection ������

Using these notations and Lemma IV��	 the linear operator R from ����� can be

expressed as

R�v� �
P
K�T

�RK� v�L�	K
 �
P
E�E

� RE� v 
L�	E


� P
E��inN

� Rin
E � v 
L�	E
 �

P
E��outN

� Rout
E � v 
L�	E


� a�e� v�

�����



��

for any v � H�
D� �� If we de�ne R as above	 then R makes sense for functions in

S�h as well	 and	 as we showed in Lemma IV��	 R�v
�� � � for v� � S�h� In particular

R�e� � � and therefore equality ����� can be rewritten as jjejj�a � R�e� e��

������ Residual type error estimator

The quantities in the following de�nition are used as indicators for the discretization

error coming correspondingly from elements	 edges	 and the Neumann boundary�

De�nition IV�� We de�ne the error indicators

�R ��

�X
K�T

h�KjjRKjj�L�	K


����

�

�E ��

�X
E�E

hEjjREjj�L�	E

����

�

�N ��

��X
E��inN

hEjjRin
E jj�L�	E
 �

X
E��outN

hEjjRout
E jj�L�	E


�A���

�

The residual type error estimator 	 is de�ned as the sum of the introduced above

error indicators

	 ��
�
��R � ��E � ��N

����
�

Equivalently	 we can de�ne it element�wise as

	�K �� h�K jjRKjj�L�	K
 � hK

�
�
�

P
E�	�K�E


jjREjj�L�	E
 �
P

E�	�K��inN 


jjRin
E jj�L�	E


�
P

E�	�K��outN 


jjRout
E jj�L�	E


�
�

�����



��

The following lemma will be used in Subsection ������� to prove that the residual type

error estimator	 de�ned above	 is reliable�

Lemma IV�� For e � H�
D� �� we have the inequality

X
E�E

Z
E

��h� � n�e� e� ds � C �E krek�

where the constant C is independent of the mesh size h�

Proof� A well�established trace inequality �cf�	 e�g�	 ���	 Theorem ������ or ���	 Theo�

rem ����� and scaling argument prove that there exists a constant C	 independent of

h	 such that

h
���
E kvkL�	E
 � C

�
kvkL�	K
 � hEkrvkL�	K


�
�����

for all v � H��K� and edges E of an element K � T � Applying this inequality to
v �� e� e on each K � Vi	 where K � T and xi � Nh	 leads toZ

�i

��h� � n�e� e� ds � k��h� � nkL�	�i
 ke� ekL�	�i


� h
���
i k��h� � nkL�	�i


�
h��i ke� ekL�	Vi
 � krekL�	Vi


�
�

If xi � N�
h 	 in which case by de�nition

R
Vi

�e� e� dx � �	 we use Poincar'e�s inequality	

or if xi � NhnN�
h 	 in which case e � � on Vi and e � � on �Vi �!D	 we use Friedrichs�

inequality	 to show that

h��i ke� ekL�	Vi
 � krekL�	Vi
� ������

Substituting the last result into the preceding inequality yieldsZ
�i

��h� � n�e� e� ds � kh���i ��h� � nkL�	�i
 krekL�	Vi




��

for xi � Nh� A summation over all vertices and ����� prove the assertion� �

�������� Reliability

The following theorem states that the error e is bounded from above from the residual

type error estimator� The proof uses the error representation �����	 the coercivity

of the bilinear form a��� ��	 and a combination of Cauchy�s	 trace	 Poincar'e�s	 and
Friedrichs� inequalities�

Theorem IV�� The residual based error estimator 	 � ���R� ��E � ��N �
��� is reliable�

i�e�� there exists a constant C� independent of h� such that

keka � C	�

Proof� Lemma IV�� is used to represent kek�a as

kek�a �
X
K�T

Z
K

hKRK h��K �e� e� dx�
X
E�E

Z
E

h
�

�

ERE h
� �

�

E �e� e� ds

�
X
E��in

N

Z
E

h
�

�

ER
in
E h

� �

�

E �e� e� ds�
X

E��outN

Z
E

h
�

�

ER
out
E h

� �

�

E �e� e� ds�

We bound the �rst term using Cauchy�s inequality	 the second using Lemma IV��	

and the remaining two terms again using Cauchy�s inequality� This leads to

kek�a � �Rkh���e� e�k� �Ekrek� �Nkh� �

� �e� e�kL�	�N 
�

Inequality ������ is combined with the trace inequality ����� to obtain

kh� �

� �e� e�k�L�	�N 
 � kh���e� e�k� �
P

xi�Nh

�
h��i ke� ek�L�	Vi
 � krek�L�	Vi


�

� krek� �



��

Assumption �II��� yields krek � keka� This and the preceding two inequalities con�
clude the proof of the theorem� �

�������� E�ciency

The error estimates proved in Theorem IV�� are sharp� The converse estimate holds

even in a more local form �as shown in the proof� then displayed�

Theorem IV�� The residual based error estimator 	 � ���R��
�
E��

�
N�

��� is e�cient�

i�e�� there exists a constant C� independent of h� such that

	 � C keka � h�o�t�

Remark IV�� We use linear approximations� therefore a priori� if the considered

problem has su�cient regularity� jjejja is of order Ch� where C is an independent of

the mesh size h constant� Similarly� for su�cient regularity� terms of order Ch��

� 
 � are denoted by h�o�t�

Proof� We will prove that any of the quantities �R	 �E	 and �N is bounded by

C keka � h�o�t�� First	 we will show the bound for �N 	 and more precisely	 for the

error contribution due to the !inN part of the Neumann boundary	 i�e�	 we will prove

that X
E��inN

hEjjgN � �h � njj�L�	E
 � Cjjejj�a � h�o�t� ������

We consider an element K � T that has an edge E � !inN � We will use the pair K	
E	 as speci�ed	 in the rest of the proof� First	

h
���
E kgN � gkL�	E
 � h�o�t� for g ��

�

jEj
Z
E

gN ds�



��

h
���
E k��h � �h� � nkL�	E
 � h�o�t� for �h ��

�

jEj
Z
E

�h � nds�

Then

kgN � �h � nkL�	E
 � kgN � gkL�	E
 � kg � �h � nkL�	E
 � k��h � �h� � nkL�	E


� kg � �h � nkL�	E
 � h�o�t�

We will prove that kg��h�nkL�	E
 � h
����
E k���hkL�	KE
�h�o�t�	 and then summation

over E � !inN will yield �������

Consider an edge�bubble function bE � H�� �	 bE � �	 bE�x� � � on  nK and

�K n E	 with propertiesZ
E

bE ds �

Z
E

ds� kbEkL�	K
 � �� krbEkL�	K
 � ��hE� ������

A ��D example of such bubble is bE � �����	 where �� and �� are the standard linear

nodal basis functions associated with the end points of the edge E� Let z � H��K�

be the harmonic extension of �g��h �n�bE from �K to K� The extension is bounded

in H� ���	 Theorem ������ on a reference element (K by the H���� (E� norm of the

extended quantity	 and since all norms are equivalent on a �nite dimensional space	

by its L�� (E� norm� Therefore	 a scaling argument gives

h
���
E krzkL�	K
 � h

����
E kzkL�	K
 � kbE�g � �h � n�kL�	E
� ������

We de�ne the linear operator PK into the space of polynomials of degree � on an

element K as

�bK PKz� ph�L�	K
 � �z� ph�L�	K




��

for all polynomials ph of degree �	 where bK � H�� �	 bK � � is an element�bubble

function with properties

supp bK � K�

Z
K

bK ds �

Z
K

ds� kbKkL�	K
 � �� krbKkL�	K
 � ��hK�

One ��D example of such bubble is bK � ��������	 where ��	 ��	 and �� are the

standard linear nodal basis functions associated with the vertices of the element K�

Then %z �� z � bK PKz by construction has the properties

%z � �g � �h � n�bE on E� %z � � on �KnE�

�%z� ph�L�	K
 � � for all polynomials ph of degree ��

Inequality ������ remains valid for z replaced by %z	 because of the following� Choosing

ph � PKz in the de�nition of PK	 yields

kb���K PKzk�L�	K
 � �z� PKz�L�	K
 � kzkL�	K
kPKzkL�	K
�

We use norm equivalence on �nite dimensional spaces on a reference element and scal�

ing toK to get that the quantities jjbKPKzjjL�	K
	 kb���K PKzkL�	K
	 and kPKzkL�	K
 are

equivalent up to constants independent of h	 and therefore kbKPKzkL�	K
 � kzkL�	K
�

We use again the equivalence of norms argument	 inverse inequality and the properties

of z to get that

kr�bKPKz�kL�	K
 � krbKkL�	K
kPKzkL�	K
 � kbKr�PKz�kL�	K


� h��E kPKzkL�	K
 � h��E kzkL�	K


� h
����
E kbE�g � �h � n�kL�	E
�



��

which	 combined with the bound for kbKPKzkL�	K
	 �nishes the proof that ������ is

valid for z � %z�

Now	 for any polynomial ph of degree �	 using the Gau& divergence theorem and

the properties of %z	 we getZ
E

bE�g � �h � n��� � �h� � n ds �
Z
�K

%z�� � �h� � n ds

�

Z
K

�� � �h� � r%z dx�
Z
K

%z�r � �� � �h�� ph� dx

�
�
k� � �hkL�	K
 � hEkr � �� � �h�� phkL�	K


�
h
����
E kbE�g � �h � n�kL�	E
�

Subtracting proper ph from the second term in the last inequality makes that term

h�o�t� Namely	 we �rst write the equality �see the basic problem ����� de�nition�

r � �� � �h�� ph � cu� f �r � �Aruh� � uhr � b � b � ruh � ph� ������

Let %f 	 ecu	�r � b	 %b	 and �r � A are the linear approximations on K of respectively f 	

cu	 r � b	 b	 and r � A� Now	 we take the proper ph	 write ������ in the L��K� norm

and use triangle�s inequality to get

kr � �� � �h�� phkL�	K
 � kf � %fkL�	K
 � kcu� ecukL�	K


�kuh�r � b��r � b�kL�	K
 � k�b� %b� � ruhkL�	K


�kruh � �r � A��r � A�kL�	K


�
�
kukH�	K
 � kuhkH�	K


�
h�o�t� � khKrfkL�	K
�



��

Therefore	 �note that g � � � n on !inN �

kb���E �g � �h � n�k�L�	E
 �

Z
E

%z�g � g� ds�

Z
E

%z�� � �h� � n ds

�

Z
E

%z��h � �h� � n ds

� h
����
E

�
k� � �hkL�	K
 � h�o�t�

�
k�g � �h � n�bEkL�	E


and so

kb���E �g � �h � n�kL�	E
 � h
����
E k� � �hkL�	K
 � h�o�t�

Using again the equivalence�of�norms estimate �equivalence of norms on �nite dimen�

sional spaces on reference element plus scaling�

kg � �h � nkL�	E
 � kb���E �g � �h � n�kL�	E


�nally proves that

kgN � �h � nkL�	E
 � kgN � gkL�	E
 � kg � �h � nkL�	E
 � k��h � �h� � nkL�	E


� kb���E �g � �h � n�kL�	E
 � h�o�t�

� h
����
E k� � �hkL�	K
 � h�o�t�

Similarly	 jjAruh � njjL�	E
 � h
����
E k� � �hkL�	K
 � h�o�t�	 for E � !outN 	 which	

combined with the result for E � !inN 	 proves that �N � Cjjejja � h�o�t�

A similar technique shows that �E � Cjjejja � h�o�t�

The last inequality	 ��R �
P
K�T

h�K jjRKjj�L�	K
 � Cjjejj�a � h�o�t�	 can be proved in
the following way� This time we use the average $RK of RK over the element K to get

jj $RKjjL�	K
 � jjRK � $RK jjL�	K
 � jjRKjjL�	K
 � h�o�t� � jjRKjjL�	K
�



��

We take v � bK $RK in ����� to get that �RK � bK $RK�L�	K
 � a�e� bK $RK� and therefore

�RK� bK $RK�L�	K
 � jjb���K RK jj�L�	K
 � �RK� bK�RK � $RK��L�	K
 � a�e� bK $RK�

� jjejja	K
jjbK $RK jja	K
 � jjejja	K
h
��
K jj $RKjjL�	K
 � h��K jjejja	K
jjRKjjL�	K
 � h�o�t��

where we used an inverse inequality and denoted by jj � jja	K
 the jj � jja norm restricted

to K� Then we take the term �RK� bK�RK � $RK��L�	K
 on the right hand side and

consider it as h�o�t�	 and use that jjb���K RK jjL�	K
 � jjRKjjL�	K
 to �nally get that

jjRKjjL�	K
 � h��jjejja	K
 � h�o�t��

which we wanted to prove	 and which also concludes the proof of Theorem IV��� �

������ Zienkiewicz�Zhu type error estimator

We de�ne the following locally computable quantity and use it as an error estimator

