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Abstract. We consider the the interpolation problem between H2(Ω) ∩ H1
D(Ω) and

H1
D(Ω), where Ω is a polygonal domain in �2 and H1

D(Ω) is the subspace of functions
in H1(Ω) which vanish on the Dirichlet part (∂Ω)D of the boundary of Ω. The main
result is that the interpolation spaces [H2(Ω)∩H1

D(Ω), H1
D(Ω)]s and H1+s(Ω)∩H1

D(Ω)
coincide. An application of this result to a nonconforming finite element problem is
presented.

1. Introduction

Let Ω be a two dimensional domain with boundary ∂Ω = (∂Ω)D ∪ (∂Ω)N , where
(∂Ω)D is not of measure zero and (∂Ω)D and (∂Ω)N are essentially disjoint, and let
V := H1

D(Ω) be the subspace of functions in H1(Ω) which vanish on the Dirichlet part
(∂Ω)D of the boundary of Ω. Let u ∈ H1

D(Ω) be the variational solution of an elliptic
boundary value problem and uh ∈ Vh be an approximation of u, where Vh is a finite
dimensional approximation space which might not be a subspace of V . Further, let us
assume that, for a norm ‖·‖h defined on V + Vh and a constant c one can prove that

‖u − uh‖h ≤ c‖u‖H1(Ω), for all u ∈ H1
D(Ω),(1.1)

and

‖u − uh‖h ≤ ch‖u‖H2(Ω), for all u ∈ H2(Ω) ∩ H1
D(Ω).(1.2)

By interpolation, from (1.1) and (1.2), we obtain that for a fixed s ∈ [0, 1]:

‖u − uh‖h ≤ chs‖u‖[H2(Ω)∩H1
D(Ω),H1

D(Ω)]1−s
for all u ∈ [H2(Ω) ∩ H1

D(Ω), H1
D(Ω)]1−s.

If we assume that the variational solution u belongs to an intermediate space
H1+s(Ω) ∩ H1

D(Ω), s ∈ (0, 1) and u is not in H2(Ω), then it is natural to ask:
Does [H2(Ω)∩H1

D(Ω), H1
D(Ω)]1−s coincide with H1+s(Ω)∩H1

D(Ω) ? This type of question
arose in [4] and [5]. The paper will give a positive answer to this question for the special
case when Ω is a polygonal domain in �

2 .
The remaining part of the paper is organized as follows. In Section 2 general interpo-

lation results and some notation are presented. The proof of the fact that
[H2(Ω) ∩ H1

D(Ω), H1
D(Ω)]1−s coincides with H1+s(Ω) ∩ H1

D(Ω) when Ω is a polygonal
domain is given in Section 3. In Section 5, an application of the interpolation result of
Section 3 to a nonconforming finite element problem is given.
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2. Abstract interpolation results

In this section we give some basic definitions and results concerning interpolation
between Hilbert spaces and subspaces using the real method of interpolation of Lions
and Peetre (see [11] and [12].

Let (X, Y ) be a pair of separable Hilbert spaces with inner products (·, ·)X and (·, ·)Y

respectively, and satisfying, for some positive constant c,{
X is a dense subset of Y and
‖u‖Y ≤ c‖u‖X for all u ∈ X,

(2.1)

where ‖u‖2
X = (u, u)X and ‖u‖2

Y = (u, u)Y .
Let D(S) denote the subset of X consisting of all elements u such that the antilinear

form

v → (u, v)X , v ∈ X(2.2)

is continuous in the topology induced by Y . For any u in D(S), the antilinear form (2.2)
can be extended to a continuous antilinear form on Y . Then by the Riesz representation
theorem , there exists an element Su in Y such that

(u, v)X = (Su, v)Y for all v ∈ X.(2.3)

In this way, S is a well defined operator in Y , with domain D(S). The next result gives
some of the properties of S.

Proposition 2.1. The domain D(S) of the operator S is dense in X and consequently
D(S) is dense in Y . The operator S : D(S) ⊂ Y → Y is a bijective, self-adjoint and
positive definite operator. The inverse operator S−1 : Y → D(S) ⊂ Y is a bounded
symmetric positive definite operator and

(S−1z, u)X = (z, u)Y for all z ∈ y, u ∈ X(2.4)

The interpolating space [X, Y ]s for s ∈ (0, 1) is defined using the K function, where
for u ∈ Y and t > 0 ,

K(t, u, X, Y ) = K(t, u) := inf
u0∈X

(‖u0‖2
X + t2‖u − u0‖2

Y )1/2.

Then [X, Y ]s consists of all u ∈ Y such that∫
0

∞
t−(2s+1)K(t, u)2 dt < ∞.

The norm on [X, Y ]s is defined by

‖u‖2
[X,Y ]s

:= c2
s

∫
0

∞
t−(2s+1)K(t, u)2 dt,

where we have chosen the normalization

cs :=

(∫
0

∞ t(1−2s)

t2 + 1
dt

)−1/2

=

√
2

π
sin(πs).

By definition we take

[X, Y ]0 := X and [X, Y ]1 := Y.
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The next lemma provides the relation between K(t, u) and the connecting operator S.

Lemma 2.1. For all u ∈ Y and t > 0 ,

K(t, u)2 = t2
(
(I + t2S−1)−1u, u

)
Y

.

For the proof of this lemma see, for example, [1].

