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Numerical Methods for Convection�Di�usion

Problems on General Grids

Raytcho D� Lazarov and Panayot S� Vassilevski
�

This paper summarizes a number of discretization and solution tech�
niques that are commonly referred to as �nite volume and mixed �nite
element methods� We describe some of them in more detail� that is�
provide a common discretization strategy as well as address the issue of
solving the resulting systems of linear algebraic equations� The paper
focuses on locally conservative discretizations that include both unstruc�
tured and non�matching grids�

�� Introduction

The aim of this paper is to summarize the results of the authors and their
collaborates� and other researchers in the area of construction and study of
numerical methods for convection�di�usion�reaction equations� Such problems
occur in mathematical modeling of wide range of scienti�c and technical phe�
nomena such as heat and mass�transfer� magneto�statics and electro�statics�
�ow and transport in porous media �related to petroleum and ground�water
applications� etc�

The advances in mathematical modeling have made it possible to set up
complexmodels that describe the interaction of various physical processes� Fur�
ther� the rapid developments in the computer technology� including computer
graphics� visualization� and grid generation� allow a computational method to
be set up on grids with millions of points and to handle systems of equations
with tens of millions of unknowns� The increased complexity of the mathe�
matical models in combination with grid generation� CAD�CAM� and other
specialized systems force us to depart from the standard rectangular grids�
Moreover� parallel and adaptive methods may often lead to grids that do not
match along certain interfaces� This create a need for general� �exible� e	cient�
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and accurate approximation methods for di�erential equations in complex do�
mains with solutions that may exhibit localized singular behavior due to various
physical factors� In summary� the need of methods with properties that will
guarantee fast� e	cient� accurate computations has been a driving force in the
numerical methods for di�erential equations in the last two decades�

In this paper we concentrate our attention on the following model second
order elliptic boundary value problem

�������
������

Lp � r �
�
� arp� bp

�
� c�p � f� in ��

p � gD on �D�

�arp � n � � on �outN �

��arp� bp� � n � gN on �inN �

�����

Here � is a bounded polygonal domain in Rd� d � 
 or � with a boundary ��
a � a�x� is d� d symmetric matrix� which is assumed uniformly in x positive
de�nite and bounded in �� b � b�x� � �b��x�� � � � � bn�x�� is a given bounded
vector function� c� � c��x� is the given bounded function� gD and gN are
given boundary data� and f � f�x� � L���� is a given source function� We
have also used the notation rp for the gradient of a scalar function p and
r � b for the divergence of a vector function b in Rd� The boundary � is split
into two parts � � �D � �N and further �N is split into two parts� namely�
an in�ow boundary �inN � fx � �N  n�x� � b�x� � �g and an out�ow part
�outN � fx � �N  n�x� �b�x� � �g� Here n�x� is the unit outward vector normal
to � at point x�

This problem is a prototype for �ow and transport in porous media� For
example� p�x� can represent the pressure head in an aquifer or the concentration
of a chemical dissolved and distributed in the ground�water due to processes
of advection� di�usion� and absorption� In many cases a � �I� where I is the
identity matrix in Rd and � � � is a small parameter� This corresponds to
the important and di	cult class of singularly perturbed convection�di�usion
problem �see� e�g� the monograph of Ross� Stynes� and Tobiska ������ This
problem can be viewed also as the steady�state solution to a corresponding
time dependent linear problem �see� e�g� the monograph of M� Feistauer ������
Namely� p � p�x� t� is a solution to the parabolic equation �p

�t
� Lp � f�x� t��

t � �� x � � with appropriate initial and boundary� Finally� a nonlinear version
of this problem with linear convective �ux bp replaced by a non�linear �ux b�p�
appears in mathematical modeling of multi�phase �ow in porous media and
petroleum reservoirs�

Integrating the di�erential equation in ����� over an arbitrary volume V � �
we get the so�called balance equation

Z

�V

��arp� bp� � n d��

Z

V

c�p dx �

Z

V

f dx� ���
�
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This equality gives the balance of the quantity expressed through the ��ux�
� � �arp � bp over any subset V � Discretization schemes that have this
property over given �nite set of volumes are called locally conservative� This
means that on a discrete level the approximate solution satis�es the balance
equation ���
�� For many practical problems local conservation property is very
important and desired� For example� in ground�water modeling the variable
� can represent the mass �ux� Without local conservation property the mass
error can accumulate and the approximate solution may exhibit instability such
as non�physical oscillations that may result also in loss of accuracy�

Further� the solution of the homogeneous equation ����� satis�es the max�
imum principle� This means that the solution of the homogeneous equation
cannot achieve local extrema inside �� Monotonicity is another highly desired
property of the approximate solution� oscillations are not physical and may
lead to instabilities as well� In many particular cases such properties have the
�nite volume and mixed �nite element methods�

Replacing the derivatives in ���
� by �nite di�erences has been a very suc�
cessful approximation approach in the past� For comprehensive presentation
of the main results and techniques we refer to the classical monograph of A�A�
Samarskii ����� Finite di�erences are still widely used for uniform rectangular
or triangular grids� The main de�ciency of the analysis in the classical theory of
the �nite di�erences is that it requires higher regularity of the solution� i�e� the
error estimates are not optimal with respect of the regularity of the solution�
To certain extend this de�ciency has been overcome by Samarskii� Lazarov�
and Makarov in ���� for di�usion�reaction equations� Further� various uncondi�
tionally stable schemes have been studied by Lazarov� Mishev� and Vassilevski
in ���� where optimal with respect to the regularity of the solution error es�
timates have been established� Approximations on locally re�ned rectangular
and triangular grids have been studied in ���� �
� ��� ����

