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Abstract. We consider an interior penalty discontinuous approximation for sym-
metric elliptic problems of second order on non–matching grids in this paer. The
main result is an almost optimal error estimate for the interior penalty approxi-
mation of the original problem based on the partition of the domain into a finite
number of subdomains. Further, an error analysis for the finite element approxi-
mation of the penalty formulation is given. Finally, numerical experiments on a
series of model second order problems are presented.

1. Introduction

In this paper, we propose and analyze a simple strategy to construct composite
discretizations of self-adjoint second order elliptic equations on non–matching grids.
The need for discretizations on non–matching grids is motivated partially from the
desire for parallel discretization methods (including adaptive) for PDEs, which is a
much easier task if non–matching grids are allowed across the subdomain boundaries.
Another situation may arise when different discretizations techniques are utilized in
different parts of the subdomains and there is no a priori guarantee that the meshes
will be aligned.

Our method can be described as interior penalty approximation based on partially
discontinuous elements. The mortar method is a general technique for handling dis-
cretizations on non–matching grids. However, our motivation for using the penalty
approach is that it eliminates the need for additional (Lagrange multiplier or mor-
tar) spaces. There is a vast number of publications devoted to the mortar finite
element method as a general strategy for deriving discretization methods on non–
matching grids. We refer the interested reader to the series of Proceedings of the
International Conferences on Domain Decomposition Methods cf. e.g. [5], [11], [17]
(for more information see, http://www.ddm.org).

In the present paper, we assume a model situation when the domain is split
into a fixed number of non–overlapping subdomains and each subdomain is meshed
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independently. This is a non-conforming method and the functions are discontinuous
across the subdomain interfaces. The jump in the values of the functions along these
interfaces is penalized in the variational formulation, a standard approach in the
interior penalty method (cf. [2], [4], [14], [22]). For a recent comprehensive survey
on this subject see [3]. An important feature of this approach is that we skip the
term in the weak formulation that involves the co-normal derivative of the solution
to the interface boundaries since the latter may lead to non–symmetric discretization
(cf. [22]) of the original symmetric positive definite problem. An interior penalty
finite element approximation with optimal condition number was proposed, studied,
and tested on various examples in [20]. The error estimates derived in [20] were
suboptimal with a loss of factor h1/2−δ, 0 < δ < 1/2 for solutions in the Sobolev
space H2−δ(Ω). In this paper we present a refined analysis and get almost optimal
error estimates for linear finite element and solutions in H2−δ(Ω). In addition,
we extend the analysis to decompositions with cross points. One can improve the
accuracy somewhat for problems with smooth solutions by increasing the weight in
the penalty term with the expense of increased condition number.

In the case of matching grids, finite element Galerkin method with penalty for a
class of problems with discontinuous coefficients (interface problem) has been studied
in [4]. Similarly, in [10], the interface problem has been addressed by recasting the
problem as a system of first order (by introducing the gradient of the solution as a
new vector variable) and applying the least–squares method for the system. Integrals
of the squared jumps in the scalar and the normal component of the vector functions
on the interface are added as penalty terms in the least–squares functional. In both
cases an optimal with respect to the error method leads to a non-optimal condition
number of the discrete problem.

Other approaches for handling discretizations on non–matching grids can involve
different discretizations in the different subdomains. For example, mixed finite el-
ement method in one subdomain and standard Galerkin on the other (proposed in
[25] and studied further in [18]), mixed finite element method and discontinuous
Galerkin method cf. e.g., [13], or mixed finite element discretizations in both sub-
domains, cf. e.g., [1], [19]. Similarly, coupling finite volume and Galerkin methods
has been proposed and studied in [15].

The structure of the present paper is as follows. In Section 2, we formulate the
problem and its discretization. In Section 3, we introduce the primal and dual
penalty formulations of the problem split into subproblems on nonoverlapping sub-
domains. In order to get an optimal estimate for the error in Section 4, we introduce
the mixed formulation of the penalty problem and derive a fundamental a priori er-
ror estimate for its solution. In Section 5, we analyse the difference between the
solution of the original problem and the solution of the penalty formulation. The
error is shown to be of almost optimal order for u ∈ H2−δ(Ω) for δ ≥ 0. For meth-
ods without cross-points the error is oprimal for 1/2 > δ > 0. Finally, the finite
element discretization and its error analysis is presented in Section 6. Numerical
test illustrating the accuracy of the method are given for two model problems.
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2. Notations and problem formulation

In this paper we use the standard notations for Sobolev spaces of functions defined
in a bounded domain Ω ⊂ Rd, d = 2, 3. For example, Hs(Ω) for s integer denotes
the Hilbert space of functions u defined on Ω and having generalized derivatives
up to order s that are square integrable in Ω. For non-integer s > 0 the spaces
are obtained by the real method of interpolation (cf. [21]). H1

0 (Ω) is the space of
functions in H1(Ω) which vanish on ∂Ω. The norm of u ∈ Hs(Ω) is denoted by
||u||s,Ω. We also use the notation |u|s,Ω for the s-order semi-norm in Hs(Ω). For the
traces of functions in H1

0 (Ω) on a manifold Γ of dimension d−1 (curves and surfaces)
and ∂Γ ⊂ ∂Ω, we will sometimes use the fractional order Sobolev spaces commonly

denoted by H
1/2
00 (Γ) which is defined to be the interpolation space halfway between

H1
0 (Γ) and L2(Γ).
For a given Hilbert space H with an inner product (·, ·)H and corresponding norm

‖ · ‖H we denote by H∗ its dual, i.e. the space of all continuous linear functionals

on H . We use the fact that (H
1/2
00 (Γ))∗ = H−1/2(Γ).