Remark 2.1. Lemma 2.1 gives an alternative expression for the norm on [X, Y ]s,
namely:

‖u‖2
[X,Y ]s

:= c2
s

∫
0

∞
t−2s+1

(
(I + t2S−1)−1u, u

)
Y

dt.(2.5)

In addition, by this expression for the norm (see Definition 2.1 and Theorem 15.1 in
[11]), it follows that the intermediate space [X, Y ]s coincides topologically with the do-
main of the unbounded operator S1/2(1−s) equipped with the norm of the graph of the
same operator . As a consequence we have that X is dense in [X, Y ]s for any s ∈ [0, 1].

Lemma 2.2. Let X0, be a closed subspace of X and let Y0, be a closed subspace of Y .
Let X0 and Y0 be equipped with the topology and the geometry induced by X and Y
respectively, and assume that the pair (X0, Y0) satisfies (2.1). Then, for s ∈ [0, 1],

[X0, Y0]s ⊂ [X, Y ]s ∩ Y0.

Proof. For any u ∈ Y0 we have

K(t, u, X, Y ) ≤ K(t, u, X0, Y0).

Thus,

‖u‖[X,Y ]s ≤ ‖u‖[X0,Y0]s for all u ∈ [X0, Y0]s, s ∈ [0, 1],(2.6)

which proves the lemma.

Lemma 2.3. Let H i, H̃ i, i = 1, 2, be separable Hilbert spaces such that H2 is a subspace
of H1 and the pair (H̃2, H̃1) satisfies (2.1). We assume further that there are linear
operators E and R such that

E : H i → H̃ i is a bounded operator for i = 1, 2,(2.7)

R : H̃ i → H i is a bounded operator for i = 1, 2,(2.8)

REu = u for all u ∈ H1.(2.9)

Then, the pair (H2, H1) satisfies (2.1) and for s ∈ [0, 1], an equivalent norm on [H2, H1]s
is given by ‖E(·)‖[H̃2,H̃1]s

, i.e., there are positive constants c1 and c2 such that

c1‖u‖[H2,H1]s ≤ ‖Eu‖[H̃2,H̃1]s
≤ c2‖u‖[H2,H1]s for all u ∈ [H2, H1]s.(2.10)

Proof. First, we prove that the pair (H2, H1) satisfies (2.1). Let u ∈ H1 and let {wn}
be a sequence in H̃2 convergent to Eu in the norm of H̃1. Then {Rwn} is a sequence in
H2 which converges to u in the norm of H1. Thus, H2 is dense in H1. For the estimate
part of (2.1), from our hypothesis, we have

‖u‖H1 = ‖REu‖H1 ≤ c‖Eu‖H̃1 ≤ c‖Eu‖H̃2 ≤ c‖u‖H2 for all u ∈ H2,

where c is a generic constant which is not be the same at different occurrences.
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For the second part of the lemma let s ∈ [0, 1] be fixed. From the hypothesis (2.7),
by interpolation, we have that

‖Eu‖[H̃2,H̃1]s
≤ c2‖u‖[H2,H1]s for all u ∈ [H2, H1]s,

for some positive constant c2.
Next, from (2.8), by interpolation, we obtain that for some positive constant c1

c1‖Rv‖[H2,H1]s ≤ ‖v‖[H̃2,H̃1]s
for all v ∈ [H̃2, H̃1]s .

Finally, for u ∈ [H2, H1]s

‖u‖[H2,H1]s = ‖REu‖[H2,H1]s ≤ c−1
1 ‖Eu‖[H̃2,H̃1]s

.

This completes the proof of the lemma.

3. Interpolation between H2(Ω) ∩ H1
D(Ω) and H1

D(Ω).

Let Ω be a polygonal domain in �
2 with boundary ∂Ω = (∂Ω)D ∪ (∂Ω)N , where

(∂Ω)D is not of measure zero, and (∂Ω)D and (∂Ω)N are essentially disjoint and consist
of a finite number of line segments. Let H1

D(Ω) denote the space of all functions in
H1(Ω) which vanish on (∂Ω)D. Let ∂Ω be the polygonal line P1P2 · · ·PmP1. Here we
consider that the set {P1, P2, . . . , Pm} consists of all vertices of ∂Ω and all the points of
(∂Ω)D ∩ (∂Ω)N . We will also call the points of (∂Ω)D ∩ (∂Ω)N vertices of ∂Ω. The main
result of this section is:

Theorem 3.1. Let s ∈ [0, 1] be fixed and let Ω ⊂ �
2 be a polygonal domain with Lips-

chitz boundary. Then

[H2(Ω) ∩ H1
D(Ω), H1

D(Ω)]s = [H2(Ω), H1(Ω)]s ∩ H1
D(Ω).(3.1)

In order to prove Theorem 3.1 we introduce first some further notation. For j =
1, 2, . . . , m, let Uj be an open disk centered at Pj such that Uj contains no vertices other
than Pj. Next we add more disks, say Uj, centered at Pj, j = m + 1, . . .M, such
that Pj ∈ ∂Ω or U j ⊂ Ω, and

Ω ⊂
M⋃

j=1

Uj .

