A POSTERIORI ERROR ESTIMATES FOR FINITE VOLUME
ELEMENT APPROXIMATIONS OF
CONVECTION-DIFFUSION-REACTION EQUATIONS

R.D. LAZAROV AND S.Z. TOMOV

ABSTRACT. We present the results of a study on a posteriori error control strategies
for finite volume element approximations of second order elliptic differential equations.
We adapt the local refinement techniques known from the finite element method to
the finite volume discretizations of various boundary value problems for steady-state
convection-diffusion-reaction equations. One possible application of such problems is
simulation of fluid flow and transport of passive chemicals in porous media. Locally
conservative approximation schemes and methods with a posteriori error control play
important role for such problems. Finite volume methods ensure local mass conser-
vation and combined with some upwind strategies give monotone solutions. In this
paper we present an analysis of a residual type error estimators and illustrate our
theoretical findings on numerous computational tests in 2 and 3 dimensions.

1. INTRODUCTION

We consider the following convection-diffusion-reaction problem: Find u = u(x) such
that
(( Lu=-V-AVu+V-(bu)+cu =f, in Q

u =0, on ['p,

(1.1)

(—AVu+bu)-n =gy, onl%,
\ —AVu-n =0, on D¢
Here Q2 is a bounded polygonal domain in R", n = 2,3, A = A(x) is n X n symmetric,
bounded and uniformly positive definite matrix in €2, n is unit vector pointing outward
and normal to T', b = b(x) = (bi(x),...,bu(x)) is a given vector function, ¢ = ¢(z)
is the given absorption/reaction coefficient, and f = f(x) is a given source function.
We have also used the notation Vu for the gradient of a scalar function v and V - b
for the divergence of a vector function b in R". The boundary of €, I', is split into
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Dirichlet I'p, and Neumann ['y parts. Further, the Neumann boundary is divided
into two parts: Iy = I'% U9, where I'? = {z € 'y : n(z) - b(z) < 0} and
It ={z €Ty :n(x)-b(x) >0}. We assume that I'p is a nonempty and has positive
measure.

This model problem comes from simulation of fluid flow and transport in porous
media. For example, u(z) may represent the concentration of a chemical dissolved
and distributed in water due to processes of advection, diffusion, and absorption. The
solution of such problems exhibit local behavior due to discontinuity in the boundary
data and the coefficients of the differential equations, and/or other local phenomena
(for example extraction/injection wells). In order to resolve such local behavior the
numerical method should be able to detect the regions of singular behavior of the
solution and to refine the grid locally in a balanced manner, so that the overall accuracy
is uniform in the whole domain. The local conservation properties of the finite volume
element approximations and the simplicity of the method motivated our study.

There are few works related to a posteriori error estimates for finite volume methods.
In the pioneering work [1] L. Angermann has studied a balanced a posteriori error
estimates for finite volume discretizations for convection-diffusion equations in 2-D on
Voronoi meshes. His basic error estimator is derived using the idea of a previous work
[2] on finite element method but contains two new terms which he has studied. In
our paper we take a similar path. Namely, the error estimates for the finite volume
method are derived by using the relation and similarities between the finite volume
and finite element methods. The theory of the finite volume methods is still under
development and this raises the difficulties in establishing an independent a posteriori
error analysis for finite volume approximations. For instance, optimal order a-priori
L?-error estimates with minimal regularity of the solution are not known for the finite
volume methods for elliptic equations. Optimal WP-error estimates for elliptic and
parabolic problems have been obtained in the recent studies [16, 19] for 1 < p < oo .

On the other hand, a posteriori error indicators and estimators for the finite element
method have been widely used and studied in the past 25 years. The research in this
area starts with the pioneering papers of Babuska and Rheinboldt [4] and continues
with studies devoted to the so called Residual Based method (see the survey paper
of Verfiirth [27]). In this popular approach certain local residuals are evaluated and
then the a posteriori error indicator is obtained by solving local Dirichlet or Neumann
problems taking the residuals as data [4, 5]. Another variation of the method is to use
the Galerkin orthogonality, a priori interpolation estimates and global stability in order
to get error estimators in global L?- and H'-norms (see, for example, [14]). Further,
solving appropriate dual problems, instead of using the a priori interpolation estimates,
leads to error estimators controlling various kinds of error functionals [6]. Solving finite
element problems in an enriched by hierarchical bases function space gives rise to the so
called Hierarchical Based error estimators [5]. There are error estimators that control
the error or its gradient in the maximum norm. Such estimators are based on optimal
a priori estimates for the error in maximum norm [15]. Another error indicator, which
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is widely (and in most cases heuristically) used in many adaptive finite element codes,
is the Zienkiewicz-Zhu (often called ZZ) error estimator [29, 30]. This estimator is
based on post-processing of the computed solution gradient in order to get a better
one, which is later used instead of the exact gradient to estimate the energy norm of
the error. Some analysis of the method could be found in [21] and the literature cited
there.

