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Abstract. A model and analytical method for solving a problem of coupled fluid flow in
the reservoir/well system is presented. The 3-D drainage area is composed of three connected
media: the tubing, the annuli (considered as a super conducting collector), and the reservoir
itself. To couple the fluid flows in these areas a non-overlapping Dirichlet-Neumann domain
decomposition method is developed theoretically and tested numerically. The method allows
to build an analytical hybrid simulator for accurate evaluation of the impact of the main
geometrical and hydrodynamic parameters of the 3-D system on the pressure drop along the
horizontal well and on its production index.

1. Introduction

The modern technology in oil and gas recovery requires new models and computational
methods and techniques which take into account geometrical and hydrodynamics parameters of
“small” perturbation. Mostly, this issue reflects the increasing understanding of the reservoir’s
structure and geometry which make effective the useage of the so called “smart” technology
[17]. Many presentations on the recent conference ”Horizontal Technology” [28] showed that
the technological progress of horizontal well drilling has been recognized by the petroleum
industry as a most efficient technique for reservoir development and characterization. A distinct
property of horizontal wells is a bounded perforation with significant length in productive layer.
At the same time, it is clear that a high span of perforation of the horizontal well may result
in a significant pressure drop along the well-bore [2, 10, 16, 24, 20, 30, 21, 22, 23, 25]. The
mechanics of pressure drop is very complex and is due to various factors, such as completion of
the well, operation conditions (e.g. sand factor), the character of fluid flow inside the horizontal
well and in the reservoir, geometry of the reservoir, hydrodynamic characteristic of the porous
media, etc. These factors may lead to substantial decrease of well/reservoir conductivity ratio.
The pressure drop results in stabilization of the well productivity; that is, beginning with a
certain critical value, further extenuation of the wellbore’s length does not cause any increase
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of productivity [8, 10, 24, 25]. It has been noted [2, 19, 21, 22, 23, 25] that for an accurate
evaluation of the pressure drop along the well a coupled well-bore/reservoir flow model has to
be considered. It has been shown [2] that in a 3-D unbounded reservoir with permeability less
than 1-Darcy and laminar well flow the pressure drop along the well-bore is insignificant. This
fact is related to the assumption that conductivity of the well in case of Poisel’s flow is much
higher than the conductivity in the reservoir and therefore, the pressure along the well changes
weakly. At the same time, the data observed in multiple operating horizontal wells showed
that productivity of these wells does not increase proportionally to the length. In recent papers
(see, e.g. [21, 22, 23, 25]) this effect has been estimated by friction of the wall and acceleration
terms in balance equation. In the present paper a model of a reservoir/well system composed
of a tube of small radius with extremely high (infinite) conductivity, a intermediate annular
zone with high but finite permeability, and the reservoir itself with low (less than 1 Darcy)
permeability (see, Figure 1) is studied. In the physical sense the model we use takes into
account the following phenomena:

• fluid flow inside tubing of the well,
• fluid flow in a screen and sand pack considered as one media with its own permeability

and
• fluid flow in a bounded reservoir limited by top, bottom and external boundaries.

This embedded coupled model allows us to take into account the main parameters that produce
pressure drop along the horizontal well. In practice the reservoir’s and well’s geometrical
parameters are incomparable. Therefore, the combined impact of these parameters on coupled
fluid flow inside the well and in the reservoir could not be efficiently estimated by methods of
numerical analysis based on finite difference (finite element, etc.) approximation of governing
equations. Our goal is to accurately evaluate the impact on well performance of the parameters
of: (1) the geometry of the reservoir/well system, and (2) the hydrodynamic characteristic of
fluid flow in three linked media (well, near well zone, and main part of the reservoir). For this
purpose two analytical models are proposed. The first approach is based on the presentation of
the reservoir pressure distribution in the form of convolution of a Green function of boundary
problem with mixed type (Dirichlet and Neumann) of boundary conditions and with unknown
density. For an explicit construction of the Green function, an alternating Schwartz algorithm
is proposed and studied.This algorithm produces a sequence of solutions to a Dirichlet problem
in a bigger (auxiliary) domain so that their restrictions to the original domain tends to the
Green function of a mixed problem. Further discrete density is modeled by means of special
coupling conditions on the wall of the well.A second approach is based on methods of separation
of variables, which allows us to reduce the initial problem to the problem of computation the
Fourier and Fourier Bessel coefficients on the boundaries of a cylindrical domain. The first
approach accounts more precisely for the “ global parameters” of the well/reservoir system
such as size of the drainage zone, shape factors of the external boundary, of the reservoir,
well’s length etc. the second approach is aimed at accurate and explicit evaluation of the
impact of the “ local” geometrical and hydrodynamic parameters: tubing/casing “diameter”,
well /reservoir conductivity ratio etc., on the pressure distribution and production index.

It is very important to note that direct application of these methods is not feasible (im-
possible). Therefore, special domain decomposition algorithms are developed. We also must
note that for convenience, these two approaches are presented in the paper separately and are
applied to different domains. The paper is organized as follows: In Section 2 we present the
coupled model of a well/reservoir system and discuss methods for an approximate solution. In
Section 3 we construct an approximation of the Green function that is an important building
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Figure 1. Resrvoir/Well model

block in the numerical solution method. Further, in Section 4 we discuss the numerical imple-
mentation of the method and the computational results. Finally, in Section 5 we present and
discuss a non-overlapping Schwartz algorithm in a non-homogeneous domain. In this section
we present an explicit form of the solution and discuss the convergence of the corresponding
iterative method for the Fourier-Bessel coefficients.

2. Coupled Flow Model

In this section we present a mathematical model of coupling two single-phase fluid flows:
one inside a cylindrical well of finite length and another one in a bounded homogeneous porous
media (called reservoir).We assume that inside the well the flow is steady-state, inertia-less,
and governed by Stokes equations. The flow in the reservoir obeys Darcy’s law. The well
is assumed to be cased with very dense perforations uniformly distributed over its surface.
At the interface between the well and the reservoir we use a coupling condition, introduced
by Panfilov [26], that expresses a conservation of mass through the interface. The reservoir’s
filtration is in the radial direction to the interface of the well bore, while the inflow flux can
be considered to be continuous across the surface.

2.1. Mathematical Model. In order to formulate the model we first introduce some neces-
sary notations. The points in the 3-dimensional space R3 are denoted by x = (x1, x2, x3). The
reservoir is considered to be a spherical layer with thickness equal h:

Ω ≡ B ∩ {x : 0 < x3 < h} ⊂ R3,

where B ≡ B(0, R) = {x : |x| < R} is a ball in R3 with a center at the origin, and |x| is the
Euclidean length of x. The well W is a cylindrical cavity along the x1 axes of constant radius
rw and finite length L, i.e.

