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Abstract

We consider optimal control problems involving the minimization of quadratic func-
tionals subject to an elliptic partial differential equation as a constraint. As the control
is exerted through the boundary conditions, the elliptic boundary value problem is for-
mulated in weak form by appending the boundary conditions by means of Lagrange
multipliers, leading to a saddle point problem. The cost functionals may contain dif-
ferent norms of the state and the natural norm for the boundary control. We use
the concept of wavelets to derive an equivalent problem involving only /o norms and
operators. Consequently, certain finite submatrices associated with the minimization
functionals are already well-conditioned in that their condition numbers do not de-
pend on the discretization. This in turn entails that appropriate iterative solvers can
be employed whose convergence speed does not deteriorate as the discretization step
size becomes finer.

From the necessary conditions characterizing the solution of the optimal control
problem, we derive a second saddle point problem as the adjoint problem. We show
that the combined weakly coupled system consisting of the two saddle point problem
defines an isomorphism. Furthermore, we derive circumstances under which this carries
over to certain finite sections of the operator equations.

In order to solve the resulting coupled saddle point systems, we employ an iterative
method consisting of an outer iteration based on a gradient method which alternatingly
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solves the two dual systems, and an inner iteration to solve each of the saddle point
problems. We will see that the iterative strategy converges, provided that the inner
systems are solved sufficiently well up to a certain accuracy. For the latter task, we
use an incomplete Uzawa type algorithm. Finally we provide numerical results.

Key words: Optimal control, Lagrange multiplier, saddle point problem, wavelets, (o
problem, isomorphism, iterative method, outer iteration, inner iteration.
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1 Introduction

In order to solve numerically a stationary elliptic partial differential equation (with or without
control), the discretization of its weak formulation typically leads, particularly in 3D, to a
very large linear system of equations. The involved basis functions in a Galerkin formulation
are often chosen to be finite elements of small support (relative to a grid of step size h ~ 277)
since the system matrix is highly structured and sparse with a total number of matrix
entries proportional to the overall number of unknowns N. When the size of the matrix
does not allow for the use of direct solvers due to storage restrictions, one has to resort to
iterative techniques. Typically, these methods exploit the matrix structure and only need
the same amount O(N) entries for storage as the matrix. In particular, one wants to employ
methods that still provide the solution up to a desired degree of accuracy, like the accuracy
provided by the discretization error, in a reasonable amount of iteration steps. Recall that
the convergence speed of an iteration for symmetric positive definite systems like the Jacobi
or the Gauss—Seidel method, or an acceleration based on the conjugate gradient method,
is governed by the (spectral) condition number x(A) of the system matrix A. That is,
the methods become slower the greater the condition number x(A) is. For elliptic partial
differential equations of order p on a domain in IR", a standard finite element discretization
on a uniform grid yields a system matrix A where x(A) is proportional to N?*/. As the
number of degrees of freedom grow with finer discretization step size h ~ 277, the condition
number grows like 2% and the convergence speed starts to deteriorate.

For this reason, one often employs a preconditioner C for A which approximates the
action of A~! and is easy to implement and apply. In fact, a good preconditioner should
be such that k(CA) is significantly smaller than x(A), that it requires only O(/N) matrix
entries for storage and that it can be applied with an amount of O(N) arithmetic operations.
For elliptic boundary value problems there are by now two classes of techniques based on
multilevel concepts that provide asymptotically optimal preconditioners in the sense that
they satisfy the above requirements and are such that the resulting condition number does
not depend on the discretization level j. Their common idea is that a finite-dimensional
approximation of a function is made more efficient by simultaneously taking into account
different discretization levels that capture coarse structures as well as finer details, without
having to resolve everywhere at a very fine discretization level.

One class consists of multigrid methods, see e.g. [BHM, Ha2], which are classically formu-
lated in terms of discretizations relative to grids having different grid spacing. The second
class is comprised of basis—oriented approaches, approximating the solution of the underly-
ing problem in terms of bases with respect to different resolutions. Of this latter class, one
example is the finite—element based BPX-type preconditioner [BPX] which has been proven
to be asymptotically optimal in [DK1, O1] and which has been developed primarily for dif-



ferential operators of positive order. In recent years also preconditioners based on wavelets
[DK1, DPS, K1, Ja] have been increasingly employed.

The first results proving the optimality of the wavelet preconditioners were obtained in
[DK1, O1, Ja] for elliptic boundary value problems discretized under the assumption that
boundary conditions were incorporated into the solution and approximation spaces, thereby
leading to symmetric positive definite systems of equations. In contrast, appending boundary
conditions by Lagrange multipliers, a technique that was initiated in [Ba], leads to a saddle
point problem. In [K1] an asymptotically optimal preconditioner based on wavelets has
been constructed for the corresponding indefinite system. By now preconditioning based
on wavelets has been used in many situations involving different kinds of differential and
integral operators of both positive and negative order, see e.g. [D2].

In fact, one can isolate the question of how to construct a preconditioner for many kinds
of linear operators using wavelets from the following observations. They are detailed here
because the derivation is somewhat different from usual finite element techniques. Typical
discretizations start out with a continuous operator equation (involving e.g. partial differen-

tial operators) of the form
NU=F. (1.1)

That is, given F', one wants to determine U belonging to some product of Hilbert spaces
H. Here N : H — H' is assumed to be an isomorphism from H into its topological dual
H' (with the corresponding dual form denoted by (-, -)3x3 or simply by (-,-)). This means
that A is invertible and satisfies the mapping property

ev [Vl < NV < CullViln, VER, (1.2)

where ¢y < C)yy < oo are positive constants. We will often abbreviate equivalences of the
form (1.2) as
NV ~ IV (1.3)

when the explicit form of the constants can be neglected. An equivalence of this sort,
summarizing properties of the operator, is the first cornerstone in deriving asymptotically
optimal preconditioners. The second ingredient exploits an important feature of wavelets,
namely, the Riesz basis property. By wavelets we mean a collection of functions indexed
from some infinite set I

U:={y: eI} CH. (1.4)

The Riesz basis property now means that every function v € H can be uniquely expanded in
terms of U,

v=vI U= Zv)\ (% (1.5)

AeX

and its expansion coefficients satisfy the norm equivalence
[0l ~ [[Dvle, (1.6)

where D is some diagonal matrix. Combining (1.6) with (1.3) yields a scaled discretization
of the continuous operator N in terms of the (infinite) collection W. The result is a discrete

operator equation
NU=F (1.7)

satisfying
||NV||E2 ~ ||V||E27 VEEQ(E)v (18)
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see Section 3.2 below. Thus, N is well-posed in FEuclidean metric. At this point, IN is still
infinite—dimensional.