Extensions of the �nite di�erence approximations to non�rectangular grids
have been constructed and studied by B� Heinrich with his main accomplish�
ments summarized in ����� An interesting approach for construction of con�
servative �nite di�erence schemes on arbitrary grids have been developed in
the scienti�c school of A�A� Samarskii in the ���es� The main results of this
general approach� called method of support operators� are summarized in the
monograph of M� Shashkov ��
�� The method of support operators is based
on the balance equation ���
� and uses also relations between divergence and
gradient operators in various discrete inner products� Theoretical results con�
cerning stability� convergence� and error analysis are yet to be developed� for
example� by relating this method to the well�understood mixed �nite element
method with Lagrange multipliers� The latter are needed in order to explicitly
eliminate the vector unknown ��ux� thus ending up with a problem for a single
scalar unknown �pressure� as in the �nite di�erence discretizations described
in ��
��

The main advantages of the direct �nite di�erencing are related to ���
simplicity� �
� local mass conservation� ��� use of harmonic averaging of the
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coe	cients and ��� weighted up�wind approximations� when necessary� How�
ever� they lack the �exibility of the method of �nite elements when arbitrary
meshes for general domains are involved and more general �than Dirichlet�
boundary conditions are present� Some alternatives� based on overlapping grid
discretizations are used to overcome this di	culty� but still theoretical results
covering stability and error analysis are lacking� On the other hand� the the�
ory of the �nite element method is fully developed regarding optimal with
respect to the order of approximation and regularity of the solution error esti�
mates� Moreover� numerous implementations of the �nite element method in
production�CAD�CAM codes for stress analysis� heat and mass transfer and
computational �uid dynamics have contributed to a full understanding of the
merits and the de�ciencies of the method�

This paper makes an attempt to put in a uni�ed and consistent way the
mathematical background of some widely used and popular as well as some
recently proposed schemes� both based on the �nite volume element or the
mixed �nite element methods� The structure of the remainder of the paper
is as follows� We set up the notations and provide necessary background in
Section 
� In Section � the main discretization strategies are formulated and
whenever available main results concerning stability and error estimates are
provided� Section � summarizes broadly the least�squares �nite element method
applied to the �rst order system �FOSLS� in our particular setting� Finally� in
Section � we touch upon the important for the computational practice case of
non�matching grid discretizations and outline some major solution strategies
applied to resulting systems of linear algebraic equations�

�� Notations and Preliminaries

In what follows we use the following common notations� We shall use the
Hilbert space H�

D��� � fq � H����  qj�D � �g equipped with the standard
L�� and H��norms

jjqjj � �q� q����� jjqjj� � jjqjjH���� � f�q� q� � �rq�rq�g����

Here ��� �� is the inner product in L����� Often we shall use L��inner product
on � �or its parts �N and �D or other �d� ���dimensional interfaces� denoted
by � p� q ���

R
�
pq d�� Further� we use the Sobolev space Hs���� s integer� as

the set of functions with generalized derivatives up to order s belonging to the
space L����� This space is equipped with the usual norm denoted by k �kHs����

For vector functions v de�ned on � we shall also use the Hilbert spaces
L���� and H�div� ��

H�div� �� � fv  v � L���� and r � v � L����g�

The L�� and H�div��norms in this space are de�ned as

kvk� � �v�v�� kvk�H�div� � kvk� � kr � vk��
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We shall use the subspace HN �div� �� � fv � H�div� ��  v �n � � on �Ng�
In this paper we shall use two di�erent formulations of the problem ������

weak formulation in the space H���� and weak formulation based on the mixed
form of the problem� introduced by �
���� For the �rst one the Dirichlet bound�
ary conditions are essential and we shall assume that gD � � on �� For the
mixed problem the original Neumann boundary conditions are essential and we
shall assume in that case that gN � � on �N � This is re�ected in the de�nition
of the spaces H�

D��� and HN �div� ��� The assumptions of the homogeneity of
the boundary conditions are not essential for the methods� We make them just
to simplify the exposition�

The weak formulation of the problem ����� is introduced by using the bi�
linear from a��� �� de�ned on H�

D����H�
D��� as

a�p� q� � �arp� bp�rq� � �c�p� q�� � b �n p� q ��outN
� �
���

Since the coe	cients of the di�erential equation are bounded in � the bilinear
form a��� �� is continuous in H�

D���� We shall assume that the form a��� �� is
coercive in H�

D���� i�e� there is a constant C� � � such that

a�p� p� � C�jjpjj
�
�� 	 p � H�

D����

A su	cient condition for the coercivity of the bilinear form is �see� e�g� �����

c��x� �
�



r � b�x� � �� 	 x � ��

Then ����� has the following weak form Find p � H�
D��� such that

a�p� q� � �F� v� � �f� q�� � gN � q ��in
N
� 	 q � H�

D���� �
�
�

This weak formulation is well suited for designing numerical methods using
approximation in H�

D���� For example� this is the case when the approximate
solution belongs to a conforming �nite element space� However� this approach
does not guarantee that the balance equation is satis�ed over given set of
volumes�

Often to get the local conservation property one has to work with discon�
tinuous solution spaces or to use di�erent spaces for the solution and for the
test functions� These are the two main ways to achieve local conservation�

One of the most popular and widely used locally conservative method is
based on the mixed form of the problem ������ In this formulation one intro�
duces additional variable� called �ux� and de�nes the operator C

u � �arp� Cp � brp� c�p�

The original problem it then re�casted as a system of �rst order equations�

a��u�rp � �� r � u� Cp � f� �
���
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The boundary conditions play an essential role in the weak formulation of
this mixed system� The simplest and most popular case is when b � �� so
that �outN � �N � and the equation ����� is a di�usion�reaction equation with
boundary conditions p � gD on �D� and u � n � � on �N � Note� that
we consider non�homogeneous Dirichlet boundary condition and homogeneous
Neumann conditions on �N � The weak mixed formulation then reads �nd
p � L���� and u � HN �div� �� such that

