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Numerical Methods for Convection-Diffusion
Problems on General Grids

RayrcHo D. LAZAROV AND PANAYOT S. VASSILEVSKI *

This paper summarizes a number of discretization and solution tech-
niques that are commonly referred to as finite volume and mixed finite
element methods. We describe some of them in more detail, that is,
provide a common discretization strategy as well as address the issue of
solving the resulting systems of linear algebraic equations. The paper
focuses on locally conservative discretizations that include both unstruc-
tured and non-matching grids.

1. Introduction

The aim of this paper is to summarize the results of the authors and their
collaborates, and other researchers in the area of construction and study of
numerical methods for convection-diffusion-reaction equations. Such problems
occur in mathematical modeling of wide range of scientific and technical phe-
nomena such as heat and mass-transfer, magneto-statics and electro-statics,
flow and transport in porous media (related to petroleum and ground-water
applications) etc.

The advances in mathematical modeling have made it possible to set up
complex models that describe the interaction of various physical processes. Fur-
ther, the rapid developments in the computer technology, including computer
graphics, visualization, and grid generation, allow a computational method to
be set up on grids with millions of points and to handle systems of equations
with tens of millions of unknowns. The increased complexity of the mathe-
matical models in combination with grid generation, CAD/CAM, and other
specialized systems force us to depart from the standard rectangular grids.
Moreover, parallel and adaptive methods may often lead to grids that do not
match along certain interfaces. This create a need for general, flexible, efficient,
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and accurate approximation methods for differential equations in complex do-
mains with solutions that may exhibit localized singular behavior due to various
physical factors. In summary, the need of methods with properties that will
guarantee fast, efficient, accurate computations has been a driving force in the
numerical methods for differential equations in the last two decades.

In this paper we concentrate our attention on the following model second
order elliptic boundary value problem:

Lp=V-(—aVp+bp)+cp = f, inQ,
p = gp onlp,
(1.1)
—aVp-n = 0 on 'Y,
(—aVp+bp)-m = gy on T

Here Q is a bounded polygonal domain in R%, d = 2 or 3 with a boundary I';
a = a(x) is d x d symmetric matrix, which is assumed uniformly in # positive
definite and bounded in 2, b = b(x) = (b1(x),...,bn(x)) is a given bounded
vector function, ¢y = ¢p(z) is the given bounded function, gp and g are
given boundary data, and f = f(z) € L3(f2) is a given source function. We
have also used the notation Vp for the gradient of a scalar function p and
V - b for the divergence of a vector function b in R?. The boundary T is split
into two parts: I' = I'p U 'y and further I'y is split into two parts, namely,
an inflow boundary I'? = {x € Ty : n(z) - b(z) < 0} and an outflow part
It ={z € 'y :n(x)-b(z) > 0}. Here n(x) is the unit outward vector normal
to I' at point x.

This problem 1s a prototype for flow and transport in porous media. For
example, p(#) can represent the pressure head in an aquifer or the concentration
of a chemical dissolved and distributed in the ground-water due to processes
of advection, diffusion, and absorption. In many cases a = eI, where [ is the
identity matrix in R¢ and ¢ > 0 is a small parameter. This corresponds to
the important and difficult class of singularly perturbed convection—diffusion
problem (see, e.g. the monograph of Ross, Stynes, and Tobiska [58]). This
problem can be viewed also as the steady-state solution to a corresponding
time dependent linear problem (see, e.g. the monograph of M. Feistauer [34]).
Namely, p = p(z,t) is a solution to the parabolic equation g—’t’ + Lp = f(x,1),
t > 0, z € Q with appropriate initial and boundary. Finally, a nonlinear version
of this problem with linear convective flux bp replaced by a non-linear flux b(p)
appears in mathematical modeling of multi-phase flow in porous media and
petroleum reservoirs.

Integrating the differential equation in (1.1) over an arbitrary volume V- C
we get the so—called balance equation:

/(_GVP-FQP)'ndg—l-/copdx:/fdx. (1.2)
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This equality gives the balance of the quantity expressed through the “flux”
o = —aVp + bp over any subset V. Discretization schemes that have this
property over given finite set of volumes are called locally conservative. This
means that on a discrete level the approximate solution satisfies the balance
equation (1.2). For many practical problems local conservation property is very
important and desired. For example, in ground-water modeling the variable
o can represent the mass flux. Without local conservation property the mass
error can accumulate and the approximate solution may exhibit instability such
as non-physical oscillations that may result also in loss of accuracy.

Further, the solution of the homogeneous equation (1.1) satisfies the maz-
tmum principle. This means that the solution of the homogeneous equation
cannot achieve local extrema inside €2. Monotonicity is another highly desired
property of the approximate solution, oscillations are not physical and may
lead to instabilities as well. In many particular cases such properties have the
finite volume and mixed finite element methods.

Replacing the derivatives in (1.2) by finite differences has been a very suc-
cessful approximation approach in the past. For comprehensive presentation
of the main results and techniques we refer to the classical monograph of A.A.
Samarskii [60]. Finite differences are still widely used for uniform rectangular
or triangular grids. The main deficiency of the analysis in the classical theory of
the finite differences is that it requires higher regularity of the solution, i.e. the
error estimates are not optimal with respect of the regularity of the solution.
To certain extend this deficiency has been overcome by Samarskii, Lazarov,
and Makarov in [61] for diffusion-reaction equations. Further, various uncondi-
tionally stable schemes have been studied by Lazarov, Mishev, and Vassilevski
in [44] where optimal with respect to the regularity of the solution error es-
timates have been established. Approximations on locally refined rectangular
and triangular grids have been studied in [31, 32, 33, 66].

Extensions of the finite difference approximations to non-rectangular grids
have been constructed and studied by B. Heinrich with his main accomplish-
ments summarized in [37]. An interesting approach for construction of con-
servative finite difference schemes on arbitrary grids have been developed in
the scientific school of A.A. Samarskii in the 80-es. The main results of this
general approach, called method of support operators, are summarized in the
monograph of M. Shashkov [62]. The method of support operators is based
on the balance equation (1.2) and uses also relations between divergence and
gradient operators in various discrete inner products. Theoretical results con-
cerning stability, convergence, and error analysis are yet to be developed, for
example, by relating this method to the well-understood mixed finite element
method with Lagrange multipliers. The latter are needed in order to explicitly
eliminate the vector unknown (flux) thus ending up with a problem for a single
scalar unknown (pressure) as in the finite difference discretizations described
in [62].

The main advantages of the direct finite differencing are related to: (1)
simplicity, (2) local mass conservation, (3) use of harmonic averaging of the
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coefficients and (4) weighted up-wind approximations, when necessary. How-
ever, they lack the flexibility of the method of finite elements when arbitrary
meshes for general domains are involved and more general (than Dirichlet)
boundary conditions are present. Some alternatives, based on overlapping grid
discretizations are used to overcome this difficulty, but still theoretical results
covering stability and error analysis are lacking. On the other hand, the the-
ory of the finite element method is fully developed regarding optimal with
respect to the order of approximation and regularity of the solution error esti-
mates. Moreover, numerous implementations of the finite element method in
production/CAD/CAM codes for stress analysis, heat and mass transfer and
computational fluid dynamics have contributed to a full understanding of the
merits and the deficiencies of the method.

This paper makes an attempt to put in a unified and consistent way the
mathematical background of some widely used and popular as well as some
recently proposed schemes, both based on the finite volume element or the
mixed finite element methods. The structure of the remainder of the paper
is as follows. We set up the notations and provide necessary background in
Section 2. In Section 3 the main discretization strategies are formulated and
whenever available main results concerning stability and error estimates are
provided. Section 4 summarizes broadly the least-squares finite element method
applied to the first order system (FOSLS) in our particular setting. Finally, in
Section b we touch upon the important for the computational practice case of
non-matching grid discretizations and outline some major solution strategies
applied to resulting systems of linear algebraic equations.

2. Notations and Preliminaries

In what follows we use the following common notations. We shall use the
Hilbert space H},(2) = {¢ € H'(R2) : ¢|r, = 0} equipped with the standard
Lo- and H'-norms:

lall = (¢ 0)"%, gl = llallzs ) = {(g,9) + (Va, Vo) }/.

Here (-, -) is the inner product in L;(£2). Often we shall use La-inner product
on I' (or its parts I'y and I'p or other (d — 1)-dimensional interfaces) denoted
by < p,q >r= fF pq do. Further, we use the Sobolev space *(£2), s integer, as
the set of functions with generalized derivatives up to order s belonging to the
space Ly(£2). This space is equipped with the usual norm denoted by || - |[z+(q).-

For vector functions v defined on € we shall also use the Hilbert spaces

L2(2) and H (div; Q):
H(div; Q) ={v: ve&ELy(Q) and V-v € Ly(Q)}.
The Ly- and H(div)-norms in this space are defined as

VP =(v.v) VIl @i = IVIP IV VI
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We shall use the subspace Hy(div; Q) = {v € H(div;Q?): v.n=0 on I'y}.

In this paper we shall use two different formulations of the problem (1.1),
weak formulation in the space H'(€) and weak formulation based on the mixed
form of the problem, introduced by (2.3). For the first one the Dirichlet bound-
ary conditions are essential and we shall assume that gp = 0 on I'. For the
mixed problem the original Neumann boundary conditions are essential and we
shall assume in that case that gy = 0 on I'y. This is reflected in the definition
of the spaces H},(2) and Hy(div; Q). The assumptions of the homogeneity of
the boundary conditions are not essential for the methods. We make them just
to simplify the exposition.

The weak formulation of the problem (1.1) is introduced by using the bi-
linear from a(-, -) defined on H}(Q) x HE () as:

a(p,q) = (aVp —bp,Vq) + (cop,¢)+ <b-n p, ¢ >pour . (2.1)

Since the coefficients of the differential equation are bounded in €2 the bilinear
form a(-,-) is continuous in H},(2). We shall assume that the form a(-,-) is
coercive in H}, (), i.e. there is a constant Cy > 0 such that

a(p,p) > Collp|li, Vp € Hp(RQ).

A sufficient condition for the coercivity of the bilinear form is (see, e.g. [58]):
1
co(x)—|—§V~Q(x)20, Ve
Then (1.1) has the following weak form: Find p € H}, () such that

a(p,q) = (F,v) = (f,)— <gn, ¢>ry, Vg€ Hp(Q). (2.2)

This weak formulation is well suited for designing numerical methods using
approximation in H} (). For example, this is the case when the approximate
solution belongs to a conforming finite element space. However, this approach
does not guarantee that the balance equation is satisfied over given set of
volumes.

Often to get the local conservation property one has to work with discon-
tinuous solution spaces or to use different spaces for the solution and for the
test functions. These are the two main ways to achieve local conservation.

One of the most popular and widely used locally conservative method is
based on the mixed form of the problem (1.1). In this formulation one intro-
duces additional variable, called flux, and defines the operator C

u=—aVp, Cp = bVp + cop.
The original problem it then re-casted as a system of first order equations,

a"tu+Vp=0, V-u+Cp=Ff (2.3)
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The boundary conditions play an essential role in the weak formulation of
this mixed system. The simplest and most popular case is when b = 0, so
that T¢¥* = 'y, and the equation (1.1) is a diffusion-reaction equation with
boundary conditions p = gp onI'p, andu-n = 0 on I'y. Note, that
we consider non-homogeneous Dirichlet boundary condition and homogeneous
Neumann conditions on I'yy. The weak mixed formulation then reads: find
p € Ly(R2) and u € Hy(div; £2) such that

(a=ta, v) —(p, V-v) = =< gp, v-n>r,, VveHy(div,Q),

(V@) —(cop ) = ~(F.0), Vg€ Ia(9). (24)

This formulation is suitable for non-homogeneous Dirichlet boundary condi-
tions, since the Dirichlet data ¢gp now is part of the variational formulation
(2.4). In Subsection 3.3 we consider an approximation of the general case,
namely, when b Z 0.

3. Discretization Strategies

We assume that € is a polygonal domain (whenever needed convex) which is
partitioned into triangles (in 2-D) or tetrahedra (in 3-D) called finite elements
T'. The elements are considered to be closed sets and the partitioning is denoted
by 7. We assume that the partition 7} is locally quasi-uniform (or regular),
that is meas(7") < Cp(T)* with a constant C independent of the partition; here
p(T) is the radius of the largest ball contained in 7. In the context of locally
refined grids this means that neighboring finite elements are of approximately
the same size while elements that are far away of each other may have very
different sizes. Further, we denote by &, the set of all edges (2-D) or faces
(3-D) of finite elements in 7.

3.1. The finite element method

We define the finite element space S;, as set of piece-wise linear polynomials
over elements T € Tp,:

Sy, ={qeC(Q): g|r islinearfor all T €7, and ¢|r, = 0}.

The finite element approximation of the problem (2.2) is: find p, € S such
that

a(pr,q) = (Foq) = (f,0)— <gn, ¢>rip, ¥ ¢ € Sh. (3.1)

This method 1s the most popular and widely used for solving a large vari-
ety of applied problems. Moreover, it has a straightforward generalization for
transient problems and problems in solid mechanics. Furthermore, there is a
number of efficient solution techniques for the resulting linear algebraic system.
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However, this method has certain disadvantages which make necessary de-
velopment of other methods especially for particular applications. For exam-
ple, while this method is globally conservative, it may not satisfy a discrete
version of the balance equation (1.2) locally. Moreover, special stabilization
techniques are required in order to make the method well-posed in the case of
convection-dominated problems (see, e.g. [38]). Further, monotone schemes are
not produced by this approach and modifications are necessary (see, e.g. [64]).
Below we present two ways of getting locally conservative approximations that
are also unconditionally stable.

3.2. The finite (control) volume element method

The finite (control) volume method (also called box method) has been in-
troduced as an alternative of the finite element method that will allow to obtain
locally conservative schemes. It has been discussed in the early works of Anger-
mann [1], Bank and Rose [6], Hackbusch [36] and Cai, Mandel and McCormick
[14, 16]. Below we present one possible approach, namely the finite volume el-
ement method is viewed as a Petrov-Galerkin method for solving the problem
(1.1). That is, the solution space is different from the test space. The solution
space will be the finite element space .S, while the test space is described below.

To define the test space we introduce another partition (often called dual
mesh) of the domain Q into finite volumes. For a given finite element partition
Th, we construct a dual mesh 7, (based upon 75), whose elements are called
control volumes and denoted by V. In the finite volume methods there are
various ways to introduce the control volumes. Almost all approaches can be
described in the following general scheme, which we explain for tetrahedral
elements 7. In each element 7" € 7, an internal point is selected. For the
3-D case, on each of the four faces T;z; 75 of T" a point z;;1 is selected and on
each of the six edges %;%; a point z;; is selected. Then the internal point is
connected to the points z;;%, and the points z;;; are connected to the points
z;; by straight lines (see Figure 1). The control volumes are associated to the
vertices x; € Nj. Control volume associated with vertex x; 1s denoted by V;
and defined as the union of the “quarter” elements 1" € T, which have z; as a
vertex (see Figure 1). The interface between two control volumes, V; and Vj,
is denoted by ;.

For the 2-D case we will also use the construction of the control volumes in
which the internal point is the circumcenter of the element 7', i.e. the center of
the circumscribed circle of 7" and x;; are the midpoints of the edges of T". This
type of control volume forms the so-called Voronoi meshes. Then obviously,
7i; are the perpendicular bisectors of the three edges of T' (see Figure 1). This
construction requires that all finite elements are triangles of acute type, which
we shall assume whenever such triangulation 1s used.

In addition to the finite element space S}, we define its dual volume element
space S} by

Sy ={q¢ € La() : ¢lv is constant for all V €7, and ¢|r, = 0}.
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Figure 1: Left: Finite element and finite volume partitions in 2-D; Right: Con-
tribution from one element to control volume V;, ~;; in 3-D; the internal point
is the element medicenter and internal points for the faces are the medicenters
of the faces.

Obviously, S, = span{¢;(z) : z; € N2} and S; =span{y;(z) : x; € N/},
where ¢; is the standard nodal linear basis function associated with the node
x; and x; is the characteristic function of the volume V;. Further, we use the
notations N, = {p : p is a vertex of element 7' € 73} and N} as the set of all
vertices from N, except those on I'p.

The finite volume element approximation of (1.1) reads as: Find py € Sy
such that

an(ph, 4°) = Du(pn, ¢°) + Cr(pn, ¢7) = F(q7), for all ¢* € Sj. (3.2)

Here the bilinear forms Dy (pp, ¢*) and Ch(pp, ¢*) are defined on Sp x S;, the
linear form F'(¢*) on Sy, and are given, respectively, by

Dilpn,q") = > 44— / anh~nd9+/60phdx : (3.3)

T END aV\Tn v

Flg)= > ¢ /fdx— / gndo } . (3.4)

0
Ti€Ny av,Ariy

Typically, in order to be able to handle different scales of ¢ and b one
discretizes the convective part using up-wind approximation. On rectangular
grids this approximation i1s well understood and widely used in the context
of finite difference schemes (see, [60]). In the case of arbitrary grids one can
use the following approximation. Introduce the quantities o™ = (o + |al)/2,
a” = (o — |a|)/2. Next, define TI(7) as the set of all indices j such that the
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Vi

Yij

Figure 2: Control volumes with circumcenter as internal points (Voronoi
meshes) and interface v;; of V; and V;. The rightmost picture shows the seg-
ments [3;.

interval (z;, z;) is an edge of an element in 7,. Now the up-wind approximation
of the convection part C of the operator L is:

Crlpra™) = > vi Y / [(b-n)¥pa(ei) + (b-n)"pa(x;)] de. (3.5)
c€NY JEN) 4
Theorem 1. The following results are valid uniformly with respect to the
mesh-size h:

(1) the bilinear form ap(pn,q*) is bounded on Sy x S§ and satisfies the in-
equality
ah(pha q*) .

Cllpr|ly < sup ===
Il = 288, T T

here Iy is the finite element nodal interpolation operator; consequently
the solution uy, of the problem (3.2) is stable in H'-norm;

(2) if p is H?-reqular, then the following error estimate holds:
llpn = pllh < Chllplla2(0)-

The proof of these results is a consequence of the construction of the method.
For piece-wise constant coefficients the proof uses the equivalence of the finite
volume approximation to the finite element approximation (see, e.g. [40]). For
rectangular grids a detailed proof (including convergence in La-norm) is given
in [44].

Similarly to the finite element method the discrete problem is uncondition-
ally stable in H'-norm. Moreover, the above approximation of the convection
part of the operator produces an M-matrix. Therefore, if the diffusion part
produces also an M-matrix (for example this will be the case if a(z) is a di-
agonal matrix and the triangulation is of acute type) then the overall matrix
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will be an M-matrix and the method will give monotone solution. Although
the method is first order accurate combined with adaptive grid refinement it is
very attractive for the applications. In [50] various a posteriori error estimators
for finite volume element method have been studied, implemented, and tested
on a large variety of 3-D problems (1.1). In particular, we have numerically
solved problems with singular solutions due to concentrated source and sinks
and boundary layers related to different scales of the diffusion matrix a and
the convection field . The experiments in [50] demonstrate the flexibility of
the method and its capability to capture the solution with a given accuracy on
adaptive grids.

The above described up-wind approximation of the convection term is closely
related to the discontinuous Galerkin approximation (see, e.g. the survey pa-
per by Arnold, Brezzi, Cockburn, and Marini [4]) or to the Tabata scheme for
Galerkin finite element method [64].

Remark 1. Voronoi meshes have some advantages in 2-D (see, e.g. [54]).
A different type of weighted upwind approximation on Voronoi meshes in 2-D
has been studied in [2]. However, these meshes are not well suited for adaptive
grid refinement and their generalization to 3-D problems is not immediate or
simple.

Remark 2. Further applications of this method to transient boundary-
value problems have been reported in [23, 29]. The results in these works
include optimal with respect to the regularity error estimates and estimates in
Lo-norm.

3.3. Mixed finite element method

To achieve higher order of approximation one has to use the mixed finite
element method. The lowest order mixed finite element method on rectangular
meshes is a natural extension of the cell-centered finite difference methods.
Although mixed methods are seldom used for approximation of convection-
diffusion problems, it is still possible to formulate stable and convergent mixed
approximations. This is essential for a computational environment of locally
conservative methods.

The mixed finite element method is a discrete Galerkin form of (2.4) (with
a necessary twist in order to cover the case b Z 0). That is, one chooses a
pair of finite element spaces (V, W) C (H(div;Q), L2(£2)), associated with
a common triangulation 7; of Q. The spaces are chosen such that the well-
known LBB (Ladyzhenskaya-Babuska—Brezzi) stability condition is satisfied:
namely, for a mesh-independent constant 8 > 0 the following estimate holds
for any ¢ € Wy,

Vv,
Gllgll < sup V29

. (3.6)
veviu 1Vl (div)
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A simple example of stable pair of spaces is the lowest order Raviart—
Thomas spaces (see, e.g.[13]); namely, for a partition 7j consisting of tetrahedra
(triangles) or parallelepipeds (rectangles), W} is the space of (discontinuous)
piecewise constants, whereas V; has continuous normal components v - ng
across the faces (edges) E € &,. The vector function restricted to each element
has the following polynomial form: for tetrahedra, v = (a+dz, b+dy, c+dz)
and for parallelepipeds v = (a1 + b1, a2 + bay, as + bzz). The coefficients
(a,b,e,d) and (a;,b;), ¢ = 1,...,d, are determined by the degrees of freedom,
which are the values of v - ng at the medicenters of the of the faces (edges)
E € &, or the mean values of v -ng over the faces (edges) F € &.

In order to describe the weak form of the second equation (2.3), V -u +
V - (bp) + cop = f, we need to allow discontinuous functions p, and ¢ in the
space Wp. Since the functions in W}, have traces from both sides of the faces
(edges) of T, for a given function ¢ € W), we denote these traces bu ¢° and ¢,
where “0” stands for the outward (with respect to T') trace and respectively,
“” stands for the interior trace. The weak from of the second equation (2.3)
is borrowed from the discontinuous Galerkin method (see, e.g. [41], pp. 189-
196) by testing it by functions ¢ € W},. Integrating over a particular T € T
we get the following contribution of the advection-reaction operator Cpp by
introducing the bilinear form Cr(ps, q):

Cr(pr,q) = (Cph, @)r =< p§ — P}y, ¢ (b-n)~ >ar +(copn, 9)7-

Here n is the outer unit normal vector to 7T". Next, we sum over all T" € T3, so
that, for pn, ¢ € W}, we get the following contribution of the operator C to the
second equation:

Culpn, 9)= D <d', p(b-n)t +p7(b-1)" >or +(copn, 0). (3.7
TETh

Then the discrete mixed system for the problem (2.4) reads: Find up € V),
and pp € W such that

(a_luha V) _(ph, V'V):_<gDaV'n>FDa VvevVy,

—(V -up, q) —=Chlpn, ¢9) = —(f,q9), P (3.8)

This discontinuous approximation (related also to up-wind approximation)
ensures the non-negativity of Ch; namely, (see [41] or [46]),

Cilg, q) = %Eg <[q)? |b-n)| >k
h
+5<¢’ (L)t > —5 <¢% (b-m)” >p- (3.9)
+ Z (COQa q)T
TETh

The second equation of (3.8) expresses conservation of mass over each finite
element 7' € 7p. Indeed, take in (3.8) a test function ¢ to be the characteristic
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function of a particular finite element 7. Then the term (V-up, ¢)r reduces to
(V-up, 1)r =< upn, 1 >sp and expresses the mass influx in 7" through 9T due
to diffusion. Similarly, the first term of Ch(pp, ¢) reduces to < p%, b-n > pt
+ < p;, b-n >sp- and expresses the mass influx through 07" due to convection
(transport). Finally, the last term in Cp(pn, ¢) expresses mass change due
to reaction/absorption. This approximation is closely related to the method
studied by Jaffre [39] and Liu, Wang, and Yang [53]. In [53] error analysis,

including interior estimates have been provided.

3.4. Mixed co—volume methods

The mixed co—volume methods have been developed as an alternative to the
mixed finite element method to handle more general partitions and to work in
the finite volume setting (see, e.g. [25, 27, 26]).

We present a co-volume (finite volume) method for approximation of the
mixed system (2.3) in the general framework of Petrov-Galerkin method pro-
posed and analyzed by Chou and Vassilevski in [24]. The idea is quite similar to
the idea of departing form Galerkin method and using instead Petrov-Galerkin
method for second order elliptic equations. Namely, we shall again use two
different sets of spaces for the solution and for the test functions.

We take the solution space to be the lowest order Raviart-Thomas space
(see, [13]) (Vy, Wy) C (H(div; Q), L2(f2)) already explained in Subsection 3.3
and used in the Galerkin approximation of the mixed system. To construct
the test spaces we need a corresponding dual mesh. In fact, for the pressure p
we use the same space W} of piece-wise constant functions over the mesh 7.
To construct the test space for the vector-function v we introduce a dual mesh
Q. For definiteness we consider the case of triangular (tetrahedral) mesh 7j,.
The dual mesh is constructed in the following way: in each element 7" € T}, the
medicenter is connected with the vertices of the simplex (triangle in 2-D and
tetrahedron in 3-D) so the simplex is split into d 4+ 1 simplexes. Two simplexes
sharing a common face (edge) E € &, are added together (with the edge) so
they form a co-volume Qg =17 UE U Tg of the dual grid Qj (see, Figure 3
for 2-D). On the boundary I'p the co-volume is either T} or a Tg.

Then, the test space V} will be a subspace of the space of piece-wise con-
stant vector-functions that have continuous normal trace across the interior
edges E € &,; more precisely,

Vi C {v: v|k is constant, K =T, T,

_ + (3.10)
V|- ng =v|p+ -ng, forall Qg =T UEUTE € Qh} ,

where ng is the unit normal vector to the face (edge) E with a fixed direction.
Then by definition of a gradient of p € W, (which is discontinuous function
over volumes Qg € Qp) we have:

Z(VP’V)QE:_ Z(p,V'V)QE-i- Z <p,Vv-ng >sQy YV VEVL
QEQn QEQn Ee&y
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Figure 3: Left: a co-volumes sharing an internal edge Qr = T U E'U Tg;
Right: a co-volume sharing an edge on I'p: Q@ =1Tj.

Note that interior (to ) edge E has two neighboring simplexes T and T~
from the neighboring volumes that share E. Further, v is constant over T#
and TE and i1ts normal component 1s continuous across F, that is, the jump
[v-ng] =0. Finally, V- v = 0 over Qg so that the following identity holds,

(vpaV)QE =< p,v-1n >3QE: - < [p]Ea V-ng >g .

Here, [p]g stands for the jump of p across the face (edge) F and the difference
1s taken of value from the element in the direction of ng minus the value from
the element in opposite direction of ng. Summing over all volumes Qg € Qp
we get the following approximation of the first equation of the mixed system
(2.4) defined for up € Vy, v € V5 and py € Wy

> @ V)ge + Y <[pale, vonp >p=0.

QERQn EcéEy,

Next, we need to discretize the second equation in (2.4). The discretization
of the convective term 1s the same as in the mixed finite element approximation
and 1s based on the idea of discontinuous Galerkin method. The evaluation of
(V-u, q) can be done element-by-element and is straight forward since u € Vi,
Moreover, direct computations show that

(Vu, q) = Z (Vu, ¢)r = Z <lglg, w-ng >p.

TETh Eeéy,

To summarize, the mixed co-volume (Petrov—Galerkin) scheme reads: Find
uy € V;, and pp € Wy, such that

> o(atuy, v)o+ > <[pale, v-mg >g =0, Yvevy,
QERQn Ecé&y (311)
E < up-ng, [Q]E >T —Ch(Ph, Q) :_(fa Q)a Vq&eW.

Ee&y
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To complete the description of the mixed co-volume method we have to
specify the trial space V;. Our construction will be based on Vj,, namely, we
show that an image of a proper subspace of V;, will have the desired properties.
It is clear that V} should be isomorphic to the test space V. Isomorphism
here means that the dual space Vj must have as many degrees of freedom
as Vj, 1.e. the dimensions of the space of test functions v and the space of
solutions uy are equal.

For each such function v € Vj one can define a function y,v € V} as
follows

1 +
WE[V-I— do, on Ty,
ThV = 1 -
mfv do, onTg
E
One notices that [ng -y, v]g = ﬁ [Ing -v] =0, that is, v, v € V. It is also

clear that v, v = 0 implies that v -ng = 0 on the midpoint of £; hence, v =0
since these are the degrees of freedom which specify v. That is, a natural trial
space isomorphic to the test space V3 would be Vi = v, V.

Problem (3.11) differs from the one obtained using the standard mixed
system only by the transfer operator 7, taking part in the first equation of
(3.11). Here we used the fact that

/7hV'nEdQ:/V'nEan

E E

and that pj is piece-wise constant over each finite element 7.

The following theorem summarizes the results concerning the co-volume
approximation (3.11). Tts proof can be found in [24] (see, [25, 26, 27] for other
approximations of this kind):

Theorem 2. Let uy, and pp, be the solution of the discrete problem (3.11).
Then
sl + llpall < Coll £1;
Let p be the solution of the problem (1.1), let u = —aVp, and assume that p is
H?-reqular. Then the following error estimate is true:

[[un =l +lpn = pll < Crh(llpllar @) + [l ) + C2h 2| Ipllm a)-

The constants Cy, C1 and Cs do not depend on the mesh size h. Furthermore,
the constant Cy can be taken as zero in the case of pure diffusion problem, i.e.

b=0.

4. First Order System Least-Squares (FOSLS)

Least-squares finite element approximations of second order problems have
become a popular technique for deriving unconditionally stable approximations
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including high order schemes. The idea of least-squares is quite old (see, e.g. the
pioneering work of Neitaanméaki and J. Saranen [55]) but only recently a new
development in the method has been accomplished (see, e.g. [10, 11, 12, 17, 18,
56]). For a comprehensive review of new recent results in least-squares method
and their applications to a wide range of problems we refer to the paper by
Bochev and Gunzburger, [9]. Attractive feature of this approach is that it leads
to symmetric and positive definite discrete systems and allows approximations
of high order for smooth solutions. The price one pays is an increased number
of unknown functions. We explain the main idea of the least-squares method
on the model problem (1.1) assuming that a homogeneous Dirichlet boundary
condition 1s prescribed on the whole boundary, 1.e. I'p =T.

As in the mixed method, we rewrite the original problem in the mixed form
(2.3) and consequently form the least-squares functional:

J(v, ) =lla™'v+ Vallf +[1f = Vv = Cqll. (4.1)

Here, || - ||z and || - ||p are some norms in the sets of vector functions v and
scalar functions ¢. Further, we discuss two possible norms that have been
used in the least-squares method. Obviously, the solution p € H{(£2) of the
problem (1.1) and u = —aVp gives this functional a value zero. Tt is also valid
that for properly chosen norms the minimizer of the functional (4.1) in the
corresponding spaces will be the solution of (1.1).

4.1. Least-squares based on L,-inner product

The simplest and far the most popular least-squares method 1s based on
the following choice of norms in (4.1): |[u||} = (¢~tu, u) and ||p||% = (p, p),
where (-,-) is the standard Ls-inner product for scalar and vector functions
defined on Q. Then the Ls-inner product FOSLS which minimizes the quadratic
functional (4.1) will lead to the following weak problem: find p € H}(2) and
u € H(div; Q) which satisfy the integral identity:

A(a,p; v,q) = F(v,q), Yee H{(Q), and V v € H(div; Q), (4.2)
where
A(a,p; v,q) = (a7'a+Vp, v+aVe) +(V-u+Cp, V-v+C),
Fv,q) = (f Cq).

As proved in [17], the bilinear from A(u, p; v, ¢) is bounded and coercive in the
space H (div; Q) x HE(Q) provided that the matrix a(z) is uniformly positive
definite and bounded in €.

This fundamental result leads to the following natural least-squares finite
element method. Let Sj be the space of continuous piece-wise linear over
the partition 7T, scalar functions satisfying homogeneous Dirichlet boundary
condition on I'. Similarly, let S; be the space of continuous piece-wise linear
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over the partition 7, vector-functions. Then the least-squares finite element
approximation to (4.2) is: find ps € S and up, € Sp, such that

A(up,pp; v,q) = F(v,q), Vg€ Sy, and ¥V v €Sy (4.3)
Theorem 3 (see, [17, 20, 56]). The following results are valid:

(1) the corresponding matriz of (4.3) is symmetric, positive definite, and its
condition number is of order O(h=?);

(2) the solution of the finite element method (4.3) satisfies the a priori esti-
mate

lpallzr ) + [uallz.) < Cllfllzan);

(3) if the solution of the problem (1.1) is H>-reqular then the following error
estimate 1s valid:

lpn — Pl @) + s — ullLy0) < Chllplla(q)-

The constants C' in these inequalities are independent of the mesh step-size h.

Here are some observation regarding this method. The discrete scheme (4.3)
is not conservative (i.e., the discrete solution does not satisfy a balance equa-
tion). However, the method is very appealing since it leads to a symmetric
positive definite problem without any conditions on the step-size h. Second,
this methods adds another 3d unknowns per grid point, so it has increased
memory requirement. On the other hand, the function uy, provides a direct ap-
proximation of the flux variable u, which is continuous in the whole domain €.
This property of the approximate solution might be very important in some
applications, e.g. the case of flow in porous media. This method however,
requires higher regularity of the solution, compared with the standard finite
element method (3.1). Namely, for O(h)-convergence the least-squares finite
element method requires H3-regularity of the solution. This, in general, is not
the case of polygonal domains €.

We should also note that the resulting discrete operator is not always close
to a block diagonal operator of elliptic type; that is, the resulting operator,
generally, couples strongly the different variables and this makes the construc-
tion of efficient preconditioners, including multigrid, a challenging task. This
is an area of active research. Some progress has been made by the recently pro-
posed spectral AMGe (algebraic multigrid finite element) method [22], which
in essence, builds problem dependent coarse spaces in order to capture more
closely the “algebraically smooth” components of the fine-grid functions. In
other words, the spectral AMGe method builds, by local procedures, a coarse
space that leads to a two—grid method which has a convergence factor bounded
independently of the problem parameters (such as the PDE coefficients and
the mesh size). A possible disadvantage of the method that it may lead to
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high complexity (or equivalently, to too dense coarse matrices). More classi-
cal ILU-type methods have been used in [21] while multigrid utilizing matrix
dependent coarse spaces and geometrically constructed coarse elements, have
been demonstrated in [57].

Remark 3. We have discussed Dirichlet boundary conditions only. Gen-
eral boundary conditions can be made part of the least squares functional (with
proper scaling) and this adds another dimension of flexibility to the method.
For example, Dirichlet and Neumann boundary conditions in Hl/z(FD) and
H_l/Z(FN) norms, respectively, can be added to the lest-squares functional
(4.1). Finite element approximations based on multilevel method for such aug-
mented functional the Poisson equation have been introduced and studied by

Starke in [63].

Remark 4. For convection-dominated problems the constants in the in-
equalities in Theorem 3 depend on the ratio ||a||/|/||b]| and their dependence is
not immediately available. To get schemes for which the dependence is weaker
and explicit a hybrid discretization based on stream-line diffusion stabilization
and least-squares has been proposed and studied by Lazarov, Tobiska, and

Vassilevski in [48].

4.2. Least-squares based on [ !-inner product

To overcome some of the deficiencies of the least-squares method based on
La-inner product a more balanced set of norms in (4.1) has been proposed by
Bramble, Lazarov, and Pasciak in [10]. In order to introduce the method we
need to define a minus one inner product. First, we define the space H~1(Q)
as the set of all functionals ¢ for which the norm

_ (q9,9)
||Q||H—1(ﬂ) = sup
SEHL () ||¢’||H1(ﬂ)

is finite. Here (g, ¢) is the value of the functional ¢ at ¢.
Below we introduce this concept following [10]. We consider the following
symmetric boundary value-problem: find ¢ € H}, () such that

g—Aq=finQ, ¢g=0onTp, Vg-n=0o0nTy. (4.4)

Let D : H=YQ) — Hp(Q) denote the solution operator for the above
problem, i.e. for f € H=Y(Q), Df = q is the solution of (4.4). As proven in
[10] we have

2
(¢,Pg) = sup %:Hﬂﬁ[—l(ny
serb @) 19ll7n o)

so that the inner product in H~1(Q) is given by (¢, Dq).
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This suggests the following norms in (4.1):
[ull = (a™'a, w) and |pllz = (p, Dp).
An important property of these norms is that the corresponding bilinear from
A(u,p; v,q) = (a a4+ Vp, v+aVg) + (V-u+Cp, D(V - -u+Cq))

is bounded and coercive in Ly(Q)? x Hj(Q).

This functional provides a solid background for a construction of new type
of least-squares method. The only problem is that the norm in H~' is not
readily computable. Next step is to replace this norm with an equivalent on
the finite element space and yet computable norm. Let Dy : H=Y(Q) = Sp
be defined as Dy f = qn, where g3 is the finite element solution of (4.4). Then
we define B, = h’T + D, where 7 is the identity operator, and form the
least-squares functional

J(v, ¢) = (a7 v+Vyq, v+aVe)+(Bu(f =V -v—=Cq), f—V-v—Cq), (4.5)
defined for v € Sy and ¢ € S},.

Theorem 4 (see, [10]). The following results are valid:
(1) the quadratic functional (4.5) has unique minimizer (up, pp) € Sp X Sh;

(2) if p as a solution of (1.1) is H?-regular, then the following error estimate
holds with a constants C' independent of the mesh-size h:

lpn — Pl @) + s — ullLy0) < Chllpllaz(q)-

As seen from this theorem, this least-squares method has optimal conver-
gence rate with respect to the regularity of the solution. In fact, in [10] it has
been proven that the convergence of the minimizer of (4.5), with slight modifi-
cation of the functional, is O(h") if p € H'*7(Q) for 0 < r < 1. This approach
has been applied in [11] directly to the equation (1.1) (not to the mixed system)
with boundary conditions including oblique derivative. Further, extension to
the equations of linear elasticity, including the case of incompressible materials,
has been studied by Bramble, Lazarov, and Pasciak in [12].

On the negative side, this method 1s quite complex and computationally
expensive due to the necessity to use the minus one inner product. This com-
putationally expensive inner product can be replaced by a simpler one (see, the
review paper [9]) based on the inverse inequality. Namely, (¢,Dq) is replaced
by h*(q,q). In fact, this means that we skip the operator D}, in the definition
of By,. This will lead to optimal error estimates, but the condition number of
the resulting system is significantly larger, namely O(h~=%), and will result in
higher solution costs.
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5. Extensions and Conclusions

As mentioned at the beginning, the driving force in the theory and appli-
cations of numerical methods for differential equations has been the advances
in the computer technology, mathematical modeling, and scientific computing.

In computer simulation of a complex process (or phenomenon) one needs to
use various tools from natural sciences, mathematics, and informatics. Stable,
accurate, and efficient approximations are only a part of the overall modeling
process. To extract the necessary information about the process one needs to
perform computations that might involve very large sets of equations. Efficient
iterative methods based on preconditioning and parallel algorithms are the
main tool to speed-up the solution process.

5.1. Non-conforming domain decomposition method

Domain decomposition (or substructuring) has become an important and
standard tool for design of parallel numerical algorithms that utilize multipro-
cessor computer architectures. The idea of the method is conceptually very
simple, namely, the domain (structure) is split up into subdomains (substruc-
tures). This makes it possible to assign one (or more) subdomains to a processor
that may handle independently the meshing process and the approximation.
Further, the processors communicate in order to solve the whole problem. In
this area of active research we shall discuss two particular cases, namely, domain
decomposition using non-matching grids and coupling different approximations
in different subdomains.

In some situations (for example adaptive grid refinement) one is often left
to deal with non—matching grids across subdomain interfaces. That is, one
needs a technique to formulate an accurate discretization scheme by imposing
certain matching conditions across these interface boundaries. Let us illustrate
the main ideas on the example of two subdomains, i.e. 2 = Q_UTUQ,, where
I is the interface between 2_ and Q4 , 1i.e. ['=0Q_ N 0Q4.

One approach is based on the so—called mortar method, proposed in the
late 80-es in France (see, e.g. [8]). It imposes continuity in a weak sense, that
is the jump of the discrete solution across all interfaces I' is kept orthogonal to
a multiplier space A,

/ [p] p =0, for all u € A. (5.1)
r

Then the subdomain problems, are coupled by simply finding computational
basis in the constraint space satisfying the above orthogonality conditions. The
mortar method provides a systematic way of constructing multiplier spaces and
computational bases in the resulting constraint spaces.

Another approach, which better fits the finite volume methodology is to
impose certain penalty on the generally discontinuous spaces, that is to add
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the following penalty term in the bilinear form

3 ﬁ/[p][q]dg.
E

Ee&pnll

Here, F is an edge of an element from one side of the triangulation on every
interface I' and the factor ﬁ can be viewed as penalty. Typically, |F| ~ h + 0,
where & 1s the mesh size.

We shall not go here into more details for the above two approaches, rather
we will refer to the existing literature (see, e.g. [7, 8, 30, 42, 51, 68]). A

comprehensive study can be found in [69].

5.2. Coupling various methods

In some cases one may be required to couple different discretization methods
applied to different parts of the domain. This approach is very natural for
the so-called multi-physics mathematical models (widely used in the research
group of M. Wheeler). For example, one may use a mixed discretization on one
subdomain and a standard finite volume discretization on the other subdomain.
The coupling is done through the interface boundary I'. In this case penalty
1s not needed since the continuity is ensured by the flux variable u from the
mixed side. Essentially, the discretization on the finite volume side uses u-n_
as a Neumann boundary condition and the discretization on the mixed side
uses pT as a Dirichlet boundary condition coming from the finite volume side.
More specifically assuming that u is the flux variable and p~ is the pressure
variable on the left domain €2_ and p;'; is the pressure unknown in the right
domain 4, one has on the mixed side (posed on _) the following system for
(wn, pf) € (Vi, Wy) to solve,

(a_luha V) +(p]—7a VV) = - <p]-—lb—a vV -n>r, Vv EVh,

(Vown ) +Crra) = (Fa)a voew, 0P

Here, (Vj,, W3) is a stable mixed finite element pair defined on ©_. On the
right domain one has a finite volume discretization with Neumann boundary
conditions —an;'L' -n = —uy - n on the interface I'. That is, one has, on
the following discrete problem, find p;'L' € Sy, such that

<up-n, ¢g>r _a]-—lb—(p]-—lb—a Q):_(fa Q)Q+a VqES; (53)

Here S), and S} are the spaces of finite elements and finite volumes functions
defined on 24, introduced in Subsection 3.2. Similarly, a;':(p;'[, q) is the corre-
sponding bilinear form from Subsection 3.2 defined on 4.

(n)+

A simple iterative procedure for the coupled system would be: Given phn ,

an approximation to pz, at step n > 0, one then solves a system like (5.2) with

Py = pgn)-l_ and determines (approximately) u” -n on I'. Then in order to
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determine p2n+1)+ one solves a finite volume problem like (5.3) with u-n :=

u” -n on I'. This provides one step of the iterations.

In the case C = 0 the convergence of the suggested method used as a precon-
ditioner (and several other iteration methods) has been studied and numerically
tested. More specifically, in [45] Lazarov, Pasciak, and Vassilevski give detailed
analysis of the coupling of mixed and Galerkin methods for pure diffusion prob-
lem and study various optimal iteration methods. Similarly, coupling of mixed
and finite volume methods for general convection-diffusion problems has been
introduced and studied in [46].

5.3. Preconditioning

The matrices obtained by the finite volume method are typically non—
symmetric even if the original elliptic operator £ was self-adjoint. The up-wind
approximation contributes in the global matrix an M—matrix and that makes
the discrete convection operator invertible. There are no general strategies that
lead to robust (i.e., problem or coefficient independent) solution methods.

In the case of diffusion-reaction equation, C = 0, on a rectangular grid one
gets a cell-centered discretization of the corresponding elliptic problem and
there are efficient MG techniques to solve the discrete problem. In the mixed
finite element setting, C = 0, which is appropriate when a general coefficient
matrix a is present, one approach is to use a preconditioned MINRES method
where a number of block-diagonal preconditioners can be successfully applied.

One possibility is to use for the first block (corresponding to the flux vari-
ables) a mass-matrix preconditioner, whereas for the second block (correspond-
ing to the pressure variable) one can use preconditioners coming form and
equivalent interior penalty bilinear from as proposed by Rusten, Vassilevski,
and Winther in [59]. In general, the second block gives rise to a non—conforming
discretization of the pressure equation and any method, e.g. multigrid or based
on domain decomposition is suitable in this case. Alternatively, one may wish
to use for the first block preconditioners for the H(div)-bilinear form, for ex-
ample, the hierarchical basis preconditioner as proposed and analyzed in Cai,
Goldstein and Pasciak [15], which can be algebraically stabilized (see, e.g., [65]),
or the domain decomposition type preconditioners as proposed by Arnold, Falk,
and Winther in [5] and by Vassilevski and Wang in [67]. Tn the mixed co—volume
setting the algebraically stabilized hierarchical basis preconditioners have been
used in Chou, Kwak, and Vassilevski [27] and Chou and Vassilevski [24]. The
second block (for the pressure variable), in the latter case is simply the mass
matrix. Results concerning the eigenvalue estimates of the second type block
diagonal preconditioners were derived by Lazarov and Vassilevski in [49].

The non-symmetric matrices arising in the co-volume mixed method can
be treated as perturbations of the mixed finite element method. Therefore,
any preconditioner for the mixed method can be used in GMRES iterations.
The finite volume discretization in the case C # 0 can be treated by exploiting
suitable ordering of the unknowns along the vector field &, which leads to very
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efficient multigrid methods. For more details, see for example, the paper by
Kim, Xu, and Zikatanov [43].
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