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Abstract

A numerical method incorporating a combination of a difference scheme and several uniform
and nonuniform quadrature rules is presented. The method is designed to solve size-structured
population equations with linear growth rate and nonlinear fertility and mortality rates. A
detailed analysis of the global discretization error is carried out. An example whose exact
solutions are known have been solved numerically using a computer implementation of the
proposed method. The computations show that the global error is of third order as predicted
by the theory.
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1 Introduction

In this paper we describe a new explicit numerical method of third order for solving size-structured
equations of the form

∂u

∂t
+

∂g(x)u
∂x

= −µ(x, P (t))u(x, t), t > 0, x > 0,

g(0)u(0, t) =
∫ X

0
β(x, P (t))u(x, t)dx

u(x, 0) = u0(x),

(1.1)

where

P (t) =
∫ X

0
u(x, t)dx.

Problem (1.1) is typical for structured population dynamics, where u(x, t) is a density function
representing the population distribution with regard to the structuring variable x. µ and β are the
mortality rate and birth function respectively. g is the so called growth rate:

dx

dt
= g(x).

If g ≡ 1, this is the so called age-structured problem, [10, 17].
The structuring variable x is formally named ”size” but in reality it can have the physical

meaning of age, size, mass, maturity level, etc.
The method is designed to find a numerical solution to (1.1) in a rectangle [0,X1]× [0, T ], where

X1 ≥ X. It is presumed that β(x, P ) ≥ 0, µ(x, P ) ≥ 0, x ∈ [0,X1], P ∈ [0,∞] and that ∂β
∂P and ∂µ

∂P
are continuous and bounded on [0,X1]×[0,∞). For the method to work and have the desired O(h3)
global discretization error it is necessary that the solution and the above functions have bounded
derivatives up to the fourth order on a bounded set (see Theorem 3.1, section 3.5). We also assume
that

g(x) �= 0, x ∈ [0,X1], (1.2)

and that

g′(x) + µ(x, P ) ≥ 0, x ∈ [0,X1], P ∈ [0,∞). (1.3)

An abundance of papers on numerical schemes for structured equations exists in the literature,
but they are designed mainly for age-dependent models. Some of the papers utilize the finite
element approach, first used for this type of problem in [4]. The existing numerical methods in
the literature can be classified with respect to the order of the global error and to the type of
equations they apply to. In [5], [12] are proposed numerical methods for the linear age-structured
equation, i.e. with linear with respect to u(x, t) vital functions µ and β: µ = µ(a), β = β(a). The
nonlinear age-structured model (with µ = µ(a, P ), β = β(a, P ) was treated in several papers as
follows. Methods with global approximation error O(h) were proposed in [7], [8], [9], [13], [14] [15]
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and in the beginninig of the 90’s. A significantly more accurate method was proposed by Milner
and Rabbiolo, [16]. Theirs is a method of fourth order for the linear case and of second order for
the nonlinear case. The idea is based on on the observation that the linear equation can be treated
as an ODE along the characteristic curves and this idea was implemented using a Runge-Kutta
procedure.

A generalization of this paper followed soon in the work by Abia and Lopez-Marcos [1] in which
implicit schemes utilizing Runge-Kutta modifications are formulated for the nonlinear case. The
schemes are shown to have high order of convergence, but their application is expensive because of
the implicitness.

Numerical methods for the linear size-structured equations were proposed in [2] and [11] , while
the nonlinear equations were considered in [3]. Ito’s method is of second order. The methods in
[2] and [3] are further generalizations of the methods in [16] for the size -structured case. For the
nonlinear equation this generalization naturally is of second order, while for the linear case the
order is determined by the one of the employed Runge-Kutta scheme. The last method is proved
to work for equations with a nonlinear growth function g and, at present, is unique in this respect.

To the author’s best knowledge, no explicit (and therefore cheap) method of order higher than
two exists for equations (1.1). It is the purpose of this paper to present such a method. Our
method is based on the idea to combine the already widely explored solution on the characteristics,
on which all the above mentioned methods are based, with a discretization of an equation for P (t),
obtained by integrating (1.1). Using this equation, we calculate an approximation for P (t) first
and after that we find approximations to the solution u(x, t). Calculating P (t) again by using the
approximate values of u will, in general, improve the accuracy of the approximation. The global
discretization error of the method proposed in this paper is of third order.