In order to obtain a computable version of this operator equation, one has to extract
certain finite sections of IN. This corresponds to choosing a finite—dimensional subspace of
H on which N would be discretized by standard methods. Here one needs to assure that
the finite sections of N are picked corresponding to stable discretizations. This means that
the resulting finite-dimensional system

N, U, =F, (1.9)
represented in terms of wavelets
Uy ={r: A€ A} (1.10)

corresponding so some finite subset A C I still satisfies the equivalence (1.8) with constants
independent of A,
INAVAlle, ~ IValle,, Vi € £2(A). (1.11)

This entails that the spectral condition number x(IN,) is bounded uniformly in A,
k(Ny) < L (1.12)

Depending on the operator, there are different ways to ensure (1.11). If A is a symmet-
ric elliptic system (involving differential or integral operators), the corresponding Galerkin
scheme is already stable, implying (1.11). The problem that is considered in this paper is
when A contains blocks of saddle point operators. In this case, additional conditions on the
discretization involving an LBB condition have to be taken into account.

This general approach consists of the following four steps:
1.) Establishing the well-posedness of the continuous operator equation (1.3);

2.) Defining a discretization in terms of wavelets, leading to an infinite /5 system satisfying
(1.8);

3.) Establishing the stability of the discretizations to ensure (1.11) for the finite system
(1.9);

4.) Introducing an iterative solution of the system (1.9).

The above strategy has been used on several occasions [D2] and in particular in [K2, K4].

In the sequel, we will also follow this program. We will start out with formulating a
general class of optimal control problems such that the resulting system provides on one
hand an isomorphism. On the other hand, we try to be as flexible as possible with respect to
the requirements of the control problem. Namely, we use the Lagrange multiplier approach
to append the boundary control.

The strategy pursued here consists of treating the issues of discretization, preconditioning
and discrete stability separately. We apply this method to treat single— and vector-valued
elliptic partial differential equations in several space dimensions which are affected on (part
of) the boundary by some control that, in turn, is determined by minimizing a certain
quadratic functional.



We first recall some examples of two- and three-dimensional problems. Let Q2 C IR",
n > 2, be a domain with Lipschitz boundary 0€2. We will always assume that on some
smooth subset I' C 0 of positive measure some boundary control of Dirichlet type w is
imposed whereas on the remaining part I'y = 92\ T one has Neumann boundary conditions.
Note that also Dirichlet boundary conditions can be included here by fixing the control v on
that part of the boundary.

Example 1.1 On ©Q C IR? we consider a simple single-valued elliptic partial differential
equation with governing equations given in strong form by

~V2y+ky = f in Q,
y = u on I, (1.13)
any = 0 on FN.

Here V denotes the gradient, £ > 0 is some fixed parameter, and d, is the outward normal
derivative at I'y. Given the right hand side f, the problem is to determine the control
such that (1.13) has a unique solution y and, in addition, a functional specified below is
minimized.

Employing a Lagrange multiplier p [Ba], one can formulate the above equations in the
following weak form: given f € (H(2)), find (y,p) € H'(Q2) x (HY?(T))" such that

/(Vy-Vv —|—kyv)dx+/pvdF = fodx for all v € H'(Q),

? ; o (1.14)
/yqu = /uqu for all ¢ € H='/?(T),
r r

is satisfied. Precise definitions of the Sobolev space H'(Q2) and the dual of the trace space
H'Y2(T) of H'(2), (HY?(T)), and other Sobolev spaces used below can be found e.g. in
[Ad, OC]. If I = 09, one has (H'?(T")) = H-'/%(T"). Note that (1.14) are the optimality
conditions of the saddle point problem

inf sup %G(U,U) - <f7U>Q —|—b(7),q) - <u7q>F (115)
veEHL(Q) qe(HL/2(T)Y

where

a(v,w) = /(Vv-Vw + kow) dx
0

b(v,q) = /quF
r

and (-, -)a, (-, -)r, are the dual forms with respect to {2 and I". Now the governing equations
can be rewritten as
a(y,v) +b(v,p) = (f,v)q for all v € H'(Q),
(1.16)
b(y.q) = (u,q)r for all ¢ € (H'/*(T))"

Assuming that f € (H*(Q))" is given, the optimal control problem is then to find a boundary
control u € Uuq, Usq = HI/Q(F) denoting the set of admissible controls, such that a functional
of the form

T () = 2 1ly = ol oy + &l e (1.17)
for some s € IR is minimized. Here yq denotes a prescribed value on €2, w > 0 is some fixed

constant balancing the two norms and y is the solution of (1.14) generated by the control
input u.



Example 1.2 As a second example, we consider the same problem as in Example 1.1 except
for the functional J in (1.17) that is exchanged by

T (s u) =5y = yrllfre,) + 3 el (1.18)

for s,t € IR, and yr is a fixed value on I'. Such a functional is more appropriate to use when
measurements of y can only be taken at the boundary I', C 0S.

Example 1.3 Next we want to mention the problem of shape control of linearly elastic
solids, see e.g. [OC], which is essentially a vector—valued generalization of the previous ex-
amples. Now Q C IR? denotes an elastic body (its bivariate copy is depicted in Figure 1
below). Employing the summation convention in this example, the equations governing the
equilibrium can be written as

8az~j
855‘2'
since €) is an elastic continuum. As usual o;; are the stress components in the continuum, o

is the density and f; are the components of the body force per unit volume. Applying the
generalized Hooke’s law, we write the stress tensor in terms of the strain tensor as

+of;j =0 inQ, j=123,

Oij = Ly kI€kL
with €, given by the linearized strain displacement relations
— 1 (% 4 Ou
6kl 2 (8%[ 8£Ek- ’
and Ejj; is Hooke’s tensor, a tensor of elastic constants satisfying Ejji = Ejii = Eijik =

Ejij. With these definitions, the strong form of the equations governing the displacement
y = (y1,2,y3)" in the elastic body can be derived as

~ e <Ez’jklg_?o}0];) =of;,  1=1,23 (1.19)

On the controlled surface boundary part I', displacement boundary conditions are imposed
whereas on the remaining part I'y the displacements are uncontrolled and stress-free. Thus,
with n denoting the outward normal unit vector along 0¢2, we can formulate the boundary

conditions as
y = u on I’ (1.20)
niEijklg—?; =0 on FN, j = 1,2,3. .

The corresponding weak formulation of (1.19) with boundary conditions (1.20) appended
by a Lagrange multiplier p = (p1, p2, p3)T reads

/Eijklg_%g_gd$+/p.ydr :Q/f-vdx for all v € H'(Q)?,
Q r Q

/y-qu :/u-qu for all ¢ € (HY2(I')3Y,
r r
which can be written in compact form as
a(y,v) +b(v,p) = (f,v)q for all v € H'(Q)?,
b(y,q) = (u,q)r for all ¢ € (H'/*(T)?)’
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Figure 1: Sketch of €2 in two dimensions.

where dual forms are taken with respect to vector—valued quantities and
Jyy Ovj
a(y,v) = [ Bijuge 55 d, b(v,q) == [rv-qdl.