In this paper we adapt the mentioned above finite element local error estimation
techniques to the case of finite volume element approximations. We consider mainly
the Residual Based a-posteriori error estimators and analyze exclusively the one that
controls the error in global L?- and H!'-norms and uses Galerkin orthogonality, a priori
interpolation estimates and global stability. Our theoretical and experimental findings
are similar to those in [1] and could be summarized as follows: the a posteriori error
estimates in the finite volume element method are quite close to those in the finite
element method and the mathematical tools from the finite element theory can be
successfully applied for their analysis.

The paper is organized as follows. We start with the finite volume element for-
mulation in Section 2. The section defines the used notations, approximations and
gives some general results from the finite volume approximations. Next section studies
the Residual Based error estimator, followed by short explanation of Zienkiewicz-Zhu
estimator in Section 4. In Section 5 we summarize the used adaptive refinement strat-
egy. Finally, various computational results for model 2 and 3 dimensional problems,
confirming our theoretical findings are given in Section 6.

2. FINITE VOLUME ELEMENT FORMULATION

2.1. Notations. We use the Hilbert space H},(Q2) = {v € H'(Q) : v|r, = 0} and the
standard L?- and H'-norms:

lull = (u, )"/, |Julle = [Julli = {(u, w) + (Vu, Vu) }'72,

where (-, -) is the inner product in L*(Q2) and Vu is the gradient of u.
We shall use the weak formulation of the problem (1.1). First we introduce the
bilinear from a(-,-), defined on H}(Q) x HL () as:

(2.2) a(u,v) = (AVu — bu, Vv) + (cu,v) + / b-n uvds.

out
FN

We assume that the coefficients of problem (1.1) satisfy the following conditions:
(a) the form is coercive in Hj(€), i.e. there is a constant ¢y > 0 s.t.

a(u,u) > col[ully, Yu € H,(Q);
(b) the form is bounded in H} (), i.e. there is a constant ¢; > 0 s.t.

a(u,v) < ¢llulli||v||i, Yu, v € H})(Q).
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A sufficient condition for the coercivity of the bilinear form is
c(z) + 0.5V -b(x) >0 for all z € Q.
Then (1.1) has the following weak form: Find v € H}(Q) such that

(2.3) a(u,v) = (F,v) = (f,v) —/ gyvds for all v € H(Q).
Iy

In pur computations we also use the standard energy norm ||u||? = a(u,u). Finally,

when we derive a posteriori error estimates in L?-norm we shall assume that problem

(2.3) is H*-regular, i.e. the solution is in H?(Q) N HL ().

2.2. Approximation method. We assume that €2 is a convex polygonal domain and
is partitioned into triangles (in 2-D) or tetrahedra (in 3-D) called finite elements and
denoted by K. The elements are considered to be closed sets and the splitting is
denoted by Tj,. We assume that the partition 7y, is locally quasi-uniform (or regular),
that is meas(K) < Cp(K)? with a constant independent of the partiton. Here p(K)
is the radius of the largest ball contained in K. In the context of locally refined grids
this means that neigbouring finite elements are of approximately the same size while
elements that are far away may have very different size.

We introduce the set N, = {p: p is a vertex of element K € T} and define N} as
the set of all vertices from N}, except those on I'p. For a given vertex x; we denote by
I1(z) the index set of all neighbors of x; in IV, i.e. all vertices that are connected to x;
by an edge.

In order to derive the finite volume approximation we need the so-called dual parti-
tioning of €2 into finite volumes. For a given finite element partitioning 7,, we construct
a dual mesh 7" (based upon 7,), whose elements are called control volumes. In the
finite volume methods there are various ways to introduce the control volumes. Al-
most all approaches can be described in the following general scheme. In each element
K € T, a point ¢ is selected. For the 3-D case, on each of the four faces z;z;z) of
K a point z;; is selected and on each of the six edges 7;x; a point z;; is selected.
Then ¢ is connected to the points z;;;, and in the corresponding faces the points z;jy,
are connected to the points z;; by straight lines (see Figure 1). The control volumes
are associated to the vertices x; € N,. Control volume associated with vertex z; is
denoted by V; and defined as the union of the “quarter” elements K € 7,, which have
z; as a vertex (see Figure 1). The interface between two control volumes, V; and Vj, is
denoted by ;.

We assume that the partitioning 7,* is locally quasi-uniform (or regular) in R",
n = 2,3. This means that there exists a positive constant C' > 0 such that C~'h? <
meas(V;) < Ch?, for all V; € T;*. Here h; is the maximal diameter of the elements
K € T, that intersect V.