�see the proofs for the upper and lower bounds correspondingly in Subsections �������

and ��������� The estimator is based on a local projection	 which is typical for the

Zienkiewicz�Zhu type error estimators�

De�nition IV�� Let Pi be the L�projection onto the linear functions on Vi� The

ZienkiewiczZhu type error estimator� denoted by �Z � is de�ned for A�x� smooth over

the volumes Vi� as

��Z ��
X
xi�Nh

k�h � Pi�hk�L�	Vi
�

Remark IV�� If we allow jumps of A in the volumes Vi� then we have to change the

projection Pi� For example� if Vi � V �
i 	 V �

i and A is smooth on V �
i and V �

i but has



��

jump across their interface� then Pi is de�ned as the piecewise function

jj�h � Pi�hk�L�	Vi
 � jj�h � P �
i �hk�L�	V �

i 

� jj�h � P �

i �hk�L�	V �
i 

�

where P �
i and P �

i are correspondingly the L�projections onto the linear functions on

V �
i and V �

i �

Lemma IV�� There holds

h
���
i k��h� � nkL�	�i
 � k�h � Pi�hkL�	Vi
 � h�o�t� ������

for all xi � Nh� In particular� �E � �Z � h�o�t� The multiplicative constants behind

the notation � depend on the shape of the elements in T and the shape of the control

volumes in T �� The h�o�t� depends on the elementwise smoothness of �h� and hence

on the coe�cients A and b�

Proof� If �hjK are in �nite dimensional spaces for any K � T 	 then we prove that
h�o�t� � � in ������	 i�e�	 if we denote the �nite dimensional �hjK as �h	 then we have

to prove that

h
���
i k��h� � nkL�	�i
 � k�h � Pi�hkL�	Vi
 for all xi � Nh� ������

We prove estimate ������ by an equivalence�of�norm argument on �nite dimensional

spaces� Both sides of ������ de�ne semi�norms for the �nite dimensional �h� If the

right�hand side vanishes for some �h	 then �h � Pi�h on Vi� Since Pi�h is linear on

Vi	 so is �h� Therefore	 the jump ��h� is zero on �i	 i�e� the left�hand side of ������

vanishes as well� This proves that the semi�norm on the right�hand side is stronger

than the semi�norm on the left�hand side and so proves ������� A scaling argument

shows that the multiplicative constant behind � in ������ is independent of hi�



��

The case when �hjK are not �nite dimensional is treated using the averaging

techniques from the proof of Theorem IV��� Namely	 we introduce �nite dimensional

approximations �h of �h for any K � T 	 and denote

jj�h � �hjjL�	Vi
 � h�o�t� and jj��h � �h� � njjL�	Vi
 � h�o�t�

Then	 we consequently get

h
���
i jj��h� � njjL�	�i
 � h

���
i jj��h� � njjL�	�i
 � h

���
i jj��h � �h� � njjL�	�i


� k�h � Pi�hkL�	Vi
 � h�o�t�
� jj�h � �hjjL�	Vi
 � jj�h � Pi�hjjL�	Vi


� jjPi��h � �h�jjL�	Vi
 � h�o�t�
� jj�h � Pi�hjjL�	Vi
 � h�o�t��

where we used the boundedness of the projection Pi in L
� and the element�wise ap�

proximation properties of the �nite dimensional �hjK for any K � T � This concludes
the proof of inequality ������� We get �E � �Z � h�o�t� by summation of ������ over

all xi � Nh� �

�������� Reliability

The Zienkiewicz�Zhu type error estimator �Z bounds the error from above	 which is

the result of the following reliability theorem�

De�nition IV�� We de�ne a strip  D around the Dirichlet boundary as

 D �� 	fVi � xi � Nh � !Dg�



��

Theorem IV�� Suppose f � H�� �� Then� there holds

keka � �Z � �N � h�o�t�� ������

where the h�o�t� depends on the h�o�t� from Lemma IV�� and on the following expres

sion

kh�r�cuh�k� khfkL�	�D
 � kh�rfk�

Remark IV�� The �nite volume scheme at hand is of �rst order� For f � H�� �

we have that kfkL�	�D
 � h���jjf jjH�	�
� and so

kh�r�cuh�k� khfkL�	�D
 � kh�rfk � h�o�t�

is of higher order�

Proof� To prove the theorem we use again the error representation ����� from Lemma

IV��� In Theorem IV�� we bounded the third and fourth sum of ����� by C�N jjrejj�
The second sum of ����� was bounded by C�Ejjrejj	 and �E was bounded by C�Z �
h�o�t� in Lemma IV�� with constants C independent on the mesh size h� Therefore	

to prove the present theorem	 we need to get the bound

X
K�T

Z
K

�f �r � �h � cuh��e� e� dx � ��Z � h�o�t��jjrejj�

For each xi � N�
h we have the followingZ

Vi

�f �r � �h � cuh��e� e� dx �

Z
Vi

�f � f��e� e� dx

�
Z
Vi

r � ��h � Pi�h��e� e� dx�
Z
Vi

�cuh � cuh��e� e� dx

� ke� ekL�	Vi
�kf � fkL�	Vi
 � kr � ��h � Pi�h�kL�	Vi
 � kcuh � cuhkL�	Vi
��

������



��

where f and cuh are the integral means over Vi of correspondingly f and cuh�

Poincar'e�s inequality gives

ke� ekL�	Vi
 � hikrekL�	Vi
�

kf � fkL�	Vi
 � hikrfkL�	Vi
� ������

kcuh � cuhkL�	Vi
 � hikr�cuh�kL�	Vi
�

The term kr���h�Pi�h�kL�	Vi
 is treated by introducing again the �nite dimensional
element�wise approximation �h of �h� We use the inverse estimate

kr � ��h � Pi�h�kL�	Vi
 � h��i k�h � Pi�hkL�	Vi


and averaging techniques as before to prove that for element�wise smooth �h

kr � ��h � Pi�h�kL�	Vi
 � h��i k�h � Pi�hkL�	Vi
 � h�o�t� ������

The combination of ������������� showsZ
Vi

�f �r � �h � cuh��e� e� dx

� krekL�	Vi

�
kh�irfkL�	Vi
 � kh�ir�cuh�kL�	Vi


�k�h � Pi�hkL�	Vi
 � h�o�t�
�
�

������

So far estimate ������ holds for xi � N�
h � For xi � Nh�!D we replace e	 f 	 and cuh by

zero and deduce the �rst and third inequalities of ������ from Friedrichs� inequality

�notice that e and cuh vanish on !D � Vi�� The inverse estimate ������ holds for

xi � Nh �!D as well� The aforementioned arguments prove ������ with kh�irfkL�	Vi




��

replaced by khifkL�	Vi
� This shows

�f �r � �h � cuh� e� e�

�
�
�Z � kh�r�cuh�k� kh�rfk� khfkL�	�D
 � h�o�t�

�
jjrejj�

The last result	 the discussion at the beginning of the theorem and krek � keka	
which is the coercivity of the form a��� �� from Assumption �II���	 conclude the proof

of the theorem� �

�������� E�ciency

The Zienkiewicz�Zhu type error estimator �Z is also e�cient	 which is the result of

the following theorem�

Theorem IV�� There holds

�Z � keka � h�o�t�

Proof� The proof is straightforward	 namely	 since Pi is a linear L
��Vi� projector	 we

have that

k�h � Pi�hkL�	Vi
 � k�h � Pi�kL�	Vi
�

Adding and subtracting � in the right hand side	 and applying triangle�s inequality

gives

k�h � Pi�kL�	Vi
 � k�h � �kL�	Vi
 � k� � Pi�kL�	Vi
 � k�h � �kL�	Vi
 � h�o�t��

i�e�	 k�h � Pi�hkL�	Vi
 � jjejja	Vi
 � h�o�t�	 since k� � Pi�kL�	Vi
 � h�o�t� is of higher�

order if � is smooth� Summation over all xi concludes the proof of the theorem� �



��

������ Estimators based on local Dirichlet�Neumann problems

The error estimators in this subsection are obtained by replacing the expensive so�

lution in an enriched �nite dimensional space S	 Sh � S � H�
D� �	 by solutions of

local Dirichlet or Neumann problems� In the �nite element setting	 S is usually ob�

tained � ��� by using higher order polynomials over the same mesh	 or ��� by using

polynomials of the same order	 but over locally h�re�ned mesh�

The local Dirichlet�Neumann problems are de�ned using the idea described in

Subsection ������ The continuous problems can be discretized and solved either in

�nite volume or �nite element method setting� In both cases one proves that the

discrete local solutions are equivalent to the local residuals from Subsection ������

However	 the proof in the �nite volume setting introduces some discrete norms	 which

we would like to avoid� In Subsection �������	 we de�ne the �nite volume a posteri�

ori error estimators as solutions of the �nite element discretizations of certain local

Dirichlet�Neumann problems� In Subsection ������� we discuss the proof of the reli�

ability and the e�ciency of the de�ned estimators�

�������� De�nition

Recall that Ki denotes the union of �nite elements K � T sharing a vertex xi� For an

edge E and an element K	 we will use the edge bubble function bE and the volume

bubble function bK 	 which in ��D are de�ned as bE � �����	 where �� and �� are

the standard linear nodal basis functions associated with the end points of the edge

E	 and bK � ��������	 where ��	 ��	 and �� are the standard linear nodal basis

functions associated with the vertices of K� For every element K and vertex xi we

de�ne correspondingly the spaces

SK �� fbK and edge bubbles bE� bE � � for E � !D� E is an edge of Kg



��

and

Si �� fv � C�Ki� � vjK � SK� K � Ki� v � � on �Vi n !Ng�

We de�ne uN�h � SK and uD�h � uh � vh	 vh � Si as the solutions of

a�uN�h� v� � R�v� for 
v � SK ������

and

a�uD�h� v� � F �v� for 
v � Si� ������

where R is de�ned as in ����� but with integrals restricted to K and �K� The local

Neumann and Dirichlet error estimators	 as given in Subsection �����	 are correspond�

ingly

�KLN �� jjruN�hjjL�	K
 and �iLD �� jjruD�h �ruhjjL�	Ki
 �

�������� Reliability and e�ciency

The estimators �KLN and �iLD bound locally the error eh from above and below� The

proof is by proving equivalence to the local residuals from Subsection ������

For example	 consider �KLN � The reliability follows from the jj � jja�stability of
uN�h with respect to the right hand side� For local problems	 discretized by the �nite

element method as in Subsection �������	 this reads

jjuN�hjj�a	K
 � R�uN�h� � jjRjj jjuN�hjjL�	K
 � hK jjRjj jjruN�hjjL�	K
�

where the last inequality is true since the discrete uN�h is � at the vertices of K� Using

the explicit formula for R in ����� we see that hKjjRjj represents the contributions
from K and �K to the residual based estimator �R � �E � �N �



��

To prove the e�ciency �rst note that �see the exact error ����� representation�

R�v� � a�e� v� � jjejja jjvjja for all v � H�
D� ��

i�e�	 for any v � H�
D� �	 the quantity

R	v

jjvjja gives a lower bound for the error� For

problem ������ the above remark translates to jjuN�hjja � R	v

jjvjja for any v � SK� For

proper test functions v	 the quantity R	v

jjvjja is bounded from below by the residual based

error estimator 	 plus h�o�t� For example	 for local problems that are discretized by

the �nite element method as in Subsection �������	 we take v � bK $RK � SK	 use

averaging techniques as before	 inverse inequality	 etc�	 to obtain the bound

jjuN�hjja � R�v�

jjvjja �
jjb���K

$RK jj� � �RK � $RK � bK $RK�

jjbK $RK jja � C
jj $RKjj�L�	K
 � h�o�t�
h��K jj $RKjjL�	K


� ChK jj $RK �RK �RK jjL�	K
 � h�o�t� � ChKjjRKjjL�	K
 � h�o�t�

Similarly	 we get that jjuN�hjja is bounded from below from the edge contributions to

the residual based error estimator�

Similar techniques work for the estimators based on local Dirichlet problems� The

only dierence is that in the Neumann problems the discrete solutions are directly

compared to the residuals� In the Dirichlet estimators	 the residuals are obtained by

integration by parts�

������ Estimators based on dual problems

We use dual techniques to get error estimators for dierent quantities of the error	

which	 as given in Subsection �����	 are properly de�ned linear error functionals in

H�
D� ��

In this subsection we will show how to use the duality technique in order to derive

an error estimator in the global L�� ��norm� The technique will follow the idea from