W ≡ {x : 0 < x1 < L, x2
2 + (x3 − x0

3)
2 < r2

w}, (see, Figure 1)

It is assumed that:
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1. The fluid is incompressible and filtration of flow in the porous media is governed by
Darcy’s law and the equation of continuity:

�w ≡ (w1, w2, w3) = −K

µ
∇p, ∇ · �w = 0.

Here �w is vector velocity of fluid filtration and p is the reservoir pressure, K generally
is a symmetrical tensor of permeability with measurable and bounded coefficients, and
the µ is fluid viscosity. We assume that the porous media is isotropic and homogeneous
and the fluid viscosity is constant. Substituting the expression for the velocity into the
equation of continuity we obtain:

∆p = 0 in Ω \ W.(1)

2. The following boundary conditions are satisfied on the boundary of the 3-D spherical
layer (see, Figure 1) :

at the top (x3 = h) and the bottom (x3 = 0) of the reservoir no-flow conditions are
prescribed, while the pressure p is specified on the external boundary Γ1 ≡ {x : |x| =
R, 0 < x3 < h} of the reservoir.

3. Inside the well we use a simplified model derived in [26] in terms of the averaged pressure
and velocity over the a cross-section of the well. Let D(x1) = {x : x2

2 + (x3 − x0
3)

2 ≤ r2
w}

be a cross section W by a plane orthogonal to the axes x1 at the point (x1, 0, x0
3), and let

S(x1) its boundary

S(x1) ≡ ∂D(x1) = {(x1, x2, x3) : x2 = rwcosφ, x3 = x0
3 + rwsinφ, 0 ≤ φ < 2π}.(2)

Next, denote by Pa(x1) the average pressure in the well-bore over the disk D(x1) and by
V1(x1) the average component of the velocity of the flow over D(x1) the x1. It has been
shown that under certain assumptions [26] the fluid flow inside the well W is governed
by the following two equations:

V ′
1(x1) = − 2

rw
wr(x1), − 1

µ
P ′

a(x1) =
8
r2
w

V1(x1) +
2
rw

w′
r(x1).(3)

Here wr(x1) is the average over S(x1) of the trace of the radial component of the velocity,
namely

wr(x1) = −K

µ

∫
S(x1)

∂p

∂n
ds,(4)

where n is outward normal unit vector to S(x1). Note, that in our case ∂p
∂n = ∂p

∂r so that
the notation wr(x1) is justified.

4. The radius of the well is more than a hundreds times smaller than the other linear sizes
of the well/reservoir system. That makes it possible to assume that we can neglect the
dependence upon the angular variable φ of the trace of the reservoir pressure and the
normal component of the velocity on S(x1) (defined by (2)). Therefore, we can use the
notation

p(x1, x2, x3)|S(x1) = p̄(x1).
5. The well pressure is specified as a given Pw constant for x1 = 0. This end of the well is

called dominated. The opposite end of the well, the point x1 = L, is called a free end.
At this end we specify the average velocity V1 which expresses a balance of mass. This
will lead to the following boundary conditions:

Pa(0) = Pw, V1(L) =
1

πr2
w

∫
D(L)

w1(L, x2, x3)dx2dx3.(5)
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6. The solution inside the well is completely specified by its boundary conditions while the
solution in the reservoir is specified only on the top (x3 = h), bottom (x3 = 0) and
external boundary Γ1. These two problems, called inner and external, are coupled via
a condition on the well’s interface. In this paper we will follow the scheme described in
[2, 11, 19, 26]. For another approach for coupling external and internal problem we refer
to [22, 25].

On the interface between the porous media and the well the pressure is continuous,
while the velocities are allowed to be discontinuous. In [26] it has been shown that in this
case the average pressure Pa(x1) in the well and the average of the trace of pressure in
the reservoir p̄(x1) on S(x1) satisfy the following interface condition:

p̄(x1) = Pa(x1) +
µ

2rw
(r2

ww′′
r (x1) − 4wr(x1)).(6)

The governing equation (3) in the well bore W and the conjugate condition (6) have been
obtained in [26] for Stokes flow by averaging over the well bore cross section. The solution
of the Stokes equations written in the cylindrical coordinate system was sought in the form
of a power series with unknown coefficient depending on x1 determined from the coupling
conditions.

2.2. Decomposition of the initial problem. Here we propose an iterative method that
reduces the problem of coupling flows in the reservoir (outer flow) and in the well (inner flow)
by the condition (6) on the well/reservoir interface.

We propose the following iterative scheme:
1. Solve the outer boundary value problem in the reservoir with a given linear distribution

P0 on the well surface; as a result we find: (1) the pressure function p(x) in the reservoir,
(2) the average of the traces of the normal component wr(x1) of velocity on the lateral
surface of the well, and (3) the normal component w1(L, x2, x3) of the velocity on the free
end of the well.

2. Using the wr(x1) and w1(L, x2, x3) obtained, solve the inner problem (3), (5) in W ; as
result the average pressure distribution Pa(x1) in the well is computed.

3. Solve

∆p = 0 in Ω \ W.(7)

with boundary conditions (6) on the interface S(x1) and the following boundary conditions
on the reservoir’s boundary:

px3 = 0 for x3 = 0, h, p(x) = pR on Γ1.(8)

4. Repeat steps 2 and 3 of this process until convergence.

2.3. Solution methods for the outer problem. Without loss of generality we can assume
that pR = 0. Let G(x, ξ) be the Green’s function of the mixed problem (6) – (8). By applying
the theory of Newton’s potential, the pressure function p(x) can be represented in the form:

p(x) =
∫

W
G(x, ξ)β(ξ) dξ, x ∈ R3(9)

A classical way to obtain the unknown potential density β(ξ) is:to substitute the potential
p(x) into the boundary condition (6) (where Pa(x1) is defined from the iteration procedure)
and to solve the resulting integral equation. The numerical realization of this approach is well
understood, but extremely expensive since it results in a boundary element method over a
surface in 3-D.
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Figure 2. The well model

Under the assumption 4 in Section 2.1 we can substantially simplify the solution of the
problem (6) – (8). Namely, we take the density as a function of the ξ1 - variable and the
singularity of the Green’s function G(x, ξ) is located along the axis x1. This allows us to use
the following approximate construction:

1. Replace the well W (see, Figure 2 as a sum of a finite number of intervals on the axes x1

defined by the points 0 = ξ1,0 < ξ1,1 < · · · < ξ1,N = L;
2. Approximate the potential (9) by taking β as piecewise constant over this partition so

that

p(x) =
N∑
1

βi

∫
∆i

G(x, ξ), dξ1, where , ∆i = [ξ1,i, ξ1,i+1];(10)

3. Find the unknown discrete density (β1, ..., βN ) by taking the equation (6) at the colloca-
tion points (x1,j , rw, 0):

p(x1, x2, x3) = Pa(x1) +
µ

2rw
(r2

ww′′
r (x1) − 4wr(x1)).(11)

Here x1,j ∈ ∆j is a specific point aimed to minimize the error of the quadrature formula.