The paper is organized as follows. Section 2 is devoted to some preliminary theoretical issues,
such as derivation of the integral equation for P , summary of the quadratures used in the method,
etc. Section 3 is a presentation of the method itself, consisting of the generation and approximation
of the grid, the discretization formulae and their order of local approximation, and a detailed
analysis of the global error. The final part of section 3 is devoted to the construction of O(h3)
approximations to the solution in the initial time layers. Section 4 contains results from a computer
implementation of the method.

2 Solving along characteristics

The equation

dx

dt
= g(x),

x(t0) = x0

(2.1)

defines the characteristic curve starting at the point (x0, t0). Let χ(t;x0, t0), x0 ≥ 0, t0 ≥ 0, t ≥ 0
denote the solution of (2.1). On the characteristic curves problem (1.1) has the form

d

dt

(
u(χ(t;x0, t0), t)

)
= −m(χ(t;x0, t0), P (t))u(χ(t;x0, t0), t),
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where m(x, P ) = g′(x) + µ(x, P ).
Solving the above equation, we see that if (xi, tj) and (xp, tq) lie on the same characteristic

curve, i.e. xi = χ(tj;xp, tq), then

u(xi, tj) = u(xp, tq)e
− R tj

tq
m(χ(τ ;xp,tq),P (τ))dτ

. (2.2)

2.1 The equation for P (t)

Let us integrate (1.1) from 0 to X. We obtain the following equation for P ,

dP

dt
= −g(X)u(X, t) +

∫ X

0
[β(x, P ) − µ(x, P )]u(x, t)dx (2.3)

with initial value

P (0) =
∫ X

0
u0(x)dx.

Let us integrate (2.3) from tα to tω for some given tα and tω. We get

P (tω) = P (tα) − g(X)
∫ tω

tα

u(X, τ)dτ +
∫ tω

tα

∫ X

0
[β(x, P (τ)) − µ(x, P (τ)]u(x, τ) dxdτ (2.4)

Denote

I(t) = −g(X)u(X, t) +
∫ X

0
[β(s, P (t)) − µ(s, P (t)]u(s, t) ds.

Then (2.4) can be written as

P (tω) = P (tα) +
∫ tω

tα

I(τ)dτ. (2.5)

3 Quadrature rules

Because of the presence of P , obviously each numerical method for this special type of equations
should incorporate quadrature rules.

In what follows, h denotes the discretization step.

3.1 Uniform rules

We use several Newton-Cotes quadrature rules of closed and open type, of different order of dis-
cretization, namely:

A) Trapezoidal rule,

Trap[f ] =
h

2
[f(x0) + f(x1)] =

∫ x1

x0

f(x)dx +
1
12

f (2)(ξ)h3; (3.1)
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B) Open formula of the rectangles,

Ropen[f ] =
3
2
h[f(x1) + f(x2)] =

∫ x2

x0

f(x)dx − 3
4
f (2)(ξ)h3; (3.2)

C) Simpson’s rule (closed formula),

Simp[f ] =
2h
6

[f(x0) + 4f(x1) + f(x2] =
∫ x2

x0

f(x)dx +
1
90

f (4)(ξ)h5; (3.3)

D) A 4-point closed formula,

F 3
8
[f ] =

3h
8

[f(x0) + 3f(x1) + 3f(x2) + f(x3)] =
∫ x3

x0

f(x)dx +
3
80

f (4)(ξ)h5; (3.4)

E) A 5-point open formula

F 4
3
[f ] =

4h
3

[2f(x1) − f(x2) + 2f(x3)] =
∫ x4

x0

f(x)dx − 28
90

f (4)(ξ)h5 (3.5)

In all formulae above ξ is a value located in the integration interval. A glance at the form of
the error in each formula shows that the function f must be sufficiently smooth for the quadrature
rules to supply the necessary accuracy.

Composite Newton-Cotes quadrature rules are formed by splitting the interval of integration
into, say, K subintervals of equal length h and using on each interval a simple quadrature formula.
The discretization order of composite quadrature rules is equal to the the one of the participating
quadratures minus 1. For example, a composite rule consisting of trapezoidal rules is of order 2
and one consisting of Simpson’s rules is of order 4.

3.2 Nonuniform rules

The nodes on the characteristic curves are not uniformly spaced (see next section), so nonuniform
quadrature rules are necessary.

