USING FINITE ELEMENT TOOLS IN PROVING SHIFT THEOREMS
FOR ELLIPTIC BOUNDARY VALUE PROBLEMS
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ABSTRACT. We consider the Laplace equation under mixed boundary conditions on
a polygonal domain 2. Regularity estimates in terms of Sobolev norms of fractional
order for this type of problem are proved. The analysis is based on new interpolation
results and multilevel representation of norms on the Sobolev spaces H*(Q2). The
Fourier transform and the construction of extension operators to Sobolev spaces on R?
are avoided in the proofs of the interpolation theorems.

1. INTRODUCTION

Regularity estimates of the solutions of elliptic boundary value problems in terms
of Sobolev norms of fractional order are known as shift theorems or shift estimates.
Applications of the shift theorems in the finite element theory can be found for example
in Nitsche’s duality argument, multigrid convergence theorems, convergence of “mortar”
finite element methods, etc..

The shift estimates for the Laplace operator with Dirichlet boundary conditions on
nonsmooth domains are well known (see, e.g, [21], [23],[27]). For the second order elliptic
boundary value problems with mixed boundary conditions on nonsmooth domains, much
less has been done.

One technique for proving shift results is by using the real method of interpolation
of Lions and Peetre [2], [24] and [25]. The resulting interpolation problems are of the
following type. If X and Y are Sobolev spaces of integer order and X is a subspace of
finite codimension of X then how can one characterize the interpolation spaces between
Xk and Y? The problem was studied by Kellogg, for certain particular cases, in [21]
when Xy was of codimension one.

The interpolation results presented in Section 2 give a natural formula connecting
the norms on the intermediate subspaces [Xy,Y]s and [X, Y], when X is of arbitrary
finite codimension. The main result of Section 2 is a theorem which provides sufficient
conditions (the conditions (A1) and (A2)) for concluding that the spaces [Xf, Y]s and
[X, Y] coincide.

Our approach is to apply subspace interpolation for Sobolev spaces defined on sector
domains. We avoid the Fourier transform and the construction of the extension and
restriction operators on R? used in [21]. Instead, we use multilevel representatations
of the norms for the Sobolev spaces on sector domains. (For multilevel representations
of norms see, e.g., [13], [15] and [28].) In Section 3 the main result of Kellogg [21]
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concerning the codimension one subspace interpolation problem is presented with a
simplified proof. Using classical preconditioning techniques ([8]-[14]), a proof of the fact
that the multilevel norm on H' is equivalent to the standard norm on H' is presented
in the Appendix.

Shift theorems for the Poisson equation (with mixed boundary conditions) on polyg-
onal domains are considered in Section 4. Our approach for the proof, after reducing
the original shift estimate problem to similar problems on sector domains, is to use the
subspace interpolation results presented in Section 2 in order to interpolate between the
range of the Laplace operator, as a proper subspace of L?, and H~!. An eigenfunction
representation of the norm on Sobolev spaces is used to check the validity of the condi-
tion (A2), and the results of Section 3 combined with standard finite element tools are
used in order to check the validity of the condition (A1).

2. INTERPOLATION RESULTS

In this section we give some basic definitions and results concerning interpolation

between Hilbert spaces and subspaces using the real method of interpolation of Lions
and Peetre (see [24]).

2.1. Interpolation between Hilbert spaces. Let X,Y be separable Hilbert spaces
with inner products (-,-)x and (+,-)y , respectively, and satisfying for some positive
constant c,

(2.1) { X is a dense subset of Y and

|ully< cllul|x  for all u € X,

where ||ul|% = (u,u)x and |[ul|? = (u,u)y.
Let D(S) denote the subset of X consisting of all elements u such that the antilinear
form

(2.2) v— (u,v)x, veX

is continuous in the topology induced by Y.

For any w in D(S) the antilinear form (2.2) can be extended to a continuous antilinear
form on Y. Then by Riesz representation theorem , there exists an element Swu in Y
such that

(2.3) (u,v)x = (Su,v)y forallve X.

In this way S is a well defined operator in Y, with domain D(S). The next result
illustrates the properties of S .

Proposition 2.1. The domain D(S) of the operator S is dense in X and consequently
D(S) is dense in Y. The operator S : D(S) CY — Y is a bijective, self-adjoint and
positive definite operator. The inverse operator S™' 1Y — D(S) C Y is a bounded
symmetric positive definite operator and

(2.4) (S™'z,u)x = (z,u)y forallzcy, ucX.
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The interpolating space [X, Y], for s € (0,1) is defined using the K function, where
forueY andt >0,

K(t,u) == inf (Jluollx” + *[lu — uolly*)"/>.
up€X
Then [X, Y] consists of all u € Y such that
/ t= VK (tu)? dt < oo,
0
The norm on [X, Y], is defined by

[ — /0 O R (1 )2 dt,

00 t(172s) —1/2 2
Cs = / dt =/ —sin(7s)
o t?+1 T

[X,Y]p:=X and [X,Y], =Y.

The next lemma provides the relation between K (¢,u) and the connecting operator S.

where

By definition we take

Lemma 2.1. Forallu ey andt >0,
K(t,u)? =t (I + 257" u,u)
Proof. Using the density of D(S) in X, we have
Kt w? = inf 2L 21y — 2
(o = it (ol + Pl = ol

y -

Let v = Sug. Then

HUOHXQ = (u()auO)X - (SUO,UO)Y = (S_IU,U)y.

This implies that
(2.5) K(t,u)? = inf ((S™'0,v)y + |lu — S~ "||y).

veY

Solving the minimization problem (2.5) we obtain that the element v which gives the
optimum satisfies

(I +t*S™ M = t?u,
and

(S~ o, 0)y + 2 u— S~ |y = ¢ (I + 1257 u,u),, -

O

Remark 2.1. Lemma 2.1 gives another expression for the norm on [X,Y]s, namely:
(2.6) L /0 2 (14 2571 ), dt.

In addition, by this new expression for the norm (see Definition 2.1 and Theorem 15.1
in [24]), it follows that the intermediate space [ X,Y |, coincides topologically with the
domain of the unbounded operator SY*1=%) equipped with the norm of the graph of the
same operator . As a consequence we have that X is dense in [X,Y]s for any s € [0, 1].
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2.2. Interpolation between subspaces of a Hilbert space.

Let K = span{ip, ... ,p,} be a n-dimensional subspace of X and let X be the orthogo-
nal complement of I in X in the (-, )y inner product. We are interested in determining
the interpolation spaces of X and Y, where on Xy we consider again the (-,-)x inner
product. For certain spaces Xx and Y and n = 1, this problem was studied in [21].
To apply the interpolation results from the previous section we need to check that the
density part of the condition (2.1) is satisfied for the pair (Xy,Y).

For ¢ € KC, define the linear functional A, : X — C, by

Aju = (u,9)x, ueX.

Lemma 2.2. The space Xx is dense in Y if and only if the following condition is
satisfied:

(2.7) A, is not bounded in the topology of Y
' forall p € IC, p #0.

Proof. First let us assume that the condition (2.7) does not hold. Then for some nonzero
¢ € K the functional L, is a bounded functional in the topology induced by Y. Thus,
the kernel of L, is a closed subspace of X in the topology induced by Y. Since Xj is
contained in Ker(L,) it follows that

X C Ker(Lw)Y = Ker(L,).

Hence X fails to be dense in Y.

Conversely, assume that Xy is not dense in Y, then Y, = X—,CY is a proper closed
subspace of Y. Let yy € Y be in the orthogonal complement of Y, and define the linear
functional ¥ : Y — C', by

Vu = (u,yo)y, u €Y.

¥ is a continuous functional on Y. Let v be the restriction of ¥ to the space X. Then
1 is a continuous functional on X. By Riesz Representation Theorem, there is vg € X
such that

(2.8) (u,v0)x = (u,yo)y, for all u € X.