Obviously, the main issue in applying this modification of the boundary element method is
an explicit construction of the Green function G(x, ξ). In an unbounded reservoir (R = ∞) of
finite thickness h the function G(x, ξ) is a superposition of an infinite number of fundamental
solutions of Laplace equation [18]. These series does not converge. In case of a bounded
domain such as parallelepiped or cylinder, the Green’s function with Dirichlet condition on
the side of this domain can be represented as a superposition of the source functions, but this
series converge very slowly [7]. To overcome this difficulty, an iterative method for construction
of Green’s function has been developed in [13, 14]. Here we apply this approach for mixed
boundary problems and general domains. The main idea consists of a symmetric extension on
the initial domain and the construction of a ”control” condition on the extended boundary.
That is a restriction of the ”source” function generated under conditions in the extended
domain that satisfy non-flow conditions on top and bottom of the reservoir.

3. Green function construction

In this section we present a mixed boundary value problem and an alternating Schwartz
Algorithm in a general form. We assume that the domain Ω is the layer between the planes
x3 = 0 and x3 = h (shown on Figure 3). We further use the notations:

∂Ω = Γ1 ∪ Γ2, Γ2 = γ1 ∪ γ2, and Γ1 ⊂ { x | 0 < x3 < h},
where γ1 = {x | x ∈ ∂Ω, x3 = 0} and γ2 = {x | x ∈ ∂Ω, x3 = h} are non empty 2-D domains.
Let G(x, ξ) be the Green function of the mixed boundary problem (positive solution of the
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Figure 3. Auxaliary domain and its Image: (a) general case; (b) spherical layer with fluxes

problem) with a singularity at ξ:

∆G(x, ξ) = 0 in Ω \ ξ,
Gx3(x, ξ) = 0 on γ1, γ2,
G(x, ξ) = 0 on Γ1.

(12)

3.1. Domain extension (Auxiliary Domains). Assume that there exists symmetric a ex-
tension Ω̃ of the domain Ω with respect to γ1 such that (see Figure 3(a)):

• Ω̃ ∩ { x : 0 < x3 < h} ≡ Ω;
• there is a sub domain B+ ⊂ Ω̃, symmetric with respect to γ2 such that

∂B+ ∩ { x : x3 > h} ≡ ∂Ω̃ ∩ { x : x3 > h}.
Denote by

S+
1 = ∂B+ ∩ { x : x3 > h} and S−

1 = ∂B̃+ ∩ {x : x3 < h}
the upper and lower boundaries of the domain B+, correspondingly. Further, denote by

S+
2 = ∂Ω̃ ∩ {x : 0 > x3 > −h} and S−

2 = ∂Ω̃ ∩ {x : x3 ≤ −h}
the lower and upper boundaries of the extended domain Ω̃, correspondingly (see, Figure 3(a)).

By construction S+
2 is a mirror image of Γ1, while S−

2 is an mirror image of S+
1 with respect

to the boundary symmetric to γ1, and S+
2 is symmetrical with respect to γ1 (see Figure 3(a)).

In the case when Ω is a spherical layer, the extension represents itself as a ball and sub
domain B+ is a “lens”(see,Figure 3(b)).

Now assume that ξ ∈ Ω is a point of singularity of Green function G(x, ξ). Below we
show that for any point ξ there exists a ”symmetric” in Ω̃ and in B+ finite number of points
Ak(ξ) ∈ Ω̃ (the extension of the domain Ω), such that:

1. the point ξ ∈ Ak(ξ);
2. the subset of Ak(ξ) that is in B+ is symmetric with respect to γ2;
3. the whole set Ak(ξ) is symmetric with respect to γ1.
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Now, for a given ξ ∈ Ω we construct a set with these properties. For simplicity we assume that
ξ does not belong to S+

1 . Take ξ1 to be the mirror image of ξ with respect to γ2. The above
assumptions guarantee that such a point exists and is in B+. Next, we add to Ak(ξ) the pair
of points η0, η1 in Ω̃ that is a mirror image of points ξ, ξ1 with respect to γ1 (see Figure 3(b) ).

After this step there are three possible cases:
a: η0 ∈ B+ and η1 ∈ B+;
b: η0 ∈ B+ and η1 /∈ B+;
c: η0 /∈ B+ and η1 /∈ B+.

In case (c), we make no additional steps and we consider the set Ak(ξ) constructed and has
just these four points. In case (b), we add to Ak(ξ) one point ξ2, which is an mirror image of
η0 with respect to γ2. Further, we add one more point η2 which is a mirror image of ξ2 with
respect to γ1. In case (a) we add to Ak(ξ) the points ξ2 and ξ3 that are a mirror images of the
points η0, η1 with respect to γ2. Then we also add to Ak(ξ) the points η2 and η3 that mirror
images of ξ2 and ξ3 with respect to γ1. Further, we repeat the procedure (a)-(c) with respect
to the points η2 and η3. Since h > 0, after a finite number of steps we reach the case (c) that
completes the construction of the set Ak(ξ).

3.2. Alternating Algorithm. In this subsection we present an approximation of the Green
function for mixed boundary problem (12).It will be shown that it is a limit of sequence of
Green functions of Dirichlet problem in an extended domain with specific condition on its
boundary. Let ξ be a point of singularity of the Green Function defined in (12) and let Ak(ξ)
be the finite set constructed in Subsection 3.1.

For any ν ∈ Ak(ξ) define the Green function F (x, ν) with zero boundary condition on the
extended domain Ω̃ and with singularity at ν, namely:

∆ F (x, ν) = 0 in Ω̃ \ ν,

F (x, ν) = 0 on ∂Ω̃.
(13)

It is a well known fact, that F (x, ν) can be presented as sums of the fundamental solution of
the Laplace equation 1

|x−ν| plus a regular part denoted by Φ(x, ν), i.e.