For a given bounded polygon (polytope) Ω, a source term f ∈ L2(Ω), and coef-
ficient matrix a(x) that is symmetric and uniformly positive definite and bounded
in Ω, we consider the following model boundary value problem in a weak form: find
u ∈ H1

0 (Ω) such that:

A(u, v) = f(v) for all v ∈ H1
0 (Ω).(2.1)

Here

A(u, v) =

∫
Ω

a∇u · ∇v dx and f(v) = (f, v)0,Ω :=

∫
Ω

fv dx.

3. Interior penalty formulation

We shall study a discretization of this problem by the finite element method
using meshes that generally do not align along certain interfaces. This situation
may arise when the domain Ω is split initially into a p nonoverlapping subdomains
Ωi, i = 1, . . . , p and each subdomain is meshed (triangulated) independently of the
others. We assume that the number of subdomains is fixed and each subdomain is
a shape regular polyhedron. A model situation of this type for d = 2 is shown on
Figure 1. We denote by γij the interface between two subdomains Ωi and Ωj and
by Γ the union of all interfaces γij.
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Figure 1. The domain Ω is partitioned into four subdomains Ωi

i = 1, 2, 3, 4 with interfaces γij; each subdomain is partitioned into
quadrilateral finite elements independently; P is a cross point

We define

V := {v ∈ L2(Ω) : v|Ωi
∈ H1(Ωi) ∩ H1

0 (Ω)},

Q := L2(∪∂Ωi),

a(u, v) :=
∑

(a∇u,∇v)0,Ωi
:=

∑
ai(u, v),

c(p, q) := (p, q)0,Γ :=

∫
Γ

pq ds,

(p, q)0,γij
:=

∫
γij

pq ds,

Λ u := [u],

Here the jump [u] is defined as the difference of the traces of a function u ∈ V on
γij = Ω̄i ∩ Ω̄j . We specify a “master” side of each interface γij so on γij the jump is
defined always as [u] = u|Ωi

− u|Ωj
, where Ωi is the domain from the master side of

γij.
We approximate the original problem (2.1) by the following problem, which we

further call the interior penalty formulation: Find uε ∈ V such that

Aε(uε, ϕ) := a(uε, ϕ) + ε−1c(Λuε, Λϕ) = f(ϕ), for all ϕ ∈ V.(3.1)
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Here ε is a small parameter which later will be chosen as the mesh size of the finite
element partition of Ω. The problem (3.1) is further called the primal formulation
to distinguish it from the the mixed formulation introduced in the next section.

The formulation (3.1) allows discontinuous solutions along the interface Γ. In
order to control the size of the jump [uε]Γ we have introduced it in the variational
formulation as a least-squares penalty term with a large parameter ε−1. Our goal
now is to estimate the difference u−uε assuming that u ∈ H2−δ(Ω) with 0 ≤ δ < 1/2.

The bilinear form Aε(·, ·) defined in (3.1) is symmetric and positive definite. It is
related to but much simpler than the corresponding discontinuous Galerkin method
used in [2], [22]. The simplification comes from the fact that we do not have a
term involving the co-normal derivative a∇u · n along the interface Γ with unit
normal vector n. This simplification comes at a cost: the proposed approximation
will have almost optimal order of convergence for linear elements only, in contrast
to the non-symmetric interior penalty Galerkin method studied in [22], where the
optimal order is established for continuous finite elements of any degree. However,
our formulation leads to a symmetric and positive definite problem which is more
convenient for computational purposes.

4. Study of the primal and mixed formulations

In this section, we shall study the solution of (3.1). This problem fits into the fol-
lowing general abstract class of parameter dependent problems. Let (V, ‖·‖V , (·, ·)V )
and (Q, ‖ · ‖c, c(·, ·)) be Hilbert spaces as illustrated earlier. Here the inner product
(·, ·)V defines a norm in V and the norm ‖ · ‖c is defined by the inner product c(·, ·).
We assume that we are given a continuous symmetric positive semi-definite bilinear
form a(·, ·) on V × V and a continuous linear map Λ : V → Q so that

a(v, w) 
 ||v||V ||w||V and ‖Λv‖c 
 ||v||V , for all v, w ∈ V.

Here and in the rest of the paper we use the signs 
 and � to denote inequalities
with a constant that might depend on various parameters but is independent of ε.

Next, we define

Aε(v, w) = a(v, w) + ε−1 c(Λv, Λw), for all v, w ∈ V.