�a��u� v� ��p� r � v� � � � gD� v �n ��D � 	 v � HN �div� ���

��r � u� q� ��c�p� q� � ��f� q�� 	 q � L�����
�
���

This formulation is suitable for non�homogeneous Dirichlet boundary condi�
tions� since the Dirichlet data gD now is part of the variational formulation
�
���� In Subsection ��� we consider an approximation of the general case�
namely� when b 
� ��

�� Discretization Strategies

We assume that � is a polygonal domain �whenever needed convex� which is
partitioned into triangles �in 
�D� or tetrahedra �in ��D� called �nite elements
T � The elements are considered to be closed sets and the partitioning is denoted
by Th� We assume that the partition Th is locally quasi�uniform �or regular��
that is meas�T � � C��T �d with a constant C independent of the partition� here
��T � is the radius of the largest ball contained in T � In the context of locally
re�ned grids this means that neighboring �nite elements are of approximately
the same size while elements that are far away of each other may have very
di�erent sizes� Further� we denote by Eh the set of all edges �
�D� or faces
���D� of �nite elements in Th�

���� The �nite element method

We de�ne the �nite element space Sh as set of piece�wise linear polynomials
over elements T � Th

Sh � fq � C���  qjT is linear for all T � Th and qj�D � �g�

The �nite element approximation of the problem �
�
� is �nd ph � Sh such
that

a�ph� q� � �F� q� � �f� q�� � gN � q ��in
N
� 	 q � Sh� �����

This method is the most popular and widely used for solving a large vari�
ety of applied problems� Moreover� it has a straightforward generalization for
transient problems and problems in solid mechanics� Furthermore� there is a
number of e	cient solution techniques for the resulting linear algebraic system�
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However� this method has certain disadvantages which make necessary de�
velopment of other methods especially for particular applications� For exam�
ple� while this method is globally conservative� it may not satisfy a discrete
version of the balance equation ���
� locally� Moreover� special stabilization
techniques are required in order to make the method well�posed in the case of
convection�dominated problems �see� e�g� ������ Further� monotone schemes are
not produced by this approach and modi�cations are necessary �see� e�g� ������
Below we present two ways of getting locally conservative approximations that
are also unconditionally stable�

���� The �nite �control� volume element method

The �nite �control� volume method �also called box method� has been in�
troduced as an alternative of the �nite element method that will allow to obtain
locally conservative schemes� It has been discussed in the early works of Anger�
mann ���� Bank and Rose ���� Hackbusch ���� and Cai� Mandel and McCormick
���� ���� Below we present one possible approach� namely the �nite volume el�
ement method is viewed as a Petrov�Galerkin method for solving the problem
������ That is� the solution space is di�erent from the test space� The solution
space will be the �nite element space Sh while the test space is described below�

To de�ne the test space we introduce another partition �often called dual
mesh� of the domain � into �nite volumes� For a given �nite element partition
Th� we construct a dual mesh T �

h �based upon Th�� whose elements are called
control volumes and denoted by V � In the �nite volume methods there are
various ways to introduce the control volumes� Almost all approaches can be
described in the following general scheme� which we explain for tetrahedral
elements T � In each element T � Th an internal point is selected� For the
��D case� on each of the four faces xixjxk of T a point xijk is selected and on
each of the six edges xixj a point xij is selected� Then the internal point is
connected to the points xijk� and the points xijk are connected to the points
xij by straight lines �see Figure ��� The control volumes are associated to the
vertices xi � Nh� Control volume associated with vertex xi is denoted by Vi
and de�ned as the union of the �quarter� elements T � Th� which have xi as a
vertex �see Figure ��� The interface between two control volumes� Vi and Vj�
is denoted by �ij�

For the 
�D case we will also use the construction of the control volumes in
which the internal point is the circumcenter of the element T � i�e� the center of
the circumscribed circle of T and xij are the midpoints of the edges of T � This
type of control volume forms the so�called Voronoi meshes� Then obviously�
�ij are the perpendicular bisectors of the three edges of T �see Figure ��� This
construction requires that all �nite elements are triangles of acute type� which
we shall assume whenever such triangulation is used�

In addition to the �nite element space Sh we de�ne its dual volume element
space S�h by

S�h � fq � L����  qjV is constant for all V � T �
h and qj�D � �g�
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Figure � Left Finite element and �nite volume partitions in 
�D� Right Con�
tribution from one element to control volume Vi� �ij in ��D� the internal point
is the element medicenter and internal points for the faces are the medicenters
of the faces�

Obviously� Sh � spanf	i�x�  xi � N�
hg and S�h �spanf
i�x�  xi � N�

hg�
where 	i is the standard nodal linear basis function associated with the node
xi and 
i is the characteristic function of the volume Vi� Further� we use the
notations Nh � fp  p is a vertex of element T � Thg and N�

h as the set of all
vertices from Nh except those on �D�

The �nite volume element approximation of ����� reads as Find ph � Sh
such that

ah�ph� q
�� � Dh�ph� q

�� �Ch�ph� q
�� � F �q��� for all q� � S�h� ���
�

Here the bilinear forms Dh�ph� q
�� and Ch�ph� q

�� are de�ned on Sh � S�h� the
linear form F �q�� on S�h� and are given� respectively� by

Dh�ph� q
�� �

X
xi�N�

h

q�i

���
���

Z

�Vin�N

arph � nd��

Z

Vi

c�phdx

���
�� � �����

F �q�� �
X

xi�N�
h

q�i

���
��
Z

Vi

fdx�

Z

�Vi��inN

gNd�

���
�� � �����

Typically� in order to be able to handle di�erent scales of a and b one
discretizes the convective part using up�wind approximation� On rectangular
grids this approximation is well understood and widely used in the context
of �nite di�erence schemes �see� ������ In the case of arbitrary grids one can
use the following approximation� Introduce the quantities �� � �� � j�j��
�
�� � �� � j�j��
� Next� de�ne ��i� as the set of all indices j such that the
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x
x

i
j

xij

Vi

γ ij

xi

βi

Figure 
 Control volumes with circumcenter as internal points �Voronoi
meshes� and interface �ij of Vi and Vj � The rightmost picture shows the seg�
ments i�

interval �xi� xj� is an edge of an element in Th� Now the up�wind approximation
of the convection part C of the operator L is