For the 2-D case we will also use the construction of the control volumes in which the
point ¢ is the circumcenter of the element K, i.e. the center of the circumscribed circle
of K and z;; are the midpoints of the edges of K. This type of control volume forms
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FIGURE 1. Left: Finite element and finite volume partitions in 2-D;
Right: Contribution from one element to control volume V;, v;; and
in 3-D; Point ¢ is the element’s medicenter and internal points for the
faces are the medicenters of the faces.

the so-called Voronoi meshes. Then obviously, v;; are the perpendicular bisectors of
the three edges of K (see Figure 2). This construction requires that all finite elements
are triangles of acute type, which we shall assume whenever such triangulation is used.

Vi
Xl
Yij

FiGure 2. Control volumes with circumcenters as internal points
(Voronoi meshes) and interface 7;; of V; and V;. The rightmost picture
shows the segments (; in bold.

We define the linear finite element space Sj as
Sp={v e C(Q): v|k is linear for all K € T}, and v|r, = 0}
and its dual volume element space S; by
*={ve L*Q): v|y is constant for all V € T,* and v|p, = 0}.

Obviously, S;, = span{¢;(x) : z; € NP} and S; =span{y;(z) : z; € N/}, where ¢;
are the standard nodal linear basis functions associated with the node z; and y; are
the characteristic functions of the volume V;. Let I, : C'(2) — Sj be the interpola-
tion operator and I} : C'(2) — S; and P} : C(2) — S; be the piece-wise constant
interpolation and projection operators, respectively. That is

Iyu= Z u(zy)pi(x), Tyu= Z u(z;)xi(z), and Pyu = Z uixi(z).

z; ENp, z;ENp, z;EN},
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Here, u; is the averaged value of u over the volume V;. i.e. u; = fVi wdz/|V;]. In fact
I}, makes also sense as an interpolation operator from S} to Sy, namely I,v* € S}, and
Iyv*(x;) = v*(z).

The finite volume element approximation wy, of (1.1) is the solution to the problem:
Find u;, € S} such that

(2.4) ap(up, v*) = A(up, v*) + C(up, v*) = F(v"), for all v* € S;.

Here the bilinear forms A(uy, v*) and C(up, v*) are defined on Sj, x Sj, the linear form
F(v*) on S}, and are given by

(2.5) A(up,v*) = Z v ¢ — / AVuh-@ds+/cuhdx :

. 0
zi€Np, aVi\l'y Vi

(2.6) F(v*) = /fdx— / gnds

i GNO av;nriz

Here and further we use the notation v} = v*(x;). We use two different approximations
for computing C'(uyp, v*). The first one is a straightforward evaluation of C'(uy, v*):

(2.7) C(up,v Z / b-nupds, up € Sy, v €S},
#ENL gy \rip

Such approximation can be used for moderate convection fields and dominating dif-
fusion. For large convection (or small diffusion) this approximation gives oscillating
numerical results which we would like to avoid. For such problems we are interested in
approximation methods that produce solutions satisfying the maximum principle and
are locally conservative. Such schemes are also known as monotone schemes (see, e.g.
[17, 22]). A well-known sufficient condition for a scheme to be monotone is that the
corresponding stiffness matrix is an M -matrix.

The up-wind approximation of convection-dominated problems, which we have used
here, is locally mass conservative and gives the desired stabilization. It is done in the
following way. We split the integral over 0V; on integrals over ;; = 9V; N dV;, (see
Figure 1) and introduce outflow and inflow parts of the boundary of the volume V;.
This splitting can be characterized by the quantities (b - n;); = max(0, b-n;) and
(b-n;)- = min(0, b-n,), where n; is the outer unit vector normal to dV;. Then the
convection form C'(up, v*) is defined as

28) Clun)= 3 ot o [ 10 n)une) + @ n)-unay) ds.

0
z;ENp JEII(i) ij

This is an extension of the classical upwind approximation of the convection term and
is closely related to the discontinuous Galerkin approximation or to the Tabata scheme
for Galerkin finite element method [24]. It is also related to the scheme on Voronoi
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meshes derived by Mishev in [20]. A different type of weighted upwind approximation
on Voronoi meshes in 2-D has been studied in [1].

We recall the following result from the finite volume element approximations [10,
11, 16, 19]. Let u and uy, be the exact solution of (1.1) and the finite volume element
approximation (2.4), respectively. Then there is an independent of h constant C' > 0
such that

(2.9) lu = unlly < Chllull..