Let P be the X orthogonal projection onto I and take u = (I — Pg)vp in (2.8). Since
(I — Pc)vy € X we have ((I — Pg)vo, yo)y = 0 and

0= (({ — Pc)vo,v0)x = (({ — Px)vo, (I — Pc)vg)x-

It follows that vy = Pxug € K and, via (2.8), that ¢ = A,, is continuous in the topology
of Y. This is exactly the opposite of (2.7) and the proof is completed. O

Remark 2.2. The result still holds if we replace the finite dimensional subspace IC with
any closed subspace of X.

For the next part of this section we assume that the condition (2.7) holds. By the
above lemma, the condition (2.1) is satisfied. It follows from the previous section that
the operator Sk : D(Sx) C Y — Y defined by

(2.9) (u,v)x = (Sku,v)y for all v € X,
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has the same properties as S. Consequently, the norm on the intermediate space [ X, Y]s
is given by:

(2.10) HUH[2X;<,Y]S = Cg/ooot_%+1 (I + 2S¢ uu), di

Let [X,Y]sx denote the closure of Xx in [X,Y],. Our aim in this section is to
determine sufficient conditions for ¢;’s such that
(2.11) Xk, Y]s = [X,Y]s k.

First, we note that the operators Sx and S are related by the following identity:
(2.12) St = —Qx)S™,

where Qx : X — K is the orthogonal projection onto IC. The proof of (2.12) follows
easily from the definitions of the operators involved.

Next, (2.12) leads to a formula relating the norms on [Xx,Y]s and [X,Y]s. Before
deriving this formula in Theorem 2.1 , we introduce some notation. Let

(2.13) (u,0)xe = (I + 257 u,v),  forall u,v e X.

and denote by M; the Gram matrix associated with the set of vectors {¢1,...,¢,} in
the (-,-)x inner product,i.e.,

(Mt)ij = ((;Ojucpi)X,ta Z?.] € {17 s 7n}‘
Theorem 2.1. Let u be arbitrary in Xx. Then,

(2.14) full, = Il +2 [ 700 (M de)

where < -, - > is the inner product on C™ and d; is the n-dimensional vector in C™ whose
components are

(dt)l = (U, SOi)X,ty 1= 1, e, n.
Proof. Let u be fixed in X and denote

(2.15) wi= (I +#*S)'u and wi = (I +¢25c") .
Then the norms on [Xi, Y]s and [X, Y], are given by
2,16 fulfs, =<2 [ 6wy di
and
2.17) Julles, = €2 [ 472 oy de
0

respectively. For v in Y, using (2.12), we have
(2.18) Sclwi = ST wie — Qi (S k) = S wie — Z ;i p;
i=1

where o; = (S~ wie, ;) x. From (2.15) it follows that
(2.19) (I +#ScHwe = u.
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Combining (2.18) and (2.19) we obtain
(I + 2S5 Dwg = u +t* ZO@%
Equivalently, applying (I + ¢t2571)~! to both sides,we have
(2.20) wi = w+t2iai(1+t25_1)_lcpi.
i=1

We calculate the coefficients «; by taking the (-,-)x inner product with ¢; on both sides
of (2.20) for j =1,... ,n. From (2.19) one sees that wx € Xx. Hence

n

S (T4 i) gai=—t2(w,0)x j=1,....n.

i=1
With the notation adopted in (2.15) and (2.13) the system becomes

n

Z(Qpia(pj)X,t Q; = _t72(u7 Spj)X,t ] = 17 e

i=1
Let a be the n-dimensional vector from C™ whose components are a;. Then
Mo = —t2d,.
Since the vectors ¢q, ... , p, are linearly independent, the matrix M, is invertible and
a = —t2M;d;.
Now, going back to (2.20), we get

(wie, u)y = (w,u y+Zal (I + ¢S o u)y
qu—I—Zaz (2SI + 2S5 ) s, u)x
= (w,u)y + Z (i, u)x — (I +12S™H) o, u) x

= (w,u)y — Z&i(d_t
=1
Thus
(221) (ch, u)y = (w, u)y -+ t72 <M;1dt, dt> .

Combining (2.16) , (2.17) and (2.21) completes the proof.
U

For n =1, let K = span{¢} and denote Xx by X,. Then, for u € X, the formula
(2.14) becomes

00 2
— u, SD)Xt’

2.22 ul? — |lull? +c§/ " @st1) (W @) x| &t
(2.22) [l ix, w1, = el v, i .2,
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Next theorem gives sufficient conditions for (2.11) to be satisfied. Before we state the
result we introduce the conditions:

(A1) (X, Y], =[X,Y],, fori=1...,n.

A.2) There exist 6 > 0 and v > 0 such that
( gl
Z lail® (01, 0i)x0 <7 {(Mya,a)  forall @ = (ay, ..., a,)t € C", t € (J,00).

i=1

Theorem 2.2. Assume that, for some s € (0, 1), the conditions (A.1) and (A.2) hold.
Then

[XICa Y]s = [X7 Y]s,lc'

Proof. Let s be fixed in (0,1). Since Xx is dense in both these spaces, in order to prove

(2.11) it is enough to find, for a fixed s, positive constants ¢; and ¢y such that
(2:23) eillullpyy, < lulliy vy, < callullyyy, — for all ue Xy

The function under the integral sign in (2.14) is nonnegative, so the lower inequality of
(2.23) is satisfied with ¢; = 1. For the upper part, we notice that, for u € X and wy
as defined in the proof of Theorem 2.1,

(wi, u)y = (L + 25N u,u)y, = (u,u)y — ¢ (S (L4251 u,u),

2
< (u,u)y < c(s)l|ulljx v,

Then, using (2.17), (2.21) and the above estimate, we have that for any positive number
0,

2 2 o —92s
[Py, < e 9)llull vy, + / 24 (e )l dt

< ¢(9, 8)||u||[2X,Y}S +/5 =2 (w, u)3 dt+/§ (M, dy) dt

Hence the upper inequality of (2.23) is satisfied if one can find a positive 6 and ¢ = ¢(9)
such that

(2.24) / 2t (M, dy) dit < C||“||[2X,Y}S for all u € Xi.
1

From (A.2), there exist 6 > 0 and v > 0 such that

(M o, a) < Z |ai|® (03, @i)},lt

i=1

forall @ = (aq,... ,a,)" € C* t € (4,00). In particular, for oy = (u, :)xs, i =1,... ,n,
we obtain

n 2
MY, d,) < wpadxe ¢ ane 5,00),u € X
< v t>_ﬁy; (@i, 0i)x.t ( ) *
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Thus, using the above estimate, (2.22) and (A.1) we have

/ t (M 1dt,dt>dt<72/ —— ( I o) xel”
1

Qozv(;oz)Xt
oo [(w 0) x|
izl 0 (@lvwl)Xt

n
<7e? Y lulity,, vy, < venllullfyy,

i=1
Finally, (2.24) holds, and the result is proved. O

Remark 2.3. By Lemma 2.2, the space Xy is dense in [X,Y s if and only if the func-
tionals Ly, ¢ € IC, # 0 are not bounded in the topology induced by [X,Y],.

2.3. A subspace interpolation lemma. Let © C © be domains in R? and V(1)
V1(Q) be subspaces of H(), H*(Q), respectively. On V1(Q), V1(Q) we consider in-
ner products such that the induced norms are equivalent with the standard norms on
HY(Q), HY(Q), respectively. In addition, we assume that V1(Q), V1(Q) are dense in
L2(2), L*(R), respectively. Let’s denote the duals of V1(Q), VE(Q) by V=L(), VL(),
respectively. We suppose that there are linear operators £ and R such that

(2.25) E:LXQ) — L*Q), E:V'(Q) — V(Q) are bounded operators,
(2.26) R:L*(Q) — L*(Q), R:VYQ)— V'(Q), are bounded operators,
(2.27) REu =u for all u € L*(Q).
Let ¢ € L2(Q) , ¢ = By € L*() and 6 € (0,1) be such that
(2.28) L*(Q)y = {u € L*(Q) : (u,v) = 0} is dense in [L*(Q), V1 (Q)]s,
(2.29) LQ(Q)J = {u e L*Q) : (u,¢)) = 0} is dense in V~1(Q),
(2.30) [L2(2) 5, VT (Q)]o = [L*(), VH(Q)lo.
Lemma 2.3. Using the above setting, assume that (2.25)-(2.30) are satisfied. Then,
(2.31) L)y, VTHY)o = [L*(Q), VI Q).

