L*-ERROR ESTIMATES AND SUPERCONVERGENCE IN
MAXIMUM NORM OF MIXED FINITE ELEMENT METHODS FOR
NONFICKIAN FLOWS IN POROUS MEDIA
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ABSTRACT. On the basis of the estimates for the regularized Green’s functions with
memory terms, optimal L°°-error estimates are established for the nonFickian flow
of fluid in porous media by means of a mixed Ritz-Volterra projection. Moreover,
local L -superconvergence estimates for the velocity along the Gauss lines and for
the pressure at the Gauss points are derived for the mixed finite element method,
and global L*-superconvergence estimates for the velocity and the pressure are also
investigated by virtue of an interpolation post-processing technique. Meanwhile, some
useful a-posteriori error estimators are presented for this mixed finite element method.

1. INTRODUCTION

The nonFickian flow of fluid in porous media can be modeled by an integro-differential
equation: Find u = u(z,t) such that

u =V-.-o+cu+f in Q x J,
t
o :A(t)-Vu—/ B(t,s) - Vu(s)ds in Q x J, (L.1)
0 .
u =g on 002 x J,
u = ug(w) z€Q, t=0,

where Q C R? (d = 2,3) is an open bounded domain with smooth boundary 99, J =
(0,T) with T > 0, A(t) = A(z,t) and B(t,s) = B(z,t,s) are two 2 x 2 or 3 X 3 matrices,
and A is positive definite, ¢ < 0, f, g and ug are known smooth functions. This kind of
flow is complicated by the history effect characterizing various mixing length growth of
the flow, which has been investigated, for example, in [9, 10].

The numerical approximations of the problem (1.1) are available in extensive litera-
ture. See, for instance, [2, 3, 11, 13, 14, 18-21].

In the present paper, the approximate solutions of (1.1) are studied by mixed finite
element methods. Optimal L°°-error estimates are obtained by employing a mixed Ritz-
Volterra projection introduced in [11]. In addition, local L*°-superconvergence estimates
for the velocity along the Gauss lines and for the pressure at the Gauss points are derived,
and with the aid of an interpolation post-processing method global L*°-superconvergence
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estimates are also considered for the velocity and the pressure. As a result of the global
superconvergence, a-posteriori error indicators of the mixed finite element method are
presented in the paper.

The paper is organized in the following manner. In Section 2, we give the approximate
sub-space and the approximate problem. Two regularized Green’s functions and a Ritz-
Volterra projection with memory terms for the mixed form for the problem (1.1) are
introduced in Section 3. Also, in Section 3 the L'-error estimates for the mixed finite
element approximations of the regularized Green’s functions are stated, and the L*-error
estimates for the mixed Ritz-Volterra projection are established. In Section 4, optimal
error estimates in maximum norm are given for the mixed finite element approximations.
Section 5 is devoted to the local and global L®°-superconvergence analysis of the mixed
finite element method, by which some a-posteriori error estimators are obtained for the
mixed finite element method. Finally, the L'-error estimates for the mixed finite element
approximations of the regularized Green’s functions are proved in Section 6.

2. THE MIXED FINITE ELEMENT METHOD

In this section, we give the mixed finite element approximate scheme for the parabolic
integro-differential equation (1.1). For simplicity, the method will be presented on plane
domains.

Let W := L?(2) be the standard L? space on 2 with norm | - [|. Denote by

V= H(div,Q) = {0 € (L*(R)* | V-0 € L*()}
the Hilbert space equipped with the following norm:

1
lollv == (loll§ + 11V - oll5)* -

There are several ways to discretize the problem (1.1) based on the variables o and wu;
each method corresponds to a particular variational form of (1.1) [13, 20, 21].

Let T} be a finite element partition of € into triangles or quadrilaterals which is
quasi-uniform. Let Vj x W), denote a pair of finite element spaces satisfying the Brezzi-
Babuska condition. Although there are now several choices for V, and Wj,, here we only
consider the Raviart-Thomas elements of order k£ > 0 [23]. The extension to other stable
elements can be made without any difficulty.

Recall from [13] that the week mixed formulation of (1.1) is given by finding (u,0) €
W x 'V such that

(ut,w)—(V-a,w)—(cu,w):(f,w), IUEW,
t
(00¥) + [((M(t.5)o(s)v)ds +(V-vu) = (govom). veV. (21
u(0,2) = up(z) in L%(Q),
where o = A=Y(t), M(t,s) = R(t,s)A~!(s) and R(t,s) is the resolvent of the matrix
A~Y(t)B(t,s) and is given by
R(t,s) = A Y(t)B(t,s) + /t AL t)B(t,7) R(r,s)ds, t>s>0.

Here (-,-) indicates the L2-inner product on 99.
The corresponding semi-discrete version is to seek a pair (up,o0,) € Wp, x V}, such
that

(up,t, wp) — (V- op,wp) — (cup,wp) = (f, wp), wy, € W,

t
(aon, vh) +/0 (M(t,s)on(s), vi)ds + (up, V - vi) = (g,n-vp),  vi € Vi 22)



The discrete initial condition u;(0,z) = wugp, where ugp, € W), is some appropriately
chosen approximation of the initial data wug(z), should be added to (2.2) for starting.
The pair (up,0p) is a semi-discrete approximation of the true solution of (1.1) in the
finite element space W), x Vy, [1, 6, 11, 13, 14], where 0(0,z) is chosen to satisfy the
equation (2.2) with ¢ = 0; namely, it is related to wug, as follows:

(aop(0),vy) + (uon, V- vi) = (go, 0 - vp), (2.3)

where go = ¢(0, z) is the initial value of the boundary data.
From (2.1) and (2.2) we derive the following mixed finite element error equation:

(ur = unpywn) = (V- (0 = on),wn) = (e(u — up), wp) =0, wy, € Wh,
(a(o —op),vh) +/0 (M(t,s)(c —on)(s),vp)ds + (u—up,V-vp) =0, v €V
(2.4)

Throughout the paper, we often need the following Raviart-Thomas projection [7, 23].
E x PPV xW = V), x Wy,

which has the properties:
(i) PF is the L?(Q) projection;
(i) I} and P} satisfy

(V- (o0 —Ifo),wy,) =0, wy, €Wy, and (V-vp,u— PPu) =0, vi, € V). (2.5)

(iii) the following approximation properties hold

o = I}ollop, < Ch7||o]lrps 1<r<k+1,  1<p<oo,
IV (0 —T00)|—ap < CH ||V 2 0llp, 0<7, s<k+1, 1<p<oo,  (26)
||U_Pf]fu||75,p S Chr—i—s”u”r,pa OS')", Sék_’_]-a 1SPSOO

3. THE MIXED RITZ-VOLTERRA PROJECTION AND ITS L°°-ERROR ESTIMATES

In this section, we consider optimal and superconvergent error estimates in L°°-norm
for the mixed Ritz-Volterra projection. It is well-known that the regularized Green’s
function plays an essential role in the analysis of maximum norm and superconvergence
for finite element methods and mixed finite element methods of elliptic equations [8,
12, 17, 25-27] and parabolic equations [17]. For the finite element method of parabolic
integro-differential equations, maximum norm and superconvergence have been obtained
in [18, 19] using the modified regularized Green’s function with memory term. Here we
consider the mixed finite element approximations for parabolic equations with memory,
and it is expected that certain modification form of the standard regularized Green’s
function with memory should be introduced, analysed and used in our analysis.

Let us define the following two linear operators M* and M % x for any smooth function
f(t) defined on (0,T) by

t T
(M * f)(t) ::/0 M(t,s)f(s)ds and (M xxf)(t) ::/t M(s,t)f(s)ds.

Then, we have
Lemma 3.1. There holds

T T
< Mg >rim /0 M s £(t) g(t)dt = /0 F(8) M xsg(t)dt -=< f, M % xg >7.

Proof. The result follows from exchanging the order of integration. 0



Lemma 3.2. Assume that f(t), g(t) € L'(0,T*) and there exists C > 0 such that for
any non-negative ¢(t) € C>(0,T),

/Tf(t)qﬁ(t)dt‘ <C ., 0<T<T".
0

T
/0 g(t)(1 + (1)) dt

Then, we have

lf(t)] < C‘g(t) —i—/o g(s)ds|, Vte (0,T), a.e.