3. THE RESIDUAL TYPE ERROR ESTIMATORS

Since uy, € S;, C Hp () the problem of finding the exact error e = u — uy, has the
following weak formulation : Find e € Hj(Q) such that

(3.10) a(e,v) = (F,v) — a(uy,v) = (R,v) forall v € H,H(Q).

Most of the residual type error estimators try to solve (3.10) in an enriched finite
dimensional space S, S, C S C HA(Q), which is usually obtained by adaptively
refining the grid 7, (the so called h-refinement) or by increasing the order of the
algebraic polynomials used in the approximation process (the so called p-refinement).
Such global solution technique is computationally expensive and is usually replaced
by solving the problem locally. The h-refinement is used in subsection (3.3) to define
residual based error estimators as solutions of local Dirichlet or Neumann problems.

Computationally less expensive is another approach based on computing certain
local residuals (over the elements K € 7,) and using: (1) the Galerkin orthogonality
a(e,e) = (R,e—ey) for any e, € S, (2) the a priori interpolation estimates for e — ep,,
locally on the elements, and (3) the global stability estimate. Such approach gives rise
to an error estimator in the global H'-norm, described in subsection 3.1. Using duality
one can get error estimators in the L?-norm or error estimators that control different
types of error functionals (see for more details Subsection 3.2).

3.1. Error estimators based on Local Residuals. This method expresses the error
as sum of certain local residuals over the elements. These local residuals are in terms of
the difference of the exact and approximate solution over the elements and the jumps
of the conormal derivatives along the element faces/edges for the 3-D/2-D case.

We first demonstrate the method when no upwind is used for the approximation of
the convection term, i.e. the form C(-,-) is evaluated by (2.7). In this case a,(-,v*) =
a(-,v*). We give a posteriori estimate for the error e = u—uy,, where u is the solution of
the weak problem (2.3). Using the divergence theorem over the volumes and regrouping
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the sum over the volumes as sum over the elements we get:

ale,v*) = Y vl /(f + V- (AVuy, — bup) — cuy) do — / [AVuy] - nds

z;ENO
ok Vi Bi\I'n

— / gy + (AVuy, — buy,) - nds — / AVuy, - nds

BinI Binrget

1
= > /(f + V- AVuy, — V- (bup) — cup)vde — = / [AVuy) - nv*ds
K 28K\F

- / (gn + (AVuy, — buy) - n)v*ds — / (AVuy, - n)v*ds

oKNIin OKNTQut

= > {(Rg,v")k + (Rox,v")ox} forall v* € S;.
KeTy
Here [AVu,] denotes the jump of AVu, across the finite element boundary and (;
is defined as 3; = ViN Y g OK (see Figure 2 for the 2-D case). The last equality
defines Rk as the residual over the element K and Ryx as the jump across the element
boundary. Using the weak formulation given by (2.3), integrating by parts, we get
similar expression for e as well:

a(e,v) = > {(Ri,v)x + (Rox, v)oxc} for all v € H}(Q).
KETy
Here we have grouped all boundary terms to define Ryx and all terms with integration
over finite elements K to define Rg.

In what follows, the second argument of the bilinear form a(-,-) will determine
whether it is the bilinear form for finite volumes, a(-,v*), or the bilinear form for
finite elements, a(-,v). Using the Petrov-Galerkin orthogonality for the finite volume
method a(e, v*) = 0, for all v* € S}, and applying Holder’s inequality on each element
leads to the following estimate for the error in the energy norm:

colle|? < ale,e) = ale, e) —ale,v*)

= Y2 {Bx,e —v )k + (Rox,e —v")or} < Y prwi(e).

KeTy, KeTy

(3.11)

Here the local residuals px and the weights wg are defined by
(3.12) pi = hil[Rillk +hil*||Roxlox,
(3.13) wicle) = maz {hllle = v*|lic, b lle = v*la }
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Here v* is an arbitrary element in S;. Note that with the introduced notations in-
equality (3.11) can be written also in the following form, which will be used later:

a(e,v) < Z prwi (v) for all v € HL(Q).

Further, one should use the local approximation properties of the space S; in order to
estimate wg (€). Namely, we use the concept of quasi interpolation (see, e.g. [8, 12, 13])
and we proceed as follows. Let 7(K) be a patch of all finite elements that share a vertex
with K. Using the local L?-projection (see [8], formula (3.2)) one can find v(e) € Sj,
such that

1/2

hi'lle —v(e)llx + hy " lle — v(e)llox + | Vo(e)llx < CrxllVella)-

Then taking v* = I[fv(e) in (3.13), using the above estimate, inequality (3.11) and
obvious manipulations, we get

1/2
llell: < CCy (Z ﬁé) ,

KeTy

where C' depends on the coercivity constant ¢y of the form a(-, -) and C; = maxge7, Cr k.