We assume that the range of Λ is dense in Q but not necessarily closed. The
parameter ε ∈ (0, 1] is typically small. We further assume that A1(·, ·) gives rise to
an equivalent norm on V , i.e.,

‖v‖2
V 
 A1(v, v) 
 ‖v‖2

V , for all v ∈ V.(4.1)

It easily follows that Aε(·, ·) is coercive on V and satisfies

‖v‖2
V 
 Aε(v, v) 
 ε−1‖v‖2

V , for all v ∈ V.

Our approach is to reformulate (3.1) as a mixed problem as done in [24]. Let uε

be the solution of (3.1) and define the dual variable pε ∈ Q by

pε := ε−1Λuε.(4.2)
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We get the mixed system for uε and pε:

a(uε, v) + c(Λv, pε) = f(v) for all v ∈ V.(4.3)

c(Λuε, q) − ε c(pε, q) = 0 for all q ∈ Q.(4.4)

Combining equations (4.3) and (4.4), and introducing the product space X ≡ V ×Q,
we obtain the mixed variational problem: Find uε ∈ V and pε ∈ Q satisfying

Bε((uε, pε), (v, q)) = f(v) for all (v, q) ∈ X,(4.5)

with the block bilinear form

Bε((uε, pε), (v, q)) := a(uε, v) + c(Λuε, q) + c(Λv, pε) − ε c(pε, q).(4.6)

The mixed bilinear form is well defined for the limit ε = 0. Any solution (uε, pε) of
(4.5) is in the space

X0 = {(v, q) ∈ X : Λv = ε q} .(4.7)

This space will play an essential role in the analysis of the proposed interior penalty
method. On the space X ≡ V × Q, we define the norm

‖(u, p)‖ε := (‖u‖2
V + ε‖p‖2

c)
1/2(4.8)

This norm degenerates to a semi-norm for ε = 0. The bilinear form Bε(·, ·) is
continuous with parameter dependent bounds for that norm, namely, for (u, p) ∈ X
and (v, q) ∈ X

Bε((u, p), (v, q)) = a(u, v) + c(Λu, q) + c(Λv, p) − ε c(p, q)



(
a(u, u) + ‖Λu‖2

c + ‖p‖2
c + ε ‖p‖2

c

)1/2

×
(
a(v, v) + ‖Λv‖2

c + ‖q‖2
c + ε ‖q‖2

c

)1/2


 ε−1 ‖(u, p)‖ε ‖(v, q)‖ε.

(4.9)

On the other hand, Bε(·, ·) provides a uniformly continuous mapping from the dual
of X (with respect to ‖(·, ·)‖ε) into X. This is formulated in the following theorem:

Theorem 4.1. Let f and g be continuous linear functional on V and Q respectively.
Then the extended mixed problem:

Bε((u, p), (v, q)) = f(v) + g(q) for all (v, q) ∈ V × Q(4.10)

has a unique solution (u, p) ∈ X. Moreover,

‖u‖2
V + ε−1‖Λu‖2

c + ε‖p‖2
c 
 ‖f‖2

V ∗ + ε−1‖g‖2
Q∗.(4.11)

Here ‖f‖V ∗ and ‖g‖Q∗ denote the norms of the linear functionals.

Proof. First, we construct a solution by means of the primal problem. Since Λ :
V → Q is continuous, and g(·) is in Q∗, the functional g(Λ·) is continuous on V :

|g(Λv)| ≤ ‖g‖Q∗‖Λv‖c 
 ‖g‖Q∗‖v‖V .

Let u ∈ V be the solution of

a(u, v) + ε−1c(Λu, Λv) = f(v) + ε−1g(Λv) for all v ∈ V.
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We use the ellipticity (4.1) of a(·, ·) + c(Λ·, Λ·) to get

‖u‖2
V + ε−1‖Λu‖2

c 
 a(u, u) + ε−1 c(Λu, Λu)

= f(u) + ε−1g(Λu)


 ‖f‖V ∗‖u‖V + ε−1/2‖g‖Q∗ ε−1/2‖Λu‖c



(
‖f‖2

V ∗ + ε−1‖g‖2
Q∗

)1/2 (
‖u‖2

V + ε−1‖Λu‖2
c

)1/2
.

Dividing by (‖u‖2
V +ε−1‖Λu‖2

c)
1/2 gives the bound for u. By the Riesz Representation

Theorem we define g̃ ∈ Q such that

c(g̃, q) = g(q) for all q ∈ Q

and find that

p = ε−1 (Λu − g̃) .

Clearly,

ε ‖p‖2
c 
 ε−1‖Λu‖2

c + ε−1‖g‖2
Q∗ 
 ‖f‖2

V ∗ + ε−1‖g‖2
Q∗.

We verify that (u, p) is a solution of (4.10). Indeed, for all (v, q) ∈ X,

Bε((u, p), (v, q)) = a(u, v) + c(Λu, q) + c(Λv, ε−1(Λu − g̃)) − εc(ε−1(Λu − g̃), q)

= a(u, v) + ε−1c(Λu, Λv)− ε−1c(g̃, Λv) + c(g̃, q)

= f(v) + g(q).