F (x, ν) =
1

|x − ν| + Φ(x, ν).(14)

In case of standard domain such as cylinder, cube or ball, this function has explicit analytical
presentation [7]. Next, we take the superposition of the functions F (x, ν) in the following form:

G0(x,Ak(ξ)) =
∑

ν∈Ak(ξ)

F (x, ν).

It is obvious from the construction that
∆ G0(x,Ak(ξ)) = 0 in Ω̃ \ Ak(ξ),
G0(x,Ak(ξ)) = 0 on ∂Ω̃.

(15)

Therefore, this is a Green function of the Dirichlet boundary value problem in Ω̃ with sin-
gularities in the set Ak(ξ). Also, by the construction of the set Ak(ξ), the Green function
G0(x,Ak(ξ)) is even with respect to γ1 and therefore it satisfies a homogeneous Neumann
boundary condition on γ1. Thus, we have the following situation: the restriction of the func-
tion G0(x,Ak(ξ)) to the domain Ω is a solution of the Laplace equation with a singularity at
the point ξ; moreover, it satisfies homogeneous Neumann condition on γ1 and zero Dirichlet
boundary condition on Γ1. Therefore, G(x, ξ) and G0(x,Ak(ξ)) differ only by the condition
on γ2. Thus, we consider G0(x,Ak(ξ)) as an approximation to G(x, ξ). Our further steps
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will be to correct G0(x,Ak(ξ)) in such a way that they match this boundary condition. This
correction is given in the following algorithm:

An Alternating Algorithm:

1. Take the trace of the function G0(x,Ak(ξ)) on S−
1 and denote it by φ(x).

2. In the domain B+ find a solution of the problem:

∆ g0(x) = 0 in B+

g0(x) = 0 on S−
1

g0(x) = φ(x′(x)) on S+
1 ,

(16)

where x′(x) is a point of S−
1 that is symmetric to the point x on S+

1 with respect to γ2

(see, Fig. 4).
3. In the extended domain Ω̃ find solution to the problem:

∆ G1(x) = 0 in Ω̃
G1(x) = 0 on Γ1 ∪ S+

2

G1(x) = g0(x) on S+
1

G1(x) = g0(x′(x)) on S−
2 ,

(17)

where x′(x) is a point on S+
2 symmetrical to the point x on S−

2 with respect to γ1 .

Next, we repeat these two steps by replacing G0(x) by G1(x) and producing the next pair
of functions g1(x) and G2(x). Continuing this process, we obtain a sequence of functions
g0(x), g1(x), ..., gn(x), ... defined in the sub domain B+ of the extended domain Ω̃. Also we
have obtained the sequence of functions G1(x), G2(x), ... that are even in Ω̃ with respect to γ1.
Further denote:

g̃N (x, ξ) = G0(x,Ak(ξ)) + g0(x) +
N∑

n=1

[gn(x) + (Gn(x) − gn−1(x))],
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and

G̃N (x, ξ) = G0(x,Ak(ξ)) +
N∑

n=1

Gn(x).

The construction guarantees that these functions satisfy the following conditions:

∆g̃N (x, ξ)) = 0 in B+ \ ξ

g̃N (x, ξ)) = G̃N (x, ξ) on S−
1

g̃N (x, ξ)) = G̃N (x′(x), ξ) on S+
1 ,

(18)

where x′(x) is a point on S+
1 that is symmetric to x on the S+

1 with respect to γ2,

∆G̃N (x, ξ) = 0 in Ω̃
G̃N (x, ξ) = 0 on Γ1 ∪ S+

2

G̃N (x, ξ) = g̃N (x, ξ)) on S+
1

G̃N (x, ξ) = g̃N (x′(x), ξ) on S−
2 ,

(19)

where x′(x) is a point on S−
2 that is symmetric to the point x on S+

1 with respect to γ1. In
the domain B+ the functions g̃N (x, ξ) are even with respect to γ2. Similarly, in Ω̃ the functions
G̃N (x, ξ) are even with respect to γ1. Therefore, the following two conditions are satisfied:

(g̃N (x, ξ))x3 = 0 on γ2,(20)

(G̃N (x, ξ))x3 = 0 on γ1.(21)

In addition we have:

| G̃N+1(x, ξ) − G̃N (x, ξ) |=| g̃N+1(x, ξ) − g̃N (x, ξ) | on S+
1(22)

| g̃N+1(x, ξ)) − (̃gN (x, ξ) |=| G̃N (x, ξ) − G̃N−1(x, ξ) | on S+
1 .(23)

Define:
Mm(g) = max

S+
1

| gm+1(x) − gm(x) |,

Mm(G) = max
S−

2

| Gm+1(x) − Gm(x) |,

νm(x) =
Gm+1(x) − Gm(x)

Mm(g)
.

By construction νm(x) satisfies:

∆νm(x) = 0; νm(x) = 0 on Γ1 ∪ S+
2 and νm(x) ≤ 1 on S+

1 ∪ S−
2 .

By the assumption S−
1 and ∂Ω̃ intersect at non zero angle so we can apply the lemma (see,

e.g. [9] Chapter 4.4 ), to function νm(x). This lemma implies that

| νm(x) |≤ q < 1 on S−
1 .(24)

At the same time on S−
1 , by construction :

νm(x) =
gm+1(x) − gm(x)

Mm(g)
.

Combined with (24), this implies that:

Mm+1(g) ≤ qMm(g).
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Further, we construct Mm(G) in a similar way. As a result, we obtain sequences {Mm(g)}
and {Mm(G)} that converge to zero at a rate of geometric progression with ratio q. Hence,
there exist the limits:

lim
m→∞ g̃m(x, ξ) = g̃(x, ξ) in B+, and lim

m→∞ G̃m(x, ξ) = G̃(x, ξ) in Ω̃.

On γ1 the functions G̃N (x, ξ) satisfy the condition (G̃N (x, ξ))x3 = 0 for any N (by the symmetry
property (21)). Therefore, their limit G̃(x, ξ) satisfies homogeneous Neumann condition on γ1.
On γ2, by the construction, g̃N (x, ξ) has the same property, i.e. (g̃N (x, ξ))x3 = 0. Also, by
construction, G̃N (x, ξ) − g̃N (x, ξ) = 0 on S+

1 and on S−
1 the difference

G̃N (x, ξ) − g̃N−1(x, ξ) = G̃N (x, ξ) − G̃N (x, ξ)

approaches zero. Then limits G̃(x, ξ) and g̃(x, ξ) are equal in B+, so that by (20) (G̃(x, ξ))x3 = 0
on γ2 as well. QED.