Next, we study the case of up-wind approximation. In this case ay(-,-) is defined
by (2.4) and the convection part is determined by (2.8). The up-wind approximation
of the convection will bring additional error term and we modify the above argument
in the following way. From ay(up, v*) = F(v*) and a(u, v*) = F(v*) for v* € S; we get
the orthogonality condition:

a(u, v*) — ap(up, v*) = 0.
Following (3.11), the estimate for the error in the energy norm now becomes

clle|]? < ale,e) = ale,e) — a(u, v*) + ap(up, v*)
= {a(e,e) —ale,v")} + {an(up, v*) — alup, v*)}.

To estimates the term a(e, e) —a(e, v*) we use (3.11). For the second term, ay,(up, v*) —
a(up, v*), we get

an(up,v*) = a(up,v*) = Y Uf/[@'&)ﬂh(%)+(Q'ﬁi)—uh($j)—Q'ﬂiuh] ds
:DiEN}? av;
= Z Z (vf —v;)/b-ﬁ(uh(xi) — uy)ds.
KeTh 7ijCK yii

In the last equality n is taken to be the normal to v;; such that b-n > 0 and the indices
(ij) are such that (z; — ;) - n < 0. We denote by [v*] the jump of v* across v;; and
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by R, the expression b - n(up(2;) — up)l|y,;. Then, by Schwartz inequality, we get the

bound
pL/2
an(un, o) = alun, v) < 0 D7 Ne = v Wb IR [y < D wie bl Bl
KeTy ’YZJCK KeTy
Here || - ||,,, denotes the L?-norm on v;; and in the last inequality we have used the
notations
1/2 1/2
~1/2
w =P 2 =G, | Rl = 3 1R,
’YijCK %-J-CK

Again, by using the local quasi interpolant and its approximation properties we get
> keer, Wk < C1l[Vella. This means that we have to add to the local residuals ps

additional term h1/2||R7K|| ie.

pic = hic||Ric|| e + hil*||Roxc|lox + Pl ]| Rl

and proceed further as in the previous case.

The obtained through inequality (3.11) a posteriori error estimator is similar to the
one from the finite element method. One may further exploit the similarity of the error
estimates for finite elements and finite volumes. We shall use this similarity to derive
an a posteriori error estimate in L?-norm by using duality argument.

Let us denote by ef'F the error in the corresponding finite element method (using
linear triangles). Then one gets the formula

colle™ I < Y {(R, e = v) + (Rox, " = v)oc} < ) prwrc(e™),
KeTy, KeTy

i.e. the weights wg(e"”) in the finite element method are defined as in (3.13) but with
v* € S} replaced by v € S;. To get error estimate in L?-norm, as given in subsection
3.2, one considers the dual problem : Find ¢ € H}; () such that

a(v,é) = (¥, v) for any v € Hj(Q).
Thus |[efF|2 = a(ef'Fe) < Y prwi(€). For u sufficiently smooth, one can use

KETy
interpolation estimate wy (€) < Cr xhi|€lo,x (see, e.g. [9]) to finally get

1/2
| FE||0<C<ZthK> )

KeTy

where C is the constant from the stability estimate for the dual problem |é| <
CllefEl|p. This shows that px can be used to get an a poteriori estimate for the
error in L?-norm.

We can use similar analysis to show that for problems with smooth data and solutions
the derived estimator for the finite volume method produces asymptotically the same
result. If A(z) is piecewise constant matrix over the finite elements, then one can easily
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prove that (Ryx,e — v*)ox = (Rok, e — Inv*)ox for any v* € S;. Thus, the difference
in the presentation of the errors of the finite element and finite volume methods is in
the residual terms. To compare the residual terms one can proceed as follows. Denote
by Prv = ﬁ i) x vdz and consequently get the following estimate for the finite volume
error:

(RK,6 — ’U*)K = (RK — PKRK,G — U*)K + (PKRK,G — Ih’U*)K
< Cri Pk (IVRk||x |IVellx + || Rx||x lelox)-

Obviously, this term is of the same order as the corresponding term in the finite element
case.

3.2. Residual estimators using duality. The asymptotic exactness of the above er-
ror estimator can be lost when applying the Hélder’s inequality in (3.11). For example,
this is the case for problems with strongly varying coefficients, convection dominated
problems, etc. Also, the estimator may not be appropriate for controlling local quan-
tities of the error (point values, line integrals, etc.). Such deficiency is inherited for
almost all Residual Based error indicators based on local computations and is due to
the fact that they do not control the error propagation or do it partially, of course
for reasons of computational efficiency. The sharpness of the error estimates could be
improved and the question is how much one is willing to spend on the computations
in order to find the exact error.