Finally, we prove that the solution is unique. Any solution (u, p) of the homogenous
problem satisfies

0 = Bε((u, p), (u, Λu− p))

= a(u, u) + c(Λu, Λu) + ε c(p, p) − ε c(p, Λu)

≥ a(u, u) + (1 − ε

2
) c(Λu, Λu) +

ε

2
c(p, p).

Thus, zero is the only solution of the homogeneous equation and the proof is com-
plete.

We will now demonstrate the gain in using the mixed form. Namely, in Theorem
4.3 we will show a uniform in ε > 0 a priori estimate of the solution to the problem
(4.10).

Let us define the norm ‖p‖Q,0 for p ∈ Q by

‖p‖Q,0 = sup
v∈V

c(p, Λv)

‖v‖V
.(4.12)

That this is a norm follows from the assumption that ΛV is dense in Q. Let Q0

denote the closure of ΛV in the norm ‖ · ‖Q,0. In general, ‖.‖Q,0 is a weaker norm
than ‖.‖c. By definition, Λ has a closed range in Q∗

0. In the limit case ε = 0 the
bilinear form Bε((u, p), (v, q)) is continuous and stable on V × Q0:
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Theorem 4.2 (Brezzi, see, e.g. [9], Proposition 1.3). The bilinear form

B0((u, p), (v, q)) = a(u, v) + c(Λu, q) + c(Λv, p)

is continuous, i.e.

B0((u, p), (v, q)) 
 (‖u‖2
V + ‖p‖2

Q,0)
1/2(‖v‖2

V + ‖q‖2
Q,0)

1/2,(4.13)

and stable, i.e.

sup
u∈V, p∈Q0

B0((u, p), (v, q))

(‖u‖2
V + ‖p‖2

Q,0)
1/2

� (‖v‖2
V + ‖q‖2

Q,0)
1/2,(4.14)

on the space V × Q0.

For the case ε > 0, we need a norm depending on the parameter ε. We define

‖p‖Q := ‖p‖Q,ε :=
(
‖p‖2

Q,0 + ε‖p‖2
c

)1/2
.(4.15)

This norm is equivalent to ‖.‖c for fixed ε > 0, but not necessarily uniformly equiv-
alent with respect to ε since obviously ε‖p‖2

c ≤ ‖p2
Q. We define the product space

X = V × Q

with the norm

‖(u, p)‖X = (‖u‖2
V + ‖p‖2

Q)1/2.(4.16)

The following theorem states that Bε(·, ·) is bounded in X and satisfies an inf-sup
condition with a constant independent of ε:

Theorem 4.3. Assume that (4.1) is satisfied. Let Bε(·, ·) and ‖ · ‖X be defined by
(4.5) and (4.16), respectively. Then:

• The bilinear form Bε(·, ·) is uniformly continuous on X , i.e.

Bε((u, p), (v, q)) 
 ‖(u, p)‖X ‖(v, q)‖X for all (u, p), (v, q) ∈ X ;(4.17)

• The bilinear form Bε(·, ·) is uniformly stable on X , i.e.

sup
(u,p)∈X

Bε((u, p), (v, q))

‖(u, p)‖X
� ‖(v, q)‖X for all (v, q) ∈ X ;(4.18)

• the mixed problem Bε((u, p), (v, q)) = f(v) + g(q) for all (v, q) ∈ V × Q has
unique solution for any f ∈ V ∗ and g ∈ Q∗ and the solution satisfies the a
priori estimate:

‖(u, p)‖X 
 ‖f‖V ∗ + ‖g‖Q∗.(4.19)

Proof. The proof of the continuity follows estimate (4.9) but due to the new stronger
norm in Q (see, (4.15)) we have an improved estimate for the mixed term:

c(Λu, q) ≤ ‖u‖V sup
v∈V

c(Λv, q)

‖v‖V
= ‖u‖V ‖q‖Q,0

Thus we get uniform continuity.
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We need only verify (4.18). To this end, fix (v, q) ∈ X . By definition of the norm
‖.‖Q,0, there exists a ṽ ∈ V such that

c(Λṽ, q)

‖ṽ‖V

� ‖q‖Q,0.

We are free to scale ṽ such that

‖ṽ‖V = ‖q‖Q,0 and c(Λṽ, q) � ‖q‖2
Q,0.

Let (ũ, p̃) be the unique solution (by Theorem 4.1) of

Bε((ũ, p̃), (w, r)) = (v, w)V + c(Λṽ, r) + ε c(q, r) for all (w, r) ∈ X .(4.20)

We will use (ũ, p̃) in order to verify (4.18). First, we see that

Bε((ũ, p̃), (v, q)) = (v, v)V + c(Λṽ, q) + ε c(q, q)(4.21)

� ‖v‖2
V + ‖q‖2

Q,0 + ε ‖q‖2
c

= ‖(v, q)‖2
X ,

so that

sup
(u,p)∈X

Bε((u, p), (v, q))

‖(u, p)‖X
≥ Bε((ũ, p̃), (v, q))

‖(ũ, p̃)‖X
� ‖(v, q)‖2

X
‖(ũ, p̃)‖X

.