��

the abstract a posteriori error analysis framework from Section ����

De�nition IV�� We de�ne the error indicators

%�R ��

�X
K�T

�
h�KjjRK � $RK jj�L�	K
 � h�K jjRKjj�L�	K


�����

�

%�E ��

�X
E�E

�
hEjjRE � $REjj�L�	E
 � h�EjjREjj�L�	E


�����

�

%�N ��

���X
E��inN

�
hEjjRin

E � $Rin
E jj�L�	E
 � h�EjjRin

E jj�L�	E

�

�
X

E��outN

�
hEjjRout

E � $Rout
E jj�L�	E
 � h�EjjRout

E jj�L�	E

����

���

�

where $RK� $RE� $Rin
E � and $Rout

E are the mean values over correspondingly K � T �
E � E� E � !inN � and E � !outN of RK� RE� R

in
E � and Rout

E de�ned in ������

We de�ne the residual L� a posteriori error estimator %	 as

%	 �� �%��R � %�
�
E � %��N�

����

Our aim is to show that the estimator %	 is reliable in the L�� � norm� The a

posteriori L�� � error analysis involves the continuous dual problem� Find %e � H�
D� �

such that

a�v� %e� � �e� v� for any v � H�
D� �� ������

where e is the exact error	 de�ned as before�

Theorem IV�� Let the solution %e of the dual problem ������ be H�� �regular� If

the coe�cients of our basic problem ����� are su�ciently regular� namely RK� RE�



��

Rin
E � and Rout

E are correspondingly in H��K�� H����E�� H����!inN �� and H����!outN ��

then the residual L� a posteriori error estimator from De�nition IV�� is reliable� i�e��

there exists a constant C� independent of the mesh size h� such that jjejj � C %	�

Proof� For v � e in ������	 applying techniques similar to the ones for the residual

based error estimator from Subsection �����	 we get

jjejj� � a�e� %e� � R�%e� e��

�
X
K�T

Z
K

RK�%e� e�� dx�
X
E�E

Z
E

RE�%e� e�� ds

�
X
E��inN

Z
E

Rin
E �%e� e�� ds�

X
E��outN

Z
E

Rout
E �%e� e�� ds�

������

where e� � S�h is arbitrary� To evaluate the right hand side of identity ������ we

use the nodal interpolation operator Ih and its properties� If %e � H�� � the Sobolev

inequalities ���	 Theorem ������ guarantee that Ih%e is well de�ned� The properties of

the interpolant are well established in the �nite element literature �see	 for example

������ Namely	 we have that

h��K jj%e� Ih%ejjL�	K
 � h��K j%e� Ih%ejH�	K
 � h��	�K jj%e� Ih%ejjL�	�K
 � CI�Kj%ejH�	K
� ������

Now	 in equation ������	 we replace %e� e� by

%e� e� � �%e� Ih%e� � �Ih%e� I�hIh%e��

where I�h is the nodal piecewise�constant interpolation operator	 introduced in Section

���� We apply Schwartz inequality on the integrals involving %e � Ih%e and use ������



��

to get the bound for R�%e� Ih%e��

R�%e� Ih%e� �
X
K�T

h�K jjRKjjL�	K
jj%ejjH�	K
 �
X
E�E

h�	�K jjREjjL�	E
jj%ejjH�	K


�
X
E��in

N

h�	�K jjRin
E jjL�	E
jj%ejjH�	K
 �

X
E��out

N

h�	�K jjRout
E jjL�	E
jj%ejjH�	K
�

������

For the integrals involving Ih%e� I�hIh%e we �rst note that if K is a �xed element in T 	
then for every vertex xi of K	 the quantities jK � Vij are the same� Also	 for vertices
xi of a face E we have that the boundary quantities jE �Vij are the same� Therefore	
we have the following equalitiesZ

K

�Ih%e� I�hIh%e�dx � ��
Z
E

�Ih%e� I�hIh%e�ds � ��

We use the last fact on the integrals involving Ih%e� I�hIh%e in order to subtract from

RK 	 RE	 R
in
E 	 and Rout

E their mean values $RK 	 $RE	 $R
in
E 	 and $Rout

E � Then	 we use

Schwartz inequality and Poincar'e�s inequality to get a bound for R�Ih%e� I�hIh%e��

R�Ih%e� I�hIh%e� �

X
K�T

hKjjRK � $RK jjL�	K
jj%ejjH�	K
 �
X
E�E

h
���
K jjRE � $REjjL�	E
jj%ejjH�	K


�
X
E��inN

h
���
K jjRin

E � $Rin
E jjL�	E
jj%ejjH�	K
 �

X
E��outN

h
���
K jjRout

E � $Rout
E jjL�	E
jj%ejjH�	K
�

������

where we have used the inequality

jjIh%e� I�hIh%ejjL�	K
 � hK jIh%ejH�	K
 � hKj%e� Ih%ejH�	K
 � hKj%ejH�	K


� h�K j%ejH�	K
 � hK j%ejH�	K
 � hK j%ejH�	K
�

Using ������	 ������	 ������	 the stability of the dual problem with respect to the



��

right hand side jj%ejjH�	�
 � Cjjejj	 and obvious manipulations	 we get that the L�

a posteriori error estimator %	 is reliable� Moreover	 for the stated in the theorem

regularity	 we can apply Poincar'e�s inequality to the terms

jjRK � $RKjjL�	K
� jjRE � $REjjL�	E
� jjRin
E � $Rin

E jjL�	E
� and jjRout
E � $Rout

E jjL�	E


to get one more power of h	 which will make the error estimator of second order�

Note that we did not explicitly apply the Poincar'e�s inequality in the de�nition

of the error estimator in order to make it well de�ned for problems with less that the

stated in the theorem regularity� �

���� Estimators for upwind steady�state approximations

This is problem ������ with convection part determined by ������� The upwind ap�

proximation of the convection will bring additional error term	 and we modify the

above argument in the following way� From auph �uh� v
�� � F �v�� and ah�u� v�� � F �v��

for v� � S�h we get the orthogonality condition�

ah�u� v
��� auph �uh� v

�� � ��

Similarly to the residual based error estimator	 the estimate for the error in the energy

norm now becomes

c�jjejj�� � a�e� e� � a�e� e�� ah�u� v
�� � auph �uh� v

��

� fa�e� e�� ah�e� v
��g� fauph �uh� v��� ah�uh� v

��g �



��

To estimate the term a�e� e� � ah�e� v
�� � R�e � v�� we use the residual based error

estimator from Subsection ������ For the second term we use the equality

auph �uh� v
��� ah�uh� v

�� � Cup�uh� v
��� C�uh� v

��

to get

Cup�uh� v
�� �C�uh� v�� �

X
xi�N�

h

v�i

�����
X
j��	i


Z
�ij

��b � n��uh�xi� � �b � n��uh�xj��ds

�
Z

�Vin�N

b � nuhds�
Z

�Vi��outN

�b � n uh�xi�� b � n uh� ds

����� �

Now we rewrite this sum of integrals over the volume boundaries �Vi as a sum

of integrals over �ij� First	 for each �ij we �x its normal vector nij so that b � nij � �

and the order of the indexes ij is such that �xi � xj� � n � �� This means that nij

is the unit normal vector pointing outside of Vi on �ij� This is shown on Figure ��

According to these notations if a �nite element K intersects the volume boundaries

�Vi� �Vj	 and �Vk	 then for a given vector�function F we have the equality�

X
l�fi�j�kg

v�l

Z
�Vl�K

F � n ds � �v�i � v�j �
Z
�ij

F � nij ds

� �v�j � v�k�
Z
�jk

F � njk ds� �v�k � v�i �
Z
�ki

F � nki ds�



��
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Fig� �� Distribution of the normal vectors to �ij in one �nite element�

As a result	 we get

auph �uh� v
�� � ah�uh� v

�� � Cup�uh� v
��� C�uh� v

�� �

�
X
K�T

�����
X
�ij�K

�v�i � v�j �
Z
�ij

b � nij�uh�xi�� uh� ds

�
X
Vi�K

v�i

Z
�Vi��outN

b � n �uh�xi�� uh�ds

����� �

We denote R�ij � b �nij�uh�xi�� uh�j�ij and take �v�� to be the jump of v� across �ij�
Then	 using Schwartz inequality	 the term that involves integral over �ij is bounded



��

by Cjj�e� v��jj�ij jjR�ij jj�ij 	 where jj � jj�ij denotes the L��norm on �ij�

Further	 we introduce the notations

��
K � h

����
K

��X
�ij�K

jj�e� v��jj��ij

�A���

	 jjR�K jj �
��X

�ij�K
jjR�ij jj��ij

�A���

�

Again	 using the local quasi�interpolant and its approximation properties	 we getP
K�T

��
K � CI jjrejj�� Let n	 be a unit vector normal to n� For the term involving

integration over �Vi � !outN 	 we have juh�xi� � uhj � hK jruh � n	j� Also	 taking

v� � I�hv�e� as in �����	 and using Schwartz and trace inequalities	 we bound the term

involving integration over !outN by

X
Vi�K

v�i

Z
�Vi��outN

b � n �uh�xi�� uh�ds � Ch
���
K jjrejj�	K
jjb � n ruh � n	jj�Vi��outN

�

Combining all these estimates	 we get a residual based error estimator with element�

wise de�ned error 	K similar to ����� with two additional terms due to the upwind

approximation�

	K �� hK jjRKjjL�	K
 � h
���
K

� X
E��K�E

jjREjjL�	E
 �
X

E��K��inN

jjRin
E jjL�	E


�
X

E��K��outN

jjRout
E jjL�	E


� jjR�K jj� jjb � n ruh � n	jjL�	�K��outN 


�
�

���� An error indicator for transient problems

Here we extend the �nite volume a posteriori error results to the time�dependent

problem ������ The discretization is as given in Subsection ������ We solve the

discrete problem ������	 consider the dierence between the solutions of ����� and
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������	 and propose an error indicator for it in the global L�� ��norm for every time

interval n � �� � � � �M � The approach is similar to the one taken by Eriksson et al� in

���	 ��� and Thomee in ����	 and follows the idea from the abstract a posteriori error

analysis framework from Section ���� Although we show the main steps in proving

the reliability of the error indicator	 our goal is not to make a rigorous error analysis	

but to show how to reduce the �nite volume error analysis for transient problems to

the �nite element analysis that is given in ���	 ��	 ����

De�nition IV�� We de�ne the L�� � error indicator for time level M as

	T �� LM max
�
n
M

�
%	In � jj

h�n
tn

�un��h �jj� jj hntn
�un��h � $un��h �jj

�tnjjRjjIn � jj�un��h �jj
�
�

where

LM �� � � max
�
n
M

max

�r
log

tn
tn

� log
tn
tn

�
�

jj � jjIn � max
t�In

jj � jj� %	In � max
t�In

%	�unh� with %	 from De�nition IV�� and R from ���
��

The �nite volume a posteriori error analysis and its reduction to the �nite element

method analysis have the following main steps�

First	 consider the dual problem � Find %e�x� t�	 x �  and t � ��� T � such that�������
��"%e� v� � a�v� %e� � � for all v � H�

D� �� t � ��� T �

%e�T� x� � e�T� x� for all x �  �
������

We use upper indices to denote the time levels �see the notations in Subsections �����

and ������ 	 i�e�	 eM � e�T� x� � e�tM � x�� Second	 we multiply the initial condition of



��

������ by eM 	 take the L�� � norms on both sides	 use that

MX
n��

Z
In

��"%e� e� � a�e� %e� dt � ��

and modify the last equality by integrating �"%e� e� by parts� Note that e is discontinuous

between the time levels	 so the integration by parts produces the jumps of e between

the time levels� We get

jjeM jj� � �%eM � eM� �
MX
n��

Z
In

��"%e� e� � a�e� %e� dt

�
MX
n��

���
Z
In

�%e� "e� � a�e� %e� dt� ��en���� %en���

���
�

MX
n��

���
Z
In

F �%e�� a�u� %e� � a�u� uh� %e� dt� ��un��h �� %en���

���
�

MX
n��

���
Z
In

F �%e�� a�uh� %e� dt� ��un��h �� %en���

��� �

where we used that "e � "u � "uh � "u on any interval In	 the weak formulation �����	

and that �en��� � ��un��h �� Third	 using the last result	 the approximation property

������	 i�e� Z
In

F �v��� ah�uh� e
�� dt� ��un��h �� e�� � � � e� � S�h�

and the technique used in the proof of Lemma IV��	 the exact formula for the error

in the L�� � norm becomes

jjeM jj� �
MX
n��

���
Z
In

R�%e� e��n� dt� ��un��h �� %e n�� � e��n���

��� �� RM�%e� e��



��

for any e� � S��th � Then	 the analysis proceeds as follows� If %e is su�ciently regular

we take %e� e�

In
from the above error representation to be

%e� e�

In
�
�
%e� Ih%e

�
�
�
Ih%e� PIh%e

�
�
�
PIh%e� I�hPIh%e

�
where

Pv

In
��

�

jInj
Z
In

v dt�

We use the approximation properties of Ih	 I
�
h	 and P to represent RM�%e� e�� as the

computable error indicator 	T times quantity of the solution %e of the continuous dual

problem ������	 which quantity is bounded by jjeM jj by assuming proper regularity
of the dual problem� A rigorous proof will involve technical details and complicated

regularity analysis	 which is not in the scope of this dissertation�
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CHAPTER V