By increasing the number M of disks and modifying the radii of the disks, we can assume
that Pk is not in Uj , for k 	= j and the radii of the disks are equal to some positive number

r1. Then, there is a partition of unity {φj}M
j=1 subordinate to the covering

M
∪

j=0
Uj , i.e.,

supp(φj) ⊂ Uj ,
M∑

j=0

φj(x) = 1 for all x ∈ Ω.(3.2)

Let us denote Uj ∩ Ω by Ωj , j = 1, . . . , M . We note here that one can find r0 > 0
such that

dist(Ω\Ωj , supp φj) ≥ r0 j = 1, . . . , M.(3.3)

Further, for j = 1, 2, . . . , M , we define (∂Ωj)D and (∂Ωj)N to be

(∂Ωj)N := (∂Ω)N ∩ ∂Ωj , (∂Ωj)D := ∂Ωj\(∂Ωj)N ,
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and denote the space of functions in H1(Ωj) which vanish on (∂Ωj)D by H1
D(Ωj). Also

we introduce the spaces

H2
∗ (Ωj) := {u ∈ H2(Ωj) ∩ H1

D(Ωj) :
∂u

∂n
= 0 on ∂Ωj\(∂Ω)}.

To prove Theorem 3.1 we assume for the moment the following result.

Theorem 3.2. Let Ωj be one of the domains defined above. Then there exist a positive
constant c such that

‖u‖[H2∗(Ωj),H1
D(Ωj)]s ≤ c‖u‖[H2(Ωj),H1(Ωj)]s(3.4)

for all u ∈ [H2
∗ (Ωj), H

1
D(Ωj)]s ∩ Mj(r), where

Mj(r) := {u ∈ H1(Ωj) : dist(Ω\Ωj , supp u) ≥ r0}.
In addition, we need also the following lemma.

Lemma 3.1. Let Ω0 ⊂ Ω be domains in RN with Lipschitz boundary. Let m be a
nonnegative integer, 0 < s < 1 and r0 > 0. Define

M(r0) := {u ∈ [Hm+1(Ω), Hm(Ω)]s : dist(Ω\Ω0, supp u) ≥ r0}.
Then there is a positive constant c = c(s, r0) such that

‖u‖[Hm+1(Ω),Hm(Ω)]s ≤ c‖u‖[Hm+1(Ω0),Hm(Ω0)]s for all u ∈ M(r0).(3.5)

Proof. Since Ω has Lipschitz boundary (see, e.g., [3], [6]), an equivalent norm on
[Hm+1(Ω), Hm(Ω)]1−s = Hm+s(Ω) is the double integral norm

‖u‖2
m+s,Ω := ‖u‖2

Hm(Ω) +
∑
|α|=m

∫
Ω

∫
Ω

|Dαu(x) − Dαu(y)|2
|x − y|N+2s

dx dy.

A similar statement holds for Ω0. Let u ∈ M(r0). Then,

‖u‖Hm(Ω) = ‖u‖Hm(Ω0)

and for a fixed multi index α with |α| = m we have∫
Ω

∫
Ω

|Dαu(x) − Dαu(y)|2
|x − y|N+2s

dx dy = I1 + 2I2 =

=

∫
Ω0

∫
Ω0

|Dαu(x) − Dαu(y)|2
|x − y|N+2s

dx dy + 2

∫
Ω\Ω0

∫
Ω0

|Dαu(x)|2
|x − y|N+2s

dx dy.

Next, let K := {x ∈ Ω0 : dist(x, Ω\Ω0) ≥ r0}. It follows that

I2 =

∫
Ω\Ω0

∫
K

|Dαu(x)|2
|x − y|N+2s

dx dy =

∫
K

∫
Ω\Ω0

1

|x − y|N+2s
dy |Dαu(x)|2 dx

≤ c

∫
K

|Dαu(x)|2 dx ≤ c‖u‖2
Hm(Ω0).

Summing up these estimates we obtain that (3.5) holds.
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Now we can prove Theorem 3.1.

Proof. The space H2(Ω) ∩ H1
D(Ω) is dense in H1

D(Ω) (see for example Theorem 1.6.1 in
[10]). Applying Lemma 2.2 with X = H2(Ω), Y = H1(Ω), X0 = H2(Ω) ∩ H1

D(Ω) and
Y0 = H1

D(Ω), we obtain that

[H2(Ω) ∩ H1
D(Ω), H1

D(Ω)]s ⊂ [H2(Ω), H1(Ω)]s ∩ H1
D(Ω).(3.6)

In order to prove the other inclusion of (3.1), we need to show that for a positive
constant c,

‖u‖[H2(Ω)∩H1
D(Ω),H1

D(Ω)]s ≤ c‖u‖[H2(Ω),H1
D(Ω)]s ,(3.7)

for all u ∈ [H2(Ω), H1
D(Ω)]s ∩ H1

D(Ω). We let c denote a generic positive constant. Let

u ∈ [H2(Ω), H1
D(Ω)]s ∩ H1

D(Ω). For j = 0, 1, . . . , M , let uj := φj u. Then, u =
M∑

j=1

uj

and by applying Lemma 2.2, and Theorem 3.2 we obtain

‖u‖[H2(Ω)∩H1
D(Ω),H1

D(Ω)]s ≤
M∑

j=1

‖uj‖[H2(Ω)∩H1
D(Ω),H1

D(Ω)]s

≤
M∑

j=1

‖uj‖[H2∗(Ωj),H1
D(Ωj)]s ≤ c

M∑
j=1

‖uj‖[H2(Ωj),H1(Ωj)]s .

Next, using the fact that multiplication by a smooth function is continuous on
[H2(Ω), H1(Ω)]s, we have

‖uj‖[H2(Ωj),H1(Ωj)]s ≤ c‖uj‖[H2(Ω),H1(Ω)]s ≤ c‖u‖[H2(Ω),H1(Ω)]s .

Combining the above estimates we see that (3.7) follows. Finally, from (3.6) and (3.7)
we conclude the result.