Thus, we need only to show that

‖(ũ, p̃)‖X 
 ‖(v, q)‖X .

By the definition of Bε(·, ·) and (4.20), for all (w, r) ∈ X ,

Bε((ũ − ṽ, p̃), (w, r)) = Bε((ũ, p̃), (w, r))− Bε((ṽ, 0), (w, r))

= (v, w)V + c(Λṽ, r) + ε c(q, r) − [a(ṽ, w) + c(Λṽ, r)]

= (v, w)V − a(ṽ, w) + ε c(q, r).

Applying Theorem 4.1 gives

‖ũ − ṽ‖2
V + ε ‖p̃‖2

c 
 ‖v‖2
V + ‖ṽ‖2

V + ε‖q‖2
c .

Thus,

‖ũ‖2
V + ε ‖p̃‖2

c 
 ‖v‖2
V + ‖q‖2

Q,0 + ε ‖q‖2
c

= ‖(v, q)‖2
X.

Finally, we need to estimate ‖p̃‖Q,0. Using (w, 0) in (4.20) gives

Bε((ũ, p̃), (w, 0)) ≡ a(ũ, w) + c(Λw, p̃) = (w, v)V , for all w ∈ V.

Consequently,

‖p̃‖Q,0 = sup
w∈V

c(Λw, p̃)

‖w‖V
= sup

w∈V

(w, v)V − a(ũ, w)

‖w‖V


 ‖v‖V + ‖ũ‖V 
 ‖(v, q)‖X .
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Combining the above estimates completes the proof.

5. Analysis of the interior penalty approximation

In this section, we derive the basic error estimates for the proposed interior penalty
method (3.1). We present the estimate for the general case when the partition of Ω
into subdomains Ωi has “cross-points” (see, Figure 1). For d = 2 the cross-points
are the end points of the edges γij that are in the interior of Ω. For d = 3 the
cross-points are the edges of γij that are in the interior of Ω. The case of absence
of cross-point is somewhat simpler and is discussed at the end of this section.

Here we use some fundamental results from the domain decomposition literature
(see, e.g. [6, 7]). Since all subdomains Ωi are shape regular the estimates

‖v|γij
‖

H
1/2
00 (γij)


 ‖v‖H1(Ωi)(5.1)

hold for functions v ∈ H1(Ωi) which vanish on ∂Ωi \ γij. Here v|γij
is the trace of v

on γij. We note also that given any σij ∈ H
1/2
00 (γij), there is an extension v satisfying

the above estimates. The following proposition plays a key role in the proof of the
error estimate for the interior penalty method.

Proposition 5.1. For any ε > 0 and λ ∈ L2(Γ), λ|γij
∈ H1/2(γij) the following

estimate is valid:

‖λ‖Q∗ ≤ c log ε−1
(∑

γij

‖λ‖2
H1/2(γij )

)1/2

.(5.2)

The constant c is independent of ε but depends on the shape and the number of
subdomains.

The proof of this estimate is given at the end of this section. We now prove the
main result in this section:

Theorem 5.1. Assume that the solution u of (2.1) is in H2−δ(Ω) for some δ ∈
[0, 1/2). Then

||u − uε||V + ||p − pε||Q ≤ cε1−δ(log ε−1)1−2δ||u||H2−δ(Ω), 0 ≤ δ ≤ 1/2.(5.3)

Here the norm in Q is defined as in (4.15) and the constant c is independent of ε.

Proof. We first note that the solution u of the problem (2.1) satisfies the identity,

Aε(u, ϕ) = f(ϕ) + c(a∇u · n, Λϕ), for all ϕ ∈ V,

where the normal vector n is always pointing outward from the master side of γij.
Here we have used the fact that the exact solution has continuous normal flux, i.e.,
in particular, [a∇u · n]|Γ = 0. To simplify the notations, we define the function

θ = a∇u · n on Γ.

Further, the penalty solution uε has been defined as a solution to Aε(uε, ϕ) = f(ϕ).
Subtracting these two identities we get the following equation for the error e = u−uε:

Aε(e, ϕ) = c(θ, Λϕ) for all ϕ ∈ V.
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In order to use the a priori estimates of the mixed setting we shall put this
problem again in a mixed form. Namely, we introduce a new dependent variable
E := a∇u · n− ε−1Λe := θ − ε−1Λe defined on Γ so that the pair (e, E) satisfies:

Bε((e, E), (v, q)) = εc(θ, q) for all (v, q) ∈ V × Q.