COMPUTATIONAL ASPECTS OF THE ADAPTIVE METHODS

An important and challenging component of the adaptive methods is their practical

computer implementation� The problems in this direction are related to computer

science in more than one way� The di�culties come from the three speci�c require�

ments for our implementation� First	 our computations are mainly targeted to ��D

problems� Second	 we consider time dependent problems� And third	 we require the

computations to be done in parallel� Therefore	 our research in the adaptive methods

is targeted not only in their mathematical aspects	 but also in their computational

aspects�

Although there are some ready	 stand alone tools that can be used for adaptive

computer simulations	 they are usually �black boxes� that are di�cult to change and

adjust to speci�c problem requirements� This motivated our interest in the develop�

ment of new tools	 and their integration with already existing tools	 for large scale

parallel adaptive computations� Some of our results in this direction are summarized

in the technical report �Tool�box for large scale parallel computations of ��D �uid �ow

problems using domain decomposition� ����� Here we extend the results and describe

the tools that we have used	 developed	 and implemented in a computer system for

the parallel adaptive numerical solution of steady and transient convection�diusion�

reaction problems�

Our goal was to create a simulator that uses various tools and that is based on

� discretization techniques utilizing �nite element and �nite volume discretiza�
tions for � and ��D problems


� e�cient preconditioning of the resulting algebraic system
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� error control and adaptive grid re�nement


� parallel implementation on a multiprocessor computer system utilizing the con�

cept of domain decomposition data distribution�

We created a tool	 named ParaGrid	 which achieves the goal that we described above�

We group the computational di�culties in designing and implementing ParaGrid	 into

the following main components�

� adaptive mesh generation


� mesh partitioning and load balancing


� parallel computations


� data structures


� visualization�

Parallel grid generation tools play an important role in the scienti�c research that

requires the power of high performance parallel computers� To enable the develop�

ment of e�cient computational technologies such tools may have to generate �ner

meshes only in some regions of the computational domain� We describe the chal�

lenges and the solutions in developing such tools in the �adaptive mesh generation�

component �Section ����� We explain our mesh generation strategy	 and concerning

the local re�nement	 give the algorithms that we have used for element re�nement

and dere�nement� The next main component	 �mesh partitioning and load balanc�

ing� �Section ����	 is about the parallel issues in developing parallel grid generation

tools� The main concerns here are to ��� �nd a balanced among the processors par�

titioning that minimizes in certain sense the interface between the processors	 and
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��� keep the above partitioning property during the re�nement process� The �paral�

lel computations� component	 given in Section ���	 gives an introduction to writing

e�cient parallel �nite element�volume software in shared �using OpenMP� and dis�

tributed �using MPI� memory computational environment� The next section	 Section

���	 gives the overall code organization and the maintained data structures� The sec�

tion concerns the �e�cient preconditioning of the resulting algebraic system�� The

last section	 Section ���	 is about the visualization of the obtained numerical results�

It is essential to have a visualization tool to help in the analysis of the obtained re�

sults� In the area of the adaptive methods their availability is highly appreciated even

for debugging purposes	 where one would like to see if the re�nement is in areas of

where the solution singularities are� The available visualization tools often can not

be modi�ed and tuned for speci�c applications	 which may be needed for ��D prob�

lems	 numerical results streaming in parallel from subdomains	 or time dependent

problems	 etc�

���� Adaptive mesh generation

Finding a �good� mesh is one of the key elements in the development of any e�cient

computational methodology that is based on �nite element or �nite volume methods�

There are many available stand alone mesh generators� A survey in the �eld is given

by Owen ����� Despite the large variety	 not many of the available software products

are directly usable for research purposes in the adaptive methods� For example	 not

many of the products are in the public domain	 some do not support adaptivity	 and

most of them do not support parallelism� What we need is a mesh generation tool

that

� produces quasi�uniform grids
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� supports adaptivity


� adaptively maintains the mesh in parallel


� provides decomposition of the domain �from the splitting among the processors�

and multilevel �from the adaptive process� data structures suitable for domain

decomposition and multigrid�multilevel type preconditioners�

We have developed such parallel adaptive mesh generation tool� The generator is

named ParaGrid� Its features are discussed in Subsection ������

ParaGrid uses as input a coarse mesh� In ��D this initial mesh is obtained by the

stand alone mesh generator triangle� It generates exact Delaunay triangulations	

constrained Delaunay triangulations	 and quality conforming Delaunay triangulations

����� Triangle is freely available for non�commercial use from Internet address

http���www	��cs�cmu�edu��quake�triangle�html�

For ��D domains we obtain the initial mesh by the stand alone tetrahedral mesh

generator NETGEN� It is based on the advancing front method and is developed by

Sch�oberl ����� The input is a ��D domain described by boolean operations �or	 and	

not� on primitives	 such as planes	 cylinders	 spheres	 cones	 etc�	 which allow gen�

eration of complicated domains	 for example the one on Figure �� NETGEN is freely

available for non�commercial use from Internet address

http���www�sfb��
�uni	linz�ac�at��joachim�netgen��

Subsection ����� and Subsection ����� discuss correspondingly the re�nement and

dere�nement algorithms that we have used in our implementation�

������ ParaGrid	 a parallel adaptive mesh generator

We developed a tool	 named ParaGrid	 for parallel adaptive mesh generation� The

development started from a ��D project assignment of a summer internship at the
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Fig� �� Crankshaft mesh� The domain is split into �� ��� elements	 with �� ��� surface

elements and �� ��� vertices�

Center for Applied and Scienti�c Computing �CASC� at Lawrence Livermore National

Laboratory� Then it was further developed for ��D tetrahedral meshes� ParaGrid is

software that takes as input a coarse tetrahedral �or triangular in the ��D case� mesh	

which describes well the domain	 splits it using MeTiS	 distributes the partitioning

among the available processors	 and generates in parallel a sequence of meshes� It

has its internal solvers and is able to generate various Finite Element�Volume dis�

cretizations� The maintained data structures allow ParaGrid to be easily connected

to �or used to provide data to� external parallel �nite element�volume solvers based

on domain decomposition data distribution� It has been successfully used by several

researchers in CASC for algorithm testing purposes�

The re�nement in ParaGrid is based on the a posteriori error indicators developed

in Chapter IV� The estimators can be used in various computational strategies�

For example	 one may vary the re�nement�dere�nement element selection strategy	

as explained in Algorithms III�� and III��� Also	 the error estimators can be used
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to obtain load balance among the processors in parallel computations	 as given in

Subsection ������

The mesh can be maintained globally conforming or left to be non�conforming

between the subdomains� The latter possibility is faster and can be used for mortar

type approximations� In both cases	 every processor keeps an array of faces on the

interfaces between the subdomains� In the non�conforming case this allows us to com�

pute for example integrals like
R
F

�i�jdx	 where F is face on the subdomain interface	

�i and �j are basis functions associated with the dierent sides of the interface� In

the conforming case the interface faces are ordered in the same way from both sides of

the interfaces� This gives the face correspondence from the two sides of the interfaces�

It is used for example to make the mesh conforming between the subdomains�

A narrative version of the parallel algorithm that produces conforming between

the subdomains mesh is given as follows�

Algorithm V�� This parallel algorithm re�nes�dere�nes certain marked elements

and then additionally re�nes in order to produce a mesh that is conforming between

the subdomains� The following is run in parallel by every processor�

� re�ne�dere�ne the locally marked elements�

� additionally re�ne until local conformity is reached�

� send packages to the neighboring subdomains for every interface� giving how

many times each of the faces in that interface has been bisected�

� receive similar information and check if re�nement is needed�

� if yes� then re�ne the elements that need re�nement and re�ne additionally�

until local conformity is reached�

� repeat the above process until no subdomain has performed re�nement�



��

The data structures that we needed in order to implement AlgorithmV�� are discussed

in Section ����

After conformity is reached we use MeTiS to check the load balance� The input

is the graph of the starting mesh with nodes being the elements� Every node has

weight	 which is the number of children that the element has� If an element has to

migrate in order to maintain the load balance the element migrates along with its

children� A more detailed description is given in Section ����

The �nite element re�nement is given in Subsection ����� and the �nite element

dere�nement	 in Subsection ������

������ Element re�nement algorithms

We have implemented two re�nement strategies for ��D problems� The standard one

is uniform splitting into � and the alternative is element bisection �see Figure ���

We sort the edges on the starting mesh by length and then select for every

element the longest edge as a �re�nement edge�� Re�nement edge is the edge that

will be bisected if needed� It is maintained for every element during the adaptive

process� ��� if we do bisection	 then the re�nement edges in the new elements are

selected to be opposite to the new vertex	 and ��� if we do uniform re�nement	 then

the re�nement edges in the new elements are inherited from the parent �see Figure

��� The re�nement edge is not explicitly stored� It is maintained between element�s

vertices � and �� This means that after re�nement	 the new elements have vertices as

shown on Figure ��
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refinement edge

K

uniform refinement

bisection

0

1 2 0

1

2

0 1

2

0 1

2

0 1

2

01

2

refinement edge
refinement edge

K1.node[0]:=v1, K1.node[1]:=v2, K1.node[2]:=vm

Note that : K0.node[0]:=v2, K0.node[1]:=v0, K0.node[2]:=vm

v0:=K0.node[1], v1:=K1.node[0], v2:=K0.node[0]

Also, to derefine K0 and K1 into K we have :

V0 V1

V2

vm

K0 K1

K0 K1

K2

K3

Fig� �� Re�nement	 de�re�nement	 and maintenance of the re�nement edge in ��D� The

re�nement edge is kept always between local vertices � and �� When bisecting

the new re�nement edges are opposite the new vertex vm and for uniform re�ne�

ment they are kept as in the parent� The de�re�nement of elements obtained

by uniformly re�nement is similar to the de�re�nement of elements obtained

by bisection� v���K��node���	 v���K��node���	 and v���K��node����
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The repeated application of the algorithm does not lead to element shape degen�

eration� For a given element �see Figure �� one can get at most four types of shapes	

which are the original one	 denoted by A	 and also B	 C	 and D	 as shown on the

�gure�

A A
A

A

B C
D D

A A

Fig� �� The � dierent types of shapes obtained in the process of uniform re�nement

or bisection� Note that bisecting shape D leads to shapes B and C�

In the ��D case we use the bisection algorithm described by Arnold et al� in ����

The general idea is similar to the one in the ��D bisection� First	 we sort the edges

by length on the coarse mesh� Then	 we select the longest for every element edge

as �re�nement edge�� This is the edge that will be bisected if we mark the element

for re�nement� Additionally	 we select in every face the longest edge and denote it

as �marked edge� �ME�� We introduce a local numbering for the edges of an element

K	 which ordering is according to the ordering of the nodes �see Figure ��	 or more

precisely	 edge � is between vertices V� and V�	 edge � is between V� and V�	 etc�
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case 5 :

ME = {3, 4}

Right sub-element, K1 :

K1.type = (K.type + 1)%3

switch (ME for face V1 V3 V2)

case 1 : 

case 4 :

K1.node = {V2, V1, V3, VM}

if (K.type == 2) ME = {1, 3}

K1.node = {V1, V3, V2, VM}

if (K.type == 2) ME = {2, 4}

K1.node = {V2, V3, VM, V1}

V0
V1

V2

V3

K0 K1

edge 0

edge 1

edge 2

edge 3 edge 4

edge 5

K

VMV0
V1

V2

V3

Left sub-element, K0 :

K0.type = (K.type + 1)%3

case 2 : 

case 3 :

switch (ME for face V0 V2 V3)

K0.node = {V0, V2, V3, VM}

if (K.type == 2) ME = {2, 4}

K0.node = {V3, V0, V2, VM}

if (K.type == 2) ME = {1, 3}

case 5 : K0.node = {V3, V2, VM, V0}

ME = {3, 4}

else                    ME = {2, 1}

else                    ME = {1, 2}

else                    ME = {1, 2}

else                    ME = {2, 1}

Fig� �� Algorithm for bisection of a tetrahedron� Here ME abbreviates marked edge�

Note that in the re�nement process the vertices are ordered so that the orien�

tation of the elements is preserved�

The re�nement edge is kept always between vertices V� and V�	 i�e�	 edge ��

Our re�nement implementation does not need the edges or the faces to be explicitly

generated� The element has the four integers that give the node indices in speci�c

order and one more integer	 which we use bitwise in order to save several �ags� We

have two �ags	 ME��� and ME���	 that give the marked edges for faces V�V�V
 and

V�V
V� �for the other � faces edge � is the marked one�� These �ags are integers

from � to �	 so to store them we need � bits for each of them� Two more bits are
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used for the �element type� �ag �see ���� and the rest	 if needed	 is used for element

attribute� The re�nement edges and the marked edges are maintained in the adaptive

process according to the algorithm in ���	 which is summarized in a pseudocode on