Possible Generalization:
Al construction which is done for Laplace equation could generalized on elliptic operator of

second order in divergence with bounded and measurable coefficients. This type of equation
model fluid filtration in highly heterogeneous anisotropic porous media. Namely let

L =
3∑
i,j

∂

∂xi
(ki,j(x)

∂

∂xj
)(25)

For applying this technique the coefficients of the operator L in (25) should be extended
evenly on extended domain Ω̃. Let coefficients k̃i,j of extended elliptic operator L̃ is such that

k̃i,j = ki,j in Ω

k̃i,j − is an even function with respectγ2 inB+

k̃i,j − is an even function with respectγ1 in Ω̃

All construction for Green function of mixed boundary problem 12 for operator L̃ in the
extended domain are justified as well for Laplace equation. Differences concern only main
estimation (24), that is based on Lemma from Chapter 4.2 of [9]. Instead this Lemma we can
for example apply more general proposition for so called L-harmonic measure obtained in [12].

4. Numerical Implementation of the method

In Subsection 2.3 we proposed an approximation method for solving the problem (6) - (8).
The essence of the method was to approximate the potential (9) by (10). In the previous
section we provided a method for computing the Green function G(x, ξ). Our construction
ensures that on the boundary ∂Ω the function G(x, ξ) satisfies the conditions (8). The main
task in this section is to provide an approximation to the equation (11). This will lead to a
linear system for the discrete densities βi. First, we present an algorithm for computing an
approximation to G(x, ξ). The ball B is considered as a symmetric extension of the layer
Ω. Therefore, the Green function in the formulae (10) could be represented as a limit of the
sequence {G̃N (x, ξ)}. Note, that for obtaining functions G̃N (x, ξ) it is not required to solve
the problems in the lens B+. The G̃N (x, ξ) can be represented as a sum:

G̃N (x, ξ) = G0(x,Ak(ξ)) +
N∑

n=1

Πn(, x, ξ),(26)
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So that by (14) G0(x, ξ) has the form

G0(x, ξ) =
∑

ν∈Ak(ξ)

{ 1
| x − ν | + Φ(x, ν)},(27)

where Φ(x, ν) is the regular part of the Green function in the ball B (see, e.g. [7]). The Πn in
(26) is the Poisson operator

Πn(x, ξ) = (4π)−1

∫
∂B

(R2− | x |2)φn(y)
R | x − y |3 dSy,(28)

with

φn(y) =

⎧⎪⎨
⎪⎩

g̃n(y), on S+
1 ,

0, on Γ1 ∪ S+
2 ,

g̃n(y′) on S−
2 .

(29)

Here, the functions g̃n(y) have been defined in the same way as in Section 3.2 for the the
domain Ω̃ = B; also point y′ in (29) is given by the construction in step 2 of the alternating
algorithm (see, Figure 4). The Poisson integral (28) could be calculated by a Simpson-type
cubature formulae [1]. Some practical computations performed in [13] have shown that for
R = 5000m, h = 10m a cubature with 4040 nodes guarantees an accuracy 10−4 of the normal
derivative of G̃N (x, ξ) on γ2 for N = 5 steps (explained in Subsection Alternating Algo-
rithm). The Simpson formula gives higher accuracy but is quite expensive. In our calculation
we have used a less accurate but very efficient Lusternik formula [1] with 64 nodes. Further,
in order to find the discrete densities βi we need to compute integrals of the Green function
over ∆i. This step is implemented in following way: Using presentation (26) of G̃N (x, ξ) and
formulae (27) for G0(x,Ak(ξ)) the integral over ∆i in (10) is presented in the form:

∫
∆i

G̃N (x, ξ) dξ =
∫

∆i

⎧⎨
⎩FN (x, ξ) +

∑
ν∈A(ξ)

[
1

| x − ν | + Φ(x, ν)]

⎫⎬
⎭ dξ,

where FN (x, ξ) =
∑N

n=1 Πn(x, ξ) is a regular function.
In our numerical implementation the last two integrals are calculated analytically while

the first one is computed numerically. Thus, the outer problem is solved numerically on
any step of the iteration process described in Subsection 5.1. For this purpose at any step the
computed integrals can be substituted in the equation (11) as an approximation of the pressure
function and radial rate(4). Then numerical values of βi are obtained by Gauss method as
a solution of linear N × N system equation(11) derived for the collocation points. Results
of the computations for βi, i = 1, ..., 3000 in two cases are presented on Figure 5 . In our
computations L = 2000m, rw = 0.075m, and rw = 0.05m. The hydrodynamic meaning of
discrete density distribution is a local influx towards the well surface. And it is clear from
this picture how the conjugate flow in the reservoir/well system effects the distribution of local
flux along the well. Namely: when the radius of the well, rw, decreases, then the resistance to
the flow in the well increases. Therefore, the local influx takes its maximum near x1 = 0, the
dominated end of the well. At the same time at the free end of the well, x1 = L, the influx is
reduced. Near the end points x = 0 and x = L we see certain spikes in the behavior, called
”end effects”.
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Figure 5. Comparison of local flux vs wells radius(rw = 0.075m doted line, rw =
0.05m continuous line

4.1. Computational Results and Discussion. As noted above, an interesting fact is the
dependence of the pressure drop and local production distribution along the well on geometrical
parameters of reservoir/well system.

It has been shown [2], that in an unbounded 3-D porous media with ”normal permeabil-
ity”(less than 1D) and for flows obeying conditions 1-6 in section 2.1, the pressure drop along
the well-bore is insignificant. In a bounded reservoir the dependence on geometrical parameters
could lead to a significant pressure drop. For examine the impact of geometrical characteristics
of the reservoir boundary on production rate and pressure drop is the aim of this section. Here
the variable parameters are: L - length of the well, Db - distance between free end of the
well and reservoir boundary, location of the dominated end of the well, rw - well’s radius,
shape of the reservoir boundary namely 1/R -radius of the curve of the ball B(0, R) .

1. First we examine the influence of the shape factor of the reservoir. Our computations
show that the pressure drop along the well-bore depends essentially on the form of the
exterior boundary Γ1. The results for two limiting cases (spherical and plane external
boundaries) are given in Figure 6. Here < P >= 1

πr2L

∫
L Pa(x1)dx1 is the average

pressure in the well-bore and Pw is the pressure at the fixed (dominated) end. In both
cases the distance between free end and the external boundary remained the same. These
results show, that boundary shape could lead up to 10% increase of pressure drop.