The estimate (4.19) will provide a basis for the analysis of the error (e, E), namely,

||e||V + ||E||Q 
 ε sup
q∈Q

c(θ, q)

||q||Q
.(5.4)

Since ||q||Q ≥ ε1/2||q||c we easily get

||e||V + ||E||Q 

√

ε||θ||0,Γ.(5.5)

This estimate is an easy corollary of the set up of the problem but it yields an error
for the interior penalty method of order at most O(ε1/2). We can improve it when
θ is a smoother function. To accomplish this we first apply estimate (5.2) for λ = θ
to get get:

||e||V + ||E||Q 
 ε‖θ‖Q∗ 
 ε log ε−1
(∑

γij

‖θ‖2
H1/2(γij)

)1/2

.(5.6)

Second, we use the interpolation space H1/2−δ(γij), 0 ≤ δ ≤ 1/2, between the
spaces L2(γij) and H1/2(γij) so that

‖θ‖H1/2−δ(γij) 
 ‖θ‖1−2δ
H1/2(γij)

‖θ‖2δ
0,γij

.

Next, we observe that interpolated norm with δ ∈ [0, 1/2] between(∑
γij

‖θ‖2
0,γij

)1/2

and
(∑

γij

‖θ‖2
H1/2(γij )

)1/2

is bounded by
( ∑

γij

‖θ‖2
H1/2−δ(γij)

)1/2

.

This fact follows from the definition of the real interpolation method [21].
Finally, for u ∈ H2−δ(Ω), 0 ≤ δ ≤ 1/2, one can show that

‖θ‖H1/2−δ(γij) = ‖a∇u · n‖H1/2−δ(γij) 
 ‖u‖H2−δ(Ωi).

Interpolating estimates (5.5) (5.6) gives the desired results (5.3). This completes
the proof of the theorem.

In the rest of this section, we give a proof of Proposition 5.1. This follows im-
mediately from the three lemmas below. The first lemma follows easily from the
extension noted at the beginning of this section.

Lemma 5.1. For any given σij ∈ H
1/2
00 (γij) on all γij ⊂ Γ there exists a v ∈ V

such that

[v]γij
= σij

and

‖v‖V 

(∑

‖σij‖2

H
1/2
00 (γij)

)1/2

.
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Next, for µ ∈ L2(γij) we define the norm

‖µ‖Qij
:=

(
‖µ‖2

H−1/2(γij)
+ ε‖µ‖2

0,γij

)1/2

and its dual

‖µ‖Q∗
ij

:= sup
λ∈L2(γij )

(λ, µ)0,γij

‖λ‖Qij

.

Note that the space Q and its dual have been defined in Section 4. We then have
the following lemma.

Lemma 5.2. For all λ ∈ Q∗,

‖λ‖Q∗ 

( ∑

γij

‖λ‖2
Q∗

ij

)1/2

.(5.7)

Proof. Let µ ∈ Q be non-zero. First, we verify that

∑
γij

sup
σij∈H

1/2
00 (γij)

(µ, σij)
2
0,γij

‖σij‖2

H
1/2
00 (γij)


 sup
v∈V

(µ, [v])2
0,Γ

‖v‖2
V

(5.8)

Set σ̄ij = ασij where α is chosen such that ‖σ̄ij‖2

H
1/2
00 (γij)

= (µ, σ̄ij)0,γij
. By Lemma 5.1,

there exists an extension v ∈ V such that

[v]γij
= σ̄ij and ‖v‖2

V 

∑
γ̄ij

‖σ̄ij‖2

H
1/2
00 (γij)

.

Then,

∑
γij

(µ, σij)
2
0,γij

‖σij‖2

H
1/2
00 (γij)

=
∑
γij

(µ, σ̄ij)0,γij
= (µ, [v])0,Γ =

(µ, [v])2
0,Γ

‖v‖2
V

‖v‖2
V

(µ, [v])0,Γ



(µ, [v])2

0,Γ

‖v‖2
V

∑
γij

‖σ̄ij‖2

H
1/2
00 (γij )

∑
γij

(µ, σ̄ij)0,γij

=
(µ, [v])2

0,Γ

‖v‖2
V

.

The inequality (5.8) follows.
It immediately follows from (5.8) that

∑
γij

‖µ‖2
Qij


 ‖µ‖2
Q(5.9)
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We continue with

(λ, µ)0,Γ =
∑
γij

(λ, µ)0,γij
≤

∑
γij

‖λ‖Q∗
ij
‖µ‖Qij

≤
(∑

γij

‖λ‖2
Q∗

ij

)1/2(∑
γij

‖µ‖2
Qij

)1/2



(∑

γij

‖λ‖2
Q∗

ij

)1/2‖µ‖Q.

The lemma follows dividing by ‖µ‖Q and taking the supremum.

Lemma 5.3. For λ ∈ L2(γij),

‖λ‖Q∗
ij

 log ε−1 ‖λ‖H1/2(γij ).(5.10)

Proof. The proof of this lemma is based on techniques from the analysis of domain
decomposition preconditioners. We illustrate the proof in the case of three spatial
dimensions. The two dimensional case is similar.