Given f € (H'(Q)3)" and a specified shape yr on 'y, one shall determine the control
u € H'?(T")? =: U,q such that the cost functional

?*—IS(I‘NS)3 + % ||u||§{1/2(1")3

J(y,u) =5 ly — yr|
for some s € IR is minimized.

Example 1.4 Another example of the category we are interested in is the following specific
transmission problem, a coupled solid/fluid temperature control problem similar to the one
treated in [GL1].

Let the domain §2 with boundary 902 consist of two parts, the solid body domain €2y and
the fluid flow domain €2y which are connected by an interface wall I',, see Figure 2 for a
two-dimensional sketch of the domain and its boundaries. We want to find a control u along
[' (C 0€) in order to approximately match a desired temperature of a fluid along (part of)
the interface I'y. That is, the temperature y is supposed to satisfy the energy equations

—R1 Ay = in €y,
X S (1.21)
—he Ay + (- V)y = go(W) in Qo,
with boundary conditions
= on I,
v ! (1.22)
Oy = 0 on I,

where T', = 0 \ I'. The constants k1, &y denote the thermal conductivity coefficients and
g1, g2 are given functions where g,() depends nonlinearly on . Here @ : Q3 — IR™ is the
fluid velocity field on €, which is determined beforehand (assuming that the viscous fluid
is incompressible) by the Stokes equations on Q,. That is, @ : Qs — IR™ and the pressure
p: sy — IR are related by

—vAG+Vp = f  inQ, (1.23)

diva = 0 in o,



with boundary conditions

g

= 1170 on P,
i (1.24)

g

W=0 onT,UTy, n-v onI,,

where [ and ', are the control inflow and the outflow boundary, respectively. Furthermore,
Wy is given, the constant v is the kinematic viscosity coefficient of the fluid, and I', the
bottom of Qy. For the numerical solution of the Stokes equations (1.23) with (1.24) there
are a variety of standard methods based on finite difference or finite element methods, or
the Galerkin method using biorthogonal wavelets proposed in [DKU1| can be employed.

N

#H## W HH#H#
r HH A

y

F P Q2 P Fo

e~~~ —

Ly
Figure 2: Sketch of €2 in two dimensions.

Then one is left with solving the equations for the temperature (1.21) in €, where on s
the velocity field o enters the differential equations as variable but known coefficient and in
the source term on the right hand side.

In summary, the governing equations on 2 = Q; UT', U {25 read in weak form

a(y,v) +b(v,p) = (9(@),v)o for all v € H'(), (1.25)
b(y,q) = (u,q)r for all ¢ € (H'/*(T)) '
where
k1 fo, Vy - Vodi on €,
a(y,v) = (1.26)
Jo,(#2Vy - Vv + (@ - V)yv)dZ  on Qs
the bilinear form b(-, ) is just
b(v,q) = (v, q)r (1.27)

and ¢g comprises the right hand sides ¢g; on ©; and go(w) on .
The optimal control problem is now the following: find a control v € HY?(I") =: U,q such
that the cost functional

J(y,u) = 5 |y — yry||i[1/2(ry) + % ||u||i[1/2(r) (1.28)
is minimized, where yr, is a prescribed value on T';.
For such minimization problems like those discussed above, the specific choices for the

form (1.16) or (1.25) are formulated in general terms as follows. The domain Q C IR" is an
open bounded set with (Lipschitz) boundary 02 = I' U 'y, where T" is a smooth subset of



0N of positive Lebesgue measure on which the control is exerted. We explicitly express the
restriction of a function v to I', usually denoted by (-)|r, in terms of the trace operator B,

Bv :=v|r. (1.29)

Recall that for any v € H*(2), 1/2 < s < 3/2, its trace Bv is known to be in H*~/2(T"), see
e.g. [Gr] and Remark 2.2 below. For the special case s = 1, the bilinear form

b(v,q) == <BU7Q>H1/2(F)><(H1/2(F))’ = (Bv,¢)r (1.30)

is well-defined on H'(Q) x (HY?(T))'. We will always consider elliptic boundary value
problems in the following weak form. Given f € (H'(Q))' (and v € H'/?(T') determined by
the control problem), find (y,p) € H'(Q) x (H'/?(I'))" such that

a(y,v) +b(v,p) = (f,v)a for all v € H'(Q),

(1.31)
b(y,q) = (u,q)r for all ¢ € (H'/*(T))

holds, where a(-,-) is a continuous bilinear form defined on H'(Q2) x H'(Q2). It will be
convenient for later purposes to write (1.31) in operator form. Let a linear operator A be
defined by

(Av,w)q = a(v,w), (1.32)
and let B’ be the dual of B given by
(Bv,q)r = (v, B'q)a = b(v, q). (1.33)

Then (1.31) is rewritten as follows. Given f € (H'(Q))" (and u € H'?(T') determined by
the control problem), find (y,p) € H'(Q) x (H'/?(T'))" such that

v\ (A B N(v\_ [/
E(p>-— (B 0>(p>_(u . (1.34)
is satisfied. We call (1.34) in the sequel the primal system.

Remark 1.5 In all cost functionals (1.17), (1.18), (1.28) we allow different norms for
the observation of the state y on the domain Q0 or on the boundary I'y, and also different
norms for the control, including the natural ones. We want to stress that in principle the
functionals may involve arbitrary Sobolev norms with smoothness s ort as long as they can be
evaluated in terms of (biorthogonal) wavelets, i.e., a norm equivalence (1.6) holds. However,
(unnecessarily) requiring higher smoothness than s,t < % for measuring on I'y,I" or s <1
on ) entails to assume higher reqularity of the state y.

Here we always require only the minimal amount of smoothness needed for having a well-
posed problem.

Having derived this format of the constraints, the remainder of this paper is organized
as follows. Section 2 deals with the continuous problem, treating a class of optimal control
problems covering the previous examples. The constraints are formulated as the saddle prob-
lem (1.34). By standard arguments from control theory one can derive optimality conditions
in terms of a second saddle point problem

E(i) - <RAB (R%B)’><z>:<—T’R1(g’y—yQ)> .

9



called the adjoint system, and then show that the resulting weakly coupled system (1.34)
and (1.35) admits a unique solution [K2].

However, we follow here a different path and first recall in Section 3 the necessary tools
from wavelet theory which are employed in the sequel to discretize operator equations in
terms of wavelets, leading to infinite /5 systems.