2. Next we analyzed the impact of the distance between well and reservoir exterior boundary
Γ1 on the pressure drop in the well. It is clear that if the free end of the well intersects
with the reservoir external boundary, the pressure drop is equal to the difference between
pressure on the dominated end and the value of pressure on external boundary pressure.
We studied the influence of the Db on a value of the pressure at the free end of the
well on. In computational runs it was assumed that well length L, reservoir’s radius Rb

, well radius rw and well location x0
3 with respect to top and bottom, are constant. So

the parameter Db decreases while shifting of the well towards Γ1 . The corresponding
results are presented on Figure 7. Here PL is the pressure at the free end of the well-bore.
As may be seen from Figure 7 this relation is not significant for small Db (about 20rw).
But when the free end of the well is close enough to the external boundary the pressure
at this end decreases exponentially. Note that the increase of well length, which does not
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Figure 6. Distribution of the < P > within a well in reservoir with plane 1 and
spherical 2 external boundary

Figure 7. Ratio between PL and Pw vs distance to exterior boundary

decreases the distance Db , also causes considerable pressure drop at the free end of the
well. For this purpose the following numerical experiment has been executed.

3. Take the distance Db , well radius rw, and Rb are constant and vary parameter was the
L length of the well.

The results of numerical experiments showed that the influence of the dominated end of
the well on the free end of the well could decrease even proportionally to the well length.

4. It is known from field data [10] , [20] that as a result of pressure drop along the well
the dependence of production rate on the well length tends to be constant. So, the
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Figure 8. Comparison of the relation between production rate vs. distance to the
exterior boundary

correlation between the production rate of the horizontal well has been studied for two
cases: (a) constant pressure in the well, and (b) variable pressure in the well generated
by reservoir/well flux.

We have assumed that the length L, the well location x0
3 with respect to top and

bottom and radius rw remain constant. The variable parameter is Db . As shown on
Figure 8,in case of constant pressure the production rate sharply decreased and stabilized
as the distance from the reservoir boundary increased. In case of variable pressure in the
hole, the curve is much smoother.

5. As noted above the shape of the reservoir could result in substantial changes of the
pressure drop. In the model considered a quantitative characteristics of the shape of the
reservoir boundary is the curvature radius Re = 1

Rb
. Using our model the influence of

the Re on the well production rate has been evaluated.A series of computations with
constant length L , radius of the well rw , and distance Db has been computed.
The variable parameter was Re. The corresponding results is illustrated on Figure 9.
According to these computations there exist such a critical value R0

e , depending on L
and Db , that if Re is larger than this critical value R0

e then the production rate would
no longer depend on Re . It is important to note that all these results were obtained
for abnormally high permeability values (k = 10D), very short distances (10 m) to the
external reservoir boundary and big enough radius of the well (0.1 m). We wanted to
show that the proposed method could be used to estimate the effects of the geometry on
the production rate and the pressure distribution along the well-bore. When the distance
to the external boundary and the reservoir permeability were chosen more realisticly, the
picture is similar but the pressure drop is significantly smaller. Thus, we came to the
same conclusion as in [2] , that within the considered assumption there are no limitations
on the length of horizontal well imposed by its hydrodynamics effectiveness. At the same
time it is well known that the hydro dynamical resistance of a pipe strongly depends on
its radius.

6. The impact of the well bore radius on the pressure drop along the well has been studded
further. The results of the computations of cases that satisfy the assumption (1) - (8)
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Figure 9. Production rate vs. reservoir curvature

in subsection 2.1 are presented on Figure 10. In these computations we varied the well
radius rw, and fixed the Rb = 10000 m, k = 100 MD, Db = 100 m, and L = 1000 m.
As shown on Figure 10, the pressure drop in a well of very small radius may reach tens
of percents.

High-pressure drops in a long horizontal well may thus be accounted for by different
technological reasons (such as well completion, casing/tubing diameters, sand factor,
screen permeability etc.) resulting in a decrease of the actual diameter of bore-hole.
Therefore, it is important to study the impact of the actual radius of the well on the flow
along the well. The distribution of local influx along the well for two cases are presented
on the Figure 11. These results show that well radius could substantially reduce the local
flux towards the well. In these computations L = 2000 m. The number of discretizations
along the well is equal 3000.

In the next section another model and method that can take into account the impact of wells
of finite conductivity on the pressure drop are presented.

5. Coupled porous media model

In this section the well is modeled as a super-collector, that is porous media with extremely
high permeability. We assume that the well and the reservoir are cylinders and the flows are
coupled through their interface. The corresponding mathematical problems are solved by the
method of separation variables and the solutions are represented in the form of Fourier-Bessel
series [7]. In order to describe our model we need some notations. The well and the reservoir
are represented by the domains W and Ω, correspondingly:

W ≡ A0 ∪ A1, where

A0 ≡ {x : x2
2 + x2

3 < r2
0; 0 < x1 < L}; A1 ≡ {x : r2

0 < x2
2 + x2

3 < r2
w; 0 < x1 < L},

and
Ω ≡ A2 + A3, where

A2 ≡ {x : r2
w < x2

2 + x2
3 < R2

b ; 0 < x3 < H; 0 < x1 < L};



17

Figure 10. Pressure drop along the well-bore vs bore-hole radius
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Figure 11. Local flux towards well (rw = 0.025m-continuous line rw = 0.1m)

A3 ≡ {x : x2
2 + x2

3 < r2
w; 0 < x3 < H,L < x1 < H}.

Here x = (x1, x2, x3) are the Cartesian coordinates of the points x in the reservoir. One of the
possible ways to couple the flows in the regions W and Ω, A0, A1, A2, A3 is the following:

1. A0 is the well tubing or more general - oil or gas transport domain, where flow is subjected
to the approximation of pipe hydrodynamics;

2. A1 is the well annuli (screen between tubing and casing) or more general - “super col-
lector”, a bottom hole zone with small diameter with high permeability k1, where flow
satisfies Darcy low;

3. A2 + A3 represents the reservoir itself (bounded by the top (y = H) and the bottom
(y = h)) with permeability k2.

This domain contains two boundaries of discontinuity of the media:
• ∂A0, the boundary between tubing and bottom hole zone of porous media, where the

conjugate condition (6) is satisfied.
• ∂A1, the boundary between “super collector” and porous media of the reservoir.
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Thus we consider the model:
1. The average pressure Pa(x1) satisfies equations (3) in A0 , conjugate boundary conditions

(6) on the well surface x2
2 + x2

3 = rw and the condition (5) on the free end of the well
x1 = L,

2. The pressure p(x) satisfies the Laplace equation In A1, A2 and A3 ;
3. On the interfaces between domains A1, A2 and A3 the pressure and the normal component

of the velocity are continuous.
Analytical solution of this general problem could be developed by using iterative techniques.