Let λ be in L2(γij) and Sε be a finite element sub-space of H1(γij) of quasi-
uniform mesh-size ε. The L2-orthogonal projection operator Q onto Sε is bounded
on H1/2(γij) and satisfies

ε−1/2‖λ −Qλ‖0,γij
+ ‖Qλ‖H1/2(γij ) ≤ c‖λ‖H1/2(γij).(5.11)

We first split λ = (λ −Qλ) + Qλ, and further decompose the finite element part

Qλ = λ1 + λ2

such that λ1 = Qλ on ∂γij and λ1 = 0 on all interior nodes of γij (λ2 being the
remainder vanishing at ∂γij).

A simple transformation argument and Lemma 4.2 of [7] gives

‖λ1‖0,γij

 ε1/2‖λ1‖L2(∂γij ) 
 ε1/2 (log ε−1)1/2 ‖Qλ‖H1/2(γij ).

Lemma 4.3 of [7] gives

‖λ2‖H
1/2
00 (γij )


 log ε−1 ‖Qλ‖H1/2(γij).

Now we use the above splitting to get

‖λ‖Q∗
ij

= sup
µ∈L2(γij )

(λ, µ)0,γij

‖µ‖Qij

= sup
µ∈L2(γij )

(λ −Qλ, µ)0,γij
+ (λ1, µ)0,γij

+ (λ2, µ)0,γij

‖µ‖H−1/2(γij ) + ε1/2‖µ‖0,γij

.

Further, using the estimate (5.11) we have

sup
µ∈L2(γij )

(λ −Qλ, µ)0,γij

‖µ‖H−1/2(γij ) + ε1/2‖µ‖0,γij

≤ sup
µ∈L2(γij)

‖λ −Qλ‖0,γij
‖µ‖0,γij

‖µ‖H−1/2(γij) + ε1/2‖µ‖0,γij


 ‖λ‖H1/2(γij ).

Similarly, using the estimates for λ1 and λ2 we get

(λ1, µ)0,γij
≤ ‖λ1‖0,γij

‖µ‖0,γij

 ε1/2 (log ε−1)1/2 ‖λ‖H1/2(γij)‖µ‖0,γij
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and

(λ2, µ)0,γij
≤ ‖λ2‖H

1/2
00 (γij)

‖µ‖H−1/2(γij) 
 log ε−1 ‖Qλ‖H1/2(γij )‖µ‖H−1/2(γij).

Finally, combining the estimates for all three parts, we complete the proof:

‖λ‖Q∗
ij

= sup
µ∈L2(γij)

(λ, µ)0,γij

‖µ‖Qij


 log ε−1‖λ‖H1/2(γij ).

In the case of no cross points, we can get a slightly better result. In this case
γij = Γ and the assumption stated at the beginning of this section holds. The
following theorem provides an error estimate in this case.

Theorem 5.2. In the case of absence of “cross-points” the following estimate holds

||e||V + ||E||Q 
 ε1−δ||u||H2−δ(Ω).(5.12)

for u ∈ H2−δ(Ω), 0 ≤ δ < 1/2.

Proof. Since there are no “cross-points” for v ∈ V the jump [v] = Λv is in H
1/2
00 (Γ).

Therefore, there is an extension, which satisfies (5.1) so that

||q||Q � sup
v∈V

c(Λv, q)

||v||V
� ||q||H−1/2(Γ).

This implies

sup
q∈Q

c(θ, q)

||q||Q

 sup

q∈Q

c(θ, q)

||q||H−1/2(Γ)


 ||θ||
H

1/2
00 (Γ)

so that

||e||V + ||E||Q 
 ε||θ||
H

1/2
00 (Γ)

.(5.13)

Interpolating (5.5) and (5.13) we get

||e||V + ||E||Q 
 ε1−δ||θ||H1/2−δ(Γ).

The result then follows from the trace estimate

‖θ‖H1/2−δ(Γ) 
 ‖u‖H2−δ(Ω)

which holds for polygonal interface Γ (cf. [16]).

6. Finite element approximation of the penalty formulation

6.1. Finite element formulation and error analysis. Now we disretize the
problem (3.1) by the finite element method. Each subdomain Ωi is meshed inde-
pendently by a quasi-uniform and shape-regular triangulation Ti and consequently
the whole domain has a finite element splitting T = ∪iTi. Quasi-uniformity of the
mesh means that for τ ∈ T and hτ = diam(τ), |τ | = meas(τ) we have |τ | ≈ hd

τ ,
where d = 2, 3 is the dimension of the space. We shall use also the global mesh-size
parameter

h = max
τ∈T

hτ .
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Our analysis uses the condition that the mesh T is globally quasi-uniform, i.e.
h ≈ hτ for all τ ∈ T . We stress again, there is no assumption that along an
interface γij the triangulations Ti and Tj produce the same mesh.

Let Vi,h be the conforming (see, ([12]) finite element space of piece-wise linear
functions associated with the triangulation Ti. Further, let Vh : Vh|Ωi

= Vi,h, for
i = 1, . . . , p, be the finite element space on T . The functions in Vh are, in general,
discontinuous across γij. However, their traces on γij from Ωi and Ωj are well-
defined.