Especially,
If®)] < Clg(t)], Vte(0,T), ae. if

T T

[ s <o | [ st
0 0

Proof. Take o > 0 and let

_ 2
dultsto) =4 () exp (—M-T‘Tu) |t —to| < 1,
0, |t_t0| > b

<C

1
where t( is any fixed point in (0,7") and C), := u/ exp (_1—t2> dt. We see easily
It <1 -

that for almost all ¢y € (0,T),

T

flt) =l [ @u(tt0)de, £ € CZ0O.T),

Thus, if we take f,(t) € C>(0,T) such that f,(t) — f(t) as n — oo in L'(0,T), then

the result is true for all f,(¢). Therefore, it is true for f(¢) via a limiting procedure. [
For an arbitrary point zy € €2, let

Bz, 20) = (|2 — z|* + 6%/

be the weight function used in [24, 25, 27], where z = (z,y) € R?, 6 = vh and v is a
positive number chosen appropriately. Moreover, as usual, for any a € R we define the
weighted norms by

e R

and || - ||g~ is the weighted norm for @ = €2. Then, we have [25, 27]

1
/Qﬁ2d§2 < Clog . (3.1)

Next we shall define two regularized Green’s functions with memory terms for the
problem (1.1) in mixed form in the fasion analogous to that employed earlier for Galerkin
methods [27]. Our main results concerning the regularized Green’s functions and their
mixed finite element approximations are L'-error estimates which are useful for estab-
lishing L°°-error estimates and superconvergence in maximum norm for the mixed finite
element solution of (1.1).

For simplicity, we assume that ¢ = 0. Thus, for an arbitrary point zy € € the first pair
modified regularized Green’s function (G, A1) = (G1(2,20), A1(2,20)) with memory is
defined as the solution of the following system:

aGr+ M xxGy — VA = 0, in Q x (O,T),
divGy = &¢i(t), inQx(0,7T), (3.2)
A= 0, on 90 x (0,T),



where ¢y (t) € C*°(0,T), and & = 6 (z,29) € W), is the regularized Dirac d-function at
any fixed point zp € © such that ([8, 12, 25, 26])

lwhlloo < C|(wn,61)],  wh € Wh. (3.3)

We also introduce the second pair regularized Green’s function (G, A2) = (Ga(z, 2p),
Ao(z,29)) such that

aGo + M xxGg — Vg = (55L¢2(t), in Q x (O,T),
divGy = 0, in Q x (0,7), (3.4)
o = 0, on 99 x (0,T),

where ¢(t) € C°(0,T) and 6% is either (6%,0) or (0, 6%) with 6% being a regularized Dirac
o-function at zy, which depends upon the needs of our analysis, such that an analogue
of (3.3) is also valid for 6%. In addition, 6%, ¢1(t) and ¢o(t) are required to satisfy

T
20, [ sao—1 4020, [ sar<t i=12 (3.5)
Q 0

Now and in what follows in this paper, the domain € is assume to be H2-regular [7].
Therefore, it is not difficult to show (see, for example, (3.6a) — (3.6d) in [25]) that the
following Theorem 3.1 is true.

Theorem 3.1. There exists a positice constant C > 0, independent of h,t,$1(t), such
that

1\ 1/2
IVullo< € (103 ) 1+ 610,

IV2A1llo < ChH1 + ¢1§t)),
1/2

1
IV2lly < € (1o 7 ) (14 10,
V2l 11y < Clog 5 (L+61(t)).

Theorem 3.2. Assume that (G, 1) and (G?, A\") are the exact solution and the mized
finite element approzimation of (3.2), respectively. Then, there exists a positive constant
C > 0, independent of h,t, ¢1, such that

|G} — Gillo < C(1+ ¢1(2)),

1
|G} — Gill1 () < Chlog E(l + ¢1(t)),
1\ /2
||A’f—xl||os0h(logﬁ) (L1 6i(0).

Theorem 3.3. Assume that (Ga, \2) and (G2, AR) are the exact solution and the mized
finite element approzimation of (3.4), respectively. Then, there exists a positive constant
C > 0, independent of h,t, ¢o, such that

IG5 — Gallo < Ch™'(1 + ¢2(1)),
1\ 12
IGE — Gal|1@) < C (108; E) (1 + ¢2(t)),

125 — Xallo < C(1+ ¢2(t)),



[A2llo < C (1 + [log Al'/?) (1 + ¢2(t)),
IV Aallo < CRTH(1 + ¢2( );

IVA2llr@) < C (1+ 2(1)),

1/2
||V2>\2||L1 < Ch! < ) 1+¢2(t)).

We would like to point out the estimate

1/2
IV2%ulloy < O (g7 ) (14 )

is not sharp, since it can be improved to
IV XallLii) < Ch™ (1L + ¢a(t)) (3.6)
if the domain is smooth enough. A proof of (3.6) can be found in [24].

Remark 3.1 The proofs of Theorems 3.2 and 3.3 will be postponed to Section 6 where
the weighted norm estimates are used.

Following the procedure for Theorems 3.3 and 3.4 in [25] together with the application
of Gronwall’s lemma, we can also obtain the following Theorems 3.4 and 3.5.

Theorem 3.4. Assume that 2 is a plane rectangular domain and q € [1,00]. Then, we
have o
1GHI, < CR™™ % log h|'/2(1 + (1))
IG1 = Glll, < (C(a) + Clloghl) A > (14 g1 (1)), 1 < < o0,

where p = % is the conjugate of q.
Theorem 3.5. For q € [1,00], there hold

" Ch7o|loghl(1+ ¢a(t), 1<q<2,
IGhll, < o
Ch o (1 + da(t)), ¢>2,
2
IG2 — Ghllg < (C(q) + C|logh|V/2) k™7 (1 + ¢2(t)), 1 < g < o0,

where p = ﬁ.

In the following we shall show the error estimates in maximum norms for the mixed
finite element approximation of (1.1). To this end, we first introduce the mixed Ritz-
Volterra projection [11].

Definition 3.1 For (u,0) € W x V we define a pair (ap,, ) : [0,T] = W, x V}, such
that

(o —ap) + M x (0 —ap),vy) + (u—up,divvy) = 0, vy € Vy

. (3.7)
(le(U — 6h),wh) = 0, wy € Wy,

where o = A~!. The pair (4, 7) is called the mixed Ritz-Volterra projection of (u,o). It
has been proved in [11] that the solution of (3.7) exists uniquely for a given pair (u, o).
Lemma 3.3. Assume that (ap,d,) is the mized Ritz-Volterra projection of (u,0) €

W x V. Then we have

T T

Ph“ 51 1t /
T UT
ai= [ (o

Hh 0, 62 ¢2

(0 —Ifo) + M % (0 — II§ o), G?) dt,

o\o\

a(o —Tfo) + M * (o — o), Gg) dt.



Proof. It follows from (3.2) and its corresponding mixed finite element error equation
to (2.4) that

(@, — Pfu, 6% ¢y (t)) = (4, — PFu,divG;) = (ay — PFu, divGY).
Note that P}’f is a local L2-projection operator. Thus, we know from (2.5) that
(@ — Pfu, 67 g1 (1)) = (p — u, divG])
which, together with (3.7), leads to

(o —op) + M * (0 — o3), G)
a(oc —Iko) + M * (o — 1Tfo), GP)
+(a(fo —5,) + M « (ITfo — 55,), GP).

(@n — Pyu, 01 (t)) = E

Hence,

T T
| =i = [ (et~ 1) + M« (o~ o), Ghyat
0 0

4 k k h (3.8)
+/ (a(lTo — 63) + M+ (T — ), G)dt
0

= K + K.

However, it follows from Lemma 3.1 and the mixed finite element approximation of
(3.2) as well as Green’s formula that

T
Ky := / (@Gl + M « +G?, Ifo — 7)dt
o
:/0 (VA TTF o — 5y, )dt

T
— - [ Oldiv(itfo - o),
0

which, together with (2.5) and (3.7), yields

T T
Ky = _/ (A div(IIf o — 0))dt — / (A, div(o — ap,))dt = 0.
0 0

Thus, from (3.8) we know that the first identity in Lemma 3.3 is true.
To prove the second identity, we use (3.4) and its corresponding mixed finite element
error equation to (2.4) to see that

(on, — ko, 68)pa(t) = (aGa + M * G, 5y, — 11¥0) — (Vg, 05 — o)
= (aGE + M x xGh, 6}, — 1Tk o) + (N}, div(oy, — I} o).



Thus, by means of Lemma 3.1, (2.5) and (3.7) we have

T T
/0 (G, — 1o, 00) o (t)dt = /0 (aGh + M x xGh, &), — ITfo)dt
T
+/ (\E div(Gy, — IIF0))dt
0

(a(5n — TT}o) + M * (5, — o), GY)dt
T

+

T
(AR div(ay, — 0))dt + / (M2 div(e — IT§o))dt
0

!

