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Abstract. We consider the Laplace equation under mixed boundary conditions on
a polygonal domain Ω. Regularity estimates in terms of Sobolev norms of fractional
order for this type of problem are proved. The analysis is based on new interpolation
results and multilevel representation of norms on the Sobolev spaces Hα(Ω). The
Fourier transform and the construction of extension operators to Sobolev spaces on �2

are avoided in the proofs of the interpolation theorems.

1. Introduction

Regularity estimates of the solutions of elliptic boundary value problems in terms
of Sobolev norms of fractional order are known as shift theorems or shift estimates.
Applications of the shift theorems in the finite element theory can be found for example
in Nitsche’s duality argument, multigrid convergence theorems, convergence of “mortar”
finite element methods, etc..

The shift estimates for the Laplace operator with Dirichlet boundary conditions on
nonsmooth domains are well known (see, e.g, [21], [23],[27]). For the second order elliptic
boundary value problems with mixed boundary conditions on nonsmooth domains, much
less has been done.

One technique for proving shift results is by using the real method of interpolation
of Lions and Peetre [2], [24] and [25]. The resulting interpolation problems are of the
following type. If X and Y are Sobolev spaces of integer order and XK is a subspace of
finite codimension of X then how can one characterize the interpolation spaces between
XK and Y ? The problem was studied by Kellogg, for certain particular cases, in [21]
when XK was of codimension one.

The interpolation results presented in Section 2 give a natural formula connecting
the norms on the intermediate subspaces [XK , Y ]s and [X, Y ]s when XK is of arbitrary
finite codimension. The main result of Section 2 is a theorem which provides sufficient
conditions (the conditions (A1) and (A2)) for concluding that the spaces [XK , Y ]s and
[X, Y ]s coincide.

Our approach is to apply subspace interpolation for Sobolev spaces defined on sector
domains. We avoid the Fourier transform and the construction of the extension and
restriction operators on �

2 used in [21]. Instead, we use multilevel representatations
of the norms for the Sobolev spaces on sector domains. (For multilevel representations
of norms see, e.g., [13], [15] and [28].) In Section 3 the main result of Kellogg [21]
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concerning the codimension one subspace interpolation problem is presented with a
simplified proof. Using classical preconditioning techniques ([8]-[14]), a proof of the fact
that the multilevel norm on H1 is equivalent to the standard norm on H1 is presented
in the Appendix.

Shift theorems for the Poisson equation (with mixed boundary conditions) on polyg-
onal domains are considered in Section 4. Our approach for the proof, after reducing
the original shift estimate problem to similar problems on sector domains, is to use the
subspace interpolation results presented in Section 2 in order to interpolate between the
range of the Laplace operator, as a proper subspace of L2, and H−1. An eigenfunction
representation of the norm on Sobolev spaces is used to check the validity of the condi-
tion (A2), and the results of Section 3 combined with standard finite element tools are
used in order to check the validity of the condition (A1).

2. Interpolation results

In this section we give some basic definitions and results concerning interpolation
between Hilbert spaces and subspaces using the real method of interpolation of Lions
and Peetre (see [24]).

2.1. Interpolation between Hilbert spaces. Let X, Y be separable Hilbert spaces
with inner products (·, ·)X and (·, ·)Y , respectively, and satisfying for some positive
constant c, {

X is a dense subset of Y and
‖u‖Y≤ c‖u‖X for all u ∈ X,

(2.1)

where ‖u‖2
X = (u, u)X and ‖u‖2

Y = (u, u)Y .
Let D(S) denote the subset of X consisting of all elements u such that the antilinear

form

v → (u, v)X , v ∈ X(2.2)

is continuous in the topology induced by Y .
For any u in D(S) the antilinear form (2.2) can be extended to a continuous antilinear
form on Y . Then by Riesz representation theorem , there exists an element Su in Y
such that

(u, v)X = (Su, v)Y for all v ∈ X.(2.3)

In this way S is a well defined operator in Y , with domain D(S). The next result
illustrates the properties of S .

Proposition 2.1. The domain D(S) of the operator S is dense in X and consequently
D(S) is dense in Y . The operator S : D(S) ⊂ Y → Y is a bijective, self-adjoint and
positive definite operator. The inverse operator S−1 : Y → D(S) ⊂ Y is a bounded
symmetric positive definite operator and

(S−1z, u)X = (z, u)Y for all z ∈ y, u ∈ X.(2.4)
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The interpolating space [X, Y ]s for s ∈ (0, 1) is defined using the K function, where
for u ∈ Y and t > 0 ,

K(t, u) := inf
u0∈X

(‖u0‖X2 + t2‖u− u0‖Y 2)1/2.

Then [X, Y ]s consists of all u ∈ Y such that∫
0

∞
t−(2s+1)K(t, u)2 dt <∞.

The norm on [X, Y ]s is defined by

‖u‖2
[X,Y ]s

:= c2
s

∫
0

∞
t−(2s+1)K(t, u)2 dt,

where

cs :=

(∫
0

∞ t(1−2s)

t2 + 1
dt

)−1/2

=

√
2

π
sin(πs)

By definition we take

[X, Y ]0 := X and [X, Y ]1 := Y.

The next lemma provides the relation between K(t, u) and the connecting operator S.

Lemma 2.1. For all u ∈ Y and t > 0 ,

K(t, u)2 = t2
(
(I + t2S−1)−1u, u

)
Y
.

Proof. Using the density of D(S) in X, we have

K(t, u)2 = inf
u0∈D(S)

(‖u0‖X2 + t2‖u− u0‖Y 2)

Let v = Su0. Then

‖u0‖X2 = (u0, u0)X = (Su0, u0)Y = (S−1v, v)Y .

This implies that

K(t, u)2 = inf
v∈Y

((S−1v, v)Y + t2‖u− S−1v‖Y
2
).(2.5)

Solving the minimization problem (2.5) we obtain that the element v which gives the
optimum satisfies

(I + t2S−1)v = t2u,

and

(S−1v, v)Y + t2‖u− S−1v‖Y
2

= t2
(
(I + t2S−1)−1u, u

)
Y
.

Remark 2.1. Lemma 2.1 gives another expression for the norm on [X, Y ]s, namely:

‖u‖2
[X,Y ]s

:= c2
s

∫
0

∞
t−2s+1

(
(I + t2S−1)−1u, u

)
Y
dt.(2.6)

In addition, by this new expression for the norm (see Definition 2.1 and Theorem 15.1
in [24]), it follows that the intermediate space [X, Y ]s coincides topologically with the
domain of the unbounded operator S1/2(1−s) equipped with the norm of the graph of the
same operator . As a consequence we have that X is dense in [X, Y ]s for any s ∈ [0, 1].
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2.2. Interpolation between subspaces of a Hilbert space.
Let K = span{ϕ1, . . . , ϕn} be a n-dimensional subspace of X and let XK be the orthogo-
nal complement of K in X in the (·, ·)X inner product. We are interested in determining
the interpolation spaces of XK and Y , where on XK we consider again the (·, ·)X inner
product. For certain spaces XK and Y and n = 1, this problem was studied in [21].
To apply the interpolation results from the previous section we need to check that the
density part of the condition (2.1) is satisfied for the pair (XK, Y ).

For ϕ ∈ K, define the linear functional Λϕ : X → C, by

Λϕu := (u, ϕ)X, u ∈ X.

Lemma 2.2. The space XK is dense in Y if and only if the following condition is
satisfied: {

Λϕ is not bounded in the topology of Y
for all ϕ ∈ K, ϕ �= 0.

(2.7)

Proof. First let us assume that the condition (2.7) does not hold. Then for some nonzero
ϕ ∈ K the functional Lϕ is a bounded functional in the topology induced by Y . Thus,
the kernel of Lϕ is a closed subspace of X in the topology induced by Y . Since XK is
contained in Ker(Lϕ) it follows that

XK
Y ⊂ Ker(Lϕ)

Y
= Ker(Lϕ).

Hence XK fails to be dense in Y .

Conversely, assume that XK is not dense in Y , then Y0 = XK
Y

is a proper closed
subspace of Y . Let y0 ∈ Y be in the orthogonal complement of Y0, and define the linear
functional Ψ : Y → C, by

Ψu := (u, y0)Y , u ∈ Y.

Ψ is a continuous functional on Y . Let ψ be the restriction of Ψ to the space X. Then
ψ is a continuous functional on X. By Riesz Representation Theorem, there is v0 ∈ X
such that

(u, v0)X = (u, y0)Y , for all u ∈ X.(2.8)

Let PK be the X orthogonal projection onto K and take u = (I − PK)v0 in (2.8). Since
(I − PK)v0 ∈ XK we have ((I − PK)v0, y0)Y = 0 and

0 = ((I − PK)v0, v0)X = ((I − PK)v0, (I − PK)v0)X .

It follows that v0 = PKv0 ∈ K and, via (2.8), that ψ = Λv0 is continuous in the topology
of Y . This is exactly the opposite of (2.7) and the proof is completed.

Remark 2.2. The result still holds if we replace the finite dimensional subspace K with
any closed subspace of X.

For the next part of this section we assume that the condition (2.7) holds. By the
above lemma, the condition (2.1) is satisfied. It follows from the previous section that
the operator SK : D(SK) ⊂ Y → Y defined by

(u, v)X = (SKu, v)Y for all v ∈ XK,(2.9)
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has the same properties as S. Consequently, the norm on the intermediate space [XK, Y ]s
is given by:

‖u‖2
[XK,Y ]s := c2

s

∫
0

∞
t−2s+1

(
(I + t2S−1

K )−1u, u
)
Y
dt.(2.10)

Let [X, Y ]s,K denote the closure of XK in [X, Y ]s. Our aim in this section is to
determine sufficient conditions for ϕi’s such that

[XK, Y ]s = [X, Y ]s,K.(2.11)

First, we note that the operators SK and S are related by the following identity:

S−1
K = (I −QK)S−1,(2.12)

where QK : X → K is the orthogonal projection onto K. The proof of (2.12) follows
easily from the definitions of the operators involved.