Let Ih : V → Vh be an operator such that for u ∈ H2−β(Ω) and 0 ≤ β ≤ 1:

h−1 ‖u − Ihu‖L2(Ω) + ‖u − Ihu‖H1(Ω) + h−1/2‖u − Ihu‖L2(Γ)


 h1−β‖u‖H2−β(Ω).
(6.1)

Now the interior penalty finite element method reads as: Find uε
h ∈ Vh such that

Aε(uε
h, φ) := a(uε

h, φ) + ε−1c(Λuε
h, Λφ) = f(φ) for all φ ∈ Vh.(6.2)

Obviously, the bilinear form Aε(·, ·) is symmetric and positive definite on Vh ×
Vh. Therefore, the corresponding finite element “stiffness” matrix is symmetric and
positive definite and the finite element system has am unique solution.

Now we derive an error estimate for the finite element interior penalty method.
According to our construction V =

∑
H1(Ωi) ∩ H1

0 (Ω) and

(w, v)V =
∑

i

∫
Ωi

(∇w · ∇v + wv) dx.

Since the number of subdomains p is finite and all Ωi are shape-regular, it follows
that A1(v, v) is uniformly equivalent to the norm ‖v‖2

V and the inequality (4.1)
holds. Therefore, the results of the previous sections are valid and we can apply
Theorem 5.1.

The error estimate is almost immediate consequence of Theorem 5.1 and the
approximation property (6.1) of the space Vh. Indeed, the error uε −uε

h satisfies the
orthogonality property

Aε
h(uε − uε

h, φ) = 0 for all φ ∈ Vh.

Using the coercivity of Aε(·, ·), we get

‖uε − uε
h‖2

V 
 Aε(uε − uε
h, uε − uε

h)


 inf
v∈Vh

Aε(uε − v, uε − v)


 Aε(uε − u, uε − u) + Aε(u − Ihu, u − Ihu).

Now the estimates (5.3) and (6.1) produce the following result:

‖u − uε
h‖V 
 ‖u − uε‖V + ‖uε − uε

h‖V


 (ε1−δ| log ε|1−2δ + h1−δ + ε−1/2h3/2−δ)‖u‖H2−δ(Ω)

for u ∈ H2−δ(Ω), 0 ≤ δ < 1/2.
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The above estimates suggest that for the penalty parameter ε ≈ h we get almost
optimal convergence rate. This result is stated in the following theorem:

Theorem 6.1. Assume that the solution u of the problem (2.1) belongs to H2−δ(Ω)
for some 0 ≤ δ < 1/2. Then the solution uh ∈ Vh of the interior penalty finite
element method

ah(uh, φ) + h−1c(Λuh, Λφ) = f(φ) for all φ ∈ Vh

exists and satisfies the apriori error estimate

‖u − uh‖V 
 h1−δ| log h|1−2δ‖u‖H2−δ(Ω).

Moreover, the condition number of the corresponding finite element “stiffness” ma-
trix is the same as in the case of standard Galerkin method with linear elements,
namely, O(h−2).

6.2. Numerical tests. The performance of the proposed penalty method is tested
on two model examples for the Poisson equation on the unit square with Dirichlet
boundary conditions. Our finite element implementation handles arbitrary triangu-
lations of the domain and linear finite elements.

In the table below we present the error u − uh measured in discrete L2 and H1-
norms for two test problems for the Poisson equation. The domain is split into four
equal subdomains that are triangulated independently so that the meshes do not
match along the interface Γ. The test problems are designed to check the accuracy
of the interior penalty method. The first example has exact solution u(x1, x2) =
sin2(2πx1)sin

2(2πx2) so that the normal derivative along the interfaces γij is zero.
This means that the interior penalty method should have the same accuracy as the
standard Galerkin method in both L2- and H1-norms. This is readily observed from
Table 1. The second test problem has exact solution u(x1, x2) = x2

1 + x2
2. We have

observed from our computations that the interface is the main contributor to the
error. Note that the convergence in L2-norm is of first order, while the convergence in
H1-norm is approximately first order. In the discrete L2 and H1-norms the relative

exact solution u exact solution u
sin2(2πx1)sin

2(2πx2) x2
1 + x2

2

level # nodes L2-error H1-error L2-error H1-error cond. #
1 65 0.055362 1.094882 0.004712 0.066380 30
2 225 0.015679 0.589709 0.002957 0.037646 105
3 833 0.004017 0.300594 0.001056 0.020850 439
4 3201 0.001011 0.151084 0.000545 0.011459 1829
5 12545 0.000253 0.075646 0.000285 0.006398 7385
6 52695 0.000063 0.037836 0.000141 0.003535 29438

order ≈ 2 ≈ 1 ≈ 1 ≈ 0.91

Table 1. Numerical results for four subdomains with non-matching grids
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error on the finest (6th) level is 0.03% and 1.95% for the exact solution u(x1, x2) =
sin2(2πx1)sin

2(2πx2) and 0.08% and 0.72% for the exact solution u(x1, x2) = x2
1+x2

2.
Additional numerical examples are reported in [20], including condition number

estimates and accuracy results for various test problems.
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