3.1. Proving Theorem 3.2. To begin with, we consider the case when Ωj = Uj , i.e.,
Ωj is a disk. We assume, without loss of generality, that Ωj is the unit disk U centered
at the origin of a Cartesian system of coordinates. In this case we have (∂Ωj)D := (∂Ωj)
and

H1
D(Ωj) = H1

0 (U), H2
∗ (Ωj) = H2

0 (U).

Let E : H1
0 (U) → H1(�2), be the extension by zero operator (for r > 1), and let

R : H1(�2) → H1
0 (U) defined as follows.

First, we introduce a smooth cutoff function η which depends only on the distance r to
the origin and satisfies

η(r) = 1 for 0 < r ≤ 1 and η(r) = 0 for r ≥ 2.

Then, for a function v ∈ H1(�2) we define Rv ∈ H1
0 (U) by

(Rv)(r, θ) := v1(r, θ) − 3v1(1/r, θ) + 2v1(1/r
2, θ), (r, θ) ∈ U,

where

v1(r, θ) := v(r, θ)η(r), (r, θ) ∈ �
2 .
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Note that R : H i(�2) → H i
0(U) for i = 1, 2, and we can apply Lemma 2.3 with H2 =

H2
0 (U), H̃2 = H2(�2) and H1 = H1

0 (U), H̃1 = H1(�2). Thus,

‖u‖[H2
0(U),H1

0 (U)]s ≤ c‖Eu‖[H2(�2),H1(�2)]s for all u ∈ [H2
0 (U), H1

0 (U)]s,

for some positive constant c. On the other hand, by Lemma 3.1 we have

‖Eu‖[H2(�2),H1(�2)]s ≤ c‖u‖[H2(U),H1(U)]s for all u ∈ [H2
0 (U), H1

0 (U)]s ∩ M(r0),

where

M(r0) := {u ∈ H1(U) : dist(∂U, supp u) ≥ r0}.
Using the above two estimates proves Theorem 3.2 in this special case.

Before we consider the remaining cases, let us introduce some new notation. Let α, β
be real numbers such that α < β and β − α < 2π. Using polar coordinates (r, θ) we
define the sector domain

Sα,β := {(r, θ) : 0 < r < 1, α < θ < β}
and the following spaces:

Ĥ1(Sα,β) := {u ∈ H1(Sα,β) : u = 0 for r = 1 },

Ĥ2(Sα,β) := {u ∈ H2(Sα,β) : u =
∂u

∂n
= 0 for r = 1 },

Ĥ i
γ(Sα,β) := {u ∈ Ĥ i(Sα,β) : u = 0 for θ = γ },

Ĥ i
α,β(Sα,β) := {u ∈ Ĥ i(Sα,β) : u = 0 for θ = α and θ = β},

where i = 1, 2 , γ = α or γ = β and the functions are zero on line segments or arcs in
the trace sense.

All the remaining cases of Theorem 3.2 can be reduced to the following standard ones:
The domain Ωj coincides with S0,ω for some real number ω ∈ (0, 2π) and

• Case 1. “Free-Free”: H1
D(Ωj) = Ĥ1(S0,ω) and H2

∗ (Ωj) = Ĥ2(S0,ω) or

• Case 2. “Dirichlet-Free”: H1
D(Ωj) = Ĥ1

0 (S0,ω) and H2
∗ (Ωj) = Ĥ2

0 (S0,ω) or

• Case 3. “Dirichlet-Dirichlet”: H1
D(Ωj) = Ĥ1

0,ω(S0,ω) and H2
∗ (Ωj) = Ĥ2

0,ω(S0,ω).

Next, we prove Theorem 3.2 in Case 1.
We define the infinite sector domain S̃0,ω by

S̃0,ω := {(r, θ) : r > 0, 0 < θ < ω}.
The operators E : Ĥ1(S0,ω) → H1(S̃0,ω) and R : H1(S̃0,ω) → Ĥ1(S0,ω) defined in the case

of the disk, satisfy the hypotheses of Lemma 2.3 with H i = H i(S0,ω), and H̃ i = Ĥ i(S̃0,ω),

i=1,2. Thus, Ĥ2(S0,ω) is dense in Ĥ1(S0,ω) and similar arguments used in the case of
the disk can be used now to show that

‖u‖[Ĥ2(S0,ω),Ĥ1(S0,ω)]s
≤ c‖u‖[H2(S0,ω),H1(S0,ω)]s(3.8)

for all u ∈ [Ĥ2(S0,ω), Ĥ1(S0,ω)]s ∩ M(r0), where c is a positive constant and

M(r0) := {u ∈ Ĥ1(S0,ω) : dist(∂U, supp u) ≥ r0}.
Therefore, the proof for Case 1 is complete .
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For the Case 2 and Case 3 we will use again Lemma 2.3, but we need to construct
operators E and R with stronger properties.

In order to prove Theorem 3.2 in Case 2, let us assume for the moment that the
following existence result holds.

Theorem 3.3. Let α < 0 be such that ω − α < 2π. Then, there are linear operators E
and R such that

E : Ĥ i(S0,ω) → Ĥ i(Sα,ω) is a bounded operator, i = 1, 2,(3.9)

R : Ĥ i(Sα,ω) → Ĥ i
0(S0,ω) is a bounded operator, i = 1, 2,(3.10)

REu = u for all u ∈ Ĥ1
0 (S0,ω).(3.11)

First, we observe that from (3.9), we get in particular that

E : Ĥ i
0(S0,ω) → Ĥ i(Sα,ω) is a bounded operator, i = 1, 2.

From the previous case we have that Ĥ2(Sα,ω) is dense in Ĥ1(Sα,ω). Thus, we can apply

Lemma 2.3 with H i = Ĥ i
0(S0,ω), and H̃ i = Ĥ i(Sα,ω), i=1,2 and obtain that for a positive

c,

‖u‖[Ĥ2
0 (S0,ω),Ĥ1

0 (S0,ω)]s
≤ c‖Eu‖[Ĥ2(Sα,ω),Ĥ1(Sα,ω)]s

,(3.12)

for all u ∈ [Ĥ2
0 (S0,ω), Ĥ1

0 (S0,ω)]s.
From (3.9), by interpolation, we have that for another constant c,

‖Eu‖[Ĥ2(Sα,ω),Ĥ1(Sα,ω)]s
≤ c‖u‖[Ĥ2(S0,ω),Ĥ1(S0,ω)]s

,(3.13)

for all u ∈ [Ĥ2(S0,ω), Ĥ1(S0,ω)]s.
Combining (3.12) and (3.13) we obtain

‖u‖[Ĥ2
0 (S0,ω),Ĥ1

0 (S0,ω)]s
≤ c‖u‖[Ĥ2(S0,ω),Ĥ1(S0,ω)]s

,(3.14)

for all u ∈ [Ĥ2
0 (S0,ω), Ĥ1

0 (S0,ω)]s.

Now we can use the proof of Case 1 to finish the proof of Case 2. More precisely, from
(3.8) and (3.14), we see that

‖u‖[Ĥ2
0 (S0,ω),Ĥ1

0 (S0,ω)]s
≤ c‖u‖[H2(S0,ω),H1(S0,ω)]s,(3.15)

for all u ∈ [Ĥ2
0 (S0,ω), Ĥ1

0 (S0,ω)]s ∩ M(r0). Here,

M(r0) := {u ∈ Ĥ1
0 (S0,ω) : dist(∂U, supp u) ≥ r0}.

Therefore, we have proved Theorem 3.2 in this case too.
For the Case 3 we assume that we have the following result.

Theorem 3.4. Let α < 0 be such that ω − α < 2π. Then, there are linear operators E
and R such that

E : Ĥ i
ω(S0,ω) → Ĥ i

ω(Sα,ω) is a bounded operator, i = 1, 2,(3.16)

R : Ĥ i
ω(Sα,ω) → Ĥ i

0,ω(S0,ω) is a bounded operator, i = 1, 2,(3.17)

REu = u for all u ∈ Ĥ1
0,ω(S0,ω).(3.18)
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We can reduce the proof of Case 3 to an estimate which follows from the previous
case. The arguments are similar to those of Case 2.

4. Proving the existence of the operators E and R

The proofs of Theorem 3.3 and Theorem 3.4 are based on the following extension
result.

Lemma 4.1. Let Ω be a triangular domain in �
2 with boundary ∂Ω = (∂Ω)D ∪ (∂Ω)N ,

where (∂Ω)N = Γ is one of the edges of ∂Ω (Γ is an open interval in R) and (∂Ω)D

consists of the union of the other two edges. Then, there exist a linear operator P such
that

P : H
i−1/2
00 (Γ) → H i

D(Ω) and is a bounded operator, i = 1, 2.(4.1)

Here,

H
1/2
00 (Γ) = [H1

0 (Γ), L2(Γ)]1/2, H
3/2
00 (Γ) = [H2

0 (Γ), H1
0(Γ)]1/2,

and

H2
D(Ω) = {u ∈ H2(Ω) : u =

∂u

∂n
= 0 on (∂Ω)D }.

Proof. For v ∈ H
1/2
00 (Γ) let ṽ denote the extension by zero of v to the rest of ∂Ω. Then,

for some positive constant c we have

‖ṽ‖H1/2(∂Ω) ≤ c‖v‖
H

1/2
00 (Γ)

for all v ∈ H
1/2
00 (Γ).(4.2)

For v ∈ C∞
0 (Γ) we define Pv to be the solution of the problem:

Find b ∈ H2(Ω) such that ⎧⎨
⎩

∆2b = 0 in Ω,
b = ṽ on ∂Ω,
∂b
∂n

= 0 on ∂Ω.
(4.3)

It is known that (see, e.g., Proposition 1.3 in [8]) Problem (4.3) has exactly one solution
b ∈ H2

D(Ω) ⊂ H1
D(Ω) and

‖b‖H2(Ω) ≤ c‖v‖H3/2(Γ) ≤ c‖v‖
H

3/2
00 (Γ)

for all v ∈ C∞
0 (Γ),(4.4)

where c is a positive constant. In addition, since v ∈ C∞
0 (Γ), we have b ∈ H3(Ω) (see,

e.g., Section 3.4.2 in [10]).
Next, in order to estimate ‖b‖H1(Ω) we consider the following fourth order problem.

Find w such that {
∆2w = −∆b in Ω,

w ∈ H2
0 (Ω).

(4.5)

The (weak) solution w of the above problem satisfies w ∈ H3(Ω) ∩ H2
0 (Ω) (see, e.g.,

Corollary 3.4.2 in [10]). Then, using Green’s first and second identities, we get

(∇b,∇b) = (−∆b, b) = (∆2w, b) = 〈∂(∆w)

∂n
, b〉 + (∆w, ∆b),

where (·, ·) and 〈·, ·〉 are the inner products on L2(Ω) and L2(∂Ω), respectively. Since
w ∈ H2

0 (Ω) and ∆b is harmonic it follows from Green’s identity that (∆w, ∆b) = 0.
Consequently,
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‖b‖2
H1(Ω) ≤ c

∥∥∥∥∂(∆w)

∂n

∥∥∥∥
H−1/2(∂Ω)

‖b‖H1/2(∂Ω) for all v ∈ C∞
0 (Γ),(4.6)

where c is a positive constant. Next, we have∥∥∥∥∂(∆w)

∂n

∥∥∥∥
H−1/2(∂Ω)

= sup
ϕ∈H1/2(∂Ω)

〈∂(∆w)
∂n

, ϕ〉
‖ϕ‖H1/2(∂Ω)

.(4.7)

Denoting the harmonic extension of ϕ ∈ H1/2(∂Ω) to Ω by the same symbol ϕ, and
applying again Green’s identity, we obtain

〈∂(∆w)

∂n
, ϕ〉 = 〈 ∂ϕ

∂n
, ∆w〉 − (∆b, ϕ).(4.8)

In order to estimate the right hand side of (4.8), on the one hand we have

|(∆b, ϕ)| = |(∇b,∇ϕ)| ≤ ‖b‖H1(Ω)‖ϕ‖H1(Ω) ≤ c‖b‖H1(Ω)‖ϕ‖H1/2(∂Ω),(4.9)

and on the other hand we can prove that

|〈∆w,
∂ϕ

∂n
〉| ≤ c‖b‖H1(Ω)‖ϕ‖H1/2(∂Ω).(4.10)

Indeed, using trace inequalities we have

|〈∆w,
∂ϕ

∂n
〉| ≤ c‖∆w‖H1/2(∂Ω)‖∂ϕ/∂n‖H−1/2(∂Ω) ≤ c‖∆w‖H1(Ω) ‖∂ϕ/∂n‖H−1/2(∂Ω)

where ∥∥∥∥∂ϕ

∂n

∥∥∥∥
H−1/2(∂Ω)

= sup
θ∈H1/2(∂Ω)

〈∂ϕ
∂n

, θ〉
‖θ‖H1/2(∂Ω)

.

Let us denote the harmonic extension of θ ∈ H1/2(∂Ω) to Ω by the same symbol θ. By
applying Green’s identity and the fact that ϕ is a harmonic function, we obtain

〈∂ϕ

∂n
, θ〉 = (∇ϕ,∇θ) ≤ ‖ϕ‖H1(Ω)‖θ‖H1(Ω) ≤ ‖ϕ‖H1/2(∂Ω)‖θ‖H1/2(∂Ω).

Next, since Ω is convex, the operator ∆2 defines an isomorphism from H3(Ω) ∩ H2
0 (Ω)

onto H−1(Ω) (Corollary 3.4.2 in [10]). Thus, we get

‖∆w‖H1(Ω) ≤ c‖w‖H3(Ω) ≤ c‖∆2w‖H−1(Ω). ≤ c‖∆b‖H−1(Ω).

From Green’s identity and the definition of the negative norm we see that

‖∆b‖H−1(Ω) ≤ ‖b‖H1(Ω).

Finally, from the above estimates we conclude that (4.10) is proved.
Combining (4.6)-(4.10) we deduce that

‖b‖H1(Ω) ≤ c‖b‖H1/2(∂Ω) for all v ∈ C∞
0 (Γ),(4.11)

where c is a constant independent of the function v ∈ C∞
0 (Γ). From (4.2), (4.3) and

(4.11) we have

‖b‖H1(Ω) ≤ c‖v‖
H

1/2
00 (Γ)

for all v ∈ C∞
0 (Γ),(4.12)
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Using (4.4), (4.12) and the density of C∞
0 (Γ) in both H

1/2
00 (Γ) and H

3/2
00 (Γ), we can

extend the definition of P so that (4.1) is satisfied.

Proof of Theorem 3.3. Let O denote the origin of a polar coordinate system used
to describe the sector domain Sα,ω. Let ε > 0 be fixed, and let A, B, C, D denote the
points with polar coordinates (1, 0), (1, ω), (1, α) and (ε, π), respectively (see Figure 1).
Let I := (O, A) ≡ (0, 1), I1 := (D, A) ≡ (−ε, 1) and denote by T , T1 the triangular
domains O, A, C and D, A, C, respectively.

D O A

C

B

ω

α

Figure 1. Sector domain.

We introduce here two new spaces:

H
1/2
00,1(I) := {u ∈ H1/2(I) :

∫ 1

0

u2(x)

1 − x
dx < ∞},

and

H
3/2
00,1(I) := {u ∈ H3/2(I) : u(1) = 0,

∫ 1

0

u ′(x)2

1 − x
dx < ∞}.

For u ∈ Ĥ1(S0,ω), define γu to be the trace of u to the interval I. Thus,

‖γu‖
H

i−1/2
00,1 (I)

≤ c‖u‖Hi(S0,ω) for all u ∈ Ĥ i(S0,ω), i = 1, 2.(4.13)

Next, we construct an extension operator E1 which takes functions defined on I into
functions defined on the whole interval I1 and are zero on the interval (−ε,−ε/2). We
require that E1 to satisfy:

‖E1u‖H
i−1/2
00 (I1)

≤ c‖u‖
H

i−1/2
00,1 (I)

for all u ∈ H
i−1/2
00 (I1), i = 1, 2,(4.14)

where c is a positive constant. One way to construct E1 is the following:



12 C. BACUTA, J.H. BRAMBLE, AND J.E. PASCIAK

By Theorem 1.4.3.1 [9], one can find an extension operator E2 which takes functions
defined on I into functions defined on the interval J := (−1, 1) such that

‖E2u‖H
i−1/2
00,1 (J)

≤ c‖u‖
H

i−1/2
00,1 (I)

. for all u ∈ H
i−1/2
00,1 (I), i = 1, 2.

Next, let η be a smooth function on J which is equal 0 on the interval (−1,−ε/2) and is
equal 1 on the interval (0, 1). The operator E3 which multiplies a function defined on J
with η and then takes the restriction of the new function to the interval I1 is continuous

from H
i−1/2
00,1 (J) to H

i−1/2
00 (I1). Thus we can define E1 by

E1(u) := E3(E2(u)).

By Lemma 4.1, we can extend E1(γu) to a function b = P (E1(γu)) defined on the
whole triangular domain T1 and such that (4.1) is satisfied for Ω = T1 and Γ = I1. Next,
we consider the restriction of b to the triangular domain T and the extension by zero
of the new function to the sector domain Sα,0. Let b̃ be the function obtained by this
process. Then, define an extension operator denoted Eb mapping functions defined on
S0,ω into functions defined on Sα,ω by

(Ebu)(x) =

{
u, if x ∈ S0,ω

b̃, if x ∈ Sα,0.

Combining (4.13) and (4.14) with the fact that the operators involved in defining b̃ are
continuous, we get that

‖Ebu‖Ĥi(Sα,0) ≤ c‖u‖Ĥi(S0,ω). for all u ∈ Ĥ i(S0,ω).(4.15)

Now we introduce another extension operator denoted Ee, which coincides with the
classical even extension operator when ω = −α, mapping functions defined on S0,ω into
functions defined on Sα,ω by

(Eeu)(r, θ) =

⎧⎨
⎩

u(r, θ), if (r, θ) ∈ S0,ω

u(r, ω
α
θ), if (r, θ) ∈ Sα,0.

Finally, we define the required operators E and R, by

(Eu)(r, θ) :=
α

ω
(Eeu)(r, θ) + (1 − α

ω
)Eb(r, θ), (r, θ) ∈ Sα,ω,

and

(Rv)(r, θ) :=
ω

α − ω
(v(r, θ) − v(r,

α

ω
θ)), (r, θ) ∈ S0,ω.

Simple computations show that E and R have the desired properties.
The proof of Theorem 3.4 is similar. The operators E and R from Theorem 3.4 are

defined in the same manner as in the above proof.

5. An application to a nonconforming finite element problem

In this section, we apply the results of the previous to a modified Crouzeix-Raviart
nonconforming finite element approximation. Let Ω be a polygonal domain in �

2 with
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boundary ∂Ω. The L2(Ω)-inner product and the L2(Ω)-norm are denoted by (·, ·) and
‖·‖, respectively. We consider the Dirichlet problem{

−∆u = f in Ω,
u = 0 on ∂Ω.

(5.1)

We consider the simple boundary condition above for convenience of notation. All of
the results to be given extend to Dirichlet problems with mixed boundary conditions.

The variational formulation of (5.1) is the following:
Find u ∈ V := H1

0 (Ω) such that

a(u, v) = F (v) for all v ∈ H1
0 (Ω),(5.2)

where F (v) = (f, v) and

a(u, v) =

∫
Ω

∇u · ∇v dx for all u, v ∈ H1
0 (Ω).

Let Th be a quasi-uniform triangulation of Ω and let h = max
τ∈Th

diam(τ).

Next, we consider the Crouzeix-Raviart finite element nonconforming space

Vh := {v| v is linear on all τ ∈ T ,
v is continuous at the midpoints of the edges
v = 0 at the midpoints situated on ∂Ω},

and define on V + Vh the bilinear form

ah(u, v) :=
∑
τ∈Th

Dτ (u, v), where Dτ (u, v) =

∫
τ

∇u · ∇v dx

and the associated norm

‖u‖h :=
√

ah(u, u).

It is easy to show that the form ah(·, ·) is positive definite on Vh. The Crouzeix-Raviart
approximation is: Find uh ∈ Vh such that

ah(uh, v) = F (v) for all v ∈ Vh.(5.3)

The next statement is a version of Strang’s Lemma [2, 6, 7].

Proposition 5.1. Let u ∈ V and w ∈ Vh be arbitrary. Then

‖u − w‖h ≤ inf
v∈Vh

‖u − v‖h + sup
v∈Vh

ah(u − w, v)

‖v‖h
(5.4)

Proof. Let ũ ∈ Vh satisfy

ah(ũ, v) = ah(u, v) for all v ∈ Vh.

Then, ah(ũ − u, v) = 0 for all v ∈ Vh and consequently,

‖u − ũ‖h = inf
v∈Vh

‖u − v‖h.

Thus,

‖u − w‖h ≤ ‖u − ũ‖h + ‖ũ − w‖h = ‖u − ũ‖h + sup
v∈Vh

ah(ũ − w, v)

‖v‖h
.
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Moreover,

ah(ũ − w, v) = ah(ũ − u + u − w, v) = ah(u − w, v).

Combining the above estimate and equalities we obtain (5.4).