(a(&n — ko) + M * (5, — T}0), Gh)dt

S

(a0 —TIfo) + M % (0 — TTF o), GR)dt

c\o\c\c\ﬂ

T

+ [ (u— 1y, divGh)dt

S~

T
= /0 (a(oc —Fo) + M * (0 — TF o), G)dt,

where divG’QL = 0 has been used. This completes the proof. O
We are now ready to show the maximum norm error estimate for the mixed Ritz-
Volterra projection. First, we consider it for @, — P,’fu.

Theorem 3.6. Let (uy,dp,) be the Ritz-Volterra projection of (u,o). Then, there exists
a constant C' > 0, independent of h and t, such that

( 1 1,
cntog 1 (o ~ Mol + tog )11 = PV -l ).

_ 1\ /2
17— P ulloo < S C<|||0—H20|||0+h<logﬁ> |||(1—P,9)v-a|||0>,

1
| cnog 1 (Illo = ol lloe + Bl = PEV - olllc ) 21,

t
where |||ulllrp = [[u(®)|rp +/ l|u(s)||rpds, —00 < r < oo, 1 <p<oo,t>0. As

usual, |||ulllyp is simply denoted by |||ul||, when p=2.

Proof. For any point 2y € Q, let 67 be the regularized Dirac J-function associated
with this point zg, and then we find from Lemma 3.3 that

T T
/ (@ — Plu, M) (t)dt = / (a(a ko) + M # (0 — ko), Gh — G1> dt
0 0
T

+/ (a(a —Fo) + M * (0 — ITF o), Gl) dt
0
= K11 +K22.



It is easy to see from lemma 3.1, (2.5) and (3.2) that

T
Ky = /0 (aGl + M xxGq, 0 — Hﬁa) dt
_ /OT (VA o —To) at
=— /T ()\1, div(o — H’fp)) dt
0
__ /T ()\1 — P, div(o — H;ja)) dt
0
__ /T ()\1 - P,’f)q,diVJ) dt
0

T
= —/ (AL — PEXy, (I — PF)divo)dt.
0

(3.9)

Thus, we have for £ = 0 that

T
[ - P,?u,a?)qsl(t)dt‘
0 T .
¢ [ (o = IolleliGE = Gallgsioy + 11 = Aol = Ef)divly)

0
< or
T
0/0 (Il = o llloll G} = Gillo + 1 = P9l ol (T = PR)divero ) dt.
Noticing that for £ = 0 by Theorem 3.1,
1\ /2
I = PPl < CaliTxllo < O (log 1) (14 ()

it follows from the above inequality and Theorem 3.2 that for £ =0

T
\ / (uh—P;?u,é?)qsI(t)dt\

p

1 [T 1\ /2 ,
Chlog E/o (IIIU — Mol + (log E) |(I = PY)divello | (14 ¢1(t))dt,

VAN

or
T 1 1/2
¢ / <|||o —0olllo +h (1og E) (7 - Pf?)divauo) (1+ ¢ (t))dt.
0
\

We now see from Lemma 3.2 and the arbitrariness of ¢, (¢) that

( ~1/2
1 1 .
Chlog | (mo— - Wollle + (t0g7) 1l Pi?)d1V0|||0>

(ap, — P;?u,5{‘)‘ < or

1\ 1/2 -
c (ma ~Wollo+ (1063 ) 117 P,9>dwa|||o> ,
\




from which and (3.3) we derive that for k£ =0

1 . 1\ /2 o
Chlog + | lllo = 1T;ol[loc + { log & 1L = Py)divolllo |,
17n — Prullos <

1\ /2 -
¢ (ma - Mol + (1og ) 1T - P£>d1va|||o) .

Therefore, Theorem 3.6 is true for £ = 0.
For k > 1, we have

T
[ = phustyn s

’ r k h k k

< 0/0 (Il = Meolllao |G} = Gillrqay + 11T = PE)A sy (T = Pf)divol o ) dt.
It follows from Theorem 3.1 that

1
(I = PE)Ai || i) < CR2(|IV* Ml L1y < Ch®log 5 (L+61(t).

Hence, we find from Theorem 3.2 that

T
| - P/:u,a?)qs(t)dt\

0

I :
< Chog . [ (llo = Wil + A1 = Pdivelo) (1+ b1 ()

which, together with Lemma 3.2 and (3.3), yields that for £ > 1
_ 1 :
i = Pfullso < Chlog 1 (Illo = Whollloc + AlI(Z = Pf)divol || ) -

Therefore, the proof of Theorem 3.6 is complete. O

Theorem 3.7. Under the conditions as for Theorem 3.6, there exists a constant C' > 0,
independent of h and t, such that

1 1/2 . 15k0/2 .
lo = anll <€ (tog 1) (llo = Mo+ (1063 ) 11T = Pl ).

where 6y; is the usual Kronecker symbol.

Proof. It suffices to bound & — Hfba in L*°-norm. By Lemma 3.3 we have that
T T
/ (G — IEo, 6B po(t)dt = / (a(a ko) + M x (0 — ko), Gh — GQ) dt
0 0

+/ (a(a ko) + M # (0 — ko), GQ) dt
0

= M, + Ms.
Similar to (3.9), it follows from Lemma 3.1, (2.5) and (3.4) that

T
My = / (aGo + M x xGo, 0 — H’,ia)dt
0
T
= / (Vg + 08 o(t), 0 — IIFo)dt
0 T T
= —/ (A2, div(eo — TT¥ o)) dt +/ (68, 0 — TTF o) o (t)dt
0 0

T T
= / (PEXg — Xo, (I — PF)divo)dt + / (68, 0 — IIF o) oy (t)dlt.
0 0



And then, we find that

T T
[ o=yt <c [ llo - ol (164 - Gallos + 11l oyt a
T

T / A2 = PEall oy (I — BE)divol|sodt,

which in turn implies by (3.5), Theorem 3.3,

1\ 1/2
IGS — Gallpio) < C (108; E) (14 ¢2(1))

1
Chlogﬁ(lengg(t)), k=0,
A2 = Py dallLi(q) < 1\ /2
onfiogy) " (+oalo) k21

that

T 1\Y2 (T
[ oo <o (o) [ lle - iolle + ea(e)a
0

1+340
2

T
+Ch (log %) /0 (I — PF)divo||eo (1 + po(t))dt.

Thus, it follows from Lemma 3.2 that

k_ sh 1\"? k 1) /2 k
on-tio.ap| < (togg ) il ~Wiolll + 5 (tog ) 11— P)aivorll
and by virtue of the analogue of (3.3) for 6% that

i 1\ 1/2 1) Oko/2 )
o - ol < € (101 {|||a—nﬁa|||oo+h(logﬁ) (T = PE)divolluo

which, together with the standard triangle inequality, implies Theorem 3.7. O
Remark 3.2 By (3.6) we have
%2 = Pidellrie) < Ch(1+ (1), k=1, (3.10)
for sufficiently regular 0€2. Thus, Theorem 3.7 can be improved to become
o = aulleo < € {1og b2 lllo = Weo oo + B — Bf)divollloc}.  (311)

for k > 1 if 092 is sufficiently smooth.
Corollary 3.1. Under the assumptions of Theorem 3.6, we have

_ k Ch?1og h| ([lo]ll1,00 + [log bl 2 [llol|l2), k=0,
- Plulle <{
Ch [ log hl|||o/][k-+1,00, k> 1.
Proof. By (2.6) we have for the interpolation operators Hﬁ and P,’f that
If = TEllop < CRFH[fllpr1p, 1 <p < oo,
lg = Pygllop < CH M lgllkt1p, 1 <p < oo
Then, we find from Theorem 3.6 that for kK =0
_ 1 _ .
liin = PPulloe < Chlog - (1llo = hollloe + o AI/2|1( = PY)divalllo)
< Ch?|log h| (llloll]1,00 + [log A=/ llor]]]2) -



Also, we can obtain the result for & > 1. O
Similarly, from Theorem 3.7 we can derive

Corollary 3.2. We have under the assumptions of Theorem 3.6 that

lo = Gnlloo < CH ! log BV [0l 1,00, K 2 0.

4. OPTIMAL L°°-ERROR ESTIMATES FOR MIXED FINITE ELEMENT SOLUTIONS

In this section we consider error estimates in maximum norms for the mixed finite
element approximation of (1.1) by means of the L*-error estimates for the mixed Ritz-
Volterra projections and the estimates for the regularized Green’s functions given in the
last section. First, the following error estimate of ||u; — up4|| is demonstrated for the
future needs. To this purpose, we recall from [11] the following two lemmas.