In Section 3.2, we will formulate the constraints (1.34) as an equivalent ¢, problem and
then derive a representer of the quadratic cost functionals, covering all examples mentioned
above. We recall standard results from optimization to derive the optimality conditions
for the discretized but yet infinite problem in Section 3.3. Conditions to ensure stability
of discretizations for finite-dimensional sections of the involved operators are derived in
Section 3.4. For the resulting weakly coupled system of saddle point problems, we describe
in Section 4 an inexract gradient method, i.e., a fully iterative method to solve alternately
the two saddle point problems by an Uzawa type method. We conclude in Section 5 with a
numerical example.

2 Continuous Problems

This section introduces control problems in an abstract form with functionals covering the
above examples. To this end, we firstly formulate the constraints (1.34) in weak form as a

saddle point problem, recalling a few facts about abstract saddle point problems from e.g.
[BF, GR].

2.1 An Abstract Saddle Point Problem

Let Y and @ be Hilbert spaces with their topological duals Y’, @' and dual forms (-, )y «y-,
(-, )oxor, respectively, which we often abbreviate by (-,-). We denote the norms on Y and
@ and the induced inner products by (-,-)y = |- |3 and (-,-)g = || - |- - Furthermore, the
norm for the product space || - ||y« is always defined by

I:)

Let A:Y —» Y and B:Y — @' (with adjoint B' : Q@ — Y”) be linear continuous operators.
In view of the cases considered above in Section 1 where B is always a trace operator defined
on some subset of 0€, it suffices here to restrict ourselves to the case of B being surjective,
i.e., range B = @' and ker B’ = {0}.

Assuming first for an instant that u € Q' is given, consider the following single saddle
point problem: Given (f,u) € Y’ x ', find the unique solution (y,p) € Y x @ of

( ; % ) (i) - @ (2.2)

Concerning the existence and uniqueness of solutions of general saddle point problems, one
has the following result, see e.g. [BF, GR].

2

= [lvll¥ + llallg- (2.1)
Y xQ

Theorem 2.1 Let the linear operator A be invertible on ker B CY, i.e., for some constant
o >0

A ' A’ )
inf  sup —< Uy W)yrxy aq, inf  sup —< Uy W)yry

> > an, (23)
veker B ,cker B ||U||Y||UJ||Y veker B y,cker B ||U||Y||UJ||Y

10



and let for some constant 3y > 0 the inf-sup condition

B /
sup < v, q>Q xXQ

> Billalle, ¢€@, (2.4)
veEY ||U||Y

hold. Then there exists a unique solution (y,p) € Y X @Q to problem (2.2) for given f € Y’
and u € @', i.e.,

!
L= ( A B ) is an isomorphismY x Q —Y' x @', (2.5)

G, ~ 1)

for any (v,q) € Y x @, where the constants are composed of ay, 1 and the continuity
constants for A and B.

and one has the equivalence

(2.6)

Y'xQ'

Recall that (2.4) is satisfied here because B is surjective.
So far the function u on the right hand side of (2.2) has been assumed to be known. We
now treat the system (2.2) as constraints in an optimal control problem.

2.2 A Continuous Optimal Control Problem

In addition to Y and @, two more Hilbert space Z, W are introduced with inner products
(++)z, (,-)w and induced norms || - ||z, || - [lw, respectively. In order to treat the different
norms for y and v in a unified way, ||-||z and || ||w will stand for the norms for the obversation
of the state y and for u, that is, the cost functional (1.13) is firstly formulated in terms of
the norms || - ||z and || - ||w. As for the role of Z, it will be assumed that there is a linear

continuous operator
T:Y — Z.

In view of the above examples where Y = H'(Q) and Q = (H'/?(T))’ (or their vector-valued
counterparts), we distinguish two choices of T', depending on whether the observation of the
state is measured in a norm on €2 or on T',,.

Remark 2.2 (i) Measuring state in a norm on ), then T is a Riesz map. A particular
case 1s Z =Y, resulting in T just being the identity.

(i1) When observations of the state can only be taken on (part of ) the boundary 02 denoted
by Ty, Z is a trace space: Z = H*~V2(T,), and T : H*(Q) — H*~Y2(T,) is the standard
trace operator with respect to Iy, combined with a Riesz map. Recall that in this
situation the Trace Theorem from e.g. [Gr] applies: for any f € H*(Q2), 1/2 < s < 3/2,
one can estimate

1T f o2,y S NS llars(o)- (2.7)

Conversely, for every h € H*"Y2(T,), there exists some f € H*(Q) such that Tf = h
and

[l S Mhllme-zw,).- (2.8)

11



Extending previous results in [K4], one could now define the minimization functional as

Ty, u) = 2y —yal% + 5lullz (2.9)

involving some constant weight 0 < w < oo and some prescribed value yo. The standard
formulations of control problems would be to minimize (2.9) subject to the constraints (2.2).

However, at this point we deviate from this approach for the following reason.In many
situations one is interested in the qualitative behavior of a minimization problem rather than
in the specific values of particular norms used to express the cost functional. Consequently,
then it suffices to replace the norms in the cost functional (2.9) by equivalent norms which
are numerically easier to evaluate. In fact, we will formulate below a representer of (2.9) in
terms of wavelets. Before we do so, we recall the necessary facts about wavelets.

3 Equivalent /;, Control Problems

3.1 Wavelets

We briefly collect from [D2] the mayor properties of wavelets that will be needed for the
remainder of this paper.

To this end, let I := II; X --- x Ij; be a product of infinite index sets. For each
1, its elements A of II; consist of different types of indices such as the level of resolution,
refinement or discretization level denoted by |A| and the spatial location. What we call
wavelets for H = H; x --- x Hys is a catenated collection of functions

U= {v,... My} (3.1)
where for each i = 1,..., M the collection W defined by
W= {%\: A€ I} C H; (3.2)
has the following properties:

(I) Riesz basis property: Every function v in H; can be uniquely expanded in terms of 4,

v=v .= Z vy Uy, (3.3)

AE;
and its expansion coefficients satisfy the norm equivalence
[vllzr, ~ (I DVlesmy (3.4)

where D is some diagonal matrix. In other words, the scaled collection D~ (") con-
stitutes a Riesz basis for H;. We always use the convention that the basis is normalized
in Lo, that is, when H; agrees with L, it follows that D = L.

(I1) Locality: The wavelets %), are compactly supported with support

diam (supp @) ~ 27 (3.5)
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With the aid of Riesz’ representation theorem, one can conclude that for the dual pairing
(-,-) for H; and its dual H] there exists a collection

W= {W\:\e I} C H] (3.6)

such that o

<lw/\7 l¢u> = 5/\#7 )\7 M € Eia (37)
and D() is a Riesz basis for H!. Here 8y, is the Kronecker delta. In fact, by a duality
argument one concludes from (3.4) that the corresponding norm equivalence

1ol ~ D™ Ve (3:8)
holds for any o = v7 & € H! [D1]. The coefficients vy in the expansion (3.3) can then be
expressed in terms of the dual basis as vy = (v, %y).