Let x0, ..., xn be integration nodes such that g0h ≤ |xi+1 − xi| ≤ g1h, where g0, g1 are constants
independent of h, i. A nonuniform quadrature rule has the form

∫ xn

x0

f(x)dx =
n∑

i=0

q̂if(xi) + Rn (3.6)

where

Rn ≤ maxx∈[x0,xn] |fn+1(x)|
(n + 1)!

(xn − x0)n+2 = O(hn+2),

q̂i =
∫ xn

x0

ωn(x)
(x − xi)ω′

n(xi)
dx,

and ωn(x) = (x − x0)...(x − xn).
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Composite nonuniform quadrature formulae of order s + 1 on the interval [a, b] are constructed
by applying quadratures of order s + 2 on each of the subintervals making up [a, b]. Namely, if
xls+j, l = 0, ...,M −1, j = 0, ..., s are the integration nodes, such that g0h ≤ |xi+1−xi| ≤ g1h, then,
applying simple nonuniform quadratures with accuracy of the order O(hs+2) and with coefficients
q̂l
i on each interval [xls, x(l+1)s], the total error of the composite rule comes out to be of the order

O(hs+1). In such a case, the coefficients of the composite formula can be written as

qps+i =
{

q̂p
i , if i = 0, ..., s − 1, and p = 0, ...,M − 1,

q̂p
s + q̂p+1

0 , i = s and p �= M − 1.
(3.7)

Finally, qMs = q̂M
s .

It is easy to establish that
qi ≤ Ch

where C is a constant independent of h, j. We shall use this estimate in the analysis of the
discretization error. For example, C can be esimated as C = 2(g1s)s

gs
0(s−1)!g1. Our method uses values of

s not bigger than 4.

3.3 The Numerical Method

3.3.1 Calculating the grid

Let
S = [0,X1] × [0, T ],X1 ≥ X.

We shall calculate a numerical approximation to the solution of (1.1) at certain points of S. We
define these points as the grid Ẑ,

Ẑ = {(xi, tj), i = 0, ..., L, j = 0, ..., N},
where xi and tj are defined as follows.

Consider a characteristic curve starting at x0 = X, t0 = 0. Solving (2.1) for t < 0, let Tl < 0
be such that χ(Tl;X, 0) = 0. Let |Tl|/K = h, where K = 3M + 4,M is an integer and h is the
discretization step. Now, let xi = χ(Tl+ih; 0, Tl), i = 0, ...,K. Obviously, x0 = 0, xK = X. Further,
let L be such that xL = χ(Tl + Lh; 0, Tl) < X1 < xL+1 = χ(Tl + (L + 1)h; 0, Tl). Further, let N be
such that Nh < T < (N +1)h. We shall find numerical approximations to u(xi, tj), i = 0, ..., L, j =
0, ..., N .

It is easy to see that each pair (xi, tj) and (xi+1, tj+1), i = 0, ...L − 1, j = 0, ..., N − 1 is located
on the same characteristic curve. The grid is rectangular (i.e., the grid points are vertices of
rectangles), but is not uniform. Because g(x) is continuous and positive on [0,X] and since

h =
∫ xi+1

xi

1
g(x)

dx,

it follows that

h min
x∈[0,X]

g(x) = hg0 ≤ |xi+1 − xi| ≤ hg1 = h max
x∈[0,X]

g(x). (3.8)

Recall that the above estimate is necessary to hold in order to apply nonuniform quadrature rules
(see the previous section).
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3.3.2 Approximating the grid

The grid Ẑ, as defined in the previous section, must be approximated itself. In our case this
can be done before the calculation of the solution of (1.1). We find numerically a set of points
(yi, tj), i = 0, ..., L, j = 0, ..., N , approximating the grid nodes (xi, tj) by solving equation (2.1)
using a suitable discretization method. In what follows further we assume that yi = xi + O(h4),
while tj are assumed to be exactly known.

Following this procedure, we obtain the approximate grid

Z̃ = {(yi, tj), i = 0, ..., L, j = 0, ..., N}.

3.3.3 The method

The method is based on successive discretizations of formulae (2.5) and (2.2).
Equation (2.5) is discretized by using quadrature formulae with step h. The time integrals are

discretized using a 5 point open Newton-Cotes rule (3.5), thus obtaining explicit formulae. The