Ch�ph� q
�� �

X
xi�N�

h

v�i
X

j���i�

Z
�ij

	
�b � n��ph�xi� � �b � n��ph�xj�



d�� �����

Theorem �� The following results are valid uniformly with respect to the
mesh�size h�

��� the bilinear form ah�ph� q�� is bounded on Sh � S�h and satis�es the in�
equality

Ckphk� � sup
q��S�

h

ah�ph� q
��

kIhq�k�
�

here Ih is the �nite element nodal interpolation operator� consequently
the solution uh of the problem ���
� is stable in H��norm�

��� if p is H��regular� then the following error estimate holds�

kph � pk� � ChkpkH�����

The proof of these results is a consequence of the construction of the method�
For piece�wise constant coe	cients the proof uses the equivalence of the �nite
volume approximation to the �nite element approximation �see� e�g� ������ For
rectangular grids a detailed proof �including convergence in L��norm� is given
in �����

Similarly to the �nite element method the discrete problem is uncondition�
ally stable in H��norm� Moreover� the above approximation of the convection
part of the operator produces an M �matrix� Therefore� if the di�usion part
produces also an M �matrix �for example this will be the case if a�x� is a di�
agonal matrix and the triangulation is of acute type� then the overall matrix
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will be an M �matrix and the method will give monotone solution� Although
the method is �rst order accurate combined with adaptive grid re�nement it is
very attractive for the applications� In ���� various a posteriori error estimators
for �nite volume element method have been studied� implemented� and tested
on a large variety of ��D problems ������ In particular� we have numerically
solved problems with singular solutions due to concentrated source and sinks
and boundary layers related to di�erent scales of the di�usion matrix a and
the convection �eld b� The experiments in ���� demonstrate the �exibility of
the method and its capability to capture the solution with a given accuracy on
adaptive grids�

The above described up�wind approximation of the convection term is closely
related to the discontinuous Galerkin approximation �see� e�g� the survey pa�
per by Arnold� Brezzi� Cockburn� and Marini ���� or to the Tabata scheme for
Galerkin �nite element method �����

Remark �� Voronoi meshes have some advantages in 
�D �see� e�g� ������
A di�erent type of weighted upwind approximation on Voronoi meshes in 
�D
has been studied in �
�� However� these meshes are not well suited for adaptive
grid re�nement and their generalization to ��D problems is not immediate or
simple�

Remark �� Further applications of this method to transient boundary�
value problems have been reported in �
�� 
��� The results in these works
include optimal with respect to the regularity error estimates and estimates in
L��norm�

���� Mixed �nite element method

To achieve higher order of approximation one has to use the mixed �nite
element method� The lowest order mixed �nite element method on rectangular
meshes is a natural extension of the cell�centered �nite di�erence methods�
Although mixed methods are seldom used for approximation of convection�
di�usion problems� it is still possible to formulate stable and convergent mixed
approximations� This is essential for a computational environment of locally
conservative methods�

The mixed �nite element method is a discrete Galerkin form of �
��� �with
a necessary twist in order to cover the case b 
� ��� That is� one chooses a
pair of �nite element spaces �Vh� Wh� � �H�div� ��� L������ associated with
a common triangulation Th of �� The spaces are chosen such that the well�
known LBB �Ladyzhenskaya�Babu ska�Brezzi� stability condition is satis�ed
namely� for a mesh�independent constant  � � the following estimate holds
for any q �Wh�

 kqk � sup
v�Vh

�r � v� q�

kvkH�div�
� �����
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A simple example of stable pair of spaces is the lowest order Raviart�
Thomas spaces �see� e�g������� namely� for a partition Th consisting of tetrahedra
�triangles� or parallelepipeds �rectangles�� Wh is the space of �discontinuous�
piecewise constants� whereas Vh has continuous normal components v � nE
across the faces �edges� E � Eh� The vector function restricted to each element
has the following polynomial form for tetrahedra� v � �a�dx� b�dy� c�dz�
and for parallelepipeds v � �a� � b�x� a� � b�y� a	 � b	z�� The coe	cients
�a� b� c� d� and �ai� bi�� i � �� � � � � d� are determined by the degrees of freedom�
which are the values of v � nE at the medicenters of the of the faces �edges�
E � Eh or the mean values of v �nE over the faces �edges� E � Eh�

In order to describe the weak form of the second equation �
���� r � u �
r � �bp� � c�p � f � we need to allow discontinuous functions ph and q in the
space Wh� Since the functions in Wh have traces from both sides of the faces
�edges� of T � for a given function q �Wh we denote these traces bu qo and qi�
where �o� stands for the outward �with respect to T � trace and respectively�
�i� stands for the interior trace� The weak from of the second equation �
���
is borrowed from the discontinuous Galerkin method �see� e�g� ����� pp� ����
���� by testing it by functions q � Wh� Integrating over a particular T � Th
we get the following contribution of the advection�reaction operator Cph by
introducing the bilinear form CT �ph� q�

CT �ph� q� � �Cph� q�T �� poh � pih� q
i�b � n�� ��T ��c�ph� q�T �

Here n is the outer unit normal vector to �T � Next� we sum over all T � Th so
that� for ph� q �Wh we get the following contribution of the operator C to the
second equation

Ch�ph� q� �
X
T�Th

� qi� pih�b �n�
� � poh�b � n�

� ��T ��c�ph� q�� �����

Then the discrete mixed system for the problem �
��� reads Find uh � Vh

and ph �Wh such that

�a��uh� v� ��ph� r � v� � � � gD� v �n ��D � 	 v � Vh�

��r � uh� q� �Ch�ph� q� � ��f� q�� 	 q � Wh�
�����

This discontinuous approximation �related also to up�wind approximation�
ensures the non�negativity of Ch� namely� �see ���� or ������

Ch�q� q� � �
�

P
E�Eh

� �q��� jb � n�j �E

� �
� � q�� �b � n�� ��� �

�
� � q�� �b � n�� ���

�
P

T�Th

�c�q� q�T �

�����

The second equation of ����� expresses conservation of mass over each �nite
element T � Th� Indeed� take in ����� a test function q to be the characteristic
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function of a particular �nite element T � Then the term �r�uh� q�T reduces to
�r�uh� ��T �� uh�n� � ��T and expresses the mass in�ux in T through �T due
to di�usion� Similarly� the �rst term of Ch�ph� q� reduces to � pih� b �n ��T�

� � poh� b �n ��T� and expresses the mass in�ux through �T due to convection
�transport�� Finally� the last term in Ch�ph� q� expresses mass change due
to reaction�absorption� This approximation is closely related to the method
studied by Ja�re ���� and Liu� Wang� and Yang ����� In ���� error analysis�
including interior estimates have been provided�

���� Mixed co�volume methods

The mixed co�volume methods have been developed as an alternative to the
mixed �nite element method to handle more general partitions and to work in
the �nite volume setting �see� e�g� �
�� 
�� 
����

We present a co�volume ��nite volume� method for approximation of the
mixed system �
��� in the general framework of Petrov�Galerkin method pro�
posed and analyzed by Chou and Vassilevski in �
��� The idea is quite similar to
the idea of departing form Galerkin method and using instead Petrov�Galerkin
method for second order elliptic equations� Namely� we shall again use two
di�erent sets of spaces for the solution and for the test functions�

We take the solution space to be the lowest order Raviart�Thomas space
�see� ����� �Vh� Wh� � �H�div� ��� L����� already explained in Subsection ���
and used in the Galerkin approximation of the mixed system� To construct
the test spaces we need a corresponding dual mesh� In fact� for the pressure p
we use the same space Wh of piece�wise constant functions over the mesh Th�
To construct the test space for the vector�function v we introduce a dual mesh
Qh� For de�niteness we consider the case of triangular �tetrahedral� mesh Th�
The dual mesh is constructed in the following way in each element T � Th the
medicenter is connected with the vertices of the simplex �triangle in 
�D and
tetrahedron in ��D� so the simplex is split into d�� simplexes� Two simplexes
sharing a common face �edge� E � Eh are added together �with the edge� so
they form a co�volume QE � T�E � E � T�

E of the dual grid Qh �see� Figure �
for 
�D�� On the boundary �D the co�volume is either T�E or a T�

E �
Then� the test space V�

h will be a subspace of the space of piece�wise con�
stant vector�functions that have continuous normal trace across the interior
edges E � Eh� more precisely�

V�
h � fv  vjK is constant� K � T�� T��

vjT� �nE � vjT� � nE � for all QE � T�E �E � T�
E � Qh

�
�

������

where nE is the unit normal vector to the face �edge� E with a �xed direction�
Then by de�nition of a gradient of p � Wh �which is discontinuous function
over volumes QE � Qh� we have

X
Q�Qh

�rp�v�QE
� �

X
Q�Qh

�p�r � v�QE
�
X
E�Eh

� p�v � nE ��QE
� 	 v � V�

h�
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Figure � Left a co�volumes sharing an internal edge QE � T�E � E � T�
E �

Right a co�volume sharing an edge on �D QE � T�E �

Note that interior �to �� edge E has two neighboring simplexes T� and T�

from the neighboring volumes that share E� Further� v is constant over T�
E

and T�
E and its normal component is continuous across E� that is� the jump

�v � nE� � �� Finally� r � v � � over QE so that the following identity holds�

�rp�v�QE
�� p�v �n ��QE

� � � �p�E� v � nE �E �

Here� �p�E stands for the jump of p across the face �edge� E and the di�erence
is taken of value from the element in the direction of nE minus the value from
the element in opposite direction of nE � Summing over all volumes QE � Qh

we get the following approximation of the �rst equation of the mixed system
�
��� de�ned for uh � Vh� v � V�

h and ph �Wh

X
Q�Qh

�a��uh� v�QE
�
X
E�Eh

� �ph�E � v �nE �E� ��

Next� we need to discretize the second equation in �
���� The discretization
of the convective term is the same as in the mixed �nite element approximation
and is based on the idea of discontinuous Galerkin method� The evaluation of
�r�u� q� can be done element�by�element and is straight forward since u � Vh�
Moreover� direct computations show that

�ru� q� �
X
T�Th

�ru� q�T �
X
E�Eh

� �q�E � u � nE �E �

To summarize� the mixed co�volume �Petrov�Galerkin� scheme reads Find
uh � Vh and ph � Wh such that
P

Q�Qh

�a��uh� v�Q �
P

E�Eh

� �ph�E� v � nE �E � �� 	 v � V�
h�

P
E�Eh

� uh �nE � �q�E �T �Ch�ph� q� � ��f� q�� 	 q �Wh�
������
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To complete the description of the mixed co�volume method we have to
specify the trial space V�

h� Our construction will be based on Vh� namely� we
show that an image of a proper subspace of Vh will have the desired properties�
It is clear that V�

h should be isomorphic to the test space Vh� Isomorphism
here means that the dual space V�

h must have as many degrees of freedom
as Vh� i�e� the dimensions of the space of test functions v and the space of
solutions uh are equal�

For each such function v � Vh one can de�ne a function �hv � V�
h as

follows

�hv �

��
�

�
jEj

R
E

v� d�� on T�
E �

�
jEj

R
E

v� d�� on T�E �

One notices that �nE � �hv�E � �
jEj

R
E

�nE � v� � �� that is� �hv � V�
h� It is also

clear that �hv � � implies that v �nE � � on the midpoint of E� hence� v � �
since these are the degrees of freedom which specify v� That is� a natural trial
space isomorphic to the test space Vh would be V�

h � �hVh�
Problem ������ di�ers from the one obtained using the standard mixed

system only by the transfer operator �h taking part in the �rst equation of
������� Here we used the fact thatZ

E

�hv � nE d� �

Z

E

v � nE d��

and that ph is piece�wise constant over each �nite element T �
The following theorem summarizes the results concerning the co�volume

approximation ������� Its proof can be found in �
�� �see� �
�� 
�� 
�� for other
approximations of this kind�

Theorem �� Let uh and ph be the solution of the discrete problem ������	
Then

kuhk� kphk � C�kfk�

Let p be the solution of the problem ������ let u � �arp� and assume that p is
H��regular	 Then the following error estimate is true�

kuh � uk� kph � pk � C�h�kpkH���� � kukH����� �C�h
���kpkH�����

The constants C�� C� and C� do not depend on the mesh size h	 Furthermore�
the constant C� can be taken as zero in the case of pure di
usion problem� i	e	
b � �	

�� First Order System Least	Squares �FOSLS�

Least�squares �nite element approximations of second order problems have
become a popular technique for deriving unconditionally stable approximations
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including high order schemes� The idea of least�squares is quite old �see� e�g� the
pioneering work of Neitaanm!aki and J� Saranen ����� but only recently a new
development in the method has been accomplished �see� e�g� ���� ��� �
� ��� ���
����� For a comprehensive review of new recent results in least�squares method
and their applications to a wide range of problems we refer to the paper by
Bochev and Gunzburger� ���� Attractive feature of this approach is that it leads
to symmetric and positive de�nite discrete systems and allows approximations
of high order for smooth solutions� The price one pays is an increased number
of unknown functions� We explain the main idea of the least�squares method
on the model problem ����� assuming that a homogeneous Dirichlet boundary
condition is prescribed on the whole boundary� i�e� �D � ��

As in the mixed method� we rewrite the original problem in the mixed form
�
��� and consequently form the least�squares functional

J�v� q� � ka��v �rqk�U � kf �r � v � Cqk�P � �����

Here� k � kU and k � kP are some norms in the sets of vector functions v and
scalar functions q� Further� we discuss two possible norms that have been
used in the least�squares method� Obviously� the solution p � H�

���� of the
problem ����� and u � �arp gives this functional a value zero� It is also valid
that for properly chosen norms the minimizer of the functional ����� in the
corresponding spaces will be the solution of ������

���� Least	squares based on L�	inner product

The simplest and far the most popular least�squares method is based on
the following choice of norms in ����� kuk�U � �a��u� u� and kpk�P � �p� p��
where ��� �� is the standard L��inner product for scalar and vector functions
de�ned on �� Then the L��inner product FOSLS which minimizes the quadratic
functional ����� will lead to the following weak problem �nd p � H�

���� and
u � H�div� �� which satisfy the integral identity

A�u� p� v� q� � F �v� q�� 	q � H�
����� and 	 v � H�div� ��� ���
�

where

A�u� p� v� q� � �a��u�rp� v � arq� � �r � u� Cp� r � v � Cq��

F �v� q� � �f� Cq��

As proved in ����� the bilinear from A�u� p� v� q� is bounded and coercive in the
space H�div� �� �H�

���� provided that the matrix a�x� is uniformly positive
de�nite and bounded in ��

This fundamental result leads to the following natural least�squares �nite
element method� Let Sh be the space of continuous piece�wise linear over
the partition Th scalar functions satisfying homogeneous Dirichlet boundary
condition on �� Similarly� let Sh be the space of continuous piece�wise linear
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over the partition Th vector�functions� Then the least�squares �nite element
approximation to ���
� is �nd ph � Sh and uh � Sh such that

A�uh� ph� v� q� � F �v� q�� 	q � Sh� and 	 v � Sh� �����

Theorem � �see� ���� ��� 	
��� The following results are valid�

��� the corresponding matrix of ����� is symmetric� positive de�nite� and its
condition number is of order O�h����

��� the solution of the �nite element method ����� satis�es the a priori esti�
mate

kphkH���� � kuhkL���� � CkfkL�����

��� if the solution of the problem ����� is H	�regular then the following error
estimate is valid�

kph � pkH���� � kuh � ukL���� � ChkpkH�����

The constants C in these inequalities are independent of the mesh step�size h	

Here are some observation regarding this method� The discrete scheme �����
is not conservative �i�e�� the discrete solution does not satisfy a balance equa�
tion�� However� the method is very appealing since it leads to a symmetric
positive de�nite problem without any conditions on the step�size h� Second�
this methods adds another �d unknowns per grid point� so it has increased
memory requirement� On the other hand� the function uh provides a direct ap�
proximation of the �ux variable u� which is continuous in the whole domain ��
This property of the approximate solution might be very important in some
applications� e�g� the case of �ow in porous media� This method however�
requires higher regularity of the solution� compared with the standard �nite
element method ������ Namely� for O�h��convergence the least�squares �nite
element method requires H	�regularity of the solution� This� in general� is not
the case of polygonal domains ��

We should also note that the resulting discrete operator is not always close
to a block diagonal operator of elliptic type� that is� the resulting operator�
generally� couples strongly the di�erent variables and this makes the construc�
tion of e	cient preconditioners� including multigrid� a challenging task� This
is an area of active research� Some progress has been made by the recently pro�
posed spectral AMGe �algebraic multigrid �nite element� method �

�� which
in essence� builds problem dependent coarse spaces in order to capture more
closely the �algebraically smooth� components of the �ne�grid functions� In
other words� the spectral AMGe method builds� by local procedures� a coarse
space that leads to a two�grid method which has a convergence factor bounded
independently of the problem parameters �such as the PDE coe	cients and
the mesh size�� A possible disadvantage of the method that it may lead to
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high complexity �or equivalently� to too dense coarse matrices�� More classi�
cal ILU�type methods have been used in �
�� while multigrid utilizing matrix
dependent coarse spaces and geometrically constructed coarse elements� have
been demonstrated in �����

Remark �� We have discussed Dirichlet boundary conditions only� Gen�
eral boundary conditions can be made part of the least squares functional �with
proper scaling� and this adds another dimension of �exibility to the method�
For example� Dirichlet and Neumann boundary conditions in H�����D� and
H������N � norms� respectively� can be added to the lest�squares functional
������ Finite element approximations based on multilevel method for such aug�
mented functional the Poisson equation have been introduced and studied by
Starke in �����

Remark � For convection�dominated problems the constants in the in�
equalities in Theorem � depend on the ratio kak�j�kbk and their dependence is
not immediately available� To get schemes for which the dependence is weaker
and explicit a hybrid discretization based on stream�line di�usion stabilization
and least�squares has been proposed and studied by Lazarov� Tobiska� and
Vassilevski in �����

���� Least	squares based on H��	inner product

To overcome some of the de�ciencies of the least�squares method based on
L��inner product a more balanced set of norms in ����� has been proposed by
Bramble� Lazarov� and Pasciak in ����� In order to introduce the method we
need to de�ne a minus one inner product� First� we de�ne the space H�����
as the set of all functionals q for which the norm

kqkH����� � sup
��H�

D���

�q� 	�

k	kH����

is �nite� Here �q� 	� is the value of the functional q at 	�
Below we introduce this concept following ����� We consider the following

symmetric boundary value�problem �nd q � H�
D��� such that

q �"q � f in �� q � � on �D� rq � n � � on �N � �����

Let D  H����� �� H�
D��� denote the solution operator for the above

problem� i�e� for f � H������ Df � q is the solution of ������ As proven in
���� we have

�q�Dq� � sup
��H�

D
���

�q� 	��

k	k�H����

� kqk�H������

so that the inner product in H����� is given by �q�Dq��
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This suggests the following norms in �����

kuk�U � �a��u� u� and kpk�P � �p� Dp��

An important property of these norms is that the corresponding bilinear from

A�u� p� v� q� � �a��u�rp� v � arq� � �r � u� Cp� D�r � u� Cq��

is bounded and coercive in L����� �H�
D����

This functional provides a solid background for a construction of new type
of least�squares method� The only problem is that the norm in H�� is not
readily computable� Next step is to replace this norm with an equivalent on
the �nite element space and yet computable norm� Let Dh  H����� �� Sh
be de�ned as Dhf � qh� where qh is the �nite element solution of ������ Then
we de�ne Bh � h�I � Dh� where I is the identity operator� and form the
least�squares functional

J�v� q� � �a��v�rq� v� arq�� �Bh�f �r �v�Cq�� f �r �v�Cq�� �����

de�ned for v � Sh and q � Sh�

Theorem  �see� ������ The following results are valid�

��� the quadratic functional ����� has unique minimizer �uh� ph� � Sh � Sh�

��� if p as a solution of ����� is H��regular� then the following error estimate
holds with a constants C independent of the mesh�size h�

kph � pkH���� � kuh � ukL���� � ChkpkH�����

As seen from this theorem� this least�squares method has optimal conver�
gence rate with respect to the regularity of the solution� In fact� in ���� it has
been proven that the convergence of the minimizer of ������ with slight modi��
cation of the functional� is O�hr� if p � H��r��� for � � r � �� This approach
has been applied in ���� directly to the equation ����� �not to the mixed system�
with boundary conditions including oblique derivative� Further� extension to
the equations of linear elasticity� including the case of incompressible materials�
has been studied by Bramble� Lazarov� and Pasciak in ��
��

On the negative side� this method is quite complex and computationally
expensive due to the necessity to use the minus one inner product� This com�
putationally expensive inner product can be replaced by a simpler one �see� the
review paper ���� based on the inverse inequality� Namely� �q�Dq� is replaced
by h��q� q�� In fact� this means that we skip the operator Dh in the de�nition
of Bh� This will lead to optimal error estimates� but the condition number of
the resulting system is signi�cantly larger� namely O�h�
�� and will result in
higher solution costs�
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� Extensions and Conclusions

As mentioned at the beginning� the driving force in the theory and appli�
cations of numerical methods for di�erential equations has been the advances
in the computer technology� mathematical modeling� and scienti�c computing�

In computer simulation of a complex process �or phenomenon� one needs to
use various tools from natural sciences� mathematics� and informatics� Stable�
accurate� and e	cient approximations are only a part of the overall modeling
process� To extract the necessary information about the process one needs to
perform computations that might involve very large sets of equations� E	cient
iterative methods based on preconditioning and parallel algorithms are the
main tool to speed�up the solution process�


��� Non	conforming domain decomposition method

Domain decomposition �or substructuring� has become an important and
standard tool for design of parallel numerical algorithms that utilize multipro�
cessor computer architectures� The idea of the method is conceptually very
simple� namely� the domain �structure� is split up into subdomains �substruc�
tures�� This makes it possible to assign one �or more� subdomains to a processor
that may handle independently the meshing process and the approximation�
Further� the processors communicate in order to solve the whole problem� In
this area of active research we shall discuss two particular cases� namely� domain
decomposition using non�matching grids and coupling di�erent approximations
in di�erent subdomains�

In some situations �for example adaptive grid re�nement� one is often left
to deal with non�matching grids across subdomain interfaces� That is� one
needs a technique to formulate an accurate discretization scheme by imposing
certain matching conditions across these interface boundaries� Let us illustrate
the main ideas on the example of two subdomains� i�e� � � �������� where
� is the interface between �� and ��� i�e� � � ���  ����

One approach is based on the so�called mortar method� proposed in the
late ���es in France �see� e�g� ����� It imposes continuity in a weak sense� that
is the jump of the discrete solution across all interfaces � is kept orthogonal to
a multiplier space #� Z

�

�p� � � �� for all � � #� �����

Then the subdomain problems� are coupled by simply �nding computational
basis in the constraint space satisfying the above orthogonality conditions� The
mortar method provides a systematic way of constructing multiplier spaces and
computational bases in the resulting constraint spaces�

Another approach� which better �ts the �nite volume methodology is to
impose certain penalty on the generally discontinuous spaces� that is to add
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the following penalty term in the bilinear form

X
E�Eh��

�

jEj

Z

E

�p��q� d ��

Here� E is an edge of an element from one side of the triangulation on every
interface � and the factor �

jEj
can be viewed as penalty� Typically� jEj � h �� ��

where h is the mesh size�
We shall not go here into more details for the above two approaches� rather

we will refer to the existing literature �see� e�g� ��� �� ��� �
� ��� ����� A
comprehensive study can be found in �����


��� Coupling various methods

In some cases one may be required to couple di�erent discretization methods
applied to di�erent parts of the domain� This approach is very natural for
the so�called multi�physics mathematical models �widely used in the research
group of M� Wheeler�� For example� one may use a mixed discretization on one
subdomain and a standard �nite volume discretization on the other subdomain�
The coupling is done through the interface boundary �� In this case penalty
is not needed since the continuity is ensured by the �ux variable u from the
mixed side� Essentially� the discretization on the �nite volume side uses u �n�
as a Neumann boundary condition and the discretization on the mixed side
uses p� as a Dirichlet boundary condition coming from the �nite volume side�
More speci�cally assuming that u is the �ux variable and p� is the pressure
variable on the left domain �� and p�h is the pressure unknown in the right
domain ��� one has on the mixed side �posed on ��� the following system for
�uh� p

�
h � � �Vh� Wh� to solve�

�a��uh� v� ��p�h � r � v� � � � p�h � v � n ��� 	 v � Vh�

�r �uh� q� ��Cp�h � q� � �f� q��� � 	 q �Wh�
���
�

Here� �Vh� Wh� is a stable mixed �nite element pair de�ned on ��� On the
right domain one has a �nite volume discretization with Neumann boundary
conditions �arp�h � n � �uh � n on the interface �� That is� one has� on ��

the following discrete problem� �nd p�h � Sh such that

� uh � n� q �� �a
�
h �p

�
h � q� � ��f� q���

� 	 q � S�h� �����

Here Sh and S�h are the spaces of �nite elements and �nite volumes functions
de�ned on ��� introduced in Subsection ��
� Similarly� a�h �p

�
h � q� is the corre�

sponding bilinear form from Subsection ��
 de�ned on ���

A simple iterative procedure for the coupled system would be Given p�n��h �
an approximation to p�h � at step n � �� one then solves a system like ���
� with

p� � p
�n��
h and determines �approximately� un � n on �� Then in order to
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determine p�n����h one solves a �nite volume problem like ����� with u � n �
un � n on �� This provides one step of the iterations�

In the case C � � the convergence of the suggested method used as a precon�
ditioner �and several other iteration methods� has been studied and numerically
tested� More speci�cally� in ���� Lazarov� Pasciak� and Vassilevski give detailed
analysis of the coupling of mixed and Galerkin methods for pure di�usion prob�
lem and study various optimal iteration methods� Similarly� coupling of mixed
and �nite volume methods for general convection�di�usion problems has been
introduced and studied in �����


��� Preconditioning

The matrices obtained by the �nite volume method are typically non�
symmetric even if the original elliptic operator L was self�adjoint� The up�wind
approximation contributes in the global matrix an M�matrix and that makes
the discrete convection operator invertible� There are no general strategies that
lead to robust �i�e�� problem or coe	cient independent� solution methods�

In the case of di�usion�reaction equation� C � �� on a rectangular grid one
gets a cell�centered discretization of the corresponding elliptic problem and
there are e	cient MG techniques to solve the discrete problem� In the mixed
�nite element setting� C � �� which is appropriate when a general coe	cient
matrix a is present� one approach is to use a preconditioned MINRES method
where a number of block�diagonal preconditioners can be successfully applied�

One possibility is to use for the �rst block �corresponding to the �ux vari�
ables� a mass�matrix preconditioner� whereas for the second block �correspond�
ing to the pressure variable� one can use preconditioners coming form and
equivalent interior penalty bilinear from as proposed by Rusten� Vassilevski�
and Winther in ����� In general� the second block gives rise to a non�conforming
discretization of the pressure equation and any method� e�g� multigrid or based
on domain decomposition is suitable in this case� Alternatively� one may wish
to use for the �rst block preconditioners for the H�div��bilinear form� for ex�
ample� the hierarchical basis preconditioner as proposed and analyzed in Cai�
Goldstein and Pasciak ����� which can be algebraically stabilized �see� e�g�� ������
or the domain decomposition type preconditioners as proposed by Arnold� Falk�
andWinther in ��� and by Vassilevski andWang in ����� In the mixed co�volume
setting the algebraically stabilized hierarchical basis preconditioners have been
used in Chou� Kwak� and Vassilevski �
�� and Chou and Vassilevski �
��� The
second block �for the pressure variable�� in the latter case is simply the mass
matrix� Results concerning the eigenvalue estimates of the second type block
diagonal preconditioners were derived by Lazarov and Vassilevski in �����

The non�symmetric matrices arising in the co�volume mixed method can
be treated as perturbations of the mixed �nite element method� Therefore�
any preconditioner for the mixed method can be used in GMRES iterations�
The �nite volume discretization in the case C 
� � can be treated by exploiting
suitable ordering of the unknowns along the vector �eld b� which leads to very
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e	cient multigrid methods� For more details� see for example� the paper by
Kim� Xu� and Zikatanov �����
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