The pair (W, W) is called biorthogonal wavelets. Of particular interest are the cases when

the dual wavelets W also have compact support (3.5).

Remark 3.1 Biorthogonal wavelets are particularly appropriate for the present applica-
tions since the primal functions can be arranged to be B—splines. The corresponding primal
wavelets are then consequently also piecewise polynomials.

We will always take in the sequel such a pair of compactly supported biorthogonal
wavelets (U, ).

It will be convenient to use the following shorthand notation. We will both view U as
in (3.1) as a collection of functions and as a (possibly infinite) (column) vector containing
all functions always assembled in some fixed unspecified order. For a countable collection
of functions © and some single function o, the quantity (©,0) is to be understood as the
column vector with entries (f,0), # € ©, and correspondingly for rows with switched roles.
For two collections O, ¥, the term (O, Y) is then a (possibly infinite) matrix with entries
((0,0))oco. sex for which (©,3) = (3, 0)7. This also implies for a (possibly infinite) matrix
C that (CO, %) = C(0,%) and (6,CX) = (6, %)CT.

In this notation, the expansion coefficients in (3.3) and (3.8) can explicitly be expressed
as

vl = (v, ), v = (0, W). (3.9)

Note that the biorthogonality or duality conditions (3.7) can now be written in terms of an
infinite matrix,

(W, ) =1, (3.10)

where I is the identity matrix.

By now there are several constructions of wavelets available satisfying properties (I), (II)
for function spaces on different domains or manifolds, including L.-shaped domains and their
boundaries.

Starting from biorthogonal wavelets on the interval [DKU2| which are constructed from
the ones on all of IR from [CDF], one can construct corresponding wavelets on the domain
or its boundary that satisfy the norm equivalence (3.4). Depending on the smoothness of H,
one can either use domain decomposition ideas [CTU, DS1] for smoothness order |s| < 1/2
or more sophisticated function space characterizations for higher order smoothness [DS2].
Usually the set of primal wavelets ¥ consisting in these constructions of piecewise polynomials
will be used for computation while the dual ones ¥ are mainly needed for analysis purposes.
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3.2 Discretization and Preconditioning

Having assured that a wavelet basis with the above properties exist for the space H, one can
transform a continuous operator equation satisfying (1.2) into a discrete one in terms of the
scaled wavelet basis ¥ for H as follows. Expansion of the solution

U=(u1,...,un)" = (@ (D)W, .. uf, ™D HMy)" = U'D'& eH (311
and the right hand side F' = (¥, F)T® € H' yields the system of equations
(I, NT)D'U = (¥, F). (3.12)
Multiplying the system (3.12) by the block diagonal matrix D!,
D YT, NT)D 'U=D "' (T, F), (3.13)
and recalling the norm equivalences (3.4) and (3.8), we obtain
NU=F (3.14)
where N : lo(I) — ¢5(I) is an isomorphism. Here we have used the abbreviations
N:=D (¥, NT)D ! F:=D (T F). (3.15)

Thus, (3.14) is well-posed in the Euclidean metric f5(Z) and the spectral condition number
of N satisfies
cond(N) := [[N]]o [N7'], < 1. (3.16)

~J

Specifically the system (2.2) reads in this form (where now M =2, ' = Uy, 2V = ¥y))
y A B"\ [y f

L = = . 3.17

<p> < B 0 ) <p> <u> (317

A =D, (Ty, AT,) D}, f =Dy (Uy, f),
B =D; (Vo BUy)D;y',  u =Dy (¥g,u).

Here we have used

(3.18)

Together with Theorem 2.1, we have derived the following result.

Corollary 3.2 The operator L defined in (3.17) is an ly—automorphism, i.e., for every
(v,q) € by = ly(ITy x Ig) one has
< 1)
£ q

1)

3.3 A Representer for Quadratic Cost Functionals

(3.19)

2

The qualitative behaviour of the cost functional (2.9) involving the general norms |- ||z, || - ||w
can be captured by introducing Riesz maps Ry : Z — Z', Ry : W — W'. They provide
shifts between Sobolev spaces and induce norms that are equivalent to || - ||z and || - ||w,
respectively. In terms of wavelets, one can derive like in [DKS] their representation as

]_:{1 = <R1\Ifz,\I’Z> = <\IIZ7\IIZ> DQZ <\IIZ’\IIZ>

T e (3.20)
Ry = (Ro¥q,¥q) = (¥q,¥q) Dy (g, ¥g).
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Note that the order of the Sobolev spaces is encoded in the scaling of the entries in the
diagonal matrices Dy, Dg.

Working in wavelet coordinates suggests to formulate the optimization problem already
in terms of the discrete /5 norms to extract the main features of the approach. This means
that instead of the minimization functional (2.9) we define the cost functional as

w 1/2 1/2
J(y,u) == 2R\’ Ty — yal2, + L|RY |2, (3.21)

where T is the discrete /;—automorphism representing the (identity or trace) operator 7.
Thus, the minimization problem that is qualitatively equivalent to formulating a problem
with cost functional (2.9) can be formulated in the following discrete form:

Find (y,u) € ¢3(Iy x Ig) such that J(y,u) defined in

(3.21) is minimized subject to (3.17). (3.22)

In the following, we will exclusively treat the new minimization problem (3.22). Following
standard techniques from e.g. [Li, Z], we derive existence and uniqueness results for (3.22).
To this end, defining

I = ((I)), G = ((f)), S = (R}/ZT, 0),

Wi (), Wa =09 R = ding (R, Ry

(3.23)

problem (3.22) can be reformulated as follows: Find (W, u) € ¢, which minimize the cost
functional

JW,u) = ZISW — Wall7, + 5llul, (3.24)
subject to LW = Iu+G. (3.25)
Since L is by Corollary 3.2 invertible, we can eliminate W from (3.25),
W =L 'Tu+L'G, (3.26)
and insert it into (3.24) to obtain a quadratic functional in terms of only the control,
J(u) := 2[|SL™'"Tu+ SL™'G — Wq 2 + 5[|RY ul2. (3.27)

Denoting by D*J(u; vy, ..., vy) the s-th variation of J at u in directions vy, ..., vy, where
in particular

DJ(u; V) = <(5J(U),V> = lim J(u + tV) — J(u)

t—0 t

, (3.28)
we can now collect a number of properties of J for later purposes.