Next, (2.12) leads to a formula relating the norms on [XK, Y ]s and [X, Y ]s. Before
deriving this formula in Theorem 2.1 , we introduce some notation. Let

(u, v)X,t :=
(
(I + t2S−1)−1u, v

)
X

for all u, v ∈ X.(2.13)

and denote by Mt the Gram matrix associated with the set of vectors {ϕ1, . . . , ϕn} in
the (·, ·)X,t inner product,i.e.,

(Mt)ij := (ϕj , ϕi)X,t, i, j ∈ {1, . . . , n}.

Theorem 2.1. Let u be arbitrary in XK. Then,

‖u‖2
[XK,Y ]s = ‖u‖2

[X,Y ]s + c2
s

∫
0

∞
t−(2s+1)

〈
M−1

t dt, dt
〉
dt,(2.14)

where < ·, · > is the inner product on Cn and dt is the n-dimensional vector in Cn whose
components are

(dt)i := (u, ϕi)X,t, i = 1, . . . , n.

Proof. Let u be fixed in XK and denote

w := (I + t2S−1)−1u and wK := (I + t2S−1
K )−1u.(2.15)

Then the norms on [XK, Y ]s and [X, Y ]s are given by

‖u‖2
[X,Y ]s

= c2
s

∫
0

∞
t−2s+1(w, u)Y dt(2.16)

and

‖u‖2
[XK,Y ]s = c2

s

∫
0

∞
t−2s+1(wK, u)Y dt(2.17)

respectively. For v in Y , using (2.12), we have

S−1
K wK = S−1wK −QK(S−1wK) = S−1wK −

n∑
i=1

αiϕi(2.18)

where αi = (S−1wK, ϕi)X . From (2.15) it follows that

(I + t2S−1
K )wK = u.(2.19)
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Combining (2.18) and (2.19) we obtain

(I + t2S−1)wK = u+ t2
n∑
i=1

αiϕi.

Equivalently, applying (I + t2S−1)−1 to both sides,we have

wK = w + t2
n∑
i=1

αi(I + t2S−1)−1ϕi.(2.20)

We calculate the coefficients αi by taking the (·, ·)X inner product with ϕj on both sides
of (2.20) for j = 1, . . . , n. From (2.19) one sees that wK ∈ XK. Hence

n∑
i=1

(
(I + t2S−1)−1ϕi, ϕj

)
X
αi = −t−2(w, ϕj)X j = 1, . . . , n .

With the notation adopted in (2.15) and (2.13) the system becomes
n∑
i=1

(ϕi, ϕj)X,t αi = −t−2(u, ϕj)X,t j = 1, . . . , n .

Let α be the n-dimensional vector from Cn whose components are αi. Then

Mtα = −t−2dt.

Since the vectors ϕ1, . . . , ϕn are linearly independent, the matrix Mt is invertible and

α = −t−2M−1
t dt.

Now, going back to (2.20), we get

(wK, u)Y = (w, u)Y +
n∑
i=1

αi(t
2(I + t2S−1)−1ϕi, u)Y

= (w, u)Y +

n∑
i=1

αi(t
2S−1(I + t2S−1)−1ϕi, u)X

= (w, u)Y +

n∑
i=1

αi((ϕi, u)X − (I + t2S−1)−1ϕi, u)X

= (w, u)Y −
n∑
i=1

αi ¯(dt)i.

Thus

(wK, u)Y = (w, u)Y + t−2
〈
M−1

t dt, dt
〉
.(2.21)

Combining (2.16) , (2.17) and (2.21) completes the proof.

For n = 1, let K = span{ϕ} and denote XK by Xϕ. Then, for u ∈ Xϕ, the formula
(2.14) becomes

‖u‖2
[Xϕ,Y ]s

= ‖u‖2
[X,Y ]s

+ c2
s

∫
0

∞
t−(2s+1) |(u, ϕ)X,t|2

(ϕ, ϕ)X,t
dt.(2.22)
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Next theorem gives sufficient conditions for (2.11) to be satisfied. Before we state the
result we introduce the conditions:

(A.1) [Xϕi , Y ]s = [X, Y ]s,ϕi for i = 1, . . . , n.

(A.2) There exist δ > 0 and γ > 0 such that

n∑
i=1

|αi|2 (ϕi, ϕi)X,t ≤ γ 〈Mtα, α〉 for all α = (α1, . . . , αn)
t ∈ Cn, t ∈ (δ,∞).

Theorem 2.2. Assume that, for some s ∈ (0, 1), the conditions (A.1) and (A.2) hold.
Then

[XK, Y ]s = [X, Y ]s,K.

Proof. Let s be fixed in (0, 1). Since XK is dense in both these spaces, in order to prove
(2.11) it is enough to find, for a fixed s, positive constants c1 and c2 such that

c1‖u‖[X,Y ]s ≤ ‖u‖[XK,Y ]s
≤ c2‖u‖[X,Y ]s

for all u ∈ XK.(2.23)

The function under the integral sign in (2.14) is nonnegative, so the lower inequality of
(2.23) is satisfied with c1 = 1. For the upper part, we notice that, for u ∈ XK and wK
as defined in the proof of Theorem 2.1,

(wK, u)Y =
(
(I + t2S−1

K )−1u, u
)
Y

= (u, u)Y − t2
(
S−1
K (I + t2S−1

K )−1u, u
)
Y

≤ (u, u)Y ≤ c(s)‖u‖2
[X,Y ]s

Then, using (2.17), (2.21) and the above estimate, we have that for any positive number
δ,

‖u‖2
[XK,Y ]s

≤ c(δ, s)‖u‖2
[X,Y ]s

+

∫ ∞

δ

t−2s+1(wK, u)2
Y dt

≤ c(δ, s)‖u‖2
[X,Y ]s

+

∫ ∞

δ

t−2s+1(w, u)2
Y dt+

∫ ∞

δ

t−2s+1
〈
M−1

t dt, dt
〉
dt.

Hence the upper inequality of (2.23) is satisfied if one can find a positive δ and c = c(δ)
such that ∫ ∞

δ

t−2s+1
〈
M−1

t dt, dt
〉
dt ≤ c‖u‖2

[X,Y ]s
for all u ∈ XK.(2.24)

From (A.2), there exist δ > 0 and γ > 0 such that〈
M−1

t α, α
〉
≤ γ

n∑
i=1

|αi|2 (ϕi, ϕi)
−1
X,t

for all α = (α1, . . . , αn)
t ∈ Cn, t ∈ (δ,∞). In particular, for αi = (u, ϕi)X,t, i = 1, . . . , n,

we obtain 〈
M−1

t dt, dt
〉
≤ γ

n∑
i=1

|(u, ϕi)X,t|2

(ϕi, ϕi)X,t
for all t ∈ (δ,∞), u ∈ XK.
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Thus, using the above estimate, (2.22) and (A.1) we have∫ ∞

δ

t−2s+1
〈
M−1

t dt, dt
〉
dt ≤ γ

n∑
i=1

∫ ∞

δ

t−2s+1 |(u, ϕi)X,t|
2

(ϕi, ϕi)X,t
dt

≤ γ

n∑
i=1

∫ ∞

0

t−2s+1 |(u, ϕi)X,t|
2

(ϕi, ϕi)X,t
dt

≤ γc−2
s

n∑
i=1

‖u‖2
[Xϕi ,Y ]s ≤ γc−2

s n‖u‖2
[X,Y ]s

Finally, (2.24) holds, and the result is proved.

Remark 2.3. By Lemma 2.2, the space XK is dense in [X, Y ]s if and only if the func-
tionals Lϕ, ϕ ∈ K, ϕ �= 0 are not bounded in the topology induced by [X, Y ]s.

2.3. A subspace interpolation lemma. Let Ω ⊂ Ω̃ be domains in �
2 and V 1(Ω),

V 1(Ω̃) be subspaces of H1(Ω), H1(Ω̃), respectively. On V 1(Ω), V 1(Ω̃) we consider in-
ner products such that the induced norms are equivalent with the standard norms on

H1(Ω), H1(Ω̃), respectively. In addition, we assume that V 1(Ω), V 1(Ω̃) are dense in

L2(Ω), L2(Ω̃), respectively. Let’s denote the duals of V 1(Ω), V 1(Ω̃) by V −1(Ω), V −1(Ω̃),
respectively. We suppose that there are linear operators E and R such that

E : L2(Ω) → L2(Ω̃), E : V 1(Ω) → V 1(Ω̃) are bounded operators,(2.25)

R : L2(Ω̃) → L2(Ω), R : V 1(Ω̃) → V 1(Ω), are bounded operators,(2.26)

REu = u for all u ∈ L2(Ω).(2.27)

Let ψ ∈ L2(Ω) , ψ̃ = Eψ ∈ L2(Ω̃) and θ ∈ (0, 1) be such that

L2(Ω)ψ := {u ∈ L2(Ω) : (u, ψ) = 0} is dense in [L2(Ω), V −1(Ω)]θ,(2.28)

L2(Ω̃)
�ψ := {u ∈ L2(Ω̃) : (u, ψ̃) = 0} is dense in V −1(Ω̃),(2.29)

[L2(Ω̃)
�ψ, V

−1(Ω̃)]θ = [L2(Ω̃), V −1(Ω̃)]θ.(2.30)

Lemma 2.3. Using the above setting, assume that (2.25)-(2.30) are satisfied. Then,

[L2(Ω)ψ, V
−1(Ω)]θ = [L2(Ω), V −1(Ω)]θ.(2.31)

The proof of the above lemma is given in Appendix 5.1.