The proof of the above lemma is given in Appendix 5.1.

3. SUBSPACE INTERPOLATION BY MULTILEVEL NORMS

Let © be a domain in R? with boundary 992 = (9Q)p U (09Q)x, where (9Q)p is not
of measure zero, and (9Q)p and (0Q)y are essentially disjoint. Let H}(2) denote the
space of all functions in H*(€) which vanish on (992)p. Assume that

MiCMy,C,....,.C M, C...
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is a sequence of finite dimensional subspaces of H},(€2) whose union is dense in H} (1),
and assume that an equivalent norm on H},(€2) is given by

(3.1) lallf =D Aell(@r = Qr)ull?,
k=1
where @y denotes the L*(Q) orthogonal projection onto My, ||-|| = |||/ z2(), Qo = 0, and

A\, = 4F=1. We will prove in the Appendix that for a certain type of polygonal domain 2
and { M.} the standard sequence of piecewise linear functions associated with a sequence
of nested meshes, (3.1) holds. Proofs for the multilevel representation of the norm on
H' can be found in [28] and [15] also. The goal of this chapter is to solve a codimension
one subspace interpolation problem by means of multilevel geometry and topology.

3.1. Scales of multilevel norms. On H},(Q) take the norm given by (3.1) and define
H; Q) to be the dual of HL(Q2). The elements of L?(f2) can be viewed as continuous
linear functionals on H},(€2) and we have the natural continuous and dense embeddings

HEL(Q) C L*(Q) € Hy'(Q).

One can easily check that

(3.2) lully =) AT @k — Qu—r)ull®  for all u € L*(Q),

k=1
where || - ||_; denotes the norm on H,'(Q). Further, we have that the inner product on
Hg(Q) is

(U, v)q == Z M ((Qr — Qu—1)u,v) g2y for all u,v € HR(Q) N LA (Q), a € [-1,1].

k=1

Then the pairs (H5(S2), L2(Q)) and (L?(2), H;'(2)) satisfy the condition (2.1) and the
operator S associated with each of these pairs is given (in both cases) by

(3.3) Su = i Me(Qr — Qr—1)u,  for all w € D(95).
k=1

For any 6 € [0, 1], let
Hp(Q) := [Hp(Q), L*(Q)i—e,  Hp'(Q) = [L*(Q), H' ()],

and let || - || be the norm on HE(Q) for a € [—1, 1]. By using (2.6), one can easily check
that

(3.4) [ull2 = A (@Qk — Qe—r)ull®,  for all u € Hp(Q) N L*(Q).
k=1

Consequently, H,;’(€2) is the dual of H%(Q) for § € [0, 1].

Remark 3.1. For any a € (0, 1], the norm on H%(QY) is given by (3.4). On the other
hand, for v e HE(S2),

J J—1
S NN@k = Quen)ull® = [lull® + (4% = 1) AT = Qe)ull® = AT — Q)ul)®
k=1 k=1
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and
lim X5~ Qu)ull> = 0.

Thus, we obtain that an equivalent norm on HY(S2), for a € (0,1], is given by
lellZ = llell® + D AT — Qe)ull”
k=1

3.2. Sufficient conditions for (A1). Let X = L?(Q) and Y = H;'(Q2). For a fixed
0o in the interval (0, 1), let ¢ € L*(Q) satisfy the following conditions:

(C.0) 6 ¢ HE(Q).

(C.1) There exist ¢; > 0 and § > 0 such that

0 )\k
(¢7 ¢)X,t — s Ak + t2

(C.2) There exist co > 0 such that
1@k = Que-0)9l” < X, k=1,2,....
Our goal in this section is to characterize the space [Xy, Y]y for 6 in (0, 1), 6 # 6,.

Remark 3.2. From (C.2) it follows that ¢ € H%(Y) for @ < 6y. Thus, from (C.0) and
(C.2), by applying Lemma 2.2 (see the proof of (3.6)), we have that X, is dense in'Y .
Consequently, the space [Xy,Y|s is well defined.

Theorem 3.1. Let ¢ € L*(Q2) and satisfy (C.0)-(C.2). Then

1(Qr — Qu_1)0||> > et ™", for t > 4.

(3.5) [L*()g, Hp' ()], = [L*(Q), Hp ()], . 0<0 <1, 0 6.
Furthermore, if 0y < 0 <1 then
(3.6) [L2(),. Hp )], = [L2(). Hp )],

Proof. Let 6 # 0, be fixed. Following the proof of Theorem 2.2 until (2.24), we see that
in order to prove (3.5), it is enough to show that, for § given by (C.1), there is a positive
constant ¢ = ¢(0, 0, ¢y, ¢o) satisfying

00 2
(3.7) I = / t‘mﬂ)wdt < clulfy forall u € Xy.
o (¢7 ¢)X,t
Let u € X = L?(Q) be fixed. Denote Q;, — Qx_1 by qx, with Qo = 0, and for u € L*(2)
denote uy, := )\];9/2quu’| and @ := {ug}. Then we have
[ull—p = lal].,.

Here (-,-)x is simply the L?*(Q) inner product (-,-). Then, we have
A
_ 2 g-1\-1 _ k
(u, 9)x = ((I—i—t ST, ¢) = ;;1 SV (qru, qro).

Using the Cauchy-Schwarz inequality and the estimate given by (C.2) we obtain
00 1-60/2

A
3.8 u, <ec k ull.
(33) (0 <2 3 Sl
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For u € X, we have (u, ¢) = 0. Then

Z qru, @) = 0.
=1

Thus,

=1
U, - _t2 N 190 U, I
( ¢)X,t gl A + 12 (qru, qx)

and hence we also have the estimate

00 —60/2
3.9 < cot? k .
(3.9) (. 0)x4] < 2 ;Ak+tgr|qkuu

Now we are prepared to estimate the integral I. The constant ¢, to be used next, may
have different values at different places in which it appears but depends only on the
constants #, §, ¢; and ¢y . First we will treat the case 0 < 6 < 0y. Let 01 = 6y — 6. Then,
by (C.1) and the estimate (3.8), we have

00 )\1 00/2 2
reef[Term (ZA qukun) a

<o [Teem (3 O gl )
= Js ot LA + 1) (A + 2) Gt} |

o —1+261
— e Z (AmAn) %/ quUHanuH/ O +t2 oo ) o

m,n=1

Next, we use the formula

[eS) t3 20 1a _b179
.1 dt=———— <2 0#1 b :
(3.10) /O EEIEE) P —— 0<0<2, 0#1, a,b>0

The integral can be calculated by elementary calculus methods. If a = b, then the right
side of the above identity is replaced by 10;2‘9@*9. Thus,
0

[e’e) t 14201 oo} t 14201 p 1)\1791 _ )\1 61
dt < dt = A, ) i1 om e
/5 A +12) (N +12) /0 (A + £2) (A + £2) o, (AmAn) A — Ay

Combining the above inequalities, we get

- b2 A=A o 0/2
I'<c Z (AmAn) v %)\r_n/ lgmull A, / lgnul|-
m,n=1 m n

Let
)\1—91 _ )\1—91
lmn - )‘mAn 61/2 Zm -

Then, the above estimate becomes

o0
I<c Z Loy T

m,n=1



12 J.H. BRAMBLE, J.E. PASCIAK, AND C. BACUTA

An elementary calculation gives

2(m—n)(1—6’1) o 2—(m—n)(1—01)

= —|m—n|0; _
lun 2(m—n) _ 9—(m—n) < 2 , myn=12,....

Now we can apply Lemma 5.1 and obtain
I < dlalf, = e ullZy,

which proves (3.7) in this case.

For the remaining part, i.e., 6y < 6 < 1, we set 0; := 6 — y. The estimate (3.7) can
be done in the same manner. The only difference here is that we use the inequality (3.9)
instead of (3.8). This completes the proof of (3.6).