In the residual method based on duality one increases the sharpness of the error
estimators (which may be designed for different quantities of the error) by solving
dual problems for the quantity of interest and using the obtained solution to compute

better weighting factors wg in (3.11). The general idea is as follows. Consider the dual
problem: Find ¢ € H}(Q) such that

a(v,é) = J(v) for any v € H},(Q) N C°(Q),

where J(+) is linear error functional defined on H}(2) N C°(Q). For example, if one
wants to control the error at point z, J(v) = v(x) etc. Taking into the above equation

v = e and using the same approach as in (3.11) we get |J(e)| < > prxwi(€). The
KEeT,
easiest way to estimate the weights wg (€) is to use one of the a priori error estimates

wi (&) = Crk||Véllk, wk(€) = Crhikllé]]2x.

The second approxiame equality is valid is under certain assumptions, discussed in
subsection (3.1).

Improvements, which of course lead to another increase in the computational cost,
deal with techniques for direct evaluation of the residual in (3.11) (the quantity before
applying Holder’s inequality). For more details we refer to [6].

3.3. Estimators based on local Dirichlet/Neumann problems. The error es-
timators in this subsection are obtained by replacing the expensive solution in an
enriched finite dimensional space S, S, C S C H}(Q), by solutions of local Dirichlet
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or Neumann problems. In the finite element setting S is usually obtained by using
higher order polynomials over the same mesh (often called p-refinement, see [4, 5, 27]
and next section). Here we obtain S by h-refinement and the definition of the local
problems is as follows.

First, given a vertex x;, we define K; to be the union of all finite elements K that
share z;. We define T5(V;) and T5(K;) by splitting correspondingly V; and K; into finite
elements of size § ~ h/2 in the way shown on Figure 3, and over the splitting define
the finite element spaces

Ss(Vi) = {veC(Q): v|k is linear for all K € T5(V;) }
Ss(K;) = {veC(Q): v|k islinear for all K € T5(K;) and v|sr, = 0},
and their dual finite volume element spaces S5 (V;) and S5 (K;).

FIGURE 3. Local partitioning of V; and K; for the local Neumann and
Dirichlet problems

The local Neumann problem, associated to volume V;, is defined as : Find us € S5(V;)
such that

A(ug,v*) + C(ug,v*) = F(v*) for all v* € S5(V;),

where the forms A, C and F' are defined by (2.5), (2.7) and (2.6) with Vugs|sy, = Vuy,.
The local Dirichlet problem, associated to K;, is defined as : Find u; € S5(K;) such
that

A(ug, v*) + C(ug,v*) = F(v*) for all v* € Sj(K;),

where the forms A, C' and F are defined by (2.5), (2.7) and (2.6) with us|sx, = up.
The error estimators are defined for any vertex x; € N, as

v, = |[Vug' — Vuy,

v, and pg, = [|Vug = V|,

where u and u¥ are correspondingly the solutions to the local Neumann and Dirichlet
problem.

Improvement of the error estimation for the cost of computational efficiency can be
achieved by increasing the patches over which the local problems are defined and/or
by performing properly defined iterative correction steps.
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4. ZIENKIEWICZ-ZHU (ZZ) ESTIMATOR

Here we briefly describe another estimator that has been implemented and tested
in our computations, namely Zienkiewicz-Zhu (or ZZ) error estimator, see [29]. This
estimator is difficult to justify for convection-diffusion equations. We use it heuristically
(as an error indicator). It’s efficiency for various elliptic problems has been numerically
confirmed in many practical applications (see for example the references in the survey
paper [30]). Theoretical work on the method can be found for example in [21] and the
literature cited therein. The estimator is also very easy to compute, making it very
appealing for implementation in the adaptive mesh refinement software.

The ZZ indicator expresses the energy norm of the error |||e||| = (AVe, Ve) through
an approximation of the exact error gradient Ve = V(u — u;). The computed gradient
Vuy, is post-processed expecting to get a better approximation Vu; for Vuy,, which
approximation is later substituted instead of the exact gradient Vu into the error
estimator |||e]||. This is done in the following way. We define the diffusive flux o =
—AVu. Then the finite element approximation for o is given by 0, = —AVu, and the
error for this approximation is denoted by e, = 0 — g;,. The error is considered in the
|| . |||-norm (equivalent to the energy-norm):

(4.14) llel[[* = (AVe, Ve) = (A7 e, e0).