3. Subspace interpolation by multilevel norms

Let Ω be a domain in �
2 with boundary ∂Ω = (∂Ω)D ∪ (∂Ω)N , where (∂Ω)D is not

of measure zero, and (∂Ω)D and (∂Ω)N are essentially disjoint. Let H1
D(Ω) denote the

space of all functions in H1(Ω) which vanish on (∂Ω)D. Assume that

M1 ⊂ M2 ⊂, . . . ,⊂Mk ⊂ . . .
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is a sequence of finite dimensional subspaces of H1
D(Ω) whose union is dense in H1

D(Ω),
and assume that an equivalent norm on H1

D(Ω) is given by

‖u‖2
1 :=

∞∑
k=1

λk‖(Qk −Qk−1)u‖2,(3.1)

where Qk denotes the L2(Ω) orthogonal projection onto Mk, ‖·‖ = ‖·‖L2(Ω), Q0 = 0, and
λk = 4k−1. We will prove in the Appendix that for a certain type of polygonal domain Ω
and {Mk} the standard sequence of piecewise linear functions associated with a sequence
of nested meshes, (3.1) holds. Proofs for the multilevel representation of the norm on
H1 can be found in [28] and [15] also. The goal of this chapter is to solve a codimension
one subspace interpolation problem by means of multilevel geometry and topology.

3.1. Scales of multilevel norms. On H1
D(Ω) take the norm given by (3.1) and define

H−1
D (Ω) to be the dual of H1

D(Ω). The elements of L2(Ω) can be viewed as continuous
linear functionals on H1

D(Ω) and we have the natural continuous and dense embeddings

H1
D(Ω) ⊂ L2(Ω) ⊂ H−1

D (Ω).

One can easily check that

‖u‖2
−1 :=

∞∑
k=1

λk
−1‖(Qk −Qk−1)u‖2 for all u ∈ L2(Ω),(3.2)

where ‖ · ‖−1 denotes the norm on H−1
D (Ω). Further, we have that the inner product on

Hα
D(Ω) is

(u, v)α :=
∞∑
k=1

λk
α((Qk −Qk−1)u, v)L2(Ω) for all u, v ∈ Hα

D(Ω) ∩ L2(Ω), α ∈ [−1, 1].

Then the pairs (H1
D(Ω), L2(Ω)) and (L2(Ω), H−1

D (Ω)) satisfy the condition (2.1) and the
operator S associated with each of these pairs is given (in both cases) by

Su =
∞∑
k=1

λk(Qk −Qk−1)u, for all u ∈ D(S).(3.3)

For any θ ∈ [0, 1], let

Hθ
D(Ω) := [H1

D(Ω), L2(Ω)]1−θ, H−θ
D (Ω) := [L2(Ω), H−1

D (Ω)]θ,

and let ‖ ·‖α be the norm on Hα
D(Ω) for α ∈ [−1, 1]. By using (2.6), one can easily check

that

‖u‖2
α :=

∞∑
k=1

λαk‖(Qk −Qk−1)u‖2, for all u ∈ Hα
D(Ω) ∩ L2(Ω).(3.4)

Consequently, H−θ
D (Ω) is the dual of Hθ

D(Ω) for θ ∈ [0, 1].

Remark 3.1. For any α ∈ (0, 1], the norm on Hα
D(Ω) is given by (3.4). On the other

hand, for u ∈ Hα
D(Ω),

J∑
k=1

λαk‖(Qk −Qk−1)u‖2 = ‖u‖2 + (4α − 1)
J−1∑
k=1

λαk‖(I −Qk)u‖2 − λαJ‖(I −QJ )u‖2
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and

lim
J→∞

λαJ‖(I −QJ)u‖2 = 0.

Thus, we obtain that an equivalent norm on Hα
D(Ω), for α ∈ (0, 1], is given by

‖|u|‖2
α := ‖u‖2 +

∞∑
k=1

λαk‖(I −Qk)u‖2.

3.2. Sufficient conditions for (A1). Let X = L2(Ω) and Y = H−1
D (Ω). For a fixed

θ0 in the interval (0, 1), let φ ∈ L2(Ω) satisfy the following conditions:
(C.0) φ /∈ Hθ0

D (Ω).
(C.1) There exist c1 > 0 and δ > 0 such that

(φ, φ)X,t =

∞∑
k=1

λk
λk + t2

‖(Qk −Qk−1)φ‖2 ≥ c1t
−2θ0 , for t ≥ δ.

(C.2) There exist c2 > 0 such that

‖(Qk −Qk−1)φ‖2 ≤ c2λ
−θ0
k , k = 1, 2, . . . .

Our goal in this section is to characterize the space [Xφ, Y ]θ for θ in (0, 1), θ �= θ0.

Remark 3.2. From (C.2) it follows that φ ∈ Hθ
D(Ω) for θ < θ0. Thus, from (C.0) and

(C.2), by applying Lemma 2.2 (see the proof of (3.6)), we have that Xφ is dense in Y .
Consequently, the space [Xφ, Y ]s is well defined.

Theorem 3.1. Let φ ∈ L2(Ω) and satisfy (C.0)-(C.2). Then[
L2(Ω)φ, H

−1
D (Ω)

]
θ

=
[
L2(Ω), H−1

D (Ω)
]
θ,φ
, 0 ≤ θ ≤ 1, θ �= θ0.(3.5)

Furthermore, if θ0 < θ ≤ 1 then[
L2(Ω)φ, H

−1
D (Ω)

]
θ

=
[
L2(Ω), H−1

D (Ω)
]
θ
.(3.6)

Proof. Let θ �= θ0 be fixed. Following the proof of Theorem 2.2 until (2.24), we see that
in order to prove (3.5), it is enough to show that, for δ given by (C.1), there is a positive
constant c = c(θ, δ, c1, c2) satisfying

I :=

∫
δ

∞
t−(2θ+1) |(u, φ)X,t|2

(φ, φ)X,t
dt ≤ c‖u‖2

−θ for all u ∈ Xφ.(3.7)

Let u ∈ X = L2(Ω) be fixed. Denote Qk −Qk−1 by qk, with Q0 = 0, and for u ∈ L2(Ω)

denote ũk := λ
−θ/2
k ‖qku‖ and ũ := {uk}. Then we have

‖u‖−θ = ‖ũ‖l2 .
Here (·, ·)X is simply the L2(Ω) inner product (·, ·). Then, we have

(u, φ)X,t =
(
(I + t2S−1)−1u, φ

)
=

∞∑
k=1

λk
λk + t2

(qku, qkφ).

Using the Cauchy-Schwarz inequality and the estimate given by (C.2) we obtain

|(u, φ)X,t| ≤ c2

∞∑
k=1

λ
1−θ0/2
k

λk + t2
‖qku‖.(3.8)
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For u ∈ Xφ we have (u, φ) = 0. Then

∞∑
k=1

(qku, φ) = 0.

Thus,

(u, φ)X,t = −t2
∞∑
k=1

1

λk + t2
(qku, qkφ),

and hence we also have the estimate

|(u, φ)X,t| ≤ c2t
2

∞∑
k=1

λ
−θ0/2
k

λk + t2
‖qku‖.(3.9)

Now we are prepared to estimate the integral I. The constant c, to be used next, may
have different values at different places in which it appears but depends only on the
constants θ, δ, c1 and c2 . First we will treat the case 0 < θ < θ0. Let θ1 = θ0−θ. Then,
by (C.1) and the estimate (3.8), we have

I ≤ c

∫ ∞

δ

t−1+2θ1

( ∞∑
k=1

λ
1−θ0/2
k

λk + t2
‖qku‖

)2

dt

≤ c

∫ ∞

δ

t−1+2θ1

( ∞∑
m,n=1

(λmλn)
1−θ0/2

(λm + t2)(λn + t2)
‖qmu‖‖qnu‖

)
dt

= c

∞∑
m,n=1

(λmλn)
1−θ0/2‖qmu‖‖qnu‖

∫ ∞

δ

t−1+2θ1

(λm + t2)(λn + t2)
dt.

Next, we use the formula∫
0

∞ t3−2θ

(a+ t2)(b+ t2)
dt =

1

c2
θ

a1−θ − b1−θ

a− b
, 0 < θ < 2, θ �= 1, a, b > 0.(3.10)

The integral can be calculated by elementary calculus methods. If a = b, then the right
side of the above identity is replaced by 1−θ

c2
θ
a−θ. Thus,∫ ∞

δ

t−1+2θ1

(λm + t2)(λn + t2)
dt ≤

∫ ∞

0

t−1+2θ1

(λm + t2)(λn + t2)
dt = c−2

θ1
(λmλn)

θ1−1λ
1−θ1
m − λ1−θ1

n

λm − λn
.

Combining the above inequalities, we get

I ≤ c

∞∑
m,n=1

(λmλn)
θ1/2

λ1−θ1
m − λ1−θ1

n

λm − λn
λ−θ/2m ‖qmu‖λ−θ/2n ‖qnu‖.

Let

lmn = (λmλn)
θ1/2

λ1−θ1
m − λ1−θ1

n

λm − λn
.

Then, the above estimate becomes

I ≤ c

∞∑
m,n=1

lmnũmũn.
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An elementary calculation gives

lmn =
2(m−n)(1−θ1) − 2−(m−n)(1−θ1)

2(m−n) − 2−(m−n)
≤ 2−|m−n|θ1, m, n = 1, 2, . . . .

Now we can apply Lemma 5.1 and obtain

I ≤ c‖ũ‖2
l2 = c‖ u‖2

−θ,

which proves (3.7) in this case.
For the remaining part, i.e., θ0 < θ < 1, we set θ1 := θ − θ0. The estimate (3.7) can

be done in the same manner. The only difference here is that we use the inequality (3.9)
instead of (3.8). This completes the proof of (3.6).

Now let θ0 < θ ≤ 1 be fixed. By the previous part, it is enough to show that L2(Ω)φ
is dense in H−θ

D (Ω). Using Lemma 2.2, this is equivalent to proving that the functional

u → (u, φ), u ∈ L2(Ω),(3.11)

is not continuous in the topology induced by H−θ
D (Ω). To see that, let {un} be the

sequence in L2(Ω) defined by

un :=

n∑
k=1

λθ0k qkφ.