Figure �� The element types on the coarse level are initialized in the following way�

If K�ME�f���g then K�type � �	 else K�type � 
 for every K � Th� The repeated

application of the bisection algorithm	 that we described above	 does not lead to

element shape degeneration�

������ Element de�re�nement

In ��D we can dere�ne two elements	 K� and K�	 or four elements	 K�	 K�	 K�	 and

K
	 into an element K if they have been obtained by correspondingly bisection or

uniform re�nement of K� In order to have such information we store the history of

the re�nement process� The implementation uses a tree data structure �see Section

����� Also	 we have the elements	 that have to be dere�ned	 ordered in the way that

some previous re�nement process produced them �see Subsection ������� This allows

us to determine the vertices and their order in the original element K� We show how

to do this on Figure ��

In ��D we have a similar situation� For example	 from element K�	 since the

ordered pair ME is unique �see Figure ��	 we can determine uniquely nodes V�	 V�	

and V
� Also	 ME��� and K�type � �K��type  ���
� The rest is similarly obtained

from K��

���� Mesh partitioning and load balancing

Mesh partitioning and load balancing algorithms are the key ingredients for an e��

cient parallel solution methodology that is based on domain decomposition methods�
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Domain decomposition methods use a divide�and�conquer concept	 which main idea

is to split the global problem into sub�problems	 solve them concurrently	 and some�

how merge or combine the local solutions in order to get the global one� Such idea

translates into �rst	 �nding a splitting fTi�hgNi�� of the global mesh Th	 then mapping
every Ti�h to a processor	 doing independent computations on each Ti�h	 and trans�

ferring data when necessary� Crucial for the e�cient parallel execution of software

based on this technique is obviously the quality of the splitting fTi�hgNi��� It should
be such that

� there is load balance among the processors	 and

� the interface between fTi�hgNi�� is minimal in a certain sense�

In order to have load balance over the processors the number of tetrahedrons in each

Ti�h should be almost equal� Also	 in order to reduce the communication	 the number

of nodes on the boundary between the sub�domains should be minimal� Although

this problem is NP�complete	 many relatively simple and eective heuristic methods

have been devised �see the survey ������ One way to approach the problem is to

model the mesh by a graph	 and then using a graph partitioner to partition it into

equal parts	 with number of edge�cuts minimized� The enormous interest in parallel

computing explains the variety of available graph partitioning libraries� In Subsection

����� we mention some of the most popular and brie�y discuss the one that we use�

In the next two subsections	 Subsection ����� and Subsection �����	 we explain our

strategies to maintain load balance during the adaptive mesh re�nement process for

correspondingly steady�state and transient problems�
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������ Mesh partitioners

A simple �mesh partitioner� search on Internet gives a wide choice of mesh partition�

ing software� Some of the most popular are�

� MeTiS � developed by George Karypis and Vipin Kumar from the University

of Minnesota


� CHACO � developed by Bruce Hendrickson and Robert Leland from Sandia

National Laboratory


� JOSTLE � developed by Chris Walshaw from the University of Greenwich	

London�

All of the mentioned partitioning libraries handle unstructured meshes �graphs� and

can be used in parallel to repartition existing partitions� The availability of the latter

characteristic is essential in the parallel adaptive mesh re�nement since it is used to

maintain the load balance during the adaptive process�

In our work we have used MeTiS	 a software package for partitioning large ir�

regular graphs�meshes and computing �ll reducing orderings of sparse matrices� The

algorithms in MeTiS are based on multilevel graph partitioning	 where the graph is

consecutively coarsen	 the coarse graph partitioned and then the computed partitions

projected into the �ne graph�

We have used the graph partitioning part of MeTiS	 where the vertices of the

graph are the �nite elements and the graph links are the common for the elements

edges or feces	 correspondingly in � or ��D� MeTiS provides two programs to partition

graphs into k equal parts� pmetis and kmetis� The �rst one	 pmetis	 is based on

multilevel recursive bisection algorithm �see ����� and is preferable for partitioning

graphs into a small number of sub�domains� The second one	 kmetis	 is based on
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k�way partitioning �see ����� and is preferred when the graph has to be split into more

than eight parts� Our computational observations are that both programs produce

well balanced meshes	 with pmetis being better for small values of k	 and kmetis

being slightly better for large values of k� Also	 kmetis often produces disconnected

domains	 especially for large k� In general	 pmetis produces �smoother� and �better

connected� domains�

Figure � shows the domain from Figure � split into � by pmetis� The domain

is split at places where one intuitively would do it in order to have balance of the

elements in the sub�domains	 and minimum interface between the sub�domains�

Fig� �� Crankshaft mesh split in � by pmetis� The subdomains	 starting from left	

have correspondingly ����	 ���� 	 ����	 and ���� tetrahedrons�

������ Load balancing for steady�state problems

If we have a �xed partition of the domain	 the repeated application of local adaptive

re�nement will in general lead to load disbalance among the processors� Therefore	

we need algorithms that will dynamicly maintain the load balance� We have tested

three techniques� The �rst two are narratively described as follows	 and the third
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one	 which is based on element migration between the subdomains	 is explained in

Subsection ������ In all the cases we start with a �good� coarse mesh that has been

produced by triangle for ��D domains and NETGEN for ��D domains� The coarse

mesh is read by all the processors	 so at the beginning every processor stores a copy

of the initial mesh�

Strategy V�� Every processor solves the problem� produces a posteriori error esti

mates� and based on them� adaptively re�nes its copy of the mesh until some error

tolerance� for example �� times bigger than the targeted tolerance� is reached� Such re

�nement is used to locally adapt the mesh to the singularities of the solution� The still

coarse mesh is split into subdomains using MeTiS and every subdomain is �mapped�

to a processor� From this point every processor handles its subdomain and all the com

putations are done in parallel� Uniform parallel re�nement follows until the desired

error tolerance is reached�

The uniform re�nement steps in the second part of the strategy guarantee that the

load balance will be maintained on the dierent re�nement levels� The bene�ts of

such strategy are that it is easy to implement and there is load balance among the

processors� The weakness is that the e�ciency is not optimal since a local re�nement

that is entirely led by a posteriori error analysis would have produced a mesh with

less degrees of freedom for the same error tolerance�

Strategy V�� Again� every processor solves the problem on the coarse mesh� The

solution is used to compute a posteriori error estimates for every element of the

mesh� which estimates are used as weights in an element based splitting of the coarse

mesh into subdomains �using MeTiS�� Then� every subdomain is �mapped� to a
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processor� This is the point where the parallel computations start� Every processor

adaptively re�nes its region using the sequential Algorithm III�� �plus synchronizing

communications with the other processors��

The weighted graph splitting in Strategy V�� heuristically insures that the local re�

�nements that follow will produce computational mesh with balanced over the sub�

domains number of elements� The strategy is easy to implement and produces meshs

that are entirely based on a posteriori error analysis� It is still not optimal in the

sense that the load balance may not be optimal on the dierent re�nement levels�

A strategy that removes the weaknesses of the �rst two	 but is much harder

to implement	 involves element migration between the subdomains	 and is described

below�

������ Load balancing for transient problems

Strategies V�� and V�� are feasible for steady state problems and not applicable to

transient problems� For transient problems we usually have moving fronts and the

load balance varies very dynamically along the adaptive algorithm� For such cases we

need to do element �migration� between the subdomains in order to maintain load

balance� The strategy that do it is described as follows�

Strategy V�� Split the initial mesh into subdomains using MeTiS and �map� every

subdomain to a processor� Every processor starts a parallel version of Algorithm III���

The parallel modi�cation of the algorithm is that on every time step ParMeTiS is used

to check the load balance of the current mesh� This is done by assigning a weight to

every element of the coarse mesh� which is the number of �children� that the element

has due to the re�nement process� and repartitioning the so obtained weighted mesh�

If the ownership of coarse elements has to be changed then they move� along with their
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children� from their old to their new subdomain�

This strategy is used also in the steady�state case	 but the load balance is checked on

the �nest level� If there is need for �nest elements migration	 then they are moved

to their new subdomain� In the time dependent case	 the need for dere�nement

determines that the migration be on the coarse level �along with the children�	 as

described in the strategy above� A strength of such approach is that it reduces the

number of communications	 since the threshold for a migration to take place is higher�

���� Parallel computations

This section describes the machinery that we used and developed for writing parallel

�nite element�volume code� We start with some fundamental scalar code optimiza�

tion concepts	 associated with modern parallel architectures �Subsection ������� We

discuss the importance of the optimization and show how it may help in a �nite

element�volume code� Subsections ����� and ����� give some key concepts in imple�

menting parallel domain decomposition� Also	 they may serve as an introduction

in writing parallel �nite element�volume software under correspondingly shared and

distributed memory paradigms�

All illustrations and examples of how to use OpenMP�MPI are for C�C�� ap�

plications� When we use machine performance values they are limited to SGI Origin

���� system with Mips R����� processors running at ���MHz	 �MB L� cache each�

������ Code optimization

There are two main concepts	 whose understanding is vital for writing e�cient scalar

code� These are Locality of reference �important in improving memory performance�

and Software pipelining �important in improving the CPU performance�� We will
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discuss both of them	 but the stress will be on the �rst one	 since it�s more critical

and less machine dependent�

�������� Locality of reference

The importance of the concept Locality of reference �or simply the rule �Keep things

that are used together	 close together�� arises from the memory hierarchy	 and more

precisely from the dierent times of accessing data on the dierent levels in this

hierarchy� For example	 to access the fastest memory for the machine speci�ed above	

the registers	 it takes � CPs �clock period or cycle�	 the L� cache � CPs	 the L� cache

� CPs	 and the main memory � ��� CPs� The mechanism of using the cache memory

is the following� When a program refers to data that is not in the cache the CPU

requests a load of a cache line	 which is a block of ���B �the L� cache line is ��B�	 i�e�	

referring an element from array of doubles will bring a block of �� elements in the L�

cache and � into the L� cache� Due to the pipelining architecture �explained below�

the CPU can often continue working while accessing data from the main memory	 but

still multiple successive cache misses can bring the eective work to a halt because of

waiting for data� That is why	 for example	 a simple computation like

A�i��j��k� � B�i��j��k� � C�i��j��k�

executed in loop order i� j� k � ������ is more that �� times faster than the same

computation performed in loop order k� j� i�

Programs that eectively apply the principle Locality of reference are sometimes

called cache friendly� There are many techniques to develop cache friendly programs�

One	 as we discussed above	 is the loop interchange� Other possibilities are � ��� split

computations over large datasets into computations over �data blocks� that entirely

�t in the cache memory �technique called blocking�
 ��� group frequently used data
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�elds into single object so they tend to stay in the cache
 ��� avoid searching linked

lists �especially of big objects�
 ��� use memalign�� to allocate important objects on

the ���B boundaries and so on�

Developing cache friendly �nite element packages	 when iterative solvers are used	

is important� Some of the techniques that we have used in our implementation are

� vertex reordering � the locality is increased by reordering the vertices� A simple

algorithm	 which we implemented is Cuthill�McKee �see �����


� blocking � as we mentioned above this is a technique where the data set is

split into blocks	 so that the blocks �t into the cache� For parallel compu�

tations	 when applying divide�and�conquer technique	 the cache used on one

processor for solving a local problem is greatly utilized� This technique is an�

other motivation for using domain decomposition data distribution for parallel

computations


� fusion � technique where multiple loops are merged into one� We used this

technique to incorporate certain vector operations into other loops �in the CG

and PCG solvers�	 which allowed us to re�use certain vectors�

We show how blocking improves the cache memory use in ����� The other two tech�

niques	 in a test problem of size ������ unknowns	 gave a speed improvement of a

CG solver from ��� seconds to ��� seconds	 which includes the time for reordering�

�������� Software pipelining

The other main concept in code optimization	 Software pipelining �SWP�	 is impor�

tant in improving the CPU performance� Such improvement is machine dependent

and in R����� is possible because some of its functional units are pipelined� A
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pipelined unit is unit partitioned into independent hardware subunits	 each special�

izing a speci�c phase �to be executed in one CP� of the operation that the unit

performs� Thus	 a unit partitioned in � will �nish a pipelined sequence of n opera�

tions in n � � CPs	 compared to �n CPs for non�pipelined operations� Now	 SWP

tries to �nd a valid rearrangement of instructions �from the innermost loops only�

so that to engage concurrently as many pipelines as possible� SWP is carried out by

the compiler and is enabled if compiling options �r����� �O� are used� The use of