Lemma 4.1. Assume that the matriz A(t) is positive define. Then, the norms ||o||3 =
(0,0) and ||o||%-1 := (A7'0,0) are equivalent.

Lemma 4.2. Let (up,0p,) be the mized Ritz- Volterra projection of (u,0) € W X'V defined
by (3.7). Then, there is a positive constant C' > 0, independent of h > 0 small enough,
such that the error (u — @p,0 — G) can be estimated for any positive integer m by

hll[w®)ll22m: k=0,
1Dy (u — ) lo sc{ "

hT || u(t) E>land2<r<k+1,
IDPe =l < CHllu@®llrioms  1<r<h+1,
where [1u(®)lrpm END g + /END Mirnpds, —00 <7 <00, 1<p<

oo, t > 0.

Theorem 4.1. Assume that (u,0) and (up,op) are the solutions of (2.1) and (2.2),
respectively, and (up(0),0,(0)) are chosen as follows:

(@(0)(on(0) = (0)), va) + (divvp, un(0) —ug) =0,  vi € Vy,
(div(on(0) — 0(0)), wr) =0, wp, € Wh.
Then we have for k =0 that

(4.1)

t 1/2
|lwr — unygllo SCh{IIU|I2+|IUtII2+ [/0 (IIUI|§+|IUtII§+||utt||§)d8] }

and for k > 1 that

|[ue—

t 1/2
oscm“{wmm1+mmuH+[Aummﬂ+wmmﬂ+wmmhﬂ@] }

Proof. Let
u—up = (u —up) + (Up — up) = p+ pp,
o—op=(0—0op)+ (o —op) =60+ 0,

where (up,0p) is the Ritz-Volterra projection of (u,0). Then, by Lemma 4.2 we have

Hmm<{ el k=0,

LR ulllesrnn, B> 1. "

|peello { Chllllll22.2, k=0, :
CH llulllis1200 k> 1.

Thus, only ||pp||o needs to be estimated in order to get the estimate for ||u; — upo-



From (3.7) and (4.1) we derive that

(a(0)04,(0), vi) + (divvy, pr(0)) =0, vy € Vp,

(divB, (0), wp) =0, wp, € Wh,

which, together with the uniqueness of the solution to (3.7), implies
Or(0) = pn(0) =0. (4.3)

It follows from (3.7) and the mixed finite element error equation (2.4) that (pp,6)
satisfies
(abp + M % 0, vp) + (divvy, pp) =0,  vi € Vi,

. 4.4
(Ph,ts wh) — (divBy, wp) = —(pt, wh), wp, € Wh. (4.4)
Therefore, setting wy, = p, and v, = 0}, in (4.4) we obtain from their sum that
1d
—\lonll§ + 110n]%-1 = —(M % 05,64) — (pr, pn)
2dt .
< C/ [10n.(s)lods]0n]lo + [lpellollonllo,
0
and by means of Lemma 4.1 that
5l 10011 < € (lonl+ [ 100IBds) + 3 (115 + 1)
Noticing (4.3) we have by integrating from 0 to ¢ that
2 ! 2 ! 2 ’ 2 ! 2
lonlis+ [ VontBesds < [l o+ [ onoPsar] s+ [ o
which, together with Gronwall’s lemma, implies
! 2 2 ! 2
18I + ol < € [ ol
and then .
loull < © [ ol (4.5

In order to get the estimate for 6,(t), we first differentiate (4.4) to obtain
(o0 + aby ; + M(t,t)0), + My % 05, vy) + (divvy, Ph,t) =0, vi€Vy,

and then we have by setting v, = 6, in the above equation and wy, = pp, ¢ in (4.4) that
pnell§ + (@On e, 01) + (b, 0) = —(MO), + My % 01,,01) — (pi, pry)- (4.6)

Since
a(f7) = (abf), — a,bf,
then

1 d
(abp 1, 0n) :/aohtgh / dt(oh)
Q

1 d 1
—5 | Gtath -5 [ t?
dt 2 /o
B (P
2dthA1 5 (210, Un)-
Hence, (4.6) can be rewritten as

1
= (b, 0n) = — (MO, + My + 0y, 01) — (pt, phg)-

1d
2 2
ﬂ +—— 9 — +



Thus, from the e-inequality we derive that
o d 2 2 ! 2 2
ol + 10n5-0 < 0 {10nl + [ inlids + 11l |
and then via integrating from 0 to ¢, Lemma 4.1, (4.3) and Gronwall’s lemma that

t
H%%SCAHm%w- (4.7)

Differentiate (4.4) to obtain that
(ubh + ol + M(t,1)0), + My % 0y, vy) + (divvy, ppg) =0, v € Vi,

. 4.8
(Phit>wn) — (divly p, wy) = — (e, W), wy, € Wi, (4.8)
And hence, setting vy, = 6, and wy, = pp ¢ in (4.8) we have from their sum that
1d 2 ! ’ 2 2
Q%Hf’h,tHo + (abhi, Ont) < C | |0nllo + ; Orllods )+ lpullo + [lon.ello-
Integrating the above inequality from 0 to ¢ leads to
2 2 ! 2 ! 2 ! 2
lonells < lons I +C [ lonliEds + [ lpulids+ [ llonslas.
and Gronwall’s lemma and (4.7) imply
t t
lonil < € {1lone @I+ [ ot + [ llfias | (19)
Let t = 0 and wy, = pp¢(0) in (4.4) to obtain by (4.3) that
l1on,: (015 = = (p£(0), prt (0)) < 11p:(0)llol|on,:(0)]]o
or
[on.£(0)llo < [lp£(0)]lo
which, together with (4.9) and (4.2), leads to
t
ol < € 1o + [ ol + ol s
t
Ch? [llU(O)llg + [[ue (0)]13 +/0 (lul13 + w15 + ||Utt||%)d5:| , k=0,
<

t

OMHﬂm@mH+wmmmH+Aﬂwﬁﬂ+mm@ﬁwwmﬂm4,kzL

Therefore, we have for £ = 0 that

t 1/2
|lur — unllo SC’L{IIUII2+|IW|I2+ [/0 (||U||%+IIUt||§+|IUtt||§)d8] }

and for £ > 1 that

¢ 1/2
||us—un,llo < CHEH {||U||k+1 + [Juelle+1 + [/0 (lullF 41 + N7 + IIUttlliﬂ)dS] } :

O



Theorem 4.2. We have under the assumptions of Theorem 4.1 that for k =0

I = uplloo < Ch [[Ju

oo + [1og b2 ully + [l )]
t 1/2
- Ch|log h[1/2 [ B + el + ||utt||%>ds]

and
lo—onllso < Chllog A2 ([1og h2[[[ul a0 + Ilullz + lluclle)
t 1/2
O] log h|!/? [ /0 (ul 3+ 3 + ||utt||%)ds] ;
fork>1
lu—uplloo < CHE*1|og b2 (Tog A2 |ulllks10 + ulliss + lluelless)
t 1/2
OB log b2 [ [ bl + i + ||utt||z+1>ds]
and

lo = onlle < R log hIY2 (lullkes e + allis + el
. 1/2
+ChF+1 log h|'/? [/0 (ullfr + luellfn + ||“tt||%+1)ds]

Proof. Also, we decompose the errors as

Ph

u—up = (u—up) + (Gp —up) = p
—0+0,

o—op=(0c—0op)+ (o —op) : i
Then, from Theorems 3.6 and 3.7 we know
ol < |lu = Pyulloo + || Piu — @l
<{ Ch (lull o + Nlog Y fullls), =0,

CRE 1og bl [ful [l -+1,00
10lloc < Ch**{log b0 [0 |41 00.

Therefore, only ||pn||so and ||04 || are left to be estimated.

(4.10)

Set v, = G in (4.4) to obtain from the mixed finite element approximation of (3.2)

that
(0 ¢1(t), pn) = (divGH, pp) = —(ab), + M % 0, GY),

so that it follows from the integration, Lemma 3.1 and the mixed finite element solution

of (3.2) that

T T
/ (0, o) (t)dt = — / (aln + M 0y, G1)dt
0 0
T
= —/ (G + M % «G?,0))dt
0

T
= / (A2, divey,)dt
0

T T
= / ()\}11 — Ay, divéy)dt + / (A1, divly)dt.
0 0

(4.11)



Since Ai|gq = 0, it follows from Theorems 3.1 and 3.2 that
1Aillo < ClIV Ao < Cllog b2 (1 + ¢1(2)),
1A = Allo < Chllog b2 (1 + ¢1(2)).
Hence, from (4.11) we find that

T T
/ (O )1 (D)t < Chlog h|!/2 / divOo(L + o (£))dt
0 Jo
| log h|!/2 / [diveallo (1 + 1 (£))dt,
0

and by Lemma 3.2 and (3.3) that
[1o]loo < Cllog h|" (4 1)]l|div6s o (4.12)
We know from (3.7) and the mixed finite element error equation (2.4) that

(diV(U — 5h),wh) =0, wp, € Wy,
(div(e — op),wn) = (wg — upg, wp),  wp € W,

This implies
(divly, wp) = (div(Gy — on), ws) = (div(o — op), wp) = (v — e, wp), wy € W,
from which we have by means of the arbitrariness of wy, € W}, that
||divén|lo < |Jur — untllo- (4.13)
Combining (4.12) with (4.13) and Theorem 4.1 leads to
( Chllog A|"? [[|uo|l2 + |[ue(O)|2 + [[ul |2 + ||ul2]

t 1/2
+Ch|logh|'/? [/ (el 3+ el 3 + ||utt||§)d8] ; k=0,

< 0
lenlloe < pte1) tog A2 ol + e OVl + allirs + llelless]

t 1/2
+CORF | log h|'/? [/0 (leall sy + lNoael[Z 41 + IIUttIIiH)dS] , k>1
(4.14)

\

Thus we obtain according to (4.10) and (4.14) that for £ =0

llu = unlloo < Ch[llullt,00 + [Tog Al (lfull2 + [ur]]2)]
¢ 1/2
+Ch|logh|'/? [/0 (el 13 4 [Juae I3 + IIUttllg)dS] :

and for k > 1,
lu = uplloc < CHF*1og b2 ([og b2 [[[ul llk-+1,00 + [lutllk1 + [l le+1)

. 1/2
+O tog 7 | [l s+l + s

Next we shall give the proof of the estimate for |0 — op||o. For this purpose, set
v, = GI in (4.4) to get according to (3.4) and its corresponding mixed finite element
error equation that

(b + M % 0,,GE) = —(divGE, py)
= —(div(G} — Ga), pn) — (divGa, ps)
=0.



Thus, we see from Lemma 3.1, the mixed finite element approximation of (3.4) and
Green’s formula that

T T
0 :/ (aby, + M « 0y, GE)dt :/ (aGh + M « «GE,0),)dt
0 0

T T
= [ @hoade— [ 0 divon
0 0

which, together with Theorem 3.3, implies that
T

/ (5§a9h)¢2(t)dt‘ =
0

T
< / Cl\divBllo(1 + do(t))dt
0

T T
/ (A3 — Xg, divey,)dt +/ (Az,diVOh)dt‘
0 0

T
+/ C(1 + |log h|M?)[|divey||o(1 + po(t))dt.
0
Thus, from Lemma 3.2 and (4.13) we derive that
(8%, 60| < Cl1og b2\ div8allly < Cl1og bl [llu — unllo

which, together with Theorem 4.1 and an analogue of (3.3) for 6%, demonstrates that

( Chllog hl'/2(|[ull2 + [[ud]2)

t 1/2
romtoghl? | [ (lulf + s + llalB)as] k=0,

Ohlleo < 0
1Orlloe <Y~ opbrt | tog A2l g + el )

. 1/2
+OE o2 | [l + lull o+ ueli)ds] o k21

\

and according to (4.10) that

[ Chllog h|||ulll2,00 + Ch|log h|"2(||ul]2 + ||ue]]2)
t 1/2
+Ch|log h|'/? [/ (Il + luel]3 + ||Utt||§)d3] : k=0,

0 —0ploo < 4 0
o= nlloo <0 k1) og B2l o200 + lulliss + llellien)

: 1/2
+ORE tog P2 | [l e+l + s, k21,

O

5. SUPERCONVERGENCE ESTIMATES IN L°°-NORM AND A-POSTERIORI ERROR
ESTIMATES

In the past years, the superconvergence of mixed finite element methods has received
considerable attention. See, for example, [8, 12, 17] for elliptic equations, [4, 5, 17] for
parabolic equations and [11] for partial integro-differential equations.

The aim of this section is to give local and global maximum norm superconvergence
error estimates and a-posteriori error estimators for the mixed finite element approxi-
mation of (2.1). First of all, we consider the local superconvergence. To this end, let us
define some seminorms as follows.



Following [12] we assume that Q C R? is a rectangle and e = [a,b] x [c,d] € T}, is an
arbitrary element of the partition Tj,. We denote by (g1,92, - ,gr+1) the Gauss points
in [a,b] and (g1, G2, - ,gk+1) the Gauss points in [c,d], and define

w[lloo = ggflgggﬂlw(gi@j)l,
[Vlso0 = llv1lll5q + [llv2ll5 20
where )
Morllfoe, o= mape mane | max o (. 9]
[[v2lll5%,2 :=max max max [va(gi,y)-

e€T), 1<i<k+1(g;,y)€e
From [8, 17] and [11] we recall the following Lemma 5.1 and Lemma 5.2, respectively.

Lemma 5.1. Let o be a sufficiently smooth vector-valued function, B = (b;;) be a 2 x 2
matriz with b;; € WH(Q) and Q be a rectangular domain which is partitioned into
rectangular elements. Then, we have

(B - (0 —I}o),vi)| < CH* 2olpaplValloy, Vvi € Vi,
1/q

where [ flmq == [ D IDflli 0] +1<a<00, |flmeo = max{esssgpmiﬂ} and
li|=m

|i|l=m
p = p%l is the conjugate of p > 1.
Lemma 5.2. Let (uy,0p,) be the mized Ritz-Volterra projection of (u,o). Then, we have
— k — k k
llan — Pyullw + [lon — Mollv < CR*2(||ullks1 + [llo]][k+2),

1/2
where |lullw := l|ullo and ||o]lv := (lol[f + IV - ol[8)'"*.

Theorem 5.1. Assume that (u,0) and (up,o0p) are the solutions of (2.1) and (2.2),

respectively, and (up(0),01,(0)) are chosen to satisfy (4.1). If the exact solution u and o
satisfies o, oy € (H*T2(2))2, then we have

lun, — PFullo +||(un — PFu)illo + ||on — IEal|o

t 1/2
schk”{||uo||k+z+||a(o>||k+2+ [ / (||o—||%+2+||at||z+2>ds] }

Proof. Let p; := uj — Pf]fu and 0 := oy — Hﬁa. Then, it follows from the mixed
finite element error equation (2.4) and (2.5) that

(aby + M % 0;,vp) + (p),, V- v) = (a0 — Hfba) + M (0 — Hﬁa),vh), vy, € Vy,
(pz,tawh) - (V ' e;kwwh) = 03 wp, € Wh-
(5.1)
Thus, letting wy, = pj and v;, = 6; in (5.1) we obtain from Lemmas 4.1, 5.1 and the
e-type inequality that
d t
o8 + 16315 < € { [ 1031Rds + w2zl |
or

d * * ! *
1B + 16315 < ¢ { [ 10i1Rds + n24+2 o2, |

Hence, integrating from 0 to ¢ and using Gronwall’s lemma yield

t t
oIl + /0 ||e;;||%dssc{||pz(o>||%+h2<k+2> /0 ||o—||z+2ds}- (5.2)



From (4.3) we know
up(0) — up(0) = ,(0) — 04 (0) = 0. (5.3)
Therefore, from Lemma 5.2 we know
[195(0)llo = [1an (0) = Puollo < CH**2(|[uo k42 + lo(0)llk-+2),

and then from (5.2) we further obtain

t 1/2
|mmmscm“2@mdmm+wommwa+(ﬁ|wm%ﬁﬁ }. (5.4

Again, we have according to (5.3) and Lemma 5.2 that
165(0)1lo = 1174 (0) =I5 (0) ] < CR**2(|uo|lk+2 + 11o(0)||k+2)- (5.5)
The second equation in (5.1) implies
by =V -0 (5.6)
which, together with (5.3) and Lemma 5.2, demonstrates

IV - 0;0)]lo = IV - (51 — TT}0)(0)]]o

||P2,t(0)||0 =
< ChEF2(||uo |[ks2 + 1o (0)]]k+2)-

(5.7)

Following the steps for 6 and pp,; in Theorem 4.1 and using the initial approximations
(5.5) and (5.7) we can also obtain

t 1/2
165110 + lloh 4llo < CRFF2 {||U0||k+2 + o (O)llk+2 + [/0 (ol + IIUtIIﬁH)dS] } :

(5.8)
(5.4) and (5.8) complete the proof of Theorem 5.1. O

Theorem 5.2. If there is, besides the conditions of Theorem 5.1, o € (Wk+2’°°(Q))2,
then we have

|log h| /2 [[un, — Pyullos + [lon — TTo]|o o
t

< Ch**+2|log | { [luollk+2 + lo(0) k42 + o |llk+2,00 + [/0 (lolli 42 + ||0t||%+z)d8] } :

Proof. Set v, = G! in (5.1) to obtain that

(a0 + M x 0}, G}f) + (p,, V - Glf) = (a(o — H;CZO') + M x (o — Hfla), Gib),



and by means of the mixed finite element approximation of (3.2), Theorems 3.4, 5.1 and
Lemmas 5.1, 3.1 that

T T
/ (pz,a?wl(t)dt\ <|[ (a0;;+M*0;:,G?>dt\
0 0

T
Ok /0 1ozl log AY2(1 + 1 (1) dt

T
/0 (@G + M + *fo,o;;)dt‘

T
OB+ log h[1/2 /0 ooz (1 + 61 () dt

T

< ORE+2logh'2 [ 1+ gu () ol vz + o O)lesa + ool
0

T t 1/2

Lok ogh!? [ (14 41 (0) [/ (||o||i+2+||at||i+2>ds] dt.

Thus, Lemma 3.2 and (3.3) imply
loilloo < CHE+2og h1Y2[ gl sz + llo(O) Jes2 + llolise]
t 1/2
OB Log h1/2 [ | ol + ||ot||z+2>ds] .

Letting v, = G in (5.1) we have
(ab; + M 05, GEY + (p}, V- G = (a0 — I} o) + M (0 — 1T} o), Gh).

Since V - G# = 0 by the mixed finite element approximation of (3.4), it follows from
Lemmas 3.1, 5.1 and the mixed finite element approximation of (3.4) that

T T
/0 (4Gl + M « xGl, 07)dt < CHF+2 /0 1ol lk-2.00 /1 GE 11y

Therefore, we obtain by means of the mixed finite element approximation of (3.4) and
Theorems 3.5, 3.3, (5.6) and (5.8) that

T T T
/ (63,0;:>dt\¢2(t>dt < / (AL, V- 67)[dt + OB+ / 101116+ 2,00 Tog Al (1 + o))t
0 0 0
r h
s/o X ol

T
< Ch**2]log hl/o (luolle+2 + [lo(O)lk+2 + ol lk+2,00) (1 + ¢2(2))dt

T
ot + CH 2 log | [ [lolraced + da()dt
0

T t 1/2
LOR 2 Log h) /0 [/0 <||o—||z+2+||at||z+2>ds] (1 + dolt))dt,

and Lemma 3.2 yields

10100 < CHF*2[1og b ([luolle+2 + | (0)lk-+2 + [lo|lk+2,00)

t 1/2
LOR 2] log B [ /0 (o2, + ||o—t||z+2>ds]



Remark 5.1 From Lemmas 3.3 and 5.1 we can also obtain the following L*-norm
superconvergence for the mixed Ritz-Volterra projection of (u,o):

|log A2 ||an — Pyulloo + lon — o]l < CRF*2[log hlll]o]]]k+2,00-

Hence, there holds the L*°-superconvergence estimate under the conditions of Theorem
5.2,

|log h|'/?||an, — unlloo + lon = onllse < CHF*2[log hl(l[uolli+2 + [0 (0) k42 + lllol||k-+2,00)

t 1/2
LOR 2] log B [ /0 (025 + llot]212)ds

In order to obtain the local superconvergence for the mixed finite element solution
(up, 0p), we need the following lemmas which come from [12] and [8], respectively.

Lemma 5.3. Assume that u € W*t2°(Q). Then,

Ilu = Pullloo < CH*2[lullk42,0-
Lemma 5.4. Ifo € (W’”‘Q"X’(Q))Q, then we have

llo = 5o llleo < CHF*2[0] [ 42,00-

We are now in the position to get our local superconvergence on the Gauss points for
the approximation of the pressure field and along the Gauss lines for the approximation
of the velocity field, respectively.

Theorem 5.3. If there holds, besides the conditions of Theorem 5.2, u € Wk+%°(Q),
then we have

|log h['/2|||u — ||« + Illo = onl]s00

< ChF 2| log h[lfuollk2 + [1o(0) -2 + I[ulli2,00]

. 1/2
+Ch¥*+2| log h| {|||0|||k+2,oo + [/0 (ol + ||Ut||%+2)d3] } :

Proof. From Theorem 5.2 and Lemma 5.3 we know
e = unllloo < [u = Plullleo0 + [[|PFu = up]|] 4,00
< Chk+2||u||k+2,oo + Chk+2| logh|1/2[||u0||k+2 + [lo(0)||k+2]
- 11/2
+ChE2|log b2 L ||o| kg2 + /0(||U||z+2+||0t||z+2)d3

< Ch**[log h['/? [[log h| ™"/ |ul|k+2,00 + [[uollk+2 + |0 (0)]]1+2]

o 11/2
+Ch¥E+2|log h|'/2 {||U||k+2 + /0 (ol + llowli12)ds } .

Similarly, we can also obtain by means of Theorem 5.2 and Lemma 5.4 that

llo = Wollloo < CREF2log bl [[luolle+2 + [lo(0)][k+2 + [l ]]k+2,00]

t 1/2
L OR log b [ [ ol + ||at||i+2>ds]



Next we shall consider the global superconvergence for the pressure and the velocity
fields by virtue of interpolation post-processing methods. Analogous to [11] we need to
construct two post-processing interpolation operators H’;f[l and P2kh+ L to satisfy

Hg:lnlfi — Hk+1

2h
I vallop < ClIvallop, Vv, € V),
I e — ollop, < CRFF2||0||ksap, Vo € (WEFZP(Q))2, (5.9)
Py Py = Py,
1255 wnllop < Cllwnllo,, Yy € Wi,
1Py, e = ullop < CHF 2 lulliyoyp, Vo€ WH2P(Q),
where 1 <p < oo and || ||o,00 = || - ||co- Here we take for example k£ = 3 to demonstrate

the construction of the projection interpolation operators Hg;l and PQI“J ! satisfying (5.9).

To this purpose, we assume that the rectangular partition 7}, has been obtained from

Top, = {7} with mesh size 2h by subdividing each element of Ty, into four small congruent
4

rectangles. Let 7 := |J e; with e; € T},. Thus, we can define two projection operators
i=1

H%h and P24h associated with Ty, of degree at most 4 in z and y on 7, respectively,

according to the following conditions:

113,00 € (Qua(1))?, Pulr € Qua(r),

o — 14, 0) - ngds = 0, Vg € Po(ly), i =1,2,---,12,
2h

l;

/(o—ngha)zo, i=1,2,3,4,
e
/T (0 —TTpo) - =0, V6 € (Qu1(1)\Qoo(r))?, and
/ (u = Pyu)ip =0, Vi € Qa(ei), i=1,2,3,4,
/Z(u — P;‘hu)lp =0, Vip € Q3,0(7)\Q2,0(7), respectively,
where [; (i = 1,2,---,12) is one of the twelve sides of the four small elements e; (i =

1,2,3,4).

Similarly, we can also define Hg,‘fl and PQkh'Ir ! for the case of k # 3 such that (5.9) is
satisfied.

By the two projection interpolation operators Hg,‘fl and PZI’“,;" ! we can immediately
gain the following global superconvergence theorem.

Theorem 5.4. Assume that (u,0) and (up,op) are the solutions of (2.1) and (2.2),
respectively. Then, we have under the conditions of Theorem 5.3 that

[log A1 Py, un = ulloo + I3 on = oo

< Ch¥*2(og h[|[uol k42 + 1o/ (0) |2 + [1og h =2 ||ul|k2,00]

; 1/2
+C’hk+2|10gh|{|||U|||Ic+2,oo+ [ ol s + ol o) }



Proof. We see from one of the properties of the operator P2kh+ ! described in (5.9) that

PR uy —w = PR (uy, — Plu) + (Phu — ).

Therefore, it follows from Theorem 5.2 and (5.9) that

1Py — ulloo < Cllup — Pfullo + CHF42[Jul 12,00
< Chk+2|log h|!/2 (| log h|*1/2||u||k+2700 + ||uol|kr2 + ||0(01)/|2|k+2)

t
+Ch*+2|log h|'/? {||U||k+2 + [/0 (lolffse + ||Ut||%+2)d3]

Analogously, we can obtain
54 0 = olle < CHF2[log hl[l[uol k42 + [0 (0)lk+2 + |llof]k+2,00]

t 1/2
L ORk+2]log | [ | ol + ||o—t||z+2>ds]

O

Remark 5.2 From the superconvergence estimates of ||y, — Pful|oo and ||5, —IF o]
indicated in Remark 5.1 we can also obtain the following global superconvergence under
the conditions of Theorem 5.3 by the interpolation post-processing method:

| log h['/2|| Py g, — ulloo + [[T5 '35 = ol < CR***|log h|(|[ullk42,00 + [l ]llk+2,00)-
As a by-product, Theorem 5.4 can be employed to construct a-posteriori error estima-
tors to assess the accuracy of the mixed finite element solution in applications. In fact,
we have

Theorem 5.5. We have under the conditions of Theorem 5.3 that

lu = wnlloo = 1P un = wnlloo + O (BF+2log AJV2) | (5.10)
o = ol = T+ o) — opfoo + O (hk+2| log h|) . (5.11)
In addition, if there exist positive constants Ci, Cy and small €1, €3 € (0,1) such that
|l — upl|oo > CLRFT27E1 (5.12)
llo = onlloe > CohF+272, (5.13)
then there hold
lu = unlloo (5.14)

h=0 || Py, — up|oo

lo = onlle

h=0 ||, o1 = oo

=1, (5.15)

Proof. Following the procedure for Theorem 5.3 in [11] we can immediately obtain
the desired results. O

We see from (5.10) that the computable error quantity ||P2”“hJr Yup, — up||so is the prin-
cipal part of the mixed finite element error ||u — up||oo. Moreover, by (5.14) it can be
used as a reliable a-posteriori error indicator to assess the accuracy of the mixed finite
element solution under the condition (5.12). Meanwhile, (5.12) seems to be a reasonable
assumption since O(h¥*!) is the optimal convergence rate of the mixed finite element
solution in L®-norm subject to the conditions of Theorem 5.3. The same comments are
also valid for (5.11), (5.13) and (5.15).



6. ESTIMATES FOR THE REGULARIZED GREEN’S FUNCTIONS

In the previous sections, we have seen that the regularized Green’s functions play
an important role in the analysis of convergence and superconvergence estimates in
maximum norms for the mixed finite element method of (1.1). We present the proofs of
Theorems 3.2 and 3.3 in this section. The proofs are based on a series of lemmas. First,
we prove the following result.

Lemma 6.1. We have under the assumptions of Theorem 3.2 that
IGT = Gillo < C(L+ ¢ (2)).

Proof. From (3.2) we know

T
|@ﬂmchWMm+/|mmmﬁ,
t

and by means of Gronwall’s lemma and Theorem 3.1,
1G1llo < Cl[VAllo < Cllog b2 (1+ ¢ (1)),

which yields via following the similar arguments to those above and using the estimate
for |[V2\1||o in Theorem 3.1 that

[divGilo < Ch (1 + ¢1(t)) + C|log h|"* (1 + 1 (1) < Ch (1 + ¢u (1))
Decompose the error G; — G as follows:
G, -Gl = (G, - IIfG)) + (I} G, — G} := 0™ + 6;*.

Then, 6;* satisfies the following equation according to (2.5) and the corresponding mixed
finite element error equation of (3.2) to (2.4) that

(a5 + M % x0;*,vp,) = — (a0 + M * «0**,v,) + (V(A — AP),vp)
= — (0™ + M * 0" vy) — (A — M,V - vy)
= —(af™ + M x 0™, vp) — (P/f)\l — )\?,V “vp), Vp € V.

Since
(PEX =M V-0 =0

by (2.5) and the mixed finite element error equation of (3.2), taking v, = 6;* in the
above equation leads to

(a0 + M % %0;",0;%) = —(af™ 4+ M % %0, 07™).

Thus, we have by Lemma 4.1 that

T
H%ﬂ%s<7([ H%ﬂwk>

T T
WfMSO([ mew+W“m+A'W“mm)

which, together with Gronwall’s lemma, implies

2 2

T
+6|I9Z*|I3+C<|I9**|Io+/t ||9**||od8> ,

or

T
Wmmsc(Wﬂm+[|wwmﬁ.



Hence, we obtain by virtue of the above estimate for divG; in L?-norm and (3.5) that

T
lG, -G, <c (||G1 -Gl + [ G- H;ielnods)
t
T
<ch <||divG1||0 +/ ||divG1||0ds>
t

< C(1+ ¢1(2)).

Thus, the proof of Lemma 6.1 is complete. .

Lemma 6.2. Under the assumptions of Theorem 3.2,

AP — PEXllo < Ch(1 + ¢ (1)),
AP = Xillo < Chllogh|%0/2(1 + ¢ (£)).

Proof. Let (w,\) € V x L%(Q2) be defined such that

aw+ Mxw—VA =0, in Q x (0,7,
divw =\ = PFA)(), inQx(0,T), (6.1)
A =0, on 90 x (0,7T),

T
where ¢(t) > 0 and / ¢(t)dt < 1. Clearly, (w, ) is well defined and satisfies
0

t
IV2Allo < © (Wf — PElod() + /0 X = Pf’f>\1||o¢(3)d8>

by the regularity assumption on Q. Now, it follows from (2.5), the corresponding mixed
finite element error equation of (3.2) to (2.4) and Lemma 3.1 that

T T
|1 = pix e = [ - P divw)ae

0 0

O (6.2)

T
+/ (aw + M x w, G, — GM)dt := N; + N.
0



Obviously, we have via using (3.2) and its mixed finite element approximation as well as
(2.5) that

T T
N, ::/ (VA G, — Gldt = / (A, div(G? — Gy))dt
T 0
(A, divGP)dt — / (X, M)y (8)dt
0
T
(PFX, divGh)dt — / (X, 60y (t)dt
0
T
(PEN P 1 2)dt = [ (81 ()
0
T
(PEA S ()t = [ oo

(Ph A=\, 001 (t)dt

And then, Ny can be estimated by Lemma 3.1 and the estimate for ||[V2\||y as for k& > 1

T

T

I
o\c\o\ﬂc\\

T
AN / CR(IV? Mllo |62 lo 1 ()t
0

T
soh/ (W PEM o (8) /W PElod(s)d )@(t)dt

(6.3)
< Ch/ ( / e ) N — P [l (t)dt
< Oh/ (f(8) + DIAL = PEX [lo(t)dt
Similarly, we have for Ny by virtue of Lemma 6.1 and (6.1) that
T T
Ml < [ o (G- Gl + [ 1161 - Glilds ) I - Thselod
0 t
T
< Ch/ (14 ¢1(2))||divw]|odt (6.4)
0

T
<Ch [ (14 (eI~ PiNllog()de
0
Combining (6.2) with (6.3) and (6.4) leads to

T T
/0 N = PE[B(8)dt < Ch /0 (L+ g1 ()N = PEAlog(t)dt
and by means of Lemma 3.2,
I = PEMIE < Ch(1+ ¢1 ()| — P o,

that is,
IAY = PEMlo < Ch(L+ ¢1(t)), for k > 1.

It remains to treat Ny for k = 0. It follows from
T
N = [C(EA A b0d:
Or T
— [ @ -piaaar+ [ (B ih
0 0

and -
| @B =0 (see 25)
0



that
T
Ny = / (PIX = A, M)y (t)dt, for k =0,
0

which implies by the same arguments as those for (6.3) that

T
INy| < Ch / (1+ da ()N — PO o(t)dt

This verifies
AT = Pidallo < Ch(1 + ¢1(t)).

Finally, the second inequality in Lemma, 6.2 is an easy consequence of the first inequal-
ity in the same lemma and Theorem 3.1 together with the standard triangle inequality.
O

Remark 6.1 Using the similar duality argument to that above we can easily obtain
[25]

[IX5 = Pidallo + 1143 = Azllo < C(1+ 2(1)).
Here we omit the details.

Lemma 6.3. We have for Green’s function G1 and its mized finite element approzima-
tion G that

IG? = GillLi(@) < Chllogh|(1 + ¢u(1)).
Proof. By Schwartz inequality and (3.1) we have

1/2
IG} = Gill @) /6 (BIG} — G1])dQ2 < </5 2d9> / IGI = Gillz (45
< Cllog h|*?||Gh — G| g=.
Let
T, = %Gy — G).

Then, from Lemma 4.1 and the mixed finite element error equation of (3.2) we derive
that
IG} = Gil}: < Co(a(G1 — GT), ®)
Co(a(Gy — G, ¥y — IIFW) + Co(a(Gy — G, 1IF )
(e i

Co(a(Gy — GP), Ty — TPy

+Co(a(G1 — GI) + M + (G — Gh), TIF @) 6.6)
—Co(M * #(Gy — G!), TTF @, ) '
= C()(Ot(Gl — G{L), ‘I’l — Hz‘l’l) — 00()\1 — )\}f, diVHfL‘Iﬁ)
—Co(M * +(Gy — G, 11} ¥,)
= M + My + Ms.
Now we consider M;’s individually. First, it follows from Lemma 6.5 below that
M| < Colla(Gy — GI)|ge - |1 — TSy | » o

< el|G1 — GH|[3. + Ch?|log h|(1 + 41(t))*.
We know from (2.5) that

(disza, wp) = (dive,wy), YV w, € Wy,



which, together with Lemma 6.2, implies
|Ma| = Co|(A1 — A}, divIIf ¥y)|
= Co|(PfA — A’f,dwn’c\ym
= Co|(PFAL — NI, diviy)|
< Ch(1 4 ¢1(t))[|div®y|lo.

(6.8)

Since there holds by (3.2)
divly = V(%) - (G1 — G) + F2(3) — Pyo0)n(t),

we have

|div®y[lo < C||Gy — GY|52 + Cher (¢).
Thus, we obtain from (6.8)

| M| < Ch?(1+ ¢1(1)* + |Gy — GT|[35. (6.9)

It follows from Schwartz inequality, Lemma 6.5 and the equality
%152 = ||G1 — GY |2
that
|Ms| = Co |(M *x(Gy — G}),TIf® — ¥y) + (M +x(Gy — GI), &)

T
<o ([ 161 - Gt ) i - i,
t
T
+0 ([ 161 - Gl ) [l
t

T
<C (/ IG1 — Glf||52ds> h|log h|Y2(1 + $1(t)) (6.10)
t

T
+0 ([ 161 - Glllss) 161 - 6l
! T
<ellGr - G+ ([ 161 - Glilpas)

+CR2|Tog hl(1 + ¢1 (£))2.

Combining (6.6) with (6.7), (6.9) and (6.10) gives for € > 0 small enough and fixed

that
2

T
61— GHE: < orltog i1+ 610 +C [ 161 - Ghleas)
t

which in turn implies that
T
G — Gl < Chllog h|'2(1+ 41(6)) + € [ 11G: =~ Glleds,
t

so that Gronwall’s lemma yields

1G1 — GTl|g2 < Chllog h'/*(1 + ¢1 (1)) (6.11)
Hence, Lemma 6.3 follows from (6.5) and (6.11). a.
Lemma 6.4. Under the assumptions of Theorem 3.3,

1Ga ~ Ghlixe) < Cllog YA (1L+ (1),

|G2 — Gllo S Ch L1+ ¢2(t)),
[[V22]lo < Ch7H(1 + ¢2(2)).



Proof. We have by virtue of Schwartz inequality and (3.1) that
1G2 — Ghll11() < Cllogh|'?||Gs — G| |- (6.12)
Let
Wy = 2(Gy — Gh).
Then, it follows from a similar argument to that for Lemma 6.3 that
1G2 — G3|[5. < Co(a(Gz — GE), Ts)
== Cg(a(GQ - szl), \112 - Hz\lfg) - C[]()\Q - )\}21, leHIfi\Ifg)

6.13
—Co(M * +(Gz — GE), TIFW,) (6.13)
= M{ + M)+ M.
Thus, we know from Lemma 6.5 below that
|Mi| < el|Ga — GB|[3: + C(1 + ¢2(t))”. (6.14)

Moreover, we see from Remark 6.1 and the same arguments as those for (6.8) that
| Mj| < C(1+ ¢a(t))]|div¥so. (6.15)
We derive from (3.4) that
divly = V(5%) - (G2 = G3),
which yields by (6.15) that

M3 < C(1+ ¢2(t))]|Ga — GB[ 42

< |Gy — Gh[2, + C(1 + ¢a(1))2. (6.16)

Also, we can obtain according to the similar steps for (6.10) that
2

T
| M3 SEIIGz—G3||§2+C</ IIGz—GQLIIﬁ?dS) +CO(1+ (1)), (6.17)
t

Combining (6.14), (6.16) and (6.17) with (6.13) leads to

T
G2 - Gl < O [ 1162 -~ Ghllgads + 1+ 6200 }.
t
and Gronwall’s inequality implies
1G2 = G3|ls> < C(1 + ¢a(t)).-
Hence, from (6.12) we know
1G2 — Glll11(0) < Cllog h|'/*(1 + ¢a(2).
By the H2-regularity assumption on the domain, there holds
1V 2]lo < Ch™H(1 + ¢a(t)).
Thus, from [25] we know

|G — GA|lo < CR™Y(1 + a(2)).

Lemma 6.5. Let V; (i = 1,2) be the functions defined as before. Then, we have

| — 0|5 < Chllog h[Y2(1 + ¢1(t)),
[0y — s |2 < C(1+ da(t)).



Proof. Recall
Ui =p%G; - Gi), i=12
and rewrite them as
Ui =G~ 11}Gi) + f° (I} Gi — GP)
= Uy 4 Uy
Thus,
W = T W[ g—> < [[Wqy — TG [[g-2 + | [ Wig — T Wia|| 2. (6.18)
Since Hﬁ is a local projection operator, it follows from [25] that
1Wir = Wi ||g-> < Ol ¥allg-> < C||Gi = TGl |52 < Ch||V?Ai |2
Then, Theorem 3.1 and (6.28) below lead to
Chllog h|'/2(1 + ¢1(t)),  fori=1,
C(1+ #2(t)), for i = 2.

Following [25] we obtain from Lemma 6.1 and the estimate for |[VAz||p in Lemma 6.4
that

W31 — T2 < { (6.19)

Ch(l+ ¢1(t)), fori=1,

o TTREW.
e - vl < { GRS By (620
Now, (6.19) and (6.20) lead (6.18) to
k Chllog h|'Y2(1 + ¢1(t)),  fori=1,
— g2 <
||\IIZ Hh\I]ZH,B 2 > { 0(1 + ¢2(t)), for 'l — 2’
which verifies the conclusions of Lemma 6.5. O

Lemma 6.6. Under the assumptions of Theorem 3.3 there hold
[1A2llo < Cllog h|'(1 + ¢a(1)),
[IVA2llpi) < Clloghl(1 + ¢2(t)),
IV2Xellziy < Ch Y log h|Y2(1 + ¢a(t)).
Proof. For the sake of simplicity of our analysis, here we assume that the matrices

A and B in (1.1) are independent of the spatial variable z.
From Schwarz’s inequality and (3.1) we know

V20 ls(a) < Ol Toghl"2[[T el 2. (621)

Furthermore, it follows from (3.4) and Green’s formula that

03 = (VA £2V) = —(As, B243) + 500, AB) o)
< [(diva ga (1), 2)| + O hal (6:22)
< C(#5(t) + [|X2[f)-
Now, let us consider the following auxiliary Dirichlet problem to bound ||Az|o :
—Ar =Xy in ,
r=20 on 0f2.
Then, we know from the regularity assumption on the domain  that
1V2rlo < Cl1A2]lo- (6.23)
In addition, it follows from (3.4) and Green’s formula that
Mellf = (VA2, Vr) = —(V2ha,1)

= (]%iV%ﬂ")d)z(t) = —(3,Vr)¢a(t) (6.24)



As done in [25], for N, we further have according to (3.5), (6.23) and the standard
inverse estimate,

1(Vr)!l|oo < Cllog h|'2[|(Vr) ||1 < C|log h|'/?(|V?r]fo,

that
| V| :‘ 52,V7“ pa(t )‘

< | (84, — (V)Y | + | (62, (V)T | da(t)
(||V27“||o+||5§||L1(Q)|I(V7“)’|Ioo) P2(t)

< C (1+|logh|'?) [[Az|loga (1),
where f! stands for the standard locally regularized piecewise linear interpolation of f
[see, for example, 25].
Combining (6.25) with (6.24) yields

ello < € (1+ og h|'/2) ga(t). (6.26)
Now, (6.26) and (6.22) lead (6.21) to
IV A2llz1() < Cllog Al(1 + ¢a(t))-
Again, we use Schwarz’s inequality and (3.1) to obtain
1V 22ll () < Cllog h|'2(|V2 Xl (6.27)
Following [25] we further have
IV20llge < Ch (L + a(t)). (6.28)

(6.25)

Thus,
V2ol () < OB [log b/ (1 + ¢a(t)).
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