From (C.0) we have that

(un, φ) =
n∑
k=1

λθ0k ‖qkφ‖2 → ∞,

as n→ ∞. On the other hand, using (C.2)

(un, un)−θ =
n∑
k=1

λ−θ+2θ0
k ‖qkφ‖2

is uniformly bounded. Therefore, the functional defined in (3.11) is not continuous and
(3.6) is proved.

4. Applications to shift theorem for the Laplace operator on

polygonal domains.

Let Ω be a polygonal domain in R2 with boundary ∂Ω = (∂Ω)D∪(∂Ω)N , where (∂Ω)D
is not of measure zero, and (∂Ω)D and (∂Ω)N are essentially disjoint and consist of a
finite number of closed line segments. Let ∂Ω be the polygonal arc P1P2 · · ·PmP1. Here
we consider that the set {P1, P2, . . . , Pm} consists of all vertices of ∂Ω and all the points
of (∂Ω)D ∩ (∂Ω)N . We will also call the points of (∂Ω)D ∩ (∂Ω)N vertices of ∂Ω. At
each point Pj, we denote the measure of �Pj−1PjPj (measured from inside Ω) by ωj,
where Pm+1 = P1 and P0 = Pm. For j = 1, 2, . . . , m, let us define γj := max{ωj/π, 1}
if both edges [Pj , Pj−1] and [Pj, Pj+1] belong to the same set (∂Ω)D or (∂Ω)N , and
γj := max{2ωj/π, 1} if one edge belongs to (∂Ω)D and the other edge belongs to (∂Ω)N .
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Let γ := max{γj : j = 1, 2, . . . , m}. We consider the boundary value problem for the
Poisson equation on Ω. Given f ∈ L2(Ω), find u such that⎧⎨⎩

−∆u = f in Ω,
u = 0 on (∂Ω)D,
∂u
∂n

= 0 on (∂Ω)N .
(4.1)

The variational formulation of (4.1) is : Find u ∈ H1
D(Ω) such that

A(u, v) =

∫
Ω

fv dx for all v ∈ H1
D(Ω).(4.2)

It is well known that for f ∈ L2(Ω) the variational problem has a unique solution
u ∈ H1

D(Ω) and

‖u‖H1(Ω)≤ c‖f‖H−1
D (Ω) for all f ∈ L2(Ω),(4.3)

where H−1
D (Ω) is the dual of H1

D(Ω).
Let u be the solution of (4.2). By taking v in D(Ω), the space of all infinitely differ-

entiable functions with compact support in Ω, one has

−∆u = f

in the sense of distributions in Ω, so the equality is satisfied pointwise, almost everywhere
in Ω. Also, the solution u of (4.2) satisfies the boundary conditions of (4.1) (see [20],
Chapter 2 therein). In addition, if γ = 1 then u belongs to H2(Ω) ∩ H1

D(Ω) (see,e.g.,
[19]), and

‖u‖H2(Ω)≤ c‖f‖L2(Ω) for all f ∈ L2(Ω).(4.4)

If we define T : H−1
D (Ω) → H1

D(Ω) by Tf := u , where u is the solution of (4.2), then
T is a bounded operator. Moreover, if γ = 1, T is a bounded operator from L2(Ω) to
H2(Ω). Thus, by interpolation, we have for any s ∈ [0, 1],

‖u‖H1+s(Ω)≤ c‖f‖H−1+s
D (Ω) for all f ∈ H−1+s

D (Ω).(4.5)

Here, H1+s(Ω) := [H2(Ω), H1(Ω)]1−s and H−1+s
D (Ω) := [L2(Ω), H−1

D (Ω)]1−s.
We will prove in this section that for γ > 1, the shift estimate (4.5) still holds for any
s < 1/γ.

4.1. Reduction to sector domains. For j = 1, 2, . . . , m, let Uj be an open disk
centered at Pj such that Uj contains no vertices other than Pj . Next we add more disks
with centers in ∂Ω, say Uj , centered at Pj , j = m+ 1, . . .M, such that Uj contains
no vertices other than Pj, and

∂Ω ⊂
M⋃
j=1

Uj,

By increasing the number M of disks, we can assume that for some positive numbers r0
and ε we have

Uj ∩ Ω = {(rj, θj) : 0 < rj < r0, 0 < θj < ωj }
⊂ {(rj, θj) : 0 < rj < (1 + ε)r0, 0 < θj < ωj} := Ωj ⊂ Ω , j = 1, 2, . . .M,
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where (rj, θj) are the polar coordinates with origin at Pj, ωj = π for j = m + 1, . . .M
and Pk is not in Ωj , for k �= j. Let U0 and Ω0 be two domains with smooth boundaries
such that U0 ⊂ Ω0 and Ω0 ⊂ Ω and such that

Ω ⊂
M⋃
j=0

Uj .

Then, there is a partition of unity {φj}Mj=0 subordinate to the covering
M
∪
j=0

Uj. Let us

denote the restriction of φj to Ωj by ηj ( j = 0, 1, . . . ,M). Further, we define (∂Ωj)D
and (∂Ωj)N to be

(∂Ωj)N := (∂Ω)N ∩ ∂Ωj , (∂Ωj)D := ∂Ωj\(∂Ωj)N ,

and denote the space of functions in H1(Ωj) which vanish on (∂Ωj)D by H1
D(Ωj), for

j = 1, 2, . . . ,M . Also (∂Ω0)D = ∂Ω0.
We reduce the proof of (4.5) to the case when Ω is a sector domain. Let’s assume for

the moment that the following holds.

Theorem 4.1. The variational solution uj of (4.2) relative to Ωj, j = 1, . . . ,M , sat-
isfies

‖uj‖H1+s(Ωj)≤ c‖f‖H−1+s
D (Ωj)

for all f ∈ L2(Ωj), 0 < s < γ−1
j ,(4.6)

where we take γj = 1 for j = m+ 1, . . . ,M .

Given this result, we can prove that (4.5) holds for γ > 1 and s < 1/γ.
Indeed , let f ∈ L2(Ωj) and let u be the solution of (4.2). For j = 0, 1, . . . ,M , let
uj := ηj u. Then, in the sense of distributions in Ωj, we obtain

−∆uj = fηj − u∆ηj − 2∇u · ∇ηj .
Since the boundary conditions of (4.1) are satisfied on (∂Ωj)D and (∂Ωj)N for u = uj,
we have (see [20], Theorem 2.1.1 therein) that uj is the unique variational solution of
the problem : Find uj ∈ H1

D(Ωj) such that

Aj(uj, v) =

∫
Ωj

fjv dx for all v ∈ H1
D(Ωj),(4.7)

where fj = fηj − u∆ηj − 2∇u · ∇ηj and

Aj(uj, v) :=

∫
Ωj

∇uj · ∇v dx.

Now, fj is a function in L2(Ωj) and by Theorem 4.1, we get

‖uj‖H1+s(Ωj)≤ c‖fj‖H−1+s
D (Ωj)

, j = 1, 2, . . . ,M.(4.8)

For j = 0 the estimate (4.8) holds for any s ∈ [0, 1], because the boundary of Ω0 is
smooth and we can apply the regularity result for domains with smooth boundaries.
From the way we have defined the domains Ωj one can find r > 0 such that

dist(Ω\Ωj , supp uj) ≥ r j = 0, 1, . . . ,M.
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Thus

‖uj‖H1+s(Ω)≤ c‖uj‖H1+s(Ωj) .

Here c is independent of f and j. Since u =
M∑
j=0

uj, using the triangle inequality, the

estimate (4.8) and the above observation, we obtain

‖u‖H1+s(Ω) ≤ c
M∑
j=0

‖fj‖H−1+s
D (Ωj)

.(4.9)

The estimate of ‖fj‖H−1+s
D (Ωj)

is as follows. First, L2(Ωj) is continuously embedded in

H−1+s
D (Ωj), and multiplication by a smooth function is continuous on H−1+s

D (Ωj) . Thus,

‖fj‖H−1+s
D (Ωj)

≤ ‖fηj‖H−1+s
D (Ωj)

+ c ‖u∆ηj + 2∇u · ∇ηj‖L2(Ωj)

≤ c(‖f‖H−1+s
D (Ωj)

+ ‖u‖H1(Ωj)) .

Second, the extension by zero operator E : H1
D(Ωj) → H1

D(Ω) is continuous. It follows
that

‖f‖H−1
D (Ωj)

≤ c‖f‖H−1
D (Ω) for all f ∈ H−1

D (Ω).

Also,

‖f‖L2(Ωj) ≤ ‖f‖L2(Ω) for all f ∈ L2(Ω).

By interpolation, we get

‖f‖H−1+s
D (Ωj)

≤ c‖f‖H−1+s
D (Ω) for all f ∈ H−1+s

D (Ω).

Third, we have

‖u‖H1(Ωj) ≤ ‖u‖H1(Ω)≤ c‖f‖H−1
D (Ω)≤ c‖f‖H−1+s

D (Ω) for all f ∈ H−1+s
D (Ω).

Finally, from these inequalities we deduce

‖fj‖H−1+s
D (Ωj)

≤ c‖f‖H−1+s
D (Ω) for all f ∈ H−1+s

D (Ω).(4.10)

Thus, from (4.9) and (4.10), since L2(Ω) is dense in H−1+s
D (Ω), we obtain that

‖u‖H1+s(Ω)≤ c‖f‖H−1+s
D (Ω) for all f ∈ H−1+s

D (Ω).

Therefore we obtain that (4.5) holds for γ > 1 and all s < 1/γ.