First, one can apply the developed technique for spherical layer Ω in the Section 2 to cylindrical
domain and show the following:

Let Ω̃ is a cylindrical extension of the domain Ω. There exists a pressure distribution on
the external boundary of the extended domain Ω̃, such that the solution of the problem in a
cylinder annuli Ω̃ with this boundary condition will satisfy non-flow conditions on the top and
the bottom.

Thus, one can reduce the problem to the following two step procedure:
1. First step: Split the cylinder Ω̃ into four homogeneous media, i.e. Ω̃ = Ã2∪A1∪A0∪A3,

where
Ã2 ≡ {x : r2

w < x2
2 + x2

3 < R2
b ; 0 < x1 < L}.

2. Second step: Solve the two problems in the cylinder A = A0 ∪ A1 ∪ Ã2 and A3, corre-
spondingly by a non-overlapping domain decomposition algorithm [6, 29].

3. Third step: Reduce the problem in A to a sequence of problem in A0 and B = A1 + Ã2.
This sequence is linked through conjugate condition (6) and converges as a geometrical
progression.

Finally, the overall problem is reduced to the problem of flow with mixed boundary condi-
tions in heterogeneous porous media in an annulus cylinder B with permeability

K =

{
k1 in A1,

k2 in Ã2.
(30)

Detailed description of the proposed methods is beyond the scope of the present paper. Here
we will cover part of the algorithm that gives the analytical solution of the mixed boundary
problem in highly heterogeneous porous media B = A1 + Ã2. The algorithm is realized in the
form of a Fourier-Bessel series. It makes possible to investigate explicitly the dependence of
the pressure drop on the well radius (casing/tubing diameter) and well/reservoir conductivity
ratio.

5.1. Splitting of the problem. We introduce new variables x = x1/rw, y = x2/rw, z =
x3/rw, r2 = x2 + y2; z = z then the main dimensionless geometrical parameters are : L =
l/rw, R0 = r0/rw, R = Rb/rw. Domains B, A1 and Ã2 are transformed into:

A1 = {(r; z) : R0 < r < 1; 0 < z < L} and A2 = {(r; z) : 1 < r < R; 0 < z < L}.
B = {(r; z) : R0 < r < R; 0 < z < L}

Define the edge and lateral parts of the cylindrical domains A1, A2 as follows (see Figure 12):

a1 = {R0 < r < 1, z = 0}; b1 = {R0 < r < 1, z = L}; c1 = {r = R0, 0 < z < L},
a2 = {1 < r < R, z = 0}; b2 = {1 < r < R, z = L}; c2 = {r = R, 0 < z < L}.

Denote the interface between A1 and A2 as d = {r = 1; 0 < z < L}. Further, we make the
following assumptions:
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Figure 12. Scheme of cylindrical reservoir

1. we have Darcy flow in B with discontinuous permeability (30);
2. the pressure p and radial component of the velocity are continuous at the interface d

between A1 and A2;
3. the pressure is given on the boundary a1 and equals to pw;
4. a non flow condition is specified on a2;
5. the reservoir pressure pb on the right end, and on the external boundary b1, b2, and c2

of the cylinder is given;
6. pressure is a linear function of z along the boundary c1; that corresponds to Poisel flow

in the tubing of the well (more general distribution could be considered in the same way
as in previous section).

Thus for reduced pressure function

p̄ = (p − pb)/(pw − pb) =

{
p1 in A,

1

p2 in A2.
(31)

we obtain following mixed boundary-value problem:

∆p1 = 0 in A1

p1 = 1 on a1

p1 = 1 − z/L on c1

p1 = 0 on b1

(32)

∆p2 = 0 in A2

(p2)z = 0 on a2

p2 = 0 on c2

p2 = 0 on b2

(33)

The coupling conditions on the interface d between the media A1 and A2 are following:

p1 |r=1−0= p2 |r=1+0(34)

k1
∂p1

∂r
|r=1−0 = k2

∂p2

∂r
|r=1+0(35)

The method, the algorithm, and the main results presented bellow remain the same for any
type of Dirichlet or Neumann conditions on external the boundary of the annular cylinder B
namely on a1, a2, b1, b2, c2 .
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5.2. Alternating algorithm without overlapping. In this sub section modification of
Schwarz Dirichlet-Neumann [29] alternating algorithm without overlapping in coupling cylin-
drical annuli is presented. If the ratio G = k2/k1 is very small then the pressure in the reservoir
(domain A) is close to discontinuous function that is a linear function in A1 and equals to zero
in A2. When G increases then the pressure might be adjusted both in A1 and in A2 so it
becomes smoother. Moreover, it is obvious that the increase of G decreases the pressure in
A1 and increases the pressure A2. Under the assumption that G = k2/k1 < 1 this process is
implemented as an iterative procedure:

1. At each step solve two problems: (a) (33) in the domain A2 with homogeneous Dirichlet
condition on the interface d; (b) (32) in the domain A1 with homogeneous Neumann
conditions on the same side.

2. Extend this solution through the interface between A1 and A2. The extension is subject
to the coupling conditions (34),(35);

3. Correct this extension on non-joint parts of a boundary.

A distinctive feature of this process is the correction of the solution only on non-joint part
of boundary: a1, a2, b1, b2, c1, c2, because on the interface d between A1 and A2 the pressure
and the normal flux satisfy the coupling conditions on each step automatically.

From a mathematical point of view this iterative procedure makes possible to represent
the solution of the problem (32), as a sum of three types of functions: Ui(r, z), Wi(r, z) and
Vi(r, z), where U0(r, z) = (L − z)/L, W0(r, z) and V0(r, z) are equal zero, and for i = 1, 2, ...
the functions Ui(r, z), Wi(r, z) and Vi(r, z) are solutions to the following problems:

(1) Function Ui(r, z) is a solution of the problem

∆ Ui(r, z) = 0 in A1 ∪ A2

Ui(R0, z) = Ui(r, 0) = 0

∂Ui(1, z)
∂r

= 0

Ui(r, 0) = −Vi(r, 0) − Wi(r, 0), when R0 < r < 1.

(36)

(2) Function Vi(r, z) is a solution of:

∆ Vi(r, z)) = 0 in A1 ∪ A2

Vi(1, z) = Vi(R, z) = 0

Vi(r, 0) = 0,

(Vi(r, 0))z = −(Ui−1(r, 0))z

(37)

Moreover, function Vi(r, z) have to satisfies the coupling conditions (34,35).
Then each function

VN =
N∑

i=1

(Ui + Vi)(38)

for N ≥ 1 satisfies all boundary conditions except the condition on c1 and c2. Thus, we
introduce the following correction:



21

(3) Function Wi(r, z) is a solution of the problem

∆ Wi(r, z) = 0

Wi(R, z) = −Ui−1(R, z)

Wi(r, L) = 0

Wi(1 − 0, z) = Wi(1 + 0, z)

Wi(R0, z) = −Vi(R0) on c1.