SWP in computing A�i��j��k��B�i��j��k��C�i��j��k�	 i� j� k � ������ increased

the CPU performance from �� M�ops to ���� M�ops	 making it � ��� times faster�

Some of the cases when SWP looses e�ciency are � ��� data dependences occur


��� long loops
 ��� branching �function calls	 goto and if�else statements�
 ��� low

iteration counts� Some of the possible techniques to improve SWP	 that we have used

in our implementation	 are

� inlining � in general one inlines only small functions	 which are called many

times within loops	 for example	 inner�product	 vector addition�subtraction

functions


� splitting�fusing � splitting wide loops may sometimes enhance prospects for

SWP
 fusing small loops provides a richer variety of instructions to schedule

e�ciently with SWP �example for applying the technique in the FE software

was given in Subsection ��������


� outer loop unrolling � provides richer variety of instructions in the innermost

loop �done by increasing the step in the outer loop and explicitly writing the

missed iterations in the inner loop�
 May be combined with prefetching	 which

is	 assigning array elements	 that are frequently used in inner loops	 to local

variable �done in outer loop� in order to bene�t from register reuse
 Prefetching
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is a technique that is used very often�

�������� Performance monitoring

Performance monitoring tools are very useful in code optimization� Optimization

eorts should be spent on the most time consuming routines� A performance routine

that we have used is ssrun� It may be used to get information on the amounts of time

that a program spends on the dierent routines� For example	 to monitor ParaGrid	

we compile without optimizations and execute

� ssrun 	fpcsampx ParaGrid

� prof 	lines ParaGrid�fpcsampx�m����

where ���� stands for process ID� The output	 in the case when no fusing or inlin�

ing �for vector addition and inner�product� is done	 provides the following program

execution statistics

�index� secs � cum�� samples function �dso� file� line�

��� ������ ����� ����� ����� Matrix��Action�double��

��� ������ ���� ���
� ����� Method��vvadd�int�doubl

�
� ������ ���� ���
� ����� Method��inprod�int�doub

To see the values of various hardware performance indices one can use

� perfex 	a 	x 	y ParaGrid

The output includes statistics for performance indices such as cache line reuse	 cache

misses	 loads�stores	 issued instructions	 M�ops reached	 and so on�

More information about code optimization can be found in �����
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������ Parallel FEM�FVM using OpenMP

OpenMP is a standard agreed upon by major hardware and software vendors� It con�

sists of a portable set of compiler directives	 library routines	 and environment vari�

ables that can be used to specify shared memory parallelism in Fortran and C�C���

Advantages of using OpenMP are that it�s simple	 portable	 and has �exible interface�

In Subsection ����� we stressed on the optimization importance� Its importance for

parallel computations is even greater� For example	 it�s reasonable to expect that the

following fragment of Matrix�vector multiplication �y � Ax� is scalable�

�pragma omp parallel for private�j� end�

for�i���i�dimension�i��

end � V�i���

y�i� � ��

for�j�V�i�� j � end� j�

y�i� � A�j��v��VV�j���

�

In practice	 tests on machines with Non�uniformmemory access �NUMA� architecture

show that the parallel execution may be even slower than the consecutive� One of the

problems is that the used arrays are not properly distributed among the processors	

which is crucial for the performance of a NUMA architecture machine�

The problem about the data distribution for NUMA machines is solved on soft�

ware � level by introducing new pragmas	 namely �pragma distribute and �pragma

distribute reshape� Both pragmas are used to allocate the memory for an array

among the local memories of the processors� The �rst one	 called regular distribu�

�On hardware level there is the so called page migration	 which is automatic
reallocation in the main memory of whole pages ���KB�
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tion	 is constrained to distribution in terms of pages ���KB� and is useful only if each

processor�s portion of the array is substantially larger then the page size� The sec�

ond one	 called reshaped	 overcomes the page�level constraints for the cost of certain

restrictions on the usage of the reshaped arrays� Once distributed	 the arrays may

be redistributed using �pragma redistribute� For more information on the subject

see ����	 Chapter ��

Having discussed the crucial issue of data distribution	 we concentrate again

on the development of parallel FE�FV software� A naive approach to parallelize

a sequential FE�FV code	 using the discussed until now techniques	 is to use the

sequential one and add some parallel constructs� The algorithm is as follows� First	

parallelize the loops using the OpenMP directives and functions� Second	 increase the

locality by some vertex reordering technique� Finally	 improve the data distribution�

Such strategy may look feasible	 but the practical implementation shows that the

appeal is only theoretical� The problems are �

� ine�cient memory usage � data distribution can be applied only to statically

allocated arrays ��xed size�	 whereas in an adaptive code the memory allocation

is usually dynamic� To overcome this problem one may have to allocate �bigger�

arrays and dynamically redistribute them on each re�nement level using block�

cyclic distribution with blocks of size
l

� nodes
� processors

m
� Also	 in an adaptive

code one would like to make use of the dierent re�nement levels by de�ning

multilevel preconditioners	 which could further worsen the ine�cient memory

usage


� poor scalability � due to many synchronization points� Also	 in Matrix�vector

product �y � Ax� even in a perfect data distribution one processor still have

to access parts of x residing on the local memories of other processors� We also
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suspect that there is computational overhead using reshaped arrays


� programming e�orts � the use of reshaped arrays requires change of the syntax

of many functions	 more precisely	 it requires speci�c format for passing such

arrays as function arguments�

Based on the mentioned problems and our computational experience	 the con�

clusion is that data placement is unlikely to help for direct parallelization of �nite

element�volume code and redesign of the algorithm is needed in order to get e�cient	

well scaled software� The choice is to use decomposition of the domain �see Section

���� into subdomains� The computational model is similar to the model for shared

memory machines �see the MPI Subsection ������ and uses only a few basic OpenMP

directives and functions� For example	 here is a fragment of our main function�

�include �omp�h�

� � �

Subdomain ��S�

main���

int np� �� � of available processors

cout �� �Insert the number of processors � �� cin �� np�

cout �� endl �� �Input the file name � �� cin �� fname�

Mesh m�fname� ����� �� Initialize mesh� where fname

�� is the output from NETGEN�

int �tr � new int�m�GetNTR����

m�DomainSplit�np� tr�� �� Split the domain into �np��

�� domains using MeTiS�

S � new PSubdomain�np��

omp�set�num�threads� np�� �� Set the number of threads
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�pragma omp parallel �� Parallel region 	 used to

� �� initialize the sub	domains

int myrank�

myrank � omp�get�thread�num��� �� Get the thread number

S�myrank� � new Subdomain�myrank�  m� tr��

�

� � �

�

Note that in this model we do not use the complicated OpenMP data distribution

constructs� Instead we use the so called �rst touch rule	 which guarantees that mem�

ory is allocated to the processors that are the �rst to access or touch the data� In the

example above processor with thread number myrank allocates in its local memory

sub�domain with index myrank� The communication between the sub�domains is done

using the shared memory� For example	 in implementing a global action	 instead of

non�owners sending contributions to owners	 like in the distributed memory machines

from next subsection	 the owners directly take and add the slave contributions� For

dot products we use �pragma omp critical to add the sub�domains� dot products�

The alternative	 the OpenMP reduction	 seems computationally not e�cient�

������ Parallel FEM�FVM using MPI

The Message�Passing Interface	 or MPI	 is a complex system of ��� functions which

allow distributed memory parallel programming model� In such model the computa�

tion comprises one or more processes that communicate by calling library routines to

send and receive messages to other processes� Although there are many MPI func�

tions usually � or � are enough� We will describe these main functions and show how
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they are used in our code� The examples will be how the data structure was used in

a parallel implementation of CG using MPI �in C���� A simple introduction model

may be demonstrated with a fragment of our main function�

�include �mpi�h�

� � �

int main�int argc� char �argv����

int nprocessors� myrank�

� � �

read�input�argc� argv� ��� ��

MPI�Init� argc�  argv��

MPI�Comm�rank�MPI�COMM�WORLD�  myrank��

MPI�Comm�size�MPI�COMM�WORLD�  nprocessors��

Mesh m������ �� Every processor creates a

�� copy of the original mesh

int �tr � new int�m�GetNTR����

m�DomainSplit�nprocessors� tr���� Split the mesh into nprocessors

Subdomain dd�myrank�  m� tr�� �� Initialize sub	domain !!myrank��

� � � �� using the splitting in tr

MPI�Finalize���

�

Here MPI Init is used to initiate the MPI computation	 MPI Comm rank to determine

the process�s identi�er in myrank	 MPI Comm size to get the number of processors

running the program	 and MPI Finalize to terminate the computation� The next
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function that we use is MPI Allreduce� One of its important uses is to compute

dot�products� The only change in the consecutive dot product in this CG routine is

that at the end we add the following �

� � � �� compute res � �x� y�

�ifdef DOMAIN�DECOMPOSITION

double total�

MPI�Allreduce� res� total���MPI�DOUBLE�MPI�SUM�MPI�COMM�WORLD��

return total�

�else

return res�

�endif

The other vector operations	 addition�subtraction and scaling	 are as in the con�

secutive version� The other important MPI functions	 sending and receiving	 will

be demonstrated in the implementation of a parallel global Matrix�vector product

�y � Ax��

void Matrix��Action�double �x� double �y��

�ifdef DOMAIN�DECOMPOSITION �� The owners update the values

Subdomain	�Update�Slave�Values� x���� of x in the slave nodes

�endif

� � � �� standard y � A x

�ifdef DOMAIN�DECOMPOSITION

Subdomain	�Update� y�� �� Slave nodes add their

�endif �� values to the owners

�
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Functions Update Slave Values and Update have similar implementation and use the

same MPI functions	 so we will show only function Update� This function updates

the values of its argument by adding the contributions from no owners to owners� It

also makes the values at the no�owned nodes ��

void Subdomain��Update�double �x��

int i� j� k� PNum� n � �� start�

double Buf�MAX�PACKET�� Bdr���MAX�PACKET��

MPI�Request request�

MPI�Status Status�

for�i��� i�NPackets� i�

if �Packets�i��Owner "� SN��

start � n�

for�j��� j�Packets�i��NPoints� j��

Bdr�n� � x�Packets�i��Vertices�j���

x�Pa�i��Ve�j�� � ���

�

�� Send to the owner Packets�i��Owner 	 the corresponding packet

�� number is Packets�i��Pack�Num�Owner �see the receiving part�

MPI�Isend� Bdr�start�� Packets�i��NPoints� MPI�DOUBLE�

Packets�i��Owner� Packets�i��Pack�Num�Owner�

MPI�COMM�WORLD�  request��

�

�� The owners receive packets from neighboring subdomains and
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�� perform the necessary corrections�

for�i��� i�NPackets� i�

if �Packets�i��Owner �� SN� �� Every owner reads

for�j��� j�Packets�i��NSubdom� j�� �� Pa�i��NSubdom packets

MPI�Recv� Buf� MAX�PACKET� MPI�DOUBLE� MPI�ANY�SOURCE�

MPI�ANY�TAG� MPI�COMM�WORLD�  Status��

PNum � Status�MPI�TAG�

for�k��� k� Packets�PNum��NPoints� k�

x�Packets�PNum��Vertices�k�� � Buf�k��

�

�

We put in Bdr all the information that has to be send in order to use non�blocking

send �function MPI Isend�� The alternative	 using blocking send	 is slower since the

sending procedure MPI Send does not complete until the whole message is delivered�

Moreover	 a deadlock is possible in the latter case�

More about the syntax of the used and other MPI functions can be found in �����

���� Code organization and data structures

Although there are many useful software engineering hints and directions on how to

organize and develop large software applications	 the organization and the develop�

ment remain art and therefore	 depend on the developer�s taste and experience� We

have organized our code in a well accepted and standard for the development of �nite

element�volume packages way� This is	 we separate in dierent libraries	 the ��� linear

algebra part	 which in general contains dierent solvers	 ��� the mesh generation rou�

tines and data structures and ��� the �nite element�volume discretization routines�
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Speci�c information about our code structure is given in Subsection ������ Also	 the

code design is connected to	 and should be adjusted according to	 the desired solvers

for the resulting from the discretization algebraic system� The problems	 that we are

interested in	 lead to the solution of extremely large scale sparce linear systems� Tak�

ing into account the big problem size	 it is a necessity that iterative methods are used

for their solutions� The storage to assemble the global matrix �in sparce format� is

the same for both direct and iterative methods	 but the direct methods may produce

an arbitrary amount of �ll�ins that may be prohibitively high� Also	 we are inter�

ested in parallel computations and since matrix�vector operations can be e�ciently

parallelized	 all iterative solvers can highly bene�t the parallelism	 while the direct

methods need sophisticated methods to extract limited parallelism� One disadvantage

of the iterative methods is that the rate of convergence is problem dependent and may

be unacceptably slaw� Therefore	 the software should be designed so that there are

data structures suitable for the development of preconditioners that would accelerate

the iterative methods� Our computational approach provides decomposition of the

domain data structures	 which are suitable for the development of domain decompo�

sition type preconditioners �see Subsection ������� They are undoubtedly one of the

best known and promising preconditioning methods that also take good advantage of

the parallelism� The adaptive process produces multilevel data structures	 suitable

for the development of multigrid type preconditioners �see Subsection ������� Finally	

in Subsection �����	 we mention the internal and external solvers and preconditioners

that we use�

������ The overall code structure

The code is written in C�� and has object oriented structure� The C�� classes that

we developed are grouped into the � Libraries given on Figure ���
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Applications : ParaGrid