4.2. Solving the problem on sector domains. Let Ω = Sω be the sector domain
defined by

Sω := {(r, θ) : 0 < r < r0, 0 < θ < ω},(4.11)

and let (∂Ω)N be in one of the posiblities listed below ( Case 1 , Case 2 or Case 3). We
assume, without loss of generality, that r0 = 1. Let V 2(Ω) := H2(Ω) ∩ H1

D(Ω). Then,
(see e.g., Theorem 2.2.3 in [20]) the Laplace operator ∆ : V 2(Ω) → L2(Ω) is a Fredholm
operator. Consequently,

‖u‖H2(Ω)≤ c‖∆u‖L2(Ω) for all u ∈ V 2(Ω),(4.12)

and the range of the operator has finite codimension. Grisvard characterized the or-
thogonal complement N of the range of the Laplace operator for the case of a polygonal
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domain in [19] and [20] . In particular, for our sector domain Ω = Sω the subspace N is
described as follows:

• Case 1. ’Dirichlet corner’ ; (∂Ω)N = ∅.
(i) 0 < ω ≤ π ; N = {0}.
(ii) π < ω < 2π ; N = span{ψ}, where

ψ(r, θ) = (r−
π
ω − r

π
ω ) sin

π

ω
θ,

• Case 2. ’Neuman corner’ ; (∂Ω)N = {(r, θ) ∈ ∂Ω : θ = 0 or θ = ω}.
(i) 0 < ω ≤ π ; N = {0}.
(ii) π < ω < 2π ; N = span{ψ}, where

ψ(r, θ) = (r−
π
ω − r

π
ω ) cos

π

ω
θ

• Case 3. ’Mixed corner’ ; (∂Ω)N = {(r, θ) ∈ ∂Ω : θ = ω}.
(i) 0 < ω ≤ π/2 ; N = (0).
(ii) π/2 < ω ≤ 3π/2 ; N = span{ψ1}.
(iii) 3π/2 < ω < 2π ; N = span{ψ1, ψ2}, where

ψk(r, θ) = (r−νk − rνk) sin(νkθ), νk = (k − 1/2)
π

ω
, k = 1, 2.

For the (i)-cases, the estimate (4.6) holds for any s ∈ [0, 1]. For the remaining cases
we will use the interpolation results of in Section 2.

According to previous notation, L2(Ω)N denotes the orthogonal complement of the
the subspace N in L2(Ω). The Laplace operator, from V 2(Ω) to L2(Ω)N , is a bounded
operator with a bounded inverse. Thus, the operator T : H−1

D (Ω) → H1(Ω) defined at the
beginning of Section 4 is a bounded operator from L2(Ω)N to H2(Ω) . By interpolation,
we obtain

‖u‖[H2(Ω),H1(Ω)]1−s≤ c‖f‖[L2(Ω)N ,H−1
D (Ω)]1−s for all f ∈ [L2(Ω)N , H−1

D (Ω)]1−s.(4.13)

Since [H2(Ω), H1(Ω)]1−s = H1+s(Ω) and [L2(Ω), H−1
D (Ω)]1−s = H−1+s

D (Ω), the only thing
which remains to be proved in order to obtain the estimate (4.5) for s < 1/γ (the
Theorem 4.1 as well) is that

[L2(Ω)N , H−1
D (Ω)]1−s = [L2(Ω), H−1

D (Ω)]1−s for s < 1/γ,(4.14)

where γ = ω/π in Case 1 and Case 2, and γ = 2ω/π in Case 3.
Let ψ = (r−ν − rν)g(θ) be one of the functions which defines the subspace N . (Note

that ν ∈ (0, 1)). The next result is of crucial importance in proving (4.14).

Theorem 4.2. If 0 < s < ν , then

[L2(Ω)ψ, H
−1
D (Ω)]1−s = [L2(Ω), H−1

D (Ω)]1−s.(4.15)

We will give the proof of this main result later.
When dim(N ) = 1 we are in one of the (ii) cases listed above. In this case (4.14)

follows directly from Theorem 4.2. Let us consider now the case in which dim(N ) = 2,
i.e., Case 3 (iii). In order to prove (4.14) we apply Theorem 2.2. The condition (A.1)
of Theorem 2.2 follows easily from the Theorem 4.2. To verify (A.2) for X = L2(Ω)
, Y = H−1

D (Ω) and K = N = span{ψ1, ψ2}, we start by deriving an eigenfunction
representation of the norm on Hα

D(Ω). To do this, we consider the following eigenvalue
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problem.
Find real numbers λ and functions u ∈ H1(Ω), u �= 0 such that⎧⎨⎩

−∆u = λu in Ω
u = 0 on (∂Ω)D,
∂u
∂n

= 0 on (∂Ω)N .
(4.16)

Let Jν be the Bessel’s function of the first kind, of index ν. For n = 1, 2, . . . , let

νn := (n− 1/2)
π

ω
and ϕn(θ) :=

√
2/ω sin(νnθ), θ ∈ (0, ω).

For each fixed n and k = 1, 2, . . . let βk,n be the k-th positive zero of Jνn(r) = 0, and let
fk,n(r) := ck,nJνn(βk,nr), where c−2

k,n is the positive constant given by

c−2
k,n :=

∫ 1

0

rJνn(βk,nr)
2 dr.

Using separation of variables and polar coordinates for the Laplace operator, we find
the following set of eigenvalue, eigenvector pairs:

(λk,n, ϕk,n) =
(
β2
k,n, fk,n(r) ϕn(θ)

)
, k, n = 1, 2, . . . .

Since {ϕn}n≥1 is an orthonormal basis for L2([0, ω]) and for each fixed n, {fk,n}k≥1 is
an orthonormal basis for L2([0, 1]) with respect to the inner product with the weight
function w(r) = r (see,e.g., [29]), we obtain that {ϕk,n}k,n≥1 is an orthonormal basis for
L2(Ω). Furthermore, each pair (λk,n, ϕk,n) is a solution of (4.16), and by Green’s formula
we have that ∫

Ω

∇ϕk,n · ∇v = λk,n

∫
Ω

ϕk,n v for all v ∈ H1
D(Ω).

Thus, if H1
D(Ω) is provided with the inner product

(u, v)1 =

∫
Ω

∇u · ∇v = A(u, v),

then {λ−1/2
k,n ϕk,n}k,n≥1 is an orthonormal basis forH1

D(Ω). Therefore, the norm onH1
D(Ω)

is given by

‖u‖2
1 =

∞∑
k,n=1

λk,n(u, ϕk,n)
2.

Next, the norm on Hα
D(Ω) for α ∈ [−1, 1] is given by

‖u‖2
α =

∞∑
k,n=1

λαk,n(u, ϕk,n)
2 for all u ∈ Hα

D(Ω) ∩ L2(Ω),(4.17)

With the notation adopted in Section 2.2, taking X = L2(Ω) and Y = H−1
D (Ω) we have

(u, v)X,t =
∞∑

k,n=1

λk,n
λk,n + t2

(u, ϕk,n)(v, ϕk,n) for all u, v ∈ X.(4.18)

Theorem 4.3. If dim(N ) = 2 and s < 1/γ, then (4.14) holds.
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Proof. Let s < 1/γ = ν1 be fixed. First, we verify the conditions (A.1) and (A.2) of
the Theorem 2.2 for n = 2, X = L2(Ω), Y = H−1(Ω) and K = N . Since ψk /∈ H1−νk

D ,
by Remark 2.3, we have that L2(Ω)ψk is dense in [L2(Ω), H−1

D (Ω)]1−s, for k = 1, 2. Thus,
(A.1) is

[L2(Ω)ψk , H
−1
D (Ω)]1−s = [L2(Ω), H−1

D (Ω)]1−s, for k = 1, 2(4.19)

which follows from Theorem 4.2.
Checking the condition (A.2) is easy in this case. From (4.18) we have

(ψ1, ψ2)X,t =

∞∑
k,n=1

λk,n
λk,n + t2

(ψ1, ϕk,n)(ψ2, ϕk,n).

Since (ψ1, ϕk,n) = 0 for n �= 1 and (ψ2, ϕk,n) = 0 for n �= 2 , we obtain that
(ψ1, ψ2)X,t = 0 for all t > 0. Thus, (A.2) is trivially satisfied. By Theorem 2.2 we
obtain that

[L2(Ω)N , H−1
D (Ω)]1−s = [L2(Ω), H−1

D (Ω)]1−s,N .

Using again Remark 2.3, one sees that L2(Ω)N is dense in [L2(Ω), H−1
D (Ω)]1−s. It follows

that

[L2(Ω), H−1
D (Ω)]1−s,N = [L2(Ω), H−1

D (Ω)]1−s.

Therefore (4.14) holds, and the proof is complete.

It remains to prove Theorem 4.2.

4.3. The proof of Theorem 4.2. Our proof of Theorem 4.2 involves reduction of the
problem , via the interpolation result of Section 2.3, to a similar interpolation problem
where the domain Ω = Sω is replaced by a polygonal-sector domain (defined below)
containing Ω. We say that Ωs is a polygonal-sector domain (see Figure 1) if

Ωs =
n⋃
i=1

τi,

where, for i = 1, . . . , n, τi is a triangular domain with vertices Si, O, Si+1 and O is
taken to be the origin of a Cartesian system of coordinates in the plane.

We assume, without loss of generality, that S1 lies on the positive semi-axis. For
i = 1, . . . , n+ 1, let Γi denote the segment [O, Si], and for i = 1, . . . , n+ 1, let αi be
the measure of the angle between Γi and Γi+1, and define the angle ω of Ω by

ω :=

n∑
i=1

αi.

For our results concerning interpolation, it is enough to consider only the cases (∂Ωs)N =
∅, (∂Ωs)N = Γn+1 or (∂Ωs)N = Γ1 ∪Γn+1. Let T1 = {τ1, . . . , τn} be the initial triangula-
tion of Ωs. We define multilevel triangulations recursively. For k > 1, the triangulation
Tk is obtained from Tk−1 by splitting each triangle in Tk−1 into four triangles by connect-
ing the midpoints of the edges. The space Mk is defined to be the space of all functions
which are piecewise linear with respect to Tk, vanish on (∂Ωs)D and are continuous on
Ωs. Let Qk denote the L2(Ωs) orthogonal projection onto Mk.
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Figure 1. Polygonal-sector domain

Now let Sω be a sector domain defined by (4.11) and consider a polygonal-sector
domain Ωs with the same angle ω and such that

Sω ⊂ {(r, θ) : 0 < r < 2r0, 0 < θ < ω} ⊂ Ωs.