A recovered continuous flux o} € (S,)" is computed by smoothing the discontinuous
over the elements numerical flux oj,. The smoothing may be done by nodal averaging
of oy, i.e. o} at a given node is computed by averaging the gradients oy, at the elements
that share the considered node, or L*(Q) projection of oy, into Sj x.Sj,. The computation
of the global L?(Q)-projection is expensive and one often uses “lumping” of the mass
matrix to finally get

A
Z |QP| VUh|K7

KeTy,

where 2p is the union of elements sharing vertex P. Heuristically one may say that
the continuous o is better approximation to o than op. This justifies the idea to
numerically evaluate (4.14) by taking e, &~ o} — 05. In [21] this heuristic approach
has been theoretically studied for the finite element method for Poisson equation using
regular triangular meshes. Next, we write ||[e[|[* = 3.7 |/le]|[i and use the local
quantity px = |||el||x/|||u||| as an error indicator.

5. ADAPTIVE GRID REFINEMENT AND SOLUTION STRATEGY

In this section we present the used adaptive mesh refinement strategy. A brief general
description follows. For a given finite element partitioning 7, desired error tolerance
p and norm in which the tolerance to be achieved, say ||| - |||, do the following :

e compute the finite volume approximation u, € Sy, as given in Subsection 2.2;
e using the a posteriori error analysis compute the errors pg for all K € Ty;
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e mark those finite elements K for which pyx > p/\/ﬁ; here N is the number of
elements in Ty;

e refine the marked elements;

e additionally refine until a conforming mesh is reached;

e repeat the above process until no elements have been marked.

The described procedure yields error control and optimal mesh (heuristics), which are
the goals in any adaptive algorithm. The obtained in the process nested meshes are
used to define multilevel preconditioners. The initial guess for every new level is taken
to be the interpolation of wu; from the previous level. Concerning the solvers we also
work on efficient preconditioning in parallel environment. More details about this can
be found in our technical report [25].

For the 2-D case we refine marked elements by uniformly splitting the marked trian-
gles into four. The refinement to conformity is done by bisection through the longest
edge. For the 3-D version of the code the elements (tetrahedrons) are refined using the
algorithm of Arnold, Mukherjee and Poly [3].

6. NUMERICAL EXAMPLES

6.1. 2-D model test problems. We first present numerical experiments for the fol-
lowing model 2-D problems.

Example 1. We consider the problem (1.1) where € is an L-shaped domain given
on Figure 4, T'p =T, b = (1.5,1), f = 0 and A(z) = 0.01 I, where I is the identity
matrix. The Dirichlet boundary values are 0 on x = —1 and y = 1, linearly increases
from 0 to 1 on (—1,—1)..(—1,—0.75) and 1 on the rest of the boundary. The up-wind
scheme gives solution without oscillations. The local error estimators lead to local
refinement around the expected boundary and internal layers. On Figure 4 we give the
mesh on level 5 (left) which has 5,232 nodes and 10,247 triangles. On the right are
the level curves of the solution computed on the same level.

Example 2. Again 2 is an L-shaped domain, I'p = ', b = (1.5,1) and A(z) =
0.01 I. The Dirichlet boundary value is 0 everywhere. f is 0 everywhere except in
the square with lower left and upper right corners (—0.55, —0.55) and (—0.45, —0.45)
correspondingly. Figure 5 gives the mesh obtained after 4 level of refinement. It has
3,450 nodes and 6, 798 triangles. On the right are the level curves of the solution.

Example 3. We take €2 to be the domain shown on Figure 6 with one internal layer.
In this problem I'p is the upper boundary, b = (1,—0.5), f = 0 and A(z) = 0.05 [ in
the layer and A(x) = 0.01 I in the rest of the domain. The Dirichlet boundary value
is 1 for x < 0.2 and 0 otherwise. On the Neumann boundary we take gy = 0. Figure 6
shows the mesh on level 5 (left) with 6,035 nodes and 11,892 triangles. On the right
are the solution level curves.

6.2. 3-D problems. Next, we consider a problem related to simulation of steady state
fluid flow, transport, and absorption of passive chemicals in porous media. The nonho-
mogeneous pressure of the aquifer will force the ground water to move and transport
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FIGURE 4. Convection dominant problem in L-shaped domain; the mesh
on level 5 (left) with 5,232 nodes and 10, 247 triangles; the level curves
(right) on the same level.
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FI1GURE 5. Convection dominant problem in L-shaped domain; the mesh
on level 4 (left) with 3,450 nodes and 6,798 triangles; the level curves
(right) on the same level.

the dissolved chemicals. Thus, we need to solve consecutively the pressure equation
and the transport equation (diffusion-dispersion-reaction type).