Proposition 3.3 The functional J defined in (3.27) is twice differentiable on ¢y with deriva-
tive

DI(w;v) = w(SW(u)— W, SL™'Iv) + (R\/*u, v)
= w(SL'fu+ SL™'G — Wq, SL™'Iv) + (R} *u, v) (3.29)
for all v € l5. We infer explicitly

§J(u) = wI"L"7ST(SW(u) - W) + RY*u = Qu+e. (3.30)
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The second deriwative of J s for all v,w € ly
D?J(u;v,w) = w(SL 'Iv, SL 'Iw) + (R)/*v, w) (3.31)

or equivalently . B
D*J(u;v,w) = w(SW,SW) + (R)*v, w), (3.32)

where W = (z) and W = (g) solve

LW = (3) and LW = <0>, (3.33)

W

respectively. Moreover, D?J satisfies for all v,w € {5 the estimates

D*J(w;v,w) < Collvllellwlle, (3.34)
and
DA(uwiv,v) > e |viE (3.35)
with constants
C.:=wler e )’ +1 and ¢, =1, (3.36)

Thus, J is strictly convex on Uy, implying that Q in (3.30) is symmetric positive definite.

The constant cr, , descends from the trace estimate (2.7) and the constants in the norm
equivalence (3.4); cr, is the constant for the lower estimate in (3.19).

Since the arguments are standard and since the assertions have been explicitly derived
in [K4] for the special case Ry = I, Ry = I, we dispense with the proof here.

The following generalized Weierstrass theorem is a special case of Theorem 43.D from
[Z], providing necessary and sufficient conditions in terms of derivatives of the Lagrangian

functional A
Lo, paa i) = 3@ + (@ o(3) - (1)), (3.37)

u

It is formed as usual by appending the conditions (3.17) by means of additional Lagrange
multipliers (z, 1) € ¢y to the minimization functional (3.27). Here W = (g) is written
explicitly to bring out the roles of y, p again.

Theorem 3.4 Let L be the ly—automorphism from Corollary 3.2 and let J be the quadratic
functional defined in (3.27). Then the unique solution (y,p,u) of (3.22) is determined by
the necessary conditions

SLAGR(y,p,u,z, u; V) =0 for V=12z u u,y,p. (3.38)

The Euler equations are explicitly for V. = z,p,u,y,p given by (3.17) and additional con-

p u

R)’a = p (3.39)

(1) = (e M) () = (7T o
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Remark 3.5 (i) In the following, we denote the constraints (3.17) or (3.25) as primal
system while the system (3.40) will be called dual system.

(11) Control problems with distributed control could in the present framework be formulated
in terms of a cost functional of the form (3.21) with control f and with constraints
(3.40). The corresponding Euler equations would be similar to (3.17) with (3.39),
(3.40). Thus, aside from the Riesz operators problems with boundary and distributed
control are equivalent.

Equation (3.39) will be used in Section 4 to construct an inexact gradient method in-
volving the iterative solution of (3.17) and (3.40). In view of this, it is useful to rewrite §J
in (3.30) yet in another way.

Proposition 3.6 In view of (3.17), (5.39) and (3.40), the first variation of J is
§J(u) = RY*u—p. (3.41)

This entails that the evaluation of 6J(u) is equivalent to solving first (3.25) and then (3.40).
Proof:
Recall from (3.30) that

§J(u) = wL TSTRY?(SW(u) — W) + RY*u

where W (u) is the solution of (3.25). Writing the solution X = X(u) = (z, u)” of (3.40)
explicitly,
X = —wL™” (TT(RlT y(u) — RWYQ))
0 Y

and applying I7 from the left we infer

p=—wi" L <TT(R1Ty<IS> - R}”ym)

which in view of (3.30) confirms (3.41). n

At this point it is perhaps useful to summarize the results obtained in view of the gen-
eral concept described in the introduction. Eliminating g from (3.39), we can write (3.17)
together with (3.40) as a weakly coupled system of saddle point problems. Corollary 3.2
together with Theorem 3.4 then assures that the resulting operator is an /;—automorphism
in the sense of 2.)

Corollary 3.7 The operator N defined by

T
Y B ol o 4 Y
NU = (2 B Pl = P 1(3.42)
“ \E L7 z - T T Tol/2 z .
wTTR, T 0 | AT BTR}
u 0 0 |RY/’B 0 u
i
0
= =:F
—wTTR} %yq
0
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is an ly—automorphism, ly = lo(I) := lo(Iy X I x Iy x I¢), i.e., for any V € Uy the
equivalence
INVlle, ~ [[V]]e, (3.43)

holds.

The constants in (3.43) depend on the weight w used in (3.27) to balance the two norms, on
the constants cr, and Cr, from (3.19) and on ¢,, C, defined in (3.36).

3.4 Stability of the Finite-Dimensional Systems

Next we need to ensure 3.) of the concept from Section 1, stability of the resulting finite—
dimensional discrete system derived from (3.42),

ya
_ Ly Ea Pa
NAUA g ( EA fl,}; ) ZA
u,
A, BT 0 0 i
_ Ba 0 ° = s PA (3.44)
wT{(R)ATyr O A% Bl (R2), ZA
0 0 | (Ry)Y’By 0 Ua
fa
0
— =F,.
—w T (R1) Y (yo)a A
0

Here we use for convenience the index A for all quantities. In fact, A stands for possibly
different index sets which are chosen according to conditions like (2.4) for the corresponding
finite—dimensional spaces.

In view of Proposition 3.3 and Theorem 3.4, the derivation of the system (3.42) reveals
that it suffices to ensure that the second derivation D?J is uniformly bounded from above
and below independent of the discretization and that the discrete stability of the finite—
dimensional analog of (3.17) is satisfied. These conditions in turn essentially reduce for the
situation at hand to the estimate in Remark 2.2 for the finite—dimensional spaces, the inf-sup
condition (2.4) called the LadySenskaja—Babuska—Brezzi (LBB) condition and the continuity
estimate (2.7) which is trivially satisfied for subspaces of H'(£2) and H'/2(T',). In the context
of finite elements, there has been an extensive discussion of the LBB condition, starting
with the original work [Ba]. Corresponding conditions on the discretizations for finite-
dimensional subspaces of H'(Q) and (H'/?(T"))’ for ensuring discrete stability of the finite—
dimensional analog of (3.17) have been investigated in a general context of multiscale schemes
and wavelet techniques in [DK] and [K2] for arbitrary dimensions using techniques from
approximation theory. Roughly speaking, the LBB condition is satisfied if the discretization
on 2 is sufficiently fine relative to the discretization of the boundary. Nevertheless, as the
numerical tests in [DK] reveal, the theoretical estimates are much too pessimistic. From
a numerical point of view, one often still obtains acceptable results even if the sufficient
conditions for the LBB condition derived in [DK] are violated, see also Section 5. This
subject is extensively discussed in [K2] so that we dispense here with further details.
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Proposition 3.8 Let finite-dimensional subspaces of H*(Y), (H*("))', Z and W be cho-
sen such that the conditions (2.3), (2.4) and the bounds (3.34), (3.35) are satisfied indepen-
dent of the discretization. Then the resulting operator derived from (3.42) is an automor-
phism and satisfies (1.11), (1.12) with uniformly bounded constants.