Note that Ωs is not necessary contained in the original polygonal domain. For Ωs we
use the notation given in Figure 1 and for simplicity we take r0 = 1.

Assume that the free part (∂Ωs)N of ∂Ωs is defined as follows:

(∂Ωs)N = ∅ if Sω is in Case 1,
(∂Ωs)N = Γ1 ∪ Γn+2 if Sω is in Case 2 and
(∂Ωs)N = Γn+2 if Sω is in Case 3,

where Case 1-Case 3 are defined in Section 4.2. Let ζ ∈ D(Ωs) be a cut-off function
which depends only on the distance r to the origin and satisfies

ζ(r, θ) = 1 for 0 < r ≤ 1/2 and 0 < θ < ω,

ζ(r, θ) = 0 for r ≥ 1 and (r, θ) ∈ Ωs.

Let ψ be one of the functions which defines the subspace N (defined in Section 4.2

for Sω) and let ψ̃ be the extension by zero of ψ to Ωs. Then ψ̃ = φ + uR where
φ(r, θ) = ζ r−νg(θ) and uR ∈ H1

D(Ωs). The next result is a version of Theorem 4.2 for
polygonal-sector domains.

Theorem 4.4. Let Ωs be a polygonal-sector domain as defined above. If 0 < s < ν,
then

[L2(Ωs)ψ̃, H
−1
D (Ωs)]1−s = [L2(Ωs), H

−1
D (Ωs)]1−s,

for any function ψ̃ = φ+ uR with φ(r, θ) = ζ r−νg(θ) and uR being arbitrary function in
H1
D(Ω).

Proof. From the results of the Appendix 5.3 and Appendix 5.4, we have that an equiva-
lent norm on Hα

D(Ωs) is given by the multilevel norm (3.4). By Theorem 3.1, it is enough



20 J.H. BRAMBLE, J.E. PASCIAK, AND C. BACUTA

to verify that the function ψ̃ satisfies the conditions (C.0)-(C.2) defined in Section 3.2
with θ0 = 1 − ν and θ = 1 − s.

To begin with, we will prove that the function φ satisfies (C.0)-(C.2). Let Mk be
the space of piecewise linear continuous functions with respect to Tk defined on Ωs, and
let Qk be the L2(Ωs) orthogonal projection onto Mk. First step in verifying (C.0) and
(C.1) is to prove that there exists a positive constant c such that

‖(I −Qk)φ‖2 ≥ cλ−θ0k , k = 1, 2, . . . .(4.20)

We define τk1 to be the triangle in Tk which is the the image of τ1 ∈ T1 via the map
x̂→ hkx̂. Here, without lost of generality, we assume that h2

k = λ−1
k = 4−k+1. Then

‖(I −Qk)φ‖2
L2(Ωs)

≥ ‖(I −Qk)φ‖2
L2(τk1 ) = ‖φ‖2

L2(τk1 ) − ‖Qkφ‖2
L2(τk1 ).

The projection Qkφ can be estimated on τk1 in terms of the three nodal functions
ϕk1, ϕ

k
2, ϕ

k
3 associated with the three vertices of τk1 . If Mk is the 3 × 3 Gram matrix

associated with the set {ϕk1, ϕk2, ϕk3}, and Sk := (Skij), i, j = 1, 2, 3 is the inverse of Mk,
then

‖φ‖2
L2(τk1 ) − ‖Qkφ‖2

L2(τk1 ) =

∫
τk1

φ2 dx−
3∑

i,j=1

Skij

∫
τk1

φϕki dx

∫
τk1

φϕkj dx.

Further, by making the change of variable x = hkx̂ in the above integrals, a simple
computation shows that

‖φ‖2
L2(τk1 ) − ‖Qkφ‖2

L2(τk1 ) = h2−2ν
k

(∫
τ1

φ2 dx̂−
3∑

i,j=1

S1
ij

∫
τ1

φϕ1
i dx̂

∫
τ1

φϕ1
j dx̂

)
= λ−θ0k

(
‖φ‖2

L2(τ1) − ‖Q1φ‖2
L2(τ1)

)
.

Since φ is not linear on τ1, the constant ‖φ‖2
L2(τ1) − ‖Q1φ‖2

L2(τ1) is strictly positive.

Combining the above estimates, we have proven that (4.20) holds.
The second step is to use (4.20) and the fact that Mk is a subspace of Mk, in order

to obtain

‖(I −Qk)φ‖2 ≥ cλ−θ0k , k = 1, 2, . . . .(4.21)

From (4.21) we see that ‖|φ|‖θ0, defined in Remark 3.1, is not finite. Hence φ /∈ Hθ0
D (Ωs).

Using again (4.21) and the identity

‖(Qk −Qk−1)u‖2 = ‖(I −Qk−1)u‖2 − ‖(I −Qk)u‖2 , u ∈ L2(Ωs),

we have

(φ, φ)X,t =
λ1‖φ‖2

λ1 + t2
+ t2

∞∑
k=1

λk+1 − λk
(λk+1 + t2)(λk + t2)

‖(I −Qk)φ‖2

≥ ct2
∞∑
k=1

(4k)1−θ0

(4k + t2)2
= t−2θ0

∞∑
k=1

(4k/t2)1−θ0

(4k/t2 + 1)2
.
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Finally, the last sum can be bounded below by a positive constant independent of t as
follows. Let us fix t ≥ 4 and let k0 be the integer such that 4k0 ≤ t2 < 4k0+1. Then

∞∑
k=1

(4k/t2)1−θ0

(4k/t2 + 1)2
>

(4k0/t2)1−θ0

(4k0/t2 + 1)2
≥ inf

x∈[1/4,1]

x1−θ0

(x+ 1)2
> 0.

Thus, (C.0) and (C.1) hold for the function φ.
To verify (C.2) we first observe that

‖(Qk −Qk−1)φ‖2 ≤ ‖(I −Qk−1)φ‖2.

Hence, it is enough to prove that there exists a positive constant c such that

‖(I −Qk)φ‖2 ≤ cλ−θ0k , k = 1, 2, . . . .(4.22)

Let ηk be a cut down function which depends only on r and satisfies

ηk(r) = 0 for r ≤ hk, ηk(r) = 1 for r ≥ 2hk,

|η′k(r)| ≤ c/hk, |η′′k(r)| ≤ c/h2
k for all hk ≤ r ≤ 2hk, k = 1, 2, . . . ,

for some positive constant c. For example, we can take

ηk(r) = 1/2 + 1/2 sin

(
(r − 3hk/2)

π

hk

)
on [hk, 2hk].

Then, φ = (1−ηk)φ+ηkφ and ηkφ ∈ H2(Ωs). Let Πk : H2(Ωs) →Mk be the interpolant
associated with Tk. By applying standard approximation properties and (4.12) we obtain

‖(I −Qk)φ‖ ≤ ‖(I −Qk)(1 − ηk)φ‖ + ‖(I −Qk)ηkφ‖ ≤ ‖(1 − ηk)φ‖ + ‖(I − Πk)ηkφ‖

≤ ‖(1 − ηk)φ‖ + ch2
k‖ηkφ‖H2(Ωs) ≤ ‖(1 − ηk)φ‖ + ch2

k‖∆(ηkφ)‖L2(Ωs).

Using a simple computation in polar coordinates, and the estimates for the derivative
of ηk, we get

‖(1 − ηk)φ‖2 ≤ ch2θ0
k for all k = 1, 2, ...

and

h2
k‖∆(ηkφ)‖L2(Ωs) ≤ ch2θ0

k for all k = 1, 2, ... .

Combining the above inequalities, we conclude that (4.22) is valid. Thus,(C.3) holds
for the function φ.
Verifying (C.0)-(C.3) for the function φ is mainly based on finding some positive con-
stants c1, c2 such that

c1λ
−θ0
k ≤ ‖(I −Qk)φ‖2 ≤ c2λ

−θ0
k , k = 1, 2, . . . .(4.23)

Since the function uR belongs to H1
D(Ωs), we have

‖(I −Qk)uR‖2 ≤ cλ−1
k , k = 1, 2, . . . .

Therefore, the function ψ̃ satisfies an estimate of type (4.23) and (C.0)-(C.3) hold for

the function ψ̃ too. The result is now a direct consequence of Theorem 3.1.
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Proof of Theorem 4.2 Let E : L2(Sω) → L2(Ωs), be the extension by zero operator,
and let R : L2(Ωs) → L2(Sω) be defined as follows: First, we introduce a cut-off function
η ∈ D(Ω) which depends only on the distance r to the origin and satisfies

η(r, θ) = 1 for 0 < r ≤ 1 and 0 < θ < ω,

η(r, θ) = 0 for r ≥ 2 and (r, θ) ∈ Ω.

Then, for a function v ∈ L2(Ωs) we define Rv ∈ L2(Sω) by

(Rv)(r, θ) := v1(r, θ) − v1(2 − r, θ), (r, θ) ∈ Sω,

where,

v1(r, θ) := η(r, θ)v(r, θ), (r, θ) ∈ Ω.

Let ψ̃ denote the function Eψ. According to Theorem 4.4

[L2(Ωs)ψ̃, H
−1
D (Ωs)]1−s = [L2(Ωs), H

−1
D (Ωs)]1−s,

It follows that the function ψ and the operators E, R satisfy the hypotheses of Lemma

2.3 with θ = 1 − s , V 1(Ω) = H1
D(Sω) and V 1(Ω̃) = H1

D(Ωs). Thus, (4.15) holds for the
sector domain Sω and the proof is complete.