We first consider the pressure equation with known solution in an L-shaped 3-D
domain shown on Figure 7. Here —1 < z < 1. In this case A(z) = I, f = 0 and
Dirichlet boundary ', = 02\ 'y, where I'y = {z = —1,1}. This example has known

exact solution u(r, 6, 2) = r*3sin% (in cylindrical coordinates) and has been used to
test the error estimator.
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level

# nodes

||€||ma:v

[lefl .2

llella

509

0.050494

0.028660

0.123884

2,420

0.034936

0.010644

0.078138

8,813

0.022735

0.004112

0.049559

17,312

0.014491

0.001757

0.033087

22,448

0.009164

0.001048

0.024555

S| O x| W N~

28,768

0.005807

0.000850

0.020348

TABLE 1. Local Refinement

level

# nodes

||€||ma:v

[lel .2

llella

509

0.050494

0.028660

0.123884

3,333

0.034952

0.010643

0.077947

23,817

0.022750

0.004073

0.048743

179,729

0.014511

0.001586

0.030489

Y = W N —

1,395,745

0.009186

0.000625

0.019107

17

TABLE 2. Uniform Refinement

i.e. on the last level we have approximately 3% error in the energy norm. The errors
on the last level in the discrete L?- and maximum norms are correspondingly 0.06%
and 0.46%.

In order to compare with the case when no local refinement is applied we have
included computations shown on Table 2 with uniform refinement. Here by uniform
we mean that every tetrahedron has been split into 8. The accuracy with 1 395 745
nodes on level 5 is comparable to the accuracy of the locally refined grid with 28 768
nodes on level 6. Note, that the locally refined grid has about forthy times less grid
points than the uniform grid.

We would like to mention that the other error indicators give similar results with
small differences in the obtained meshes. However, the meshes are refined in the areas
where the solution has some type of singularity and have almost the same number of
nodes.

The last problem is based on data related to groundwater flow and the setting is
described in below. A steady state flow, with Darcy velocity v (measured in ft/yr), has
been established in a parallelepiped shaped reservoir of size 1000 x 1000 x 500. The
pressure p(x) is a solution to the problem (1.1), where b =0, ¢ =0 and A = D, where
D is the permeability tensor. The pressure at the the faces ;1 = 0 and z; = 1000 is
constant, correspondingly 1000 and 0, the rest of the boundary is subject to no-flow
condition, and the permeability tensor is D = 64 I. In the layer (seen on Figures 8
and 9) we take the permeability to be five times smaller than in the rest of the domain,
i.e. in the layer D = 12.8 I. Finally, we have two wells with axes along the segments
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xy = 200, o = 0, x3 = 0..400 and z; = 400, x5 = 0, x3 = 0..400. We treat the
well simply as a line-delta function (sink) along the well axis. The production rate
() = 200,000 [/yr is the intensity of the sink. For discussion of various well boundary
conditions we refer to [23].

On Figure 8 we show the adapted mesh and the level curves for the pressure in the
reservoir cross-section xo = 0. The problem setting (see below) gives us symmetry with
respect to the plane o = 0, so the equations are solved only in half of the domain, the
parallelepiped (0, 1000) x (0, 500) x (0, 500).

The computed pressure p forces the ground water to flow with Darcy velocity v =
—DVp. The transport of a contaminant, in our case benzene, dissolved in the water is
described by the convection-diffusion-reaction equation (1.1), where u is the benzene
concentration, b is the Darcy velocity —DVp, A(z) is the diffusion-dispersion tensor,
and c is the biodegradation rate.
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FIGURE 8. Pressure computations for a non-homogeneous reservoir with
two wells; The two wells are in the plane y = 0; (left) the locally refined
3-D Mesh on level 3 with 16,705 nodes; (right) Contour curves of the
pressure for level 3 in the plane y =0

After the pressure is found with prescribed accuracy we use it to compute the Darcy
velocity v = —DVp and take b = v. The dispersion tensor A is given by A(z) = kg;rrI+
kwTv/|v| + ki(|v]*T — vTv)/|v], where kg;rp = 0.0001, k, = 21 and k; = 2.1. A steady-
state leakage of benzene of 30 mg/l is applied on the boundary strip z; = 0,23+50..350.
The rest of the boundary is subject to homogeneous Neumann boundary condition. The
wells have the given above production rate (). The dispersion/convection process causes
the dissolved benzene to disperse in the reservoir. The biodegradation is transforming
the pollutant into a solid substance which is absorbed by the soil. This leads to a
decrease in the benzene. The computations are for the case of low biodegradation rate
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FiGure 9. Concentration computations for a non-homogeneous reser-
voir; (left) the 3-D mesh on refinement level 5 with 44, 980 nodes; (right)
contour curves of the concentration for the cross-section xy = 0; the
permeability in the layer is two times smaller than the rest of the domain

¢ = 0.05. Figure 9 shows the obtained mesh and the isolines for the concentration in
the reservoir cross-section x5 = 0 on grid refinement level 5.
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