GLVis

General Library

Linear Algebra Library

Mesh Library

Finite Element/Volume Library

STL

HYPRE

MeTiS

Netgen

triangleVisualization Library

Developed Libraries Used Libraries

Fig� ��� Overall code structure � Used Libraries	 Developed Libraries and Developed

Applications�

We have already discussed the functionality of ParaGrid in Subsection ������

Sockets	 which we use to send data for visualization from ParaGrid to GLVis	 are

de�ned in the General Library� The General Library also includes dierent data

structures �classes� such as tables	 trees	 etc� We have used standard data struc�

tures from the STLibrary as well � vectors	 sets	 stacks	 etc� The Linear Algebra

Library contains the internal for ParaGrid iterative solvers� We can easily connect

and provide data to external solvers	 such as the developed in Lawrence Livermore Na�

tional Laboratory HYPRE preconditioners and solvers Library� The Mesh Library

has classes that are able to maintain adaptively	 and in parallel	 the mesh	 as given by

the mesh algorithms in the previous sections� The library is coupled with stand alone

mesh generators	 such as NETGEN and triangle	 and the graph partitioner MeTiS�
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The Visualization Library deals with the visualization �see Section �����

������ Domain decomposition data structures

Our implementation provides data structures that are helpful in implementing non�

overlapping domain decomposition type precondiitoners� First	 in the Mesh Library	

we have a class Mesh that provides the described in the previous sections mesh func�

tionality on a single processor� Mesh is inherited by class Subdomain	 which provides

the parallel functionality� Subdomain has data �elds that de�ne the connections be�

tween the dierent subdomains� The connections are in terms of Packets	 which

are de�ned as follows� Every vertex is shared by a group of processors� Vertices	

having the same group of processors that share them	 are grouped into a packet� The

idea of such grouping is to de�ne the dierent types of communications between the

subdomains� The packets have the following data �elds �

� array of indices of the vertices belonging to the packet


� array of the indices of the subdomains sharing the packet and	 since every
subdomain that share the packet keeps a local copy of it	 the address of the

local copy


� index of the subdomain de�ned as �owner� of the packet�

When we keep the mesh conforming between the subdomains and the degrees of

freedom are in the vertices	 the packet vertices in the �owner� subdomain are taken

as degrees of freedom and the others are considered as slave nodes�

The idea of grouping the vertices into packets is extended to grouping of common

interfaces �element edges or faces� into packets� Such grouping extends the data

structures to cases when the degrees of freedom are associated with the elements�

edges or faces�
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������ Multigrid data structures

Starting with the coarse mesh we keep the re�nement�dere�nement history in a tree

data structure� The tree data structure can be used to de�ne the multigrid spaces�

For the steady state case the spaces are the ones from the dierent re�nement levels�

In that case	 along the adaptive process	 we compute and store the corresponding

interpolation and stiness matrices�

������ Internal and external solvers and preconditioners

We have implemented internal interactive solvers	 such as CG	 PCG and GMRES	

and preconditioners	 such as multigrid and hierarchical multigrid� Additionally	 we

can provide data and use external solvers and preconditioners� The code is connected

to the Hypre preconditioners library�

���� Visualization

The Visualization Library is composed of the classes given on Figure ��� The �gure

also gives the class dependency tree�

The library and the application GLVis were developed in a group project at Texas

A�M University� The scenes that we visualize are build of geometric primitives such

as vertices	 lines	 and polygons� To render these primitives we have used OpenGL	

and to open windows and detect interactive user input we have used �The OpenGL

Programming Guide Auxiliary Library� �see ������ With the auxiliary library the

input is handled through callback functions for speci�c events	 such as pressed buttons

and mouse movements and clicks�

The �rst two classes in the hierarchy	 VisScene and VisSceneScalarData	 are

abstract� The rest	 VisSceneSolution	 VisSceneVector	 VisSceneSolution
d	 and
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VisScene

VisSceneScalarData

VisSceneSolution VisSceneSolution3d

VisSceneVector VisSceneVector3d

Fig� ��� Visualization classes and their dependency tree

VisSceneVector
d	 can be used to de�ne objects and visualize them� The objects

may be for problems that yield ��D scalar and vector solutions	 and ��D scalar and

vector solutions� Each of the last � classes has implementation of a Draw function	

which is used to render the represented by the class object� Draw is called every time

the user input is intended to change the visualization scene� For example	 the user

initializes an event by pressing a button	 clicking the mouse	 etc� Then a callback

function	 corresponding to the event	 is called� The callback function is programmed

to make the necessary changes in the model and calls Draw	 which visualizes the model

in the new setting�

For all classes of problems the user can interactively do scene translations	 dif�

ferent types of spinning and rotation	 object scaling	 change of the light position	 etc�

One can display�hide colorbar	 axes	 elements	 and mesh� For both � and ��D scalar

data we have level curves� For the vector case we have vector �eld visualization	 dis�

placements visualization	 etc� For ��D problems we have volume visualization through

moving cutting plane� There are also visualization eects like shading �smooth��at�	
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perspective �turned on�o�	 various palettes	 dierent backgrounds	 and material

properties	 etc� Concerning the input we have input from �les or sockets� The last

feature safes the trouble of going through �les	 allows the visualizer and the program

computing the data to be compiled on dierent type of machines and still the user to

have the feeling that they are connected� Also	 one can use the last feature for real

time visualization of time dependent problems� One scenario	 in which we use the

sockets	 is the following� GLVis is installed and runs as a server on a desk�lap�top

machine with fast visualization� The computations are done on a remote machine	

in our case parallel	 which sends through sockets data in parallel to the server to be

visualized�
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CHAPTER VI

NUMERICAL RESULTS

The numerical tests that we conducted con�rm our theoretical results� Here we in�

clude several examples	 numerically demonstrating the performance of the discussed

error estimators� In Section ��� we consider problems with known solutions� The

behavior of the dierent error estimators	 that we have developed	 is compared with

the exact errors� The rest of the sections are for more realistic problems	 where the

exact solution is unknown� Namely	 in Subsection ���	 we consider various convection�

diusion�reaction equations with boundary layers and singular solutions due to cor�

ners of the boundary or discontinuity of the coe�cients� We have three examples of

singular problems� The �rst one has singularities due to corners� The second is for

a problem with discontinuous right hand side f � The last example is for a problem

with discontinuity of the matrix A�x�� In Subsection ��� we consider an example that

is related to simulation of steady state �uid �ow in porous media in ��D�

���� Results with known exact error

Example �� We consider the Dirichlet problem on an L�shaped domain� The bound�

ary values are taken such that the exact solutions are the harmonic functions r���sin �
�
	

r���sin��
�
	 and r���sin��

�
� The theory gives that �E and �Z are equivalent to the error	

which is also con�rmed from the computations� The numerical results are summarized

on Figures �	 ��	 and ���

On Figure � we plot the error in the energy norm jj � jja as a function of the
degrees of freedom� We have taken both of the scales to be logarithmic� For every

of the � problems there are two graphs showing the error reduction on uniform and

locally re�ned mesh� Thus	 we compare the e�ciency of using local re�nement for
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problems with dierent regularity� One can see that the more singular the solution

is	 the more bene�cial the application of local re�nement is�

1 2 3 4 5 6 7 8 9 10
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−2
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−1

Level

Exact errors
η

Z
η

E

Fig� ��� Exact error	 �Z 	 and �E for uniformly re�ned meshes over dierent mesh levels

for the three problems in Example ��

Figure �� gives the exact error �solid line�	 the a posteriori error estimator �Z

�dashed line�	 and �E �dash�dotted line� for the three problems over the dierent levels

of the mesh� The levels are obtained by uniform re�nement �splitting every triangle

into �� and have correspondingly ��	 ���	 ���	 ����	 �����	 �����	 and ������ nodes�

The errors are printed in logarithmic scale in order to demonstrate the linear over

the levels error reduction� For exact solutions in H�������	 H�������	 and H�������

� 
 ��	 one can see the theoretically expected error reduction over the levels of

correspondingly ���	 ���	 and �� One can observe that both �Z and �E are equivalent
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Fig� ��� Exact error	 �Z	 and �E for locally re�ned meshes over dierent mesh levels

for the three problems in Example ��

to the exact error	 as proved in the theoretical section� The same is true when local

re�nement is applied �see Figure ���� The error tolerances supplied to the re�nement

procedures for the three problems are the exact errors on level � of the uniformly

re�ned mesh	 i�e�	 the one with ������ nodes� Re�nement based on �Z leads to �nal

meshes of ����	 ����	 and ������ nodes	 correspondingly for Problems �	 �	 and

�� Re�nement based on �E leads to �nal meshes of ����	 �����	 and ������ nodes

correspondingly for Problems �	 �	 and � �see also Figure ��� Note the dierence in

the order of the mesh sizes for uniform re�nement and local re�nement for the �rst

two problems� Note also that the order of the error reduction over the dierent levels

is the same as in the uniform re�nement case� For the third problem we have full
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elliptic regularity and �Z��E are supposed to lead to uniform re�nement	 which is

con�rmed by the numerical experiment�

Example �� Our next example will demonstrate the local re�nement strategies

Table I� Numerical results for Example �	 � � �����

level ) nodes jjejjmax jjejjL� jjejjH�

� �� ������� ������� ��������

� �� ������� ������� �������

� ��� ������� ������� �������

� ��� ������� ������� �������

� ���� ������� ������� �������

� ���� ������� ������� �������

� ���� ������� ������� �������

Globally uniform grid

� ����� ������� ������� �������

performance on the reaction dominated diusion problem A � �I	 b � �	 c � �	  is

the unit square and f is such that we have the following exact solution�

u�x�� x�� � x�x���� exp�
x� � �
�

����� exp�
x� � �
�

���

For � small	 the solution has a boundary layer near the boundary x� � � and x� � ��
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The local re�nement strategies intuitively are supposed to produce much �ner grids

in the region where the boundary layer is located� For � � ���� the results are

summarized in Table I� Quadrature that preserves cubic polynomials was used in

the computation of the discrete L� and H� norms and ���point Gaussian quadrature

�degree of precision �� was used in the computation of the right hand side �

Fig� ��� Reaction�diusion problem with � � ����
 the error �left� and the mesh �right�

obtained for level � with ���� grid points�

Figures �� and �� give the computational results for reaction�diusion problem

solved using the residual type error estimator with � levels of re�nement� As expected	

the grid is re�ned in the boundary layer� The error is equilibrated on level �	 as seen

on Figure �� �left�� The relative error jjejj�jjujj on level � in discrete maximum	 L�	

and H� norms is correspondingly ������	 ������	 and ����� For comparison we have

also computed an approximation by using a uniform grid� On level � this grid has

����� nodes and the error in L��norm is ��������	 while the error in H��norm is �����
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Fig� ��� Reaction�diusion problem with � � �����
 the error �left� and the mesh

�right� obtained for level � with ���� grid points by the residual type error

estimator ���� tolerance��

The accuracy is comparable to the accuracy of the locally re�ned grid on level � with

���� nodes� Note	 that the locally re�ned grid has an order of magnitude less grid

points than the uniform grid�

The other error estimators give similar results� There are small dierences in

the obtained meshes� However	 qualitatively the meshes are re�ned in the area where

the solution has some type of singularity �or very steep gradient� and quantitatively

they have almost the same number of nodes� However	 the more singular the problem

is the larger the error of the �nite element approximation is� Comparing Figure ��

and Figure �� we see that	 while the solutions of reaction�diusion problems with

 � ���� on a grid with about ���� nodes has maximal error of ����*	 the solution

for the same problem with  � ����� on a grid with about ���� nodes has a maximal
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error of about �*� Similar results were obtained by using other types of re�nement�

For example	 the meshes on level �	 using a posteriori error estimates based on the

solution of local Neumann problems and the Zienkiewicz�Zhu type error estimator	

are given on Figure ���

Fig� ��� Reaction�diusion problem with � � �����
 meshes obtained by the error

estimator based on local Dirichlet problems �left� with ���� grid points and

by the Zienkiewicz�Zhu type error estimator �right� with ���� grid points at

level ��



���

���� Problems with singular solutions

Example �� Figures �� and �� show the computational results obtained for problems

with large convection� Namely	 we solve the problem ����� with Dirichlet data on the

whole boundary � 	 A � �I	 b � ��� ��	 c � �	 f � � in a trapezoid� On the left and

on the upper edges of  we have zero boundary conditions	 while on the rest of the

boundary the solution is equal to ��

Fig� ��� Convection�diusion problem from Example � with � � ����
 the mesh �left�

with ���� grid points and solution �right� obtained at level ��

The solution develops a boundary layer at the upper half of the right edge of  

and an interior layer along the line x� � �x�� Also	 there are two corner singularities

at the origin and at the upper right corner	 due to the discontinuity of the Dirichlet

data� Figures �� and �� represent the computational meshes and the solutions for

� � ���� and � � ����	 correspondingly� The computations are obtained using RB�
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Fig� ��� Convection�diusion problem from Example � with � � ����
 the mesh �left�

with ���� grid points and the solution �right� obtained at level ��

re�nement for the case � � ���� and ZZ re�nement for � � ����� As seen from

the �gures	 the error estimator produces �ner grids in the regions where the solution

has a boundary layer or singularity� The computed solutions are monotone	 so no

oscillations due to the numerical approximation are produced�

Example �� We consider elliptic problems with corner singularities� Our �rst

problem is the model problem with A � I	 b � �	 c � �	 f � � in a �rose��shaped

domain with homogeneous Dirichlet boundary conditions� Due to the symmetry we

can consider only a quarter of the domain �in fact we could have considered only

���� of the domain�� The isolines of the computed unknown solution and the corre�
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Fig� ��� Example � � the mesh �left� with ���� grid points and the level curves �right��

sponding grid are given on Figure ��� Here we have used residual based re�nement�

As expected	 the grid is re�ned around the corners since the solution has corner

singularities�

Example �� This is another example of corner singularity� We consider two

��D problems and show on Figure �� the obtained computational meshes after few

levels of re�nement� The �rst test is again for the homogeneous Poisson equation

with f � �� We consider an L�shaped domain  shown on Figure �� �left�� Here

the singularity is due to the non�convex corner at the origin� The second test is

for the Poisson equation in the unit cube shown on Figure �� �right� with Dirichlet

boundary condition on x � �	 y � �	 z � � and Neumann boundary conditions on the
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rest of the boundary� The singularity is due to the source term	 which is taken to be

��function concentrated at the corner ��� �� ��� In both cases	 as expected	 the error

control strategy yields mesh re�nement around the corners	 where the singularities

are located�

Fig� ��� Computational meshes obtained by local re�nement due to L�shaped corner

singularity �left� and delta function source term �right�� Both meshes are for

level six with correspondingly ����� and ����� nodes�

Example 	� Here we consider the Laplace equation in a slit domain� Namely	

in the square  � f���� �� � ���� ��g	 we make a cut along the positive x��axis�
Thus	 the boundary now consists of all four sides of  plus the points in the interval

f�x�� �� � � � x� � �g� Dirichlet boundary conditions are prescribed on the whole
boundary of the slit domain so that the exact solution is u�x�� x�� � r��� sin� �

�
�� The



���

singularity at the origin is O�r����� Figure �� gives the computational mesh on level

� obtained using the residual based re�nement and the corresponding error� For

this level the relative errors in maximum	 L��	 and H��norms are ����*	 ����*	 and

����*	 correspondingly�

Fig� ��� Example � � Poisson equation in a slit domain with solution u � r��� sin� �
�
�


the mesh �left� with ���� grid points and the error �right� for level ��

Both problems have symmetry	 which allows to use only half of the domain� In

fact	 we have intentionally used the whole domain in order to see how the re�nement

procedure works� We see that the obtained meshes are very symmetric�
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Example 
� We consider problem �����	 where  is an L�shaped domain given

on Figure ��	 !D � !	 b � ����� ��	 f � �	 and A�x� � ���� I	 where I is the identity

matrix� The Dirichlet boundary values are � on x � �� and y � �	 linearly increases
from � to � on ������������������� and � on the rest of the boundary� The up�wind
scheme gives solution without oscillations� The local error estimators lead to local

re�nement around the expected boundary and internal layers� On Figure �� we give

the mesh on level � �left�	 which has ���� nodes and ����� triangles� On the right

are the level curves of the solution computed on the same level�
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Fig� ��� Convection�diusion problem in L�shaped domain
 the mesh on level � �left�

with ���� nodes and ����� triangles
 the level curves �right� on the same

level�
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Example �� Again  is an L�shaped domain	 !D � !	 b � ����� ��	 and A�x� �

���� I� The Dirichlet boundary value is � everywhere� f is � everywhere except in

the square with lower left and upper right corners ������������� and �������������	
correspondingly� Figure �� gives the mesh obtained after � levels of re�nement� It

has ���� nodes and ���� triangles� On the right are the level curves of the solution�

Fig� ��� Convection�diusion problem in L�shaped domain
 the mesh on level � �left�

with ���� nodes and ���� triangles
 the level curves �right� on the same level�
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Example �� We take  to be the domain shown on Figure �� with one internal

layer� In this problem	 !D is the upper boundary	 b � ��������	 f � �	 and A�x� �

���� I in the layer and A�x� � ���� I in the rest of the domain� The Dirichlet

boundary value is � for x � ��� and � otherwise� On the Neumann boundary	 we

take gN � �� Figure �� shows the mesh on level � �left� with ���� nodes and �����

triangles� On the right are the solution level curves�

Fig� ��� Convection�diusion problem in domain with layers
 the obtained locally re�

�ned mesh after � levels of re�nement �left� with ���� nodes and ����� tri�

angles
 the level curves �right� on the same level�
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���� Application to steady state �uid �ow in porous media in ��D

In this section we show the results from applying the developed computational tech�

nology to steady�state problems of �ow in porous media� The problems that we

consider are based on realistic data and the setting is described in below� The math�

ematical model is based on problems ����� and includes wells modeled as line delta

functions �see ������ The singularities	 due to jumps in the input data	 the wells	

domain non�homogeneity and so on	 make the application of local grid re�nement

essential�

A steady state �ow	 with Darcy velocity v	 measured in ft�yr	 has been estab�

lished in a parallelepiped shaped reservoir of size �������������� The problem set�

ting �see below� gives symmetry with respect to the plane x� � �	 so the equations are

solved only in half of the domain	 i�e�	 the parallelepiped ��� ��������� �������� �����
The transport of a contaminant	 in our case benzene dissolved in the water	 is de�

scribed by the convection�diusion�reaction equation �����	 where u is the benzene

concentration	 b is the Darcy velocity v	 A is the dispersion�diusion tensor	 and c is

the biodegradation rate� We assume that the Darcy velocity v is obtained by solving

the pressure equation �Laplace equation	 subject to various boundary conditions �����

for fully saturated porous media under appropriate boundary conditions� We consider

two cases�

��� homogeneous reservoir
 and

��� non�homogeneous reservoir�
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Fig� ��� Homogeneous reservoir
 the ��D mesh on re�nement level � �top� with �����

nodes
 the concentration level curves �bottom� in the plane x� � � for the

case of low biodegradation rate�

Homogeneous reservoir� The pressure at the faces x� � � and x� � ����

is constant	 correspondingly	 ���� and � and the permeability tensor is D � ��I	

I is the identity matrix� On the rest of the boundary a homogeneous Neumann

condition is speci�ed� This setting creates a uniform Darcy velocity v � ���� �� ��

ft�yr� A steady state leakage on boundary strip x� � �� x� � ������� of �� mg�l has

been established� The dispersion�convection process causes the dissolved benzene to
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Fig� ��� Homogeneous reservoir
 the mesh �top� in plane x� � � on re�nement level �

�globally with ����� nodes�
 the concentration level curves �bottom� in plane

x� � � for the case of medium biodegradation rate�

disperse in the reservoir� The dispersion tensor has the form

K � kdiffI � ktv
Tv�jvj� kl�jvj�I � vTv��jvj�

where kdiff � ������	 kt � �� and kl � ���� The biodegradation is transforming the

pollutant into a solid substance which is absorbed by the soil� This leads to a decrease

in the benzene� Its concentration level curves are shown on Figure �� for the case of

low biodegradation rate a � ��� mg�yr and on Figure �� for medium biodegradation

rate a � ��� mg�yr� We have started with an initial coarse mesh with �� nodes�
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Fig� ��� Pressure computations in a non�homogeneous reservoir
 �top� the locally re�

�ned ��D Mesh on level � with ���� nodes
 �bottom� Contour curves of the

pressure for level ��

Non�homogeneous reservoir� Here the problem setting is as above	 but a

layer is added �see Figures ��	 ��	 and ���� In the layer strip we take the permeability

Dlayer to be twice smaller than in the rest of the domain	 i�e�	 Dlayer � ��I� In this

case	 the Darcy velocity is not constant and the error estimators force the grid to be

re�ned around the layer� The obtained grid is shown on Figure ���
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Fig� ��� Concentration distribution in a non�homogeneous reservoir
 �top� the ��D

mesh on re�nement level � with ����� nodes
 �bottom� contour curves of the

concentration for the cross�section x� � �
 the permeability in the layer is two

times smaller than in the rest of the domain�

After the pressure is found with prescribed accuracy	 we solve the corresponding

problem for the concentration� Figure �� shows the obtained mesh and the isolines

for the concentration in the reservoir cross�section x� � � on grid re�nement level ��
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Two more experiments varying the permeability tensor are shown on Figure ���

The top one shows the concentration isoline in the reservoir cross�section x� � � when

the permeability in the layer is ��times smaller than the permeability in the rest of

the reservoir� The result on the bottom is for ���times smaller permeability� The

initial coarse mesh in both cases has ��� nodes�

Fig� ��� Concentration distribution in a non�homogeneous reservoir
 contour curves of

the concentration for permeabilities in the layer � times �top� and �� times

�bottom� smaller than the permeability in the rest of the domain�
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Fig� ��� Pressure computations in a non�homogeneous reservoir with a well
 �top� the

��D Mesh on level � with ����� nodes
 �bottom� contour curves of the pressure

on level ��

Non�homogeneous reservoir with a well� Finally	 we consider a problem

with one well using the line delta function well model that is described in ����� The

well has an axis along the segment x� � ���	 x� � �	 x� � ������ and its production

rate is Q � ������ l�yr� On Figure �� we show the adapted mesh and the level

curves for the pressure in the reservoir cross�section x� � �� On Figure �� we show

the obtained computational mesh and the level curves for the concentration in the

reservoir cross�section x� � � on grid re�nement level ��
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Fig� ��� Concentration distribution in a non�homogeneous reservoir with a well
 �top�

the ��D mesh with ����� nodes in half of the domain obtained after � levels of

re�nement
 �bottom� contour curves of the concentration in the plane x� � ��
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CHAPTER VII

CONCLUSIONS

This dissertation represents a research in construction	 theoretical study	 practical

justi�cation	 and testing of parallel adaptive �nite volume methods for convection�

diusion�reaction equations in ��D and ��D on unstructured grids�

Our goal was to develop and implement a posteriori error estimators that guide

the adaptive grid re�nement process� Furthermore	 we wanted the computations to

be in parallel�

The idea that we pursued for the development of a posteriori error estimators was

to apply the existing ideas in the �nite element method to the �nite volume approx�

imations� To do so	 we �rst extensively studied	 both theoretically and practically	

the a posteriori error estimates for the �nite element method� A part of this direction

of study was represented in the dissertation by a review of the most commonly used

�nite element a posteriori error analysis techniques	 and a general adaptive methods

framework that the residual based error estimators follow� Our analysis showed that

the approach of comparing and exploiting the �nite element ideas was feasible and led

to useful constructions� Namely	 we developed and theoretically justi�ed a posteriori

error estimators based on local residuals	 local Dirichlet or Neumann problems	 and

Zienkiewicz�Zhu averaging�projection techniques� The e�ciency and the reliability of

the error estimators were supported by the numerical experiments for various model

problems� The computations showed the equivalence of the estimated error to the

actual error for various model problems� They also showed the capability of the adap�

tive re�nement algorithm to detect the regions of singular behavior of the solution

and to resolve these singularities with required accuracy�

We also developed algorithms and strategies for the parallel implementation of
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adaptive methods for partial dierential equations� The algorithms were implemented

and used to develop parallel mesh generation� The implementation issues were an

important part of the dissertation� We discussed various techniques and issues re�

garding� ��� adaptive mesh generation
 ��� mesh partitioning and load balancing


��� parallel computations
 and ��� visualization� Concerning the parallel compu�

tations we focused our research on e�cient parallelization techniques of sequential

�nite element and �nite volume methods� Our parallelization approach was based on

domain decomposition data distribution�

This dissertation addressed a wide range of issues concerning the adaptive meth�

ods and therefore left many open problems and study directions� Some of the results

have to be extended	 others further studied� For example	 our further research plans

are to extend the results obtained and their application area to problems of elastic�

ity and electro�magnetics� We have to further study in detail some time�dependent

and non�linear problems� Also	 a more rigorous analysis of the constants appearing

in the reliability and e�ciency estimates is needed� Concerning the computer im�

plementation	 although we created several general purpose libraries	 there are many

possibilities for extensions and improvements	 mostly related to various applications	

�tuning� the code to particular computer architectures	 interfaces to external solvers

and preconditioners	 user friendly interfaces	 etc� Moreover	 we have to use the code

developed in order to further study and develop internal solvers and preconditioners

based on domain decomposition�
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