5. Appendix

5.1. The proof of Lemma 2.3. Using the duality , from (2.25)-(2.27) we obtain linear
operators E∗, R∗ such that

E∗ : L2(Ω̃) → L2(Ω), E∗ : V −1(Ω̃) → V −1(Ω), are bounded operators,(5.1)

R∗ : L2(Ω) → L2(Ω̃), R∗ : V −1(Ω) → V −1(Ω̃) are bounded operators,(5.2)

E∗R∗u = u for all u ∈ L2(Ω),(5.3)

E∗ maps L2(Ω̃)
�ψ to L2(Ω)ψ,(5.4)

R∗ maps L2(Ω)ψ to L2(Ω̃)
�ψ.(5.5)

From (5.1) and (5.4), by interpolation, we obtain

‖E∗v‖[L2(Ω)ψ ,V −1(Ω)]θ ≤ c‖v‖[L2(�Ω)
�ψ
,V −1(�Ω)]θ

for all v ∈ L2(Ω̃)
�ψ.(5.6)

For u ∈ L2(Ω)ψ, let v := R∗u. Then, using (5.5), we have that v ∈ L2(Ω̃)
�ψ. Taking

v := R∗u in (5.6) and using (5.3), we get

‖u‖[L2(Ω)ψ ,V −1(Ω)]θ ≤ c‖R∗u‖[L2(�Ω)
�ψ
,V −1(�Ω)]θ

for all u ∈ L2(Ω)ψ.(5.7)

Also, from the hypothesis (2.30), we deduce that

‖R∗u‖[L2(�Ω)
�ψ
,V −1(�Ω)]θ

≤ c‖R∗u‖[L2(�Ω),V −1(�Ω]θ
for all u ∈ L2(Ω)ψ.(5.8)

From (5.2), again by interpolation, we have in particular

‖R∗u‖[L2(�Ω),V −1(�Ω]θ
≤ c‖u‖[L2(Ω),V −1(Ω)]θ for all u ∈ L2(Ω)ψ.(5.9)
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Combining (5.7)-(5.9), it follows that

‖u‖[L2(Ω)ψ ,V −1(Ω)]θ ≤ c‖u‖[L2(Ω),V −1(Ω)]θ for all u ∈ L2(Ω)ψ.(5.10)

The reverse inequality of (5.10) holds because L2(Ω)ψ is a closed subspace of L2(Ω).
Thus, the two norms in (5.10) are equivalent for u ∈ L2(Ω)ψ. From the assumption
(2.28), L2(Ω)ψ is dense in both spaces appearing in (2.31). Therefore, we obtain (2.31).

Remark 5.1. The proof does not change if we consider Ω ⊂ Ω̃ to be domains in Rn

and H1 is replaced by any other Sobolev space of positive integer order k.

5.2. Some results from the multilevel theory. In this section we present some useful
lemmas. (See, e.g., [15] and [28] for a more complete presentation of results concerning
multilevel theory.)

Lemma 5.1. Let ρ ∈ (0, 1) and let {lmn} be a double sequence of nonnegative real
numbers satisfying

lmn ≤ ρ|m−n| for all m,n = 1, 2, ... .

Then for any a = {an}, b = {bn} ∈ l2 with nonnegative entries, we have

∞∑
m,n=1

lmnambn ≤ 1 + ρ

1 − ρ
‖a‖l2‖b‖l2 ,

where ‖ · ‖l2 denotes the norm on l2.

The proof is based on the Cauchy-Schwarz inequality.

Lemma 5.2. Let M be a Hilbert space with inner product (·, ·), and let {Mk} be a
sequence of nested subspaces of M (Mk ⊂ Mk+1). Denote by Qk the orthogonal projec-

tions onto Mk and for any positive integer J let BJ : MJ → MJ , BJ :=
∑J

k=1 λ
−1
k Qk.

(λk > 0). Then BJ is a symmetric positive definite operator and B−1
J is characterized

by

(B−1
J v, v) = min

{
J∑
k=1

λk‖vk‖2, v =

J∑
k=1

vk, vk ∈Mk

}
,

where ‖ · ‖ is the norm induced by the inner product (·, ·).

A proof of the above lemma can be found in [15]. An easy consequence of the above
two lemmas is the following.

Lemma 5.3. Assume that the hypotheses of Lemma 5.2 are satisfied and that λk <
ρλk+1 for some number ρ in(0, 1). Then, there is a constant c independent of J such
that

(B−1
J v, v) ≤

J∑
k=1

λk‖(Qk −Qk−1)v‖2 ≤ c(B−1
J v, v), for all v ∈MJ .(5.11)
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5.3. Norm equivalences on H1 by multilevel subspace decomposition. To start
with, let Ω be a polygonal domain in R2 with boundary ∂Ω = (∂Ω)D ∪ (∂Ω)N , where
(∂Ω)D is not of measure zero , and (∂Ω)D and (∂Ω)N are essentially disjoint. Let (Tk)
be a quasi-uniform sequence of nested triangulations of Ω such that the parameter hk
associated to (Tk) is hk2

−k. For k ≥ 1 the space Mk is defined to be the space of
all functions which are piecewise linear with respect to Tk, vanish on (∂Ω)D and are
continuous on Ω. We denote the space H1

D(Ω) by M . Assume that

M1 ⊂ M2 ⊂ ... ⊂MJ ⊂ ... ⊂ M,

is a nested sequence of finite dimensional approximation subspaces of M defined using a
sequence of nested meshes in a way similar to that described at the beginning of Section
4.3. Let (·, ·) denote the L2(Ω) inner product and let ‖ · ‖ be the norm on L2(Ω) induced
by (·, ·). For k = 1, 2, . . . , we define the operator Pk : M → Mk to be the orthogonal
projection with respect to the inner product A(·, ·), where

A(u, v) :=

∫
Ω

∇u · ∇v dx for all u, v ∈M,

and Ak : Mk →Mk is defined by

(Aku, v) = A(u, v) for all u, v ∈Mk.

Let µk be the largest eigenvalue of Ak. The sequence {µk} is equivalent to {4k−1} ,i.e.,
there exist positive constants α1, α2 such that

α14
k ≤ µk ≤ α24

k , k = 1, 2, . . . ,(5.12)

We denote 4k−1 by λk.
The goal of this section is to show that we have:

(ML.0) There exist some positive constants c1 and c2 such that

c1A(u, u) ≤
∞∑
k=1

λk‖(Qk −Qk−1)u‖2 ≤ c2A(u, u) for all u ∈M.

All the considerations of this section remain valid if we replace {λk} by an equivalent
sequence, for example µk. In order to study the above norm equivalence we start by
introducing the following conditions:

(ML.1) There is a positive constant c independent of j and k and a number ρ ∈ (0, 1) such
that

|A(uk, uj)| ≤ cρ|k−j|A(uk, uk)
1/2A(uj, uj)

1/2 for all u ∈M.

where uk := qku := (Qk −Qk−1)u.
(ML.2) There exists c independent of J such that

J∑
k=1

λk‖(Qk −Qk−1)u‖2 ≤ cA(u, u) for all u ∈MJ .

(ML.3) There exists c independent of k and J such that

‖(I − Pk−1)u‖≤ cλ
−1/2
k A(u, u)1/2, for all u ∈MJ .
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Remark 5.2. Condition (ML.1) is known as a Strengthened Cauchy-Schwarz inequality
and is satisfied for our sequence of finite dimensional approximation subspaces {Mk}
(see, e.g., [15]).

Next, we give some connection between the above conditions. The results are known in
the multigrid theory (see, e.g., [14], [15]). For completeness we provide some proofs also.

Proposition 5.1. The norm equivalence (ML.0) holds whenever Condition (ML.1)
and Condition (ML.2) are satisfied.

Proof. Let u ∈M be fixed. Then u =
∞∑
k=1

uk, where uk = qku ∈Mk. From (5.12) we get

that

A(uk, uk) ≤ cλk‖uk‖2, for all k = 1, 2, ... .(5.13)

Using Condition (ML.1) , we obtain

A(u, u) =

∞∑
k,j=1

A(uk, uj)≤ c

∞∑
k,j=1

ρ|k−j|A(uk, uk)
1/2A(uj, uj)

1/2.

By Lemma 5.1 and (5.13), we have

A(u, u)≤ c
1 + ρ

1 − ρ

∞∑
k=1

A(uk, uk)≤ c
1 + ρ

1 − ρ

∞∑
k=1

λk‖uk‖2,

which gives the lower inequality in (ML.0). For the other inequality consider a sequence
(uJ) convergent to u in the H1

D(Ω) norm, chosen such that uJ ∈ MJ . Then Condition
(ML.2) implies that for any positive integer N ,

N∑
k=1

λk‖(Qk −Qk−1)uJ‖2 ≤ cA(uJ , uJ) ,

where c is independent of N , J and u. Letting J to tend to ∞ in the above inequality
we have

N∑
k=1

λk‖(Qk −Qk−1)u‖2 ≤ cA(u, u) for all u ∈M.

Since N was arbitrary, this justifies the validity of the upper inequality of (ML.0) .

Remark 5.3. It is well known (see, e.g., [8]) that condition (ML.2) holds whenever
Condition (ML.3) holds. The proof is an easy consequence of Lemma 5.2 and Lemma
5.3. Moreover, it is also known that if the domain Ω is nice enough (for example Ω is
convex and ∂Ω = (∂Ω)D), then the regularity condition (ML.3) holds.

In order to prove Condition (ML.2), when Ω is an arbitrary polygonal domain, we
introduce an overlapping domain decomposition of Ω such that on each subdomain
Condition (ML.2) is satisfied. By the above remark it is enough to verify Condition
(ML.3) relative to each subdomain. To get the result on the whole domain, one can
use additive Schwarz preconditioning type arguments. We now make this outline more
precise.
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Let MJ =
n∑
i=0

M i
J be a splitting of MJ associated with an overlapping domain decom-

position of Ω

Ω =

n⋃
i=1

Ωi,(5.14)

i.e.,

M i
J = {u ∈ MJ : supp(u) ⊂ Ωi}.(5.15)

Let Qi
k : L2(Ω) →M i

k, P
i
k : M →M i

k be the orthogonal projections with respect to (·, ·)
and A(·, ·), respectively. We define here a stable decomposition condition with respect
to the splitting of MJ :

(ML.4) For each u ∈ MJ there exists a partition

u =
n∑
i=0

ui, with ui ∈M i
J , satisfying

n∑
i=0

A(ui, ui) ≤ cA(u, u),

where c is independent of J and u ∈MJ .