An alternative is to formulate (3.42) like in [DKS] as a least squares problem and apply
the truncation techniques derived there to achieve stable finite discretizations.

4 An Inexact Gradient Method

Here we briefly recall the mayor results from [K4]. In [GL1] a coupled system of the form
(3.44) has been solved in a semi-iterative way. Namely, the solution is achieved by solving
each of the two discrete finite-dimensional systems derived from (3.17) and (3.40) by using
a direct solver. One alternative would be to apply an iterative method to the whole system
(3.44). However, since this system is neither symmetric, nor positive definite, nor stemming
from a saddle point problem, it is not clear that a convergent iterative solver for the whole
system can be found. Here we propose a fully iterative method for (3.44) which is based
on solving the two finite-dimensional saddle point systems alternately. That is, the starting
point is to recall that the finite-dimensional system (3.44) is the same as

(a0 )0 = (&) 1)

iT(ZA> _ Al B (R,))/” (ZA>
A UA (RQ)[I\/ZBA 0 UA

. (T{((R1>ATAyA ~ (R))” (ymA))_
0
(4.2)

The convergence analysis is based on a gradient method for the functional J.

We formulate the main algorithm first without specifying the type of iterative method
which is used for the solution of the saddle point problems (4.1) and (4.2). We only assume
that it converges and denote it the ‘inner iteration’, abbreviated as ALGORITHM INNIT, i.e.,

in some way new iterations
(i+1)
YA Ia
L , = . 4.3
! (p&””) (u%’) 43

and
i+1 )
e (AN (TR - (R () »
A G+ ) &= TW 0 (4.4)
A

are determined. Since the overall algorithm involves the iterative solution of both systems,
it is termed the ‘outer iteration’.
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AvLcoriTeM OuTIT

STEP 1: Choose uﬁ”, ?f), ﬁﬁ”, EE{)), ﬁ,ﬁ’), set up the blocks Ly in (4.1), E, in (4.2),

and fy, (ya)a; let €,(7), €,(¢) be some suitable stage-dependent tolerances to be
determined later; set ¢ = 0;

STEP 2: apply ALGORITHM INNIT to compute an approximate solution (Sf’ff“% ﬁS\HI))T

of (4.3) with right hand side (f,, u%))T and initial guesses (?5\“, ﬁ%))T that satisfies
(i) - ()
SBi) )

STEP 3: apply ALGORITHM INNIT to compute a solution (Z¢ ™", G{™)7T of (4.2) with
right hand side —w(TT((R)ATAFY ™ — (R1)Y?(ya)a),0)T and initial guesses
(@, fiy))T until

~(i+1 ~(3
L <(< )> + w(Tﬂ(Rl)ATAy(A“’ : (Rnk/?(m))
~ (it
A

< g,(i+1); (4.5)

) . < eu(i+1); (4.6)

2

STEP 4: update us\i) by

uf™ = uf - i (u! - mg); (4.7)

STEP 5: set ¢ = i+ 1 and repeat Step 2, 3, 4 until prescribed tolerance for u, is reached.

The form of the right hand side in (4.7) stems from the fact that it just involves the first
variation of J defined in (3.21) written in terms of u alone as in (3.27),

03(uy)) = uf) — pi", (4.8)

see [K4]. The choice of the tolerances e, (i+1),¢,(i+1) as well as of the step size parameter p;
will be discussed below. The convergence of ALGORITHM OUTIT is not apparent beforehand
since the iterative solution of (4.1) and (4.2) produces an additional error that appears again
in the right hand side of the corresponding adjoint system. Thus, in the convergence analysis
one needs to assure that the errors produced in the inner iterations do not accumulate and
can be fully controlled.

It has been shown first in [K4] that ALGORITHM OUTIT converges for a certain range
of parameters p; if the systems (4.1) and (4.2) are solved ezactly ( e.g. by a direct solver,
compare also [GL1]). This follows from the fact that J defined in (3.21), which can be
expressed in terms of u, alone, is a quadratic functional. The analysis in [K4] then yields
the following result.

Denote by 7(us) an estimate for the error between the exact solution of (4.2) and its
initial guess,

[ = ualle, < 7(uy). (4.9)

Furthermore, recall from e.g. [Bs, Br] that the convergence speed f,q of a gradient method
for (3.27) is governed by the spectral condition number of Q, defined as in (3.30) for the
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finite—dimensional case,

£(Qa) — 1
K(Qa) + 1
Due to the preconditioning and scaling of the ingredients of Ly, Q4 has a uniformly bounded
condition number such that

Ograd = (4.10)

0 S ggra,d <1 (4].].)

holds independent of the discretization. This means that in each iteration of the gradient
method the error will be reduced by a fixed fraction 6, i.e.,

[ul™ —uplle, < 0l —unlls, (4.12)

where u, is the exact solution of minimizing J(u,) from (3.27) over (4.1).
If for instance at the (i 4+ 1)th stage the tolerances €,(i + 1), €,(¢ + 1) are chosen as

2 CLpi (1—|—Z)2
1 1 g

eu(i+1) = 5Cip AT 7(uy)

gy +1)

T(u/\)a
(4.13)

where cy,, Cr, are the constants in the isomorphism relation (3.19), then one can prove the
following.

Theorem 4.1 If the tolerances e,(i+1) and £,(i+1) in (4.5) and (4.6) are selected at each
stage according to (4.13) then ALGORITHM OUTIT converges for p; satisfying

0<p. < p < p' <202,

where ¢, and C, are constants estimating the second variation of J from below and above.

In [K4] also a detailed complexity analysis has been given for this scheme, showing that
this basic iterative scheme leads, in combination with a nested iteration strategy, to an
asymptotically optimal method. Here we recall the main facts.

Up to this point, we have not specified the particular iterative method ALGORITHM
INNIT by which (4.1) and (4.2) are solved. A simple iterative method for saddle point
problems for symmetric A, is the Uzawa algorithm. For a system of the form

(D)= (8 ) (3= (D), "

the Uzawa algorithm in its simplest form reads for ¢ = 0,1, ... when y/(\i), p%) are chosen,

i = A‘l(fA ~Bip})

—yA "‘A (fA AAYA)

BIp\) (4.15)
pi ™ =p{ +9Bay(" —gn).

Here + is some sufficiently small, fixed step size parameter. The first system in (4.15) is not
solved exactly. Its iterative solution ( by e.g. the conjugate gradient method ) corresponds
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to applying some approximation (AA) of A which can be viewed as a preconditioner for
A . One usually also includes a precondltloner (Sa)o for the second equation,

vy =y (AN (fa — Ayl -

pt = pl 4 (S5 (Bayi ™ — ).

i) (4)

Bipy) (4.16)

The role of (Sy)y is explained below. Algorithm (4.16) is often called the incomplete Uzawa
algorithm since the iterative method for the first equation corresponds to multiplying by an
approximation (A,)g" of A3, see [BPV].