Now let 6y < # < 1 be fixed. By the previous part, it is enough to show that L*(Q)4
is dense in H,;%(2). Using Lemma 2.2, this is equivalent to proving that the functional

(3.11) u— (u,¢), u€ L*(Q),

is not continuous in the topology induced by H;?(Q). To see that, let {u,} be the
sequence in L?(Q) defined by

n
Uy 1= Z A% .
k=1

From (C.0) we have that

n

(tn, @) = > AP qrdl|* — o0,

k=1

as n — 0o. On the other hand, using (C.2)
(s )9 = D AP |lgwo |
k=1

is uniformly bounded. Therefore, the functional defined in (3.11) is not continuous and
(3.6) is proved. O

4. APPLICATIONS TO SHIFT THEOREM FOR THE LAPLACE OPERATOR ON
POLYGONAL DOMAINS.

Let Q be a polygonal domain in R? with boundary 9Q = (9Q)p U (99) y, where (0Q)p
is not of measure zero, and (0Q)p and (092)y are essentially disjoint and consist of a
finite number of closed line segments. Let 02 be the polygonal arc P\ P - -- P,,P;. Here
we consider that the set { Py, Ps, ... , Py, } consists of all vertices of 002 and all the points
of (0Q)p N (092)y. We will also call the points of (92)p N (0Q2) N vertices of O. At
each point P;, we denote the measure of ZP;_; P;P; (measured from inside ) by wyj,
where P11 = Py and Py = P,,. For j =1,2,...,m, let us define v, := max{w,;/7, 1}
if both edges [P;, Pj_1] and [P, Pj41] belong to the same set (0€2)p or (0)y, and
7; := max{2w;/m, 1} if one edge belongs to (0€2)p and the other edge belongs to (0) .
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Let v := max{y; : j = 1,2,...,m}. We consider the boundary value problem for the
Poisson equation on 2. Given f € L*(Q), find u such that

—Au=f in €,
(4.1) u=0 on (09Q)p,
v =0 on (0Q)y

The variational formulation of (4.1) is : Find u € H}(Q) such that
(4.2) Au,v) = / fvdr forall v € HH(Q).
Q

It is well known that for f € L?(f2) the variational problem has a unique solution
u e HpH(Q) and

(4.3) ||| ey < c||fHH51(Q) for all f € L*(Q),

where H,'(€2) is the dual of Hp(€2).
Let u be the solution of (4.2). By taking v in D(2), the space of all infinitely differ-
entiable functions with compact support in €2, one has

—Au=f

in the sense of distributions in €2, so the equality is satisfied pointwise, almost everywhere
in Q. Also, the solution u of (4.2) satisfies the boundary conditions of (4.1) (see [20],
Chapter 2 therein). In addition, if ¥ = 1 then u belongs to H?(Q) N H5(Q) (see,e.g.,
[19]), and

(4.4) lull 2y < el fll ey for all f € L3().

If we define T : H;'(Q) — HL(Q) by Tf := u , where u is the solution of (4.2), then
T is a bounded operator. Moreover, if v = 1, T' is a bounded operator from L?(Q) to
H?(Q). Thus, by interpolation, we have for any s € [0, 1],

(4.5) ull sy < ell fllgs sy for all f € Hy'*(Q).

Here, H'**(Q) := [H*(Q), H ()]1—s and Hp' () := [L*(Q), H5 (Q)]1-
We will prove in this section that for v > 1, the shift estimate ( .5) stlll holds for any
s <1/7.

4.1. Reduction to sector domains. For j = 1,2,... ,m, let U; be an open disk
centered at P; such that U; contains no vertices other than P;. Next we add more disks
with centers in 0€2, say U; , centered at P;, j=m+1,... M, such that U; contains
no vertices other than P;, and

M
o c | u,
j=1
By increasing the number M of disks, we can assume that for some positive numbers r
and € we have
Uij:{(Tj,ej)30<7°j<7“0, O<9j<wj}
C {(7’]',(9]')30<7°j < (1+€)T0, 0 <9j <w]'} = Qj cQ , ] = 1,2,...M,
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where (7;,6;) are the polar coordinates with origin at Pj, w; = 7w for j =m+1,...M
and Py is not in €2;, for k& # j. Let Uy and €y be two domains with smooth boundaries
such that Uy C Qo and Qy C Q and such that

M
aclJu.
=0

M
Then, there is a partition of unity {@}é‘io subordinate to the covering ‘Uo Uj. Let us
j:

denote the restriction of ¢; to Q; by n; (j =0,1,...,M). Further, we define (0€;)p
and (09Q;)n to be

(an)N = (8Q)N N 8(2] s (8QJ)D = an\(an)N,

and denote the space of functions in H'(§;) which vanish on (09Q;)p by H}L(£;), for
j = 1,2, ce 7]\4. Also (890)[) = 890

We reduce the proof of (4.5) to the case when  is a sector domain. Let’s assume for
the moment that the following holds.

Theorem 4.1. The variational solution u; of (4.2) relative to Q;, j =1,... , M, sat-
isfies

(4.6) Huj-HHlJrs(Qj)S CHfHHBHS(Qj) forall f € LQ(Qj), 0<s< ”)/j_l,
where we take v; =1 for j=m+1,... , M.

Given this result, we can prove that (4.5) holds for v > 1 and s < 1/~.
Indeed , let f € L*(£2;) and let u be the solution of (4.2). For j = 0,1,...,M, let
uj :=1n; u. Then, in the sense of distributions in {2;, we obtain

Since the boundary conditions of (4.1) are satisfied on (0€2;)p and (09;)n for u = uj,
we have (see [20], Theorem 2.1.1 therein) that u; is the unique variational solution of
the problem : Find u; € H(€;) such that

(4.7) Ai(uj,v) = / fivdz  for all v € Hp(€)),
Q;
where f; = fn; — ulAn; —2Vu - Vn; and
Aj(uj,v) = / Vu; - Vv dx.
Q;

Now, f; is a function in L?*(§2;) and by Theorem 4.1, we get
(4.8) lwill s < el fillgorrs,) » =12, M.

For j = 0 the estimate (4.8) holds for any s € [0, 1], because the boundary of g is
smooth and we can apply the regularity result for domains with smooth boundaries.
From the way we have defined the domains €2; one can find 7 > 0 such that

dist(Q\Q,supp w;) >r  57=0,1,..., M.
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Thus

||uj||H1+s(Q)§ C||uj||H1+s(Qj) .

M

Here ¢ is independent of f and j. Since u = ) u;, using the triangle inequality, the
=0

estimate (4.8) and the above observation, we obtain

M
(4.9) lullre@ < ¢ D0 M fillasresay)-
j=0

The estimate of ||fj||H51+S(Qj) is as follows. First, L*(£2;) is continuously embedded in
Hp'™#(€;), and multiplication by a smooth function is continuous on Hy,'**(€);) . Thus,
Hfj||H51+S(Qj) < ||f7lj||H51+S(Qj) + ¢ [[uln; 4 2Vu - Vi 120,

< c(lflagrey + lullmray)) -

Second, the extension by zero operator E : H(Q;) — H}(Q) is continuous. It follows
that

HfHH;(Qj)S CHfHH;(Q) for all f € Hp'(9).
Also,
||f“L2(QJ) S ||f“L2(Q) fOl" all f - L2(Q)
By interpolation, we get
HfHHBHS(Qj)g chHH51+S(Q) for all f € Hy'™5(Q).
Third, we have
lull ey < llullm@ < ellfllai@ < el fllazes — forall f € Hp™(Q).
D D
Finally, from these inequalities we deduce

(4.10) HfjHHBHS(Qj)g CHfHH—1+S @ forall fe Hp(Q).

Thus, from (4.9) and (4.10), since L?*(Q) is dense in H,'™(Q), we obtain that
Jallsrioy < clfllyrony  for all £ € Hp*5().

Therefore we obtain that (4.5) holds for v > 1 and all s < 1/7.