Lemma 5.4. Assume that Condition (ML.4) is satisfied and that Condition (ML.2)
holds on each subdomain, i.e.,

J∑
k=1

λk‖(Qi
k −Qi

k−1)ui‖2 ≤ cA(ui, ui) for all ui ∈M i
J , i = 1, .., n.(5.16)

for some constant c independent of J and i. Then Condition (ML.2) relative to the
whole domain Ω is also satisfied with constant which may depend on n. Consequently,
(ML.0) holds.

Proof. For any u ∈MJ we consider the decomposition u =
n∑
i=0

ui, with ui ∈M i
J given by

Condition (ML.4) . Then,

J∑
k=1

λk‖(Qk −Qk−1)u‖2 ≤ n

J∑
k=1

λk

n∑
i=1

‖(Qk −Qk−1)ui‖2

= n

n∑
i=1

J∑
k=1

λk‖(Qk −Qk−1)ui‖2.

Next, for each fixed i and ui ∈M i
J ⊂MJ we have that

ui =

J∑
k=1

(Qi
k −Qi

k−1)ui,

where (Qi
k − Qi

k−1)ui ∈ M i
k ⊂ Mk. Thus, by applying Lemma 5.2 , Lemma 5.3 and

(5.16), we obtain that

J∑
k=1

λk‖(Qk −Qk−1)ui‖2≤ c
J∑
k=1

λk‖(Qi
k −Qi

k−1)ui‖2≤ cA(ui, ui).
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Combining the above estimates with Condition(ML.4), we have

J∑
k=1

λk‖(Qk −Qk−1)u‖2 ≤ cnA(u, u),

with c independent on J . Therefore Condition (ML.2) is satisfied. Finally, from Propo-
sition 5.1, Remark 5.2 and the validity of (ML.2) we have that (ML.0) holds.

5.4. Norm equivalences on H1 by multilevel subspace decomposition for polygonal-
sector domains. We restrict our study from the previous section to a simple case when
Ω is the polygonal-sector domain introduced in Section 4.3 and the free part of ∂Ω is
(∂Ω)N = ∅ , Γn+2 or Γ1 ∪ Γn+2 (see Figure 1). Let {Mk} be the sequence of approx-
imating subspaces defined in Section 4.3. In addition, for i = 1, . . . , n, we define the
subdomain Ωi of Ω to be the domain made up by τi and τi+1 ( Ωi = τ̄i ∪ τ̄i+1 ), and
define the subspaces M i

k of Mk to be

M i
k = {u ∈Mk : supp(u) ⊂ Ωi}, k = 1, 2, . . . .

Lemma 5.5. Let Ω be a polygonal-sector domain as defined above and assume that

(∂Ω)N = ∅ or (∂Ω)N = Γn+2. Then the splitting MJ =
n∑
i=0

M i
J satisfies Condition

(ML.4).

Proof. For i = 2, . . . , n+ 1, let Ωi be the polygonal-sector domain such that

Ωi =
i−1⋃
j=1

τj .

Then Γi is a part of ∂Ωi (see Figure 1). We fix J , and for u ∈ MJ , we define γiu to be
the restriction of u to Γi. By standard results about traces of functions in H1, we have

γiu ∈ H
1/2
00 (Γi)

and

‖γiu‖H1/2
00 (Γi)

≤ c‖u‖H1(Ωi)≤ cA(u, u) for all u ∈M.(5.17)

Throughout the whole proof of this lemma, c is a constant independent on J , i, and it
might be different at different occurrences. For i = 2, . . . , n, we extend by zero γiu to
the rest of ∂τi and consider an extension of the new function to τi, denoted by ũi and
satisfying ⎧⎨⎩

ũi ∈M i−1,i
J := {v|τi : v ∈M i−1

J },

|ũi|2H1(τi)
≤ c‖γiu‖H1/2

00 (Γi)
for all u ∈MJ .

(5.18)

For example, we can take ũi to be the discrete harmonic extension of γiu to τi .
Define ui ∈ M i

J by

u1(x) :=

⎧⎨⎩ u(x) if x ∈ τ1
ũ2(x) if x ∈ τ2

0 if x ∈ Ω\Ω1,
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ui(x) :=

⎧⎨⎩ u(x) − ũi(x) if x ∈ τi
ũi+1(x) if x ∈ τi+1

0 if x ∈ Ω\Ωi,

for i = 2, . . . , n− 1 and

un(x) :=

⎧⎨⎩ u(x) − ũn(x) if x ∈ τn
u(x) if x ∈ τn+1

0 if x ∈ Ω\Ωn.

Clearly, u = u1 + u2 + · · ·+ un. Using (5.17),(5.18) and the Cauchy-Schwarz inequality
we obtain that

A(ui, ui)≤ cA(u, u) for all u ∈MJ , i = 1, . . . , n.

Therefore,
n∑
i=1

A(ui, ui)≤ cnA(u, u) for all u ∈MJ ,

which verifies Condition (ML.4) .

Theorem 5.1. Let Ω be a polygonal-sector domain. Assume that (∂Ω)N = ∅ or (∂Ω)N =
Γn+2 or (∂Ω)N = Γ1 ∪ Γn+2. Assume that the angles of the polygon ∂Ω, excluding the
angle at the origin, are not greater than π for those angles contained in (∂Ω)D, and not
greater than π/2 for the angles with one edge in (∂Ω)D and the other edge in (∂Ω)N . Let
the sequence (Mk) of subspaces of H1

D(Ω) be as described in Section 4.3. Then Condition
(ML.0) holds.

Proof. First we consider the case when (∂Ω)N = ∅ or (∂Ω)N = Γn+2. In this case, by
using the assumptions about the angles of ∂Ω, and eventually by increasing the number
n of subdomains, we have full regularity for the Laplace operator on each subdomain
Ωi (defined at the beginning of the section). Thus, Condition (ML.3) is satisfied on
each Ωi (see e.g., Theorem 2.3.7 in [20], [15]). On the other hand, from Lemma 5.5 the

splitting MJ =
n∑
i=0

M i
J satisfies Condition (ML.4). Thus, by Lemma 5.4 and Remark 5.3

Condition (ML.0) holds.
Next, we study the case (∂Ω)N = Γ1 ∪ Γn+2. If ω is not greater than π, Condition

(ML.3) is again fulfilled. Consequently, (ML.2) holds. According to Proposition 5.1

we obtain that Condition (ML.0) holds. Let ω be greater than π. Define Ω̂ to be the

polygonal domain int(Ω ∪ τn+2), where τn+2 := [Sn+2, O, S1]. Let ∂Ω̂ be the boundary

of Ω̂, and define ˆ(∂Ω)N := ∅ and ˆ(∂Ω)D := ∂Ω̂. Assume, without loss of generality, that

Ω̂ is a convex domain. Consider

T̂1 := {τ0, .., τn+1, τn+2}.
Then we define the multilevel triangulation (T̂k) recursively in the same manner we

defined (Tk) . For k = 1, 2, . . . , the space M̂k is defined to be the space of all functions

which are piecewise linear with respect to T̂k, vanish on ˆ(∂Ω)D and are continuous on Ω̂.

The L2(Ω̂) orthogonal projection onto M̂k is denoted by Q̂k. We fix J and for u ∈ MJ ,
we denote by γNu the restriction of u to (∂Ω)N . Thus, we have

γNu ∈ H
1/2
00 ((∂Ω)N )
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and

‖γNu‖H1/2
00 (ΓN )

≤ c‖u‖H1(Ω)≤ cA(u, u) for all u ∈MJ ,(5.19)

where c is a constant independent of J , which might be different at different occurrences.
The set (∂Ω)N is part of the boundary of τn+2. We extend γNu by zero to the rest of
∂τn+2 and consider an extension of the new function to τn+2 denoted ũn+2 and satisfying⎧⎨⎩

ũn+2 ∈ M̂n+2
J := {v|τn+2 : v ∈ M̂J},

|ũn+2|2H1(τn+2)≤ c‖γNu‖H1/2
00 (ΓN )

for all u ∈MJ .
(5.20)

For example, we can take ũn+2 to be the discrete harmonic extension of γNu to τn+2 .

Define û ∈ M̂J by

û(x) :=

{
u(x) if x ∈ Ω
ũn+2(x) if x ∈ τn+2 ,

Using (5.19), (5.20) and the Cauchy-Schwarz inequality we obtain that

A(û, û)≤ cA(u, u) for all u ∈MJ .

From Lemma 5.2 and Lemma 5.3, we obtain that

J∑
k=1

λk‖(Qk −Qk−1)u‖2≤ c
J∑
k=1

λk‖uk‖2 for all u ∈MJ and(5.21)

for any partition of u,

u =

J∑
k=1

uk, with uk ∈Mk.

On the other hand, we have û|Ω = u and

û =
J∑
k=1

(Q̂k − Q̂k−1)û.

The restrictions to Ω of functions in M̂k are in Mk. Hence, we can take uk := ((Q̂k −
Q̂k−1)û)|Ω in (5.21). In addition, since Ω̂ is a convex domain and ˆ(∂Ω)N := ∅, Condition

(ML.3) is fulfilled for Ω̂. Hence, we obtain that Condition (ML.2) holds on Ω̂. Then

J∑
k=1

λk‖(Qk −Qk−1)u‖2≤ c
J∑
k=1

λk‖(Q̂k − Q̂k−1)û‖2
L2(Ω)≤ c

J∑
k=1

λk‖(Q̂k − Q̂k−1)û‖2
L2(Ω̂)

≤ cA(û, û)≤ cA(u, u),

for all u in MJ . Therefore we have proved that Condition (ML.2) also holds in this case
and, by Proposition 5.1, the proof of the theorem is complete.

The conclusion of this section is that for polygonal-sector domains, as we described
above, an equivalent norm on H1

D(Ω) is given by (3.1).
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