For discussing the convergence properties of (4.15), one considers the reduced equation

BAA [ 'Bipy = BAA M, — g (4.17)

involving the Schur complement of (4.14). For symmetric and positive definite A,, the
Uzawa method (4.15) is known to converge if ByA,'B% is symmetric positive definite and
if e.g. the step size parameter v satisfies

v < 2[|BAAY'BY|7 (4.18)
In fact, an iteration for (4.17) reads
Py = (I—yByAL'BY) Py +BaAL i — &4 (4.19)

which converges if
IT-~vBrA'B|| <1 (4.20)

This inequality, in turn, follows from (4.18). In the present situation, the preconditioner Sy
is actually only needed for a possibly diagonal scaling since the Schur complement already
has a uniformly bounded condition number.

For the systems (4.3) and (4.4) which satisfy Corollary 3.7, we can prove the following.

Remark 4.2 [K/] The convergence rate of solving (4.3) or (4.4) by the incomplete Uzawa
algorithm (4.16) is for suitable choices of (Ax)o, (Sa)o independent of the discretization.

This result follows from the fact that only /5 operators are involved here. Consequently, in
choosing the incomplete Uzawa method (4.16) as the inner iteration ALGORITHM INNIT in
ALGORITHM OUTIT, in both STEP 2 and STEP 3 for any size of the systems (4.5), (4.6) only
a fized number of iterations is needed to reduce the error by a fixed fraction. Recall also that
each iteration can be applied in an amount of work proportional to the size of the system
since all operators in L can be realized by successively applying sparse matrices in terms of
the Fast Wavelet Transform [K4]. Furthermore, a combination of the basic iterative method
ALGORITHM OUTIT and the analysis can be exploited to prove the asymptotic optimality
of the method as follows.

The systems in (4.5) and (4.6) can be solved by the incomplete Uzawa method (4.16)
with a convergent rate independent of the discretizations according to Remark 4.2. Thus,
taking as initial guess the solution from the previous level, only a uniformly bounded number
of Uzawa steps is required to reduce the error by a fixed fraction. This is all that is needed
in order to achieve discretization error accuracy on each level. On the lowest level the
system is solved exactly. The operators in (4.5) and (4.6) can be applied at an expense
that remains proportional to the number of unknowns on that level. Thus, with a geometric
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series argument it follows that the overall work stays proportional to the computational work
required by a matrix/vector multiplication on the highest level .J. That is, the total work
is proportional to O(N;) where N; is the number of unknowns on the highest level. In
summary, one has the following result.

Theorem 4.3 If in each iteration of ALGORITHM OUTIT the systems (4.5) and (4.6) are
solved up to tolerances corresponding to (4.13) and these solutions are taken as initial guesses
for the next higher level, then ALGORITHM OUTIT is an asymptotically optimal method in
the sense that it provides the solution up to the discretization error on level J in an overall
amount of O(N;) operations where N is the number of unknowns in (4.5), (4.6) and (4.7).

5 Numerical Example

We consider here the following numerical example similar to that from [K4]. The elliptic
boundary value problem that plays the role of the constraints for the control problem (3.22)
is

—Ay+y = 1 inQ,
y = u onl,

where I' = 0Q. Here Q is the disc with radius R = 0.5 around the mid point (0.5,0.5),
Q={reR*:|z— (};;) 17, < R}.In order to treat this problem, the domain € is embedded
into a fictitious domain (1 = (0,1)? like in [K3]. This still yields a saddle point problem
of the form (2.2) where, however, the operator A now lives on the extended space H'(CJ).
In the minimization functional we have chosen the first norm in (3.21) to be equivalent to
Z =Y = H'(O) which corresponds to the situation considered in the functional (1.17) in
Example 1.1. Moreover, we have taken yo =0 and w = 1.

Thus, the discretized primal and dual systems read according to (4.1) and (4.2)

w) = (o W) G- () m@) () e

The complete system is solved by applym% the followmg variant of ALGORITHM OUTIT.
In STEP 3 the system (4.6) is solved for z, ’ and u ™ instead of (Z+1). STEP 4 is
discarded since the update of uE\Hl) is already performed in STEP 3. As inner iteration
the Uzawa algorithm is used with a preconditioned conjugate gradient method to solve the
first equation in (4.15) iteratively. That is, we have applied a CG-Uzawa algorithm. Our

stopping criterion is based on the ¢, norm of the residual for system (4.1),

I Anryr +Bipa — fa
A Bayar —ua

which by (3.19) is proportional to the error of (ya,ps) in H'(O) and H~'/?(T"). The first
numbers in the third column of Table 1 shows the total number of CG iterations necessary to
force the £, error of the residual of the primal system to be smaller than tol= min{277,27¢}.
The inner iterations are terminated when the residual is smaller than 0.01x tol. The numbers
in parentheses show the number of Uzawa iterations. The increase of the iteration numbers
when ¢ grows relative to j is caused by a violation of the sufficient conditions for the LBB
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condition. In STEP 3 the adjoint system is solved for ZE\H—I) and u(AiH) up to the same

tolerance tol for the corresponding residual of that system.

It is interesting to observe that for these tolerances the variant of ALGORITHM OUTIT
always terminates after 1 cycle, that is, system (4.1) is solved in STEP 2 up to the requested
tolerance, followed by the solution of the system (4.2) in STEP 3. Returning only once more
to STEP 2 is in all cases sufficient to meet the required overall tolerance. For this reason,
the cycle STEP 2 — STEP 3 — STEP 2 is called a solution cycle for the coupled saddle point
problem (3.44). In Table 1 the iteration numbers for each step of the solution cycle are listed
in columns 3, 4 and 5 and are termed 1st it., 2nd it. and 3rd it. The number #it means
the total number of pcg-iterations, while the number of Uzawa steps is written behind in
parentheses. We observe that the iteration numbers in the 3rd iteration are always smaller
than the ones from the 1st iteration. This is a consequence of the fact that the solutions
from the 1st iteration are taken as initial guesses to start the 3rd iteration.

Different variants on the tolerance for the inner iterations have been tested which suggests
that ALGORITHM OUTIT turns out to be relatively robust in the following sense. Taking as
inner tolerance a value up to tol itself instead of 0.01xtol is sufficient for convergence. Of
course, relaxing the tolerance can be carried out at the expense of increasing the number of
PCG iterations and Uzawa steps. Nevertheless, one solution cycle was still sufficient.

Remark 5.1 In summary, it seems to be sufficient that the adjoint system to determine the
control s only solved once, sandwiched between two iterative solutions of the primal system.

There are many variants one can think of to balance the amount of iterations needed in
each step of the cycle with the necessary amount of iterations.
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