4.2. Solving the problem on sector domains. Let 2 = S, be the sector domain
defined by

(4.11) So:={(r,0):0<r <1y, 0<0<w},
and let (0$2)y be in one of the posiblities listed below ( Case 1, Case 2 or Case 3). We
assume, without loss of generality, that ro = 1. Let V*(Q) := H?*(Q) N H5(Q2). Then,

(see e.g., Theorem 2.2.3 in [20]) the Laplace operator A : VZ(Q) — L?*(f2) is a Fredholm
operator. Consequently,

(4.12) ull 20 < el Aul|z2q) for all u € V3(Q),

and the range of the operator has finite codimension. Grisvard characterized the or-
thogonal complement N of the range of the Laplace operator for the case of a polygonal
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domain in [19] and [20] . In particular, for our sector domain Q = S,, the subspace N is
described as follows:

e Case 1. 'Dirichlet corner’ ; (9Q)n = 0.
(i) 0 <w <7 ; N ={0}.
(i) T <w < 27 ; N = span{¢}, where

W(r,6) = (7“_5 — 7“5) sin zQ,
W

e Case 2. 'Neuman corner’ ; (0Q)ny = {(r,0) € 92 : 0 =0 or 0§ = w}.
(i) 0 <w<m; N ={0}.
(i) 7 <w < 27 ; N = span{¢}, where

W(r,6) = (7“_g — Tf) cos I6’
w

e Case 3. 'Mixed corner’ ; (0Q)y = {(r,0) € 02 : 6 = w}.
(i) 0<w<7m/2; N =(0).
(i) 7/2 < w < 37/2 ; N = span{v }.
(iii) 37/2 < w < 27 ; N = span{ty, 12}, where

Yi(r,0) = (r=" — ") sin(h), v, = (k — 1/2)%, k=12

For the (i)-cases, the estimate (4.6) holds for any s € [0,1]. For the remaining cases
we will use the interpolation results of in Section 2.

According to previous notation, L*(2), denotes the orthogonal complement of the
the subspace N in L?*(2). The Laplace operator, from V?(Q) to L*(Q), is a bounded
operator with a bounded inverse. Thus, the operator T : H;,'(€2) — H'(Q) defined at the
beginning of Section 4 is a bounded operator from L?*(Q), to H?(Q) . By interpolation,
we obtain

(4.13)  ull 2@, 1@ < CHfH[LQ(Q)N,Hgl(Q)hfs for all f € [L*(Q)a, Hp' ()]s

Since [H2(2), H'(Q)]1_s = H'™(Q) and [L2(Q), H5 ()]s = H; (), the only thing
which remains to be proved in order to obtain the estimate (4.5) for s < 1/v (the
Theorem 4.1 as well) is that

(4.14) (L2 (), Hp (Q)]1-s = [L2(Q), Hp ()15 for s <1/,

where v = w/m in Case 1 and Case 2, and v = 2w/ in Case 3.
Let ¢ = (r™" —r”)g(f) be one of the functions which defines the subspace A. (Note
that v € (0,1)). The next result is of crucial importance in proving (4.14).

Theorem 4.2. If 0 <s < v, then
(4.15) [L*(Q)y, Hp ()15 = [L*(Q), Hp' (D)1

We will give the proof of this main result later.

When dim(N) = 1 we are in one of the (ii) cases listed above. In this case (4.14)
follows directly from Theorem 4.2. Let us consider now the case in which dim(N') = 2,
i.e., Case 3 (iii). In order to prove (4.14) we apply Theorem 2.2. The condition (A.1)
of Theorem 2.2 follows easily from the Theorem 4.2. To verify (A.2) for X = L?(Q)
, Y = HyY(Q) and K = N = span{¢;, 1}, we start by deriving an eigenfunction
representation of the norm on H%(£2). To do this, we consider the following eigenvalue
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problem.

Find real numbers A and functions v € H*(), u # 0 such that
—Au=Au in

(4.16) u=0 on (09Q)p,

g—z =0 on (8Q)N
Let J, be the Bessel’s function of the first kind, of index v. Forn =1,2,..., let

Vp = (n— 1/2)5 and ©,(0) :== \/2/wsin(,0), 6 € (0,w).

For each fixed n and k =1,2,... let 5, be the k-th positive zero of J,, (r) = 0, and let
fen(T) = ckndy, (Brnr), where c,;’i is the positive constant given by

1
c,;i ::/ rJ,,n(ﬂk,nr)Q dr.
0

Using separation of variables and polar coordinates for the Laplace operator, we find
the following set of eigenvalue, eigenvector pairs:

(/\k:,m@k:,n) — (ﬁkn, fk:n( ) n( )), k,n: 1,2,... .

Since {¢n}n>1 is an orthonormal basis for L?([0,w]) and for each fixed n, {frn}r>1 18
an orthonormal basis for L*([0,1]) with respect to the inner product with the weight
function w(r) = r (see,e.g., [29]), we obtain that {¢kn}kr>1 is an orthonormal basis for
L*(Q). Furthermore, each pair (g, @k.n) is a solution of (4.16), and by Green’s formula
we have that

/Vgak,n Vv = )\km/gak,n v forallv e H})(Q).
Q Q

Thus, if H},(Q) is provided with the inner product

(u, 0)y = /Vu Vo= A(u,0),

then {)\,;;/2 Ok tkn>1 18 an orthonormal basis for H},(€2). Therefore, the norm on H},(€2)
is given by

Jull; = Z )‘k,n(uaﬁpk,ny'

kn=1

Next, the norm on H3(Q2) for a € [—1,1] is given by

(4.17) |ul|2 = Z Aot oen)?  for all w e HE(Q) N L),

kn=1

With the notation adopted in Section 2.2, taking X = L2(Q2) and Y = H,'(2) we have

(e 9]

Akn
(4.18) (u,v)x: = Z )\ k+ ” Uy ) (U, Qrn) for all u,v € X.
k,n

Theorem 4.3. If dim(N) =2 and s < 1/, then (4.14) holds.
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Proof. Let s < 1/v = vy be fixed. First, we verify the conditions (A.1) and (A.2) of
the Theorem 2.2 for n = 2, X = L*(Q), Y = H'(Q) and K = N . Since ¢y, ¢ H}, ™,
by Remark 2.3, we have that L2(Q),, is dense in [L*(Q), H5'(Q)]1_s, for k = 1,2. Thus,
(A1) is

(4.19) [L2(Q)y,, Hp ()1 = [L(Q), HR (i, for k=1,2

which follows from Theorem 4.2.
Checking the condition (A.2) is easy in this case. From (4.18) we have

Akn
(W1, ¥2) x 0 = Z by k+ 2 (1, @rn) (Y2, Prn)-

o0

Since (¢1,¢pn) =0 for n # 1 and (¢9,9r,) = 0 for n # 2, we obtain that
(1,99)xe = 0 for all ¢ > 0. Thus, (A.2) is trivially satisfied. By Theorem 2.2 we
obtain that

(L2, Hp (Q)1-s = [L*(Q), Hp (D 1-s.-

Using again Remark 2.3, one sees that L?(2), is dense in [L2(Q), H5'(2)]1_s. It follows
that

[L2(Q)7 HBI(Q)]I—S,N = [L2(Q)7 HBI(Q)]l—S‘
Therefore (4.14) holds, and the proof is complete.

It remains to prove Theorem 4.2.

4.3. The proof of Theorem 4.2. Our proof of Theorem 4.2 involves reduction of the
problem , via the interpolation result of Section 2.3, to a similar interpolation problem
where the domain 2 = S, is replaced by a polygonal-sector domain (defined below)
containing 2. We say that (2, is a polygonal-sector domain (see Figure 1) if

n
=U=.
i=1

where, for ¢+ = 1,... ,n, 7; is a triangular domain with vertices 5;, O, S;1; and O is
taken to be the origin of a Cartesian system of coordinates in the plane.