(39)

In next subsection 5.3 it will be shown that functions: Ui(r, z), Wi(r, z) and Vi(r, z), exist
and can be represented in the form of Fourier and Fourier-Bessel series. Moreover, we find a
condition on the parameters G and R/R0, (but not on the length L !), so that Vi(r, z) tends
to zero with rate of geometric progression with a ratio q < 1.

Then the function

uN = U0 + VN +
N∑

i=1

Wi(40)

by the construction solution of Laplace equation in A1 and A2 and satisfies all boundary
conditions in the problems (32 -33), except conditions on c1 and c2. Function uN on c1 is equal
to (L − z)/L + VN (R0, z) on c1 and 1 + VN (r, 0) on a1 and in addition VN (r, z) tends to zero
when N tends to ∞. Thus, uN tends to the solution of the problem (32)-(35).

Presentation (40) contains main pressure function U0 generating flow in the pipe (solution
of the problem (3)-(5)) and the sum of terms generated by perturbations of the reservoir’s flux.
These “flux” terms dominate in case when the parameter coefficient of heterogeneity G is near
one and are negligible when G is small.

5.3. Implementation of non-overlapping Algorithm. The first approximation U0 is a
linear function: U0 = (L−z)/L and it satisfies all conditions except two boundary conditions:

on a2 when z = 0, 1 < r < R and on c2 when r = R, 0 < z < L.

To correct the function U0 on a2 and on c2 we solve the the problem (37). The solution of
this problem is sought in form of Fourier-Bessel series [7]: Vi = Φi(r, z) in A2, and Vi =
GΦi(r, z) in A1. Here

Φi(r, z) =
∞∑

m=1

Rm(r)Dm(i)
sinh(νmz)

νm cosh(numL)
,(41)

Rm(r) = J0(νmr)Y0(νm) − J0(νm)Y0(νmr),(42)

Where νm is the root of the equation Rm(R) = 0.
The Dm(1) in (41) is a Fourier-Bessel coefficient of the function −1/L. The function U0 +V1

satisfies all conditions (33-35) except the conditions on a1, c1 and c2. To correct it we need to
solve the the problems (36) and (39) with corresponding boundary conditions on a1 and c1.
The solutions Ui can be represented in the form:

Ui(r, z) =
∞∑

k=1

Ck(i)Ek(r)
sinh(µkz)
sinh(µkL)

(43)

Here Ek(r) = J0(µkr)Y0(µkR0)−J0(µmR0)Y0(µkr) and µk is a root of the equation Ek(µk) = 0;
Ck(i) are Fourier-Bessel coefficients of the function GΦi(r, L). An application of the maximum
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principle gives the following inequality:

Ck(i) ≤ C∗
k(i), where C∗

k(i + 1) = −GC∗
k(i)

∞∑
m=1

gmQm.(44)

Here

Qm =
2

1 − R0

∫ 1

R0

rRm(r)dr and gm =
πJ0(νmR

J0(νm) + J0(νmR)
.

Assume that G, R and R0 are such that

G
∞∑
1

Qmgm ≤ q < 1.(45)

Then from the recurrence relation (44) it follows that Ck(i) ≤ qi. Finally, we have to make
the last correction concerning the conditions on the sides c1 and c2 of annuli cylinder. For this
purpose we have already introduced the problem (39). The solution of this problem has the
form:

Wi(r, z) =
∑∞

n=1 R1
n(r, z) cos(Bnz) inA1

Wi(r, z) =
∑∞

n=1 R2
n(r, z) cos(Bnz) inA2

R1
n = a1

nI0(Bnr) + a2
nK0(Bnr)

R2
n = b1

nI0(Bnr) + b2
nK0(Bnr)

a1
nI0(Bn) + a2

nK0(Bn) = b1
nI0(Bn) + b2

nK0(Bn)

a1
nI1(Bn) − a2

nK1(Bn) = G(b1
nI1(Bn) − b2

nK1(Bn))

a2
nK0(BnR0) = f1

n − a1
nI0(Bn)

b1
nI0(BnR) = f2

n − b2
nK0(BnR).

Here Bn = π(2n+1)
2L , f1

n is the Fourier coefficient of Vi(R0, z), and f2
n is the Fourier coefficient

of Ui−1(R, z). Then the function

uN =
N∑

i=1

Ui(r, z) +
N∑

i=1

Vi(r, z) +
N∑

i=1

Wi(r, z)

satisfies all conditions except the conditions on z = L, 1 < r < R, where UN (r, L) tends to
zero because of condition (45) Q.E.D.

Conclusions:
1. The actual ratio reservoir/well conductivity has a greater impact on the pressure drop

as compared to other parameters of the system ”reservoir + horizontal well”. Second in
significance parameter influencing the pressure drop is the radius of the well.

2. The ratio reservoir/well conductivity is defined by the completion of the well (tubing
radius, actual ”screen + sand pack” conductivity etc.) and actual radius of oil/gas flow
along the tubing.

3. When the ratio of reservoir/well conductivity is very small (G = k2
k1

<< 1), then the
productivity index of horizontal well is significantly affected by the geometrical parameters
of the reservoir. From our results it can be deducted in the case G << 1 that: the distance
from the external boundary on the first place, the shape factor (curvature of the reservoir
boundary) on the second place, and length of the well in third place affect the pressure
drop along the well.
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4. Because of the pressure drop along the well-bore, the productivity of the horizontal well,
beginning at certain critical value ceases to grow with increase of its length. The proposed
computational methods can be used to predict accurately this critical length and its
dependence on ratio reservoir/well conductivity.

List of used notations
µ − viscosity
K − permeability
p − pressure in the reservoir
rw − radius of the well
L − length of the well
Pa − average pressure in the well − bore
Pw − pressure in the fixed (dominated) end of the well
PL − pressure on the free boundary of the well
Db − distance between free boundary of the well and reservoir boundary
R − radius of external boundary
h − reservoir thickness

Re = 1/R − curvature radius of external boundary (shape factor)
B(0, R) − sphere of radius R

r0 − casing radius
r2 − x2 + y2

J0(Y0) − Bessel function of zero order of first (second) kind
I0(K0) − Modified Bessel functions of zero order of first (second) kind
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