In particular, when u is the solution of (5.2) and w = uh is the solution of (5.3), we
obtain the estimate

‖u − uh‖h ≤ inf
v∈Vh

‖u − v‖h + sup
v∈Vh

ah(u − uh, v)

‖v‖h

.(5.5)

If u ∈ H2(Ω)∩H1
0 (Ω), the first term of the right-hand side of (5.5) can be estimated by

ch|u|H2 using standard approximation properties. For the second term, we can use the
following result (see, e.g., [2], [7]).

Lemma 5.1. Let u ∈ H2(Ω) ∩H1
0 (Ω) be the solution of (5.2) and uh be the solution of

the discrete problem (5.3). Then, for some positive constant c

ah(u − uh, v)

‖v‖h
≤ ch|u|H2, for all v ∈ Vh, u ∈ H2(Ω) ∩ H1

0 (Ω).(5.6)

Consequently,

‖u − uh‖h ≤ ch|u|H2 for all u ∈ H2(Ω) ∩ H1
0 (Ω).(5.7)

The method given by the discretized problem (5.3) has the disadvantage of not being
stable when F is only in V ′ ≡ H−1(Ω). A modified method, which is stable on H−1(Ω),
can be defined as follows.

First, we define Th
2

to be the triangulation obtained from Th by joining the midpoints

of the edges of the triangles in Th. Let Sh
2

be the standard conforming finite element

space of all functions in H1
0 (Ω) which are linear on each triangle τ ∈ Th

2
. Note that

Sh
2
⊂ V .

Next, we define the operator T : Vh −→ Sh
2

by Tv = w, where

1. w(x) = v(x) when x is a midpoint of an edge in Th,
2. w(x) = 0 when x is a vertex of ∂Ω,

3. w(x) = 1
nx

nx∑
j=1

v(yj) when x is an interior vertex of Th, where y1, y2, . . . , ynx are the

midpoints of those edges in Th, that are adjacent to x.

Clearly, nx is bounded above by a fixed natural number. Let Mh be the set of all
midpoints of the edges in Th. Let Eh be the set of all line segments connecting in each
triangles in Th the mid points of the edges. Finally, let Eh/2 be the set of all edges in
Th

2
. Then,

‖v‖2 ≈ h2
∑

yi∈Mh

v2(yi), v ∈ Vh,

‖v‖2
h ≈

∑
(yi,yj)∈Eh

(v(yi) − v(yj))
2, v ∈ Vh,



15

and

|w|2H1(Ω) ≈
∑

(xi,xj)∈Eh/2

(w(xi) − w(xj))
2, w ∈ Sh/2.

From the way we defined T and by using the above equivalences, it is easy to verify that

|Tv|2H1(Ω) ≤ c ah(v, v), for all v ∈ Vh(5.8)

and

‖Tv − v‖2 ≤ ch2 ah(v, v), for all v ∈ Vh,(5.9)

for some positive constant c.
Consider the following modified version of Problem 5.3: Find ũh ∈ Vh such that

ah(ũh, v) = F (Tv), for all v ∈ Vh,(5.10)

Note that since Tv is in V , (5.10) is well defined for F ∈ V ′. We will use the interpolation
results from the previous two sections to prove an error estimate for the modified method.

Theorem 5.1. Let u be the solution of (5.2) and let ũh be the solution of (5.10). Then,
for s ∈ [0, 1], we have the following error estimate:

‖u − ũh‖h ≤ chs‖u‖H1+s(Ω), for all u ∈ H1+s(Ω) ∩ H1
0 (Ω).(5.11)

Proof. For u ∈ H1
0 (Ω), we set F (v) = (−∆u, v) and define Phu = ũh where ũh is the

solution to (5.10). By taking v = ũh in (5.10) and by using (5.8), we easily get that

‖Phu‖h = ‖ũh‖h ≤ c‖u‖H1(Ω).

This immediately implies that

‖(I − Ph)u‖h ≤ c‖u‖H1(Ω), for all u ∈ H1
0 (Ω).(5.12)

Next, for u ∈ H2(Ω) ∩ H1
0 (Ω), from Proposition 5.1, we obtain

‖u − ũh‖h ≤ inf
v∈Vh

‖v − u‖h + sup
v∈Vh

ah(u − ũh, v)

‖v‖h
.

Using standard approximation properties gives

inf
v∈Vh

‖u − v‖h ≤ inf
v∈Sh

‖u − v‖h ≤ ch|u|H2(Ω).

To estimate the second term in the right-hand side of the above inequality, we note that

ah(u − ũh, v) = ah(u − uh, v) + ah(uh − ũh, v), v ∈ Vh.

From Lemma 5.1,

ah(u − uh, v) ≤ ch|u|H2(Ω)‖v‖h.

On the other hand, with the help of (5.9),

ah(uh − ũh, v) = ah(uh, v) − ah(ũh, v) = (f, v) − (f, Tv)

≤ ‖f‖ ‖v − Tv‖ ≤ ch|u|H2(Ω)‖v‖h.

Combining the above estimates gives

‖(I − Ph)u‖h ≤ ch‖u‖H2(Ω), for all u ∈ H2(Ω) ∩ H1
0 (Ω).(5.13)
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Finally, from (5.12) and (5.13), by using interpolation and the result of Chapter 3, we
obtain

‖(I − Ph)u‖h ≤ chs‖u‖[H2∩H1
0 ,H1

0 ]1−s
= chs‖u‖H1+s(Ω),

for all u ∈ H1+s(Ω) ∩ H1
0 (Ω). This completes the proof of the theorem.
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