We assume, without loss of generality, that S; lies on the positive semi-axis. For
i=1,...,n+1, let I'; denote the segment [O,S;], and fori=1,... ,n+1, let o; be
the measure of the angle between I'; and I';;1, and define the angle w of {2 by

n
w = E (678
=1

For our results concerning interpolation, it is enough to consider only the cases (0€2)y =
0, (09)ny = Tpyy or (02)y =T1 U1, Let 7y = {7,... , 7} be the initial triangula-
tion of (2;. We define multilevel triangulations recursively. For £ > 1, the triangulation
7T}, is obtained from 7;_; by splitting each triangle in 7,_; into four triangles by connect-
ing the midpoints of the edges. The space M}, is defined to be the space of all functions
which are piecewise linear with respect to 7, vanish on (0€2;)p and are continuous on
Q. Let Qy denote the L?(€2,) orthogonal projection onto M.
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Sn+1

Sn

F1GURE 1. Polygonal-sector domain

Now let S, be a sector domain defined by (4.11) and consider a polygonal-sector
domain €2, with the same angle w and such that

So CH{(r,0):0<r<2ry, 0<0<w}CQy.

Note that €2, is not necessary contained in the original polygonal domain. For ) we
use the notation given in Figure 1 and for simplicity we take ro = 1.
Assume that the free part (0€;)y of 0€2 is defined as follows:
(0Q)n =0 if S, is in Case 1,
(0Q2)y =T UT, 1o if S, isin Case 2 and
(0Q)ny =Ty if S, is in Case 3,
where Case 1-Case 3 are defined in Section 4.2. Let ¢ € D(f)) be a cut-off function
which depends only on the distance r to the origin and satisfies

¢((r,0)=1 for 0< r<1/2 and 0<60 <uw,

¢(r,0) =0 for r>1 and (r,0) € Q.

Let 1 be one of the functions which defines the subspace N (defined in Section 4.2
for S,) and let ¥ be the extension by zero of 1 to Q,. Then ¥ = ¢ + uf where
é(r,0) = ¢ r™7g(0) and u* € H5H(Q,). The next result is a version of Theorem 4.2 for
polygonal-sector domains.

Theorem 4.4. Let Q, be a polygonal-sector domain as defined above. If 0 < s < v,
then

[L2(2) 5, Hp' (- = [L*(Q2), Hp' ()1,

for any function ) = ¢+ u® with ¢(r,0) = ¢ r~g(0) and u® being arbitrary function in
HL().

Proof. From the results of the Appendix 5.3 and Appendix 5.4, we have that an equiva-
lent norm on H$(€,) is given by the multilevel norm (3.4). By Theorem 3.1, it is enough
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to verify that the function ¢ satisfies the conditions (C.0)-(C.2) defined in Section 3.2
withp=1—vand =1-—s.

To begin with, we will prove that the function ¢ satisfies (C.0)-(C.2). Let M, be
the space of piecewise linear continuous functions with respect to 7, defined on €2, and
let @, be the L2(Q,) orthogonal projection onto M. First step in verifying (C.0) and
(C.1) is to prove that there exists a positive constant ¢ such that

(4.20) (I —Qu)ol* > eA™, k=1,2,....

We define 7F to be the triangle in 7, which is the the image of 7, € 7; via the map
& — hy2. Here, without lost of generality, we assume that h? = A\;' = 471 Then

1 = @@l = 1T = @bl = 191y — 1@l

The projection Q¢ can be estimated on 7F in terms of the three nodal functions
oF b of associated with the three vertices of 7f. If M* is the 3 x 3 Gram matrix
associated with the set {¢%, 0% 5}, and S* := (Sfj), i,7 =1,2,3 is the inverse of M*,
then

3
613ty = Quilfyy = [ 0% do= 3085 [ ogtar [ oghan
1 i,j=1 T 71

Further, by making the change of variable x = hyZ in the above integrals, a simple
computation shows that

3
191172y = 1Qull72(r) = B2 ( / ¢*di =Y S / dpi di / b d@)

ij=1
—0, ~
=" (1012 = @16 032r,) ) -
Since ¢ is not linear on 71, the constant [|¢[|72,,) — [|Q8]72(,, is strictly positive.

Combining the above estimates, we have proven that (4.20) holds. o
The second step is to use (4.20) and the fact that M is a subspace of My, in order
to obtain

(4.21) (I = Quol* > e, k=1,2,... .

From (4.21) we see that [||¢||g,, defined in Remark 3.1, is not finite. Hence ¢ ¢ H%(€,).
Using again (4.21) and the identity

1(Qk = Qe—r)ull® = I = Qu—v)ull® = |1 = Qu)ull* , w € L*(%),

we have

MO oS M- A :
(¢7 ¢)X,t - /\1 +t2 +1 ; (/\k+1 +t2)()\k —|—t2)H([ - Qk)¢H

= (4 =, (k)

2 _4—26
= ct Z(4k+t2)2 =1 02(4k/t2+1)2'

k=1 k=1
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Finally, the last sum can be bounded below by a positive constant independent of ¢ as
follows. Let us fix t > 4 and let ko be the integer such that 4% < ¢? < 4%0+1 Then

> (4k/t2>1—00 (4k0/t2)1—60 51:1_90
> > inf
L (F/2 112 7 @R/ 112~ selijan(z + 1)?

> 0.

Thus, (C.0) and (C.1) hold for the function ¢.
To verify (C.2) we first observe that

1(Qr — @r-1)¢lI* < I — Qu-1)¢lI”.
Hence, it is enough to prove that there exists a positive constant ¢ such that
(4.22) (I = Qr)oll> < e, k=1,2,....
Let 1, be a cut down function which depends only on r and satisfies

ne(r) =0 forr < hy, mi(r) =1 forr > 2hy,

k(N < e/h, (r)] < e/hi forall hy <r <2hy, k=1,2,...,

for some positive constant c¢. For example, we can take
me(r) =1/2+1/2sin ((r - Shk/Q)hl) on [hg,2hy].
k

Then, ¢ = (1 — )¢ +nr¢ and ned € H*(Qy). Let I, : H*(,) — M, be the interpolant
associated with 7. By applying standard approximation properties and (4.12) we obtain

(I = Qr)oll < [[(I = Qr)(1 —m)oll + (1 — Qr)nedll < (1 —m)oll + (1 — ) med|

< = m)dll + chglinedll . < 1= m) Sl + chill Amkd) [ 22(0.)-

Using a simple computation in polar coordinates, and the estimates for the derivative
of ni, we get

(1 —=m)ol? < chi®  forall k=1,2,...
and
Rl Ak | 2.y < chi®  forallk=1,2,....

Combining the above inequalities, we conclude that (4.22) is valid. Thus,(C.3) holds
for the function ¢.

Verifying (C.0)-(C.3) for the function ¢ is mainly based on finding some positive con-
stants ¢, ¢y such that

(4.23) AN <= Quol? <N k=1,2,....
Since the function ug belongs to H} (), we have
(I = Qr)url®* <cA,', k=1,2,....

Therefore, the function v satisfies an estimate of type (4.23) and (C.0)-(C.3) hold for
the function 1 too. The result is now a direct consequence of Theorem 3.1. O
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Proof of Theorem 4.2 Let E : L*(S,) — L*(€), be the extension by zero operator,
and let R : L*(Q2,) — L*(S,) be defined as follows: First, we introduce a cut-off function
n € D(2) which depends only on the distance r to the origin and satisfies

nr,0) =1 for 0< r<1 and 0<6<w,

n(r,0) =0 for r>2 and (r,0) €.

Then, for a function v € L*(£2,) we define Rv € L*(S,) by

(Rv)(r,0) :=vi(r,0) —v1(2—1,0), (r,0)€S,,
where,

vi(r,0) :=n(r,0)v(r,0), (r,0) €.

Let iZj denote the function Fv. According to Theorem 4.4

[L2(Q) g: Hp' ())1-s = [L2(), Hp' ()1,

It follows that the function 1 and the operators F/, R satisfy the hypotheses of Lemma

23 with 0 =1—s, VY(Q) = H,(S,) and V}(Q) = H}(Qs). Thus, (4.15) holds for the

sector domain S,, and the proof is complete.

5. APPENDIX

5.1. The proof of Lemma 2.3. Using the duality , from (2.25)-(2.27) we obtain linear
operators £*, R* such that

(5.1) E*: LX(Q) — L*(Q), E*:V Q) — V), are bounded operators,

(5.2) R*: L*(Q) — L*(Q), R*:V Q) - VQ) are bounded operators,

(5.3) E*R'u=u  forallu e L*(Q),
(5.4) E* maps L*(Q); to L*(Q)y,
(5.5) R* maps L*(Q)y to L*(Q);.

From (5.1) and (5.4), by interpolation, we obtain

(56) HE*UH[LQ(Q)w,V_l(Q)]e < CHUH[LQ(Q){E’V_l(ﬁ)]Q for all v € LQ(Q){Z}“

For u € L*(Q)y, let v := R*u. Then, using (5.5), we have that v € L*(Q);. Taking
v := R*u in (5.6) and using (5.3), we get

(5.7) ulliz2@),,v-1@) < c]\R*u]\[Lg(ﬁ)%V_l(ﬁ)}e for all u € L*(Q)y.
Also, from the hypothesis (2.30), we deduce that

(5.8) HR*UHW(Q)&,v—l(Q)M < B ullipa@y @, forall we L*(Q)y.
From (5.2), again by interpolation, we have in particular

(5.9) HR*UH[LQ@)’V_l(me S CHU/H[LQ(Q)’V—I(Q)]Q for all u € LQ(Q)¢.
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Combining (5.7)-(5.9), it follows that
(5.10) HUH[LQ(Q)»(/;7V71(Q)]9 S CHUH[L2(Q)7V—1(Q)]9 for all u € L2(Q)¢.

The reverse inequality of (5.10) holds because L?(2), is a closed subspace of L*(Q).
Thus, the two norms in (5.10) are equivalent for u € L*(2),. From the assumption
(2.28), L*(f2)y is dense in both spaces appearing in (2.31). Therefore, we obtain (2.31).

Remark 5.1. The proof does not change if we consider ) C Q to be domains in R"
and H' is replaced by any other Sobolev space of positive integer order k.

5.2. Some results from the multilevel theory. In this section we present some useful
lemmas. (See, e.g., [15] and [28] for a more complete presentation of results concerning
multilevel theory.)

Lemma 5.1. Let p € (0,1) and let {l,;n} be a double sequence of nonnegative real
numbers satisfying

Lom < p™ "0 forallm,n=1,2,....
Then for any a = {a,},b = {b,} € ly with nonnegative entries, we have

Z lmnam

m,n=1

HaHngszg :

where || - ||, denotes the norm on ls.
The proof is based on the Cauchy-Schwarz inequality.

Lemma 5.2. Let M be a Hilbert space with inner product (-,-), and let {My} be a
sequence of nested subspaces of M (My C Myy1). Denote by Qy the orthogonal projec-
tions onto My and for any positive integer J let By : My — My, By = ZZZI )\I;IQ;C.
(A > 0). Then By is a symmetric positive definite operator and B;' is characterized
by

J J
(B;lv,v) = min {Z )\kHUkHQ, v = ka, Vg € Mk} ,
k=1 k=1

where || - || is the norm induced by the inner product (-,-).

A proof of the above lemma can be found in [15]. An easy consequence of the above
two lemmas is the following.

Lemma 5.3. Assume that the hypotheses of Lemma 5.2 are satisfied and that A\, <
pAet1 for some number p in(0,1). Then, there is a constant ¢ independent of J such
that

(5.11) (B;'v,v) 1(Qr — Qr_1)v||* < (B v,v),  forall v e M,y.

‘Mk
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5.3. Norm equivalences on H' by multilevel subspace decomposition. To start
with, let © be a polygonal domain in R? with boundary 9Q = (992)p U (9Q)y, where
(02)p is not of measure zero , and (0Q2)p and (0N2)y are essentially disjoint. Let (7j)
be a quasi-uniform sequence of nested triangulations of {2 such that the parameter hy
associated to (7;) is hy27%. For k > 1 the space M, is defined to be the space of
all functions which are piecewise linear with respect to 7, vanish on (0Q)p and are
continuous on . We denote the space H,(2) by M. Assume that

MicMy,C..CM;C..CM,

is a nested sequence of finite dimensional approximation subspaces of M defined using a
sequence of nested meshes in a way similar to that described at the beginning of Section
4.3. Let (-, -) denote the L*(€2) inner product and let || - || be the norm on L?(£2) induced
by (-,-). For k = 1,2,..., we define the operator P, : M — M to be the orthogonal
projection with respect to the inner product A(-,-), where

A(u,v) == / Vu - Vv dz for all u,v € M,
)

and Ay : M, — M, is defined by
(Agu,v) = A(u,v) for all u,v € M.

Let p, be the largest eigenvalue of Ay. The sequence {uy} is equivalent to {4571} i.e.,
there exist positive constants ay, as such that

(5.12) adt < <andt, k=1,2,...
We denote 451 by ).
The goal of this section is to show that we have:

(ML.0) There exist some positive constants ¢; and ¢y such that

aA(u,u) < Z Mell(Qr — Qr—1)ul]* < c2A(u, ) for all u € M.

k=1

All the considerations of this section remain valid if we replace {A;} by an equivalent
sequence, for example ;. In order to study the above norm equivalence we start by
introducing the following conditions:

(ML.1) There is a positive constant ¢ independent of j and k and a number p € (0, 1) such
that

|Aug, uj)| < cp* I Aug, up) 2 Aug, uy)? for all u € M.
where uy = qru = (Qr — Qr—1)u.

(ML.2) There exists ¢ independent of J such that

J
Z el (Qr — Qr—1)ul]? < cA(u, ) for all u € M.
k=1

(ML.3) There exists ¢ independent of k and J such that
(I — Pr—1)ul|< c)\,zl/QA(u, w)/?, for all u € M.
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Remark 5.2. Condition (ML.1) is known as a Strengthened Cauchy-Schwarz inequality
and is satisfied for our sequence of finite dimensional approximation subspaces { My}

(see, e.g., [15]).

Next, we give some connection between the above conditions. The results are known in
the multigrid theory (see, e.g., [14], [15]). For completeness we provide some proofs also.

Proposition 5.1. The norm equivalence (ML.O) holds whenever Condition (ML.1)
and Condition (ML.2) are satisfied.

Proof. Let u € M be fixed. Then u = > uy, where u, = qpu € Mj,. From (5.12) we get

that -
(5.13) Aug, up) < chgllugl?,  forall k=1,2,....
Using Condition (ML.1) , we obtain
= Z Alug,uj)< c Z P9 A g, ug )2 Ay, ug)'2.
kj=1 kj=1
By Lemma 5.1 and (5.13), we have

1+ p =
Al w)< x2S A, w)< o5 pzxknukw

which gives the lower inequality in (ML.0). For the other mequahty consider a sequence
(uz) convergent to u in the H} () norm, chosen such that u; € M;. Then Condition
(ML.2) implies that for any positive integer N,

N
Z el (Qr — Qr—1)ug|]? < cAug,uy) ,
k=1

where c is independent of N, J and u. Letting J to tend to oo in the above inequality
we have

N
Z el (Qr — Qu—1)ull® < cA(u, u) for all u € M.
k=1
Since N was arbitrary, this justifies the validity of the upper inequality of (ML.O) .
0

Remark 5.3. It is well known (see, e.g., [8]) that condition (ML.2) holds whenever
Condition (ML.3) holds. The proof is an easy consequence of Lemma 5.2 and Lemma

5.3. Moreover, it is also known that if the domain  is nice enough (for example ) is
convex and 02 = (0Q)p), then the regularity condition (ML.3) holds.

In order to prove Condition (ML.2), when (2 is an arbitrary polygonal domain, we
introduce an overlapping domain decomposition of €2 such that on each subdomain
Condition (ML.2) is satisfied. By the above remark it is enough to verify Condition
(ML.3) relative to each subdomain. To get the result on the whole domain, one can
use additive Schwarz preconditioning type arguments. We now make this outline more
precise.
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Let M; = ZM ° be a splitting of M associated with an overlapping domain decom-
position of Q

(5.14) Q=[]

ie.,
(5.15) MY = {u € M : supp(u) C Q;}.
Let Qi : L*(2) — M}, P : M — M; be the orthogonal projections with respect to (-, )

and A(-,-), respectively. We define here a stable decomposition condition with respect
to the splitting of Mj:

(ML.4) For each u € M there exists a partltlon
u= Zuz, with u; € MY, satisfying ZA(uz,u,) < cA(u, u),

=0 =0
where ¢ is independent of .J and u € M J.

Lemma 5.4. Assume that Condition (ML.4) is satisfied and that Condition (ML.2)
holds on each subdomain, i.e.,

J
(5.16) > (@ = Qi Duwill® < eAlug,ug)  for allu; € M5, i =1,..,n.

for some constant ¢ independent of J and i. Then Condition (ML.2) relative to the
whole domain € is also satisfied with constant which may depend on n. Consequently,
(ML.O) holds.

Proof. For any u € M; we consider the decomposition v = Y u;, with u; € MY given by
i=0
Condition (ML.4) . Then,

Z)\kH Q1 — Qr—1)ull® <nz)\kZH Q1 — Qr—1)ui||?

=1

= ”Z Z e ll(Qr — Qr—1)ws|*.

i=1 k=1

Next, for each fixed ¢ and u; € M’ C M; we have that
J

= Z(QZ: - QZ;_1>U¢7
k=1

where (Q} — Q% _)u; € M{ C M. Thus, by applying Lemma 5.2 , Lemma 5.3 and
(5.16), we obtain that

J J
DAl @ = Qe-nuwilP< ¢ Y- M@ — Qho)uil < eA(us, ).
k=1 k=1
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Combining the above estimates with Condition(ML.4), we have

J
Z )‘kH(Qk - Qk—l)u||2 S an(u, U),
k=1

with ¢ independent on J. Therefore Condition (ML.2) is satisfied. Finally, from Propo-
sition 5.1, Remark 5.2 and the validity of (ML.2) we have that (ML.0) holds. O

5.4. Norm equivalences on H' by multilevel subspace decomposition for polygonal-
sector domains. We restrict our study from the previous section to a simple case when

Q) is the polygonal-sector domain introduced in Section 4.3 and the free part of 0 is
(0N =0, Tpao or Ty UT, 4o (see Figure 1). Let {M;} be the sequence of approx-
imating subspaces defined in Section 4.3. In addition, for ¢ = 1,... ,n, we define the
subdomain €; of Q to be the domain made up by 7; and 77, ( Q& = 75 U 74, ), and
define the subspaces M} of M, to be

M} ={u & M :supp(u) C Q;}, k=1,2,....
Lemma 5.5. Let 2 be a polygonal-sector domain as defined above and assume that
Oy = 0 or (02)y = Thio. Then the splitting M; = iM} satisfies Condition
(ML.4). =

Proof. For i =2,... ,n+ 1, let Q° be the polygonal-sector domain such that
i—1
Q= J7.
j=1
Then T; is a part of 9Q° (see Figure 1). We fix J, and for u € M, we define v;u to be
the restriction of u to I';. By standard results about traces of functions in H', we have

Yo € Hyf (')
and
(5.17) H’yl-uHHééz(Fi)g cllullgron< cA(u,u)  forall ue M.

Throughout the whole proof of this lemma, ¢ is a constant independent on J, 7, and it
might be different at different occurrences. For ¢ = 2,... ,n, we extend by zero ~v;u to
the rest of 07; and consider an extension of the new function to 7;, denoted by @; and
satisfying

;€ MY = {vl,, v e M},
(5.18)
|@il3 () < CH%“HH&{Q(Q) for all u € M.

For example, we can take u; to be the discrete harmonic extension of v;u to 7; .
Define u; € M} by

u(z) ifz en

ur(z) =< Us(x) ifx €m

0 if €\,
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u(z) —u;(z) ifx €
’LLZ(.CI?) = ﬂiﬂ(:l:) ifz € Ti+1
0 if ze O\,

u(z) —uy(x) ifz €m,
up(x) = u(z) ifr €141
0 if e Q\Q,.
Clearly, u = uy + ug + - - - + u,. Using (5.17),(5.18) and the Cauchy-Schwarz inequality
we obtain that

Aug, uy) < cA(u, u) foralue My, i=1,...,n.

Therefore,
ZA(UZ', ;)< enA(u,u)  for all u € My,
i=1
which verifies Condition (ML.4) . O

Theorem 5.1. Let (2 be a polygonal-sector domain. Assume that (0Q)n = 0 or (0Q)n =
Lpio or (0Q)ny = 'y U, 40. Assume that the angles of the polygon 02, excluding the
angle at the origin, are not greater than m for those angles contained in (02)p, and not
greater than /2 for the angles with one edge in (02)p and the other edge in (02)y. Let
the sequence (M) of subspaces of H},(Q) be as described in Section 4.3. Then Condition
(ML.O) holds.

Proof. First we consider the case when (0Q)y = 0 or (9Q)y = I'ny2. In this case, by
using the assumptions about the angles of 02, and eventually by increasing the number
n of subdomains, we have full regularity for the Laplace operator on each subdomain
; (defined at the beginning of the section). Thus, Condition (ML.3) is satisfied on
each €2; (see e.g., Theorem 2.3.7 in [20], [15]). On the other hand, from Lemma 5.5 the

splitting M; = > MY satisfies Condition (ML.4). Thus, by Lemma 5.4 and Remark 5.3
i=0
Condition (ML.0) holds.
Next, we study the case (0Q)y = I'; U T,42. If w is not greater than m, Condition

(ML.3) is again fulfilled. Consequently, (ML.2) holds. According to Proposition 5.1
we obtain that Condition (ML.0) holds. Let w be greater than m. Define Q) to be the
polygonal domain int(Q U 7,,s), where 7,49 := [Spia, 0, 51]. Let 9Q be the boundary
of Q, and define (8@) ~ =0 and (8@) p = 0. Assume, without loss of generality, that
Q is a convex domain. Consider

T1 = {70 -, Tri1 Tri2 b
Then we define the multilevel triangulation (’j}g) recursively in the same manner we
defined (7;) . For k = 1,2,..., the space M} is defined to be the space of all functions
which are piecewise linear with respect to 7y, vanish on (02)p and are continuous on 2.

The LQ(Q) orthogonal projection onto M;, is denoted by Q. We fix J and for v € M,
we denote by yyu the restriction of u to (0€2)y. Thus, we have

vu € Hoy ((09)w)
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and
(5.19) H’yNuHHééz(FN)g cllull gy < cA(u,u)  for all u € My,

where ¢ is a constant independent of .J, which might be different at different occurrences.
The set (0Q2)y is part of the boundary of 7,,2. We extend yyu by zero to the rest of
0T, and consider an extension of the new function to 7, denoted u,- and satisfying

lpye € M2 = {0, ., 1 v € My},
(5.20)
|Tnt2lfn i, )< CHP}/NUHH(%Q(FN) for all u e Mj.

For example, we can take ,.5 to be the discrete harmonic extension of yyu to 7,12 .
Define u € M; by

u(z) ifz €Q
Upio(z) ifx € Thyo,

Using (5.19), (5.20) and the Cauchy-Schwarz inequality we obtain that
A(u, 1)< cA(u, u) for all w e M.

From Lemma 5.2 and Lemma 5.3, we obtain that

J J
(5.21) D M@ = @r-)ull’< e Nellugl® for all w e My and
k=1 k=1
for any partition of u,
J
U = Zuk, with wu, € M.
k=1

On the other hand, we have 4|q = u and
J A
i =Y (Qr— Q)i
k=1

The restrictions to © of functions in M, are in M,. Hence, we can take uy := ((Qk —
Qr_1)0)|q in (5.21). In addition, since € is a convex domain and (9Q)y := 0, Condition
(ML.3) is fulfilled for €2. Hence, we obtain that Condition (ML.2) holds on €. Then

J J J
D O All(@Qk = Q)< e Ml (Qk — Qu1) T2 < €D Mell(Qk — Qr-1)272 0,
K=1 K=1 K=1

< cA(t, 1)< cA(u,u),

for all u in M. Therefore we have proved that Condition (ML.2) also holds in this case
and, by Proposition 5.1, the proof of the theorem is complete. O

The conclusion of this section is that for polygonal-sector domains, as we described
above, an equivalent norm on H},(Q) is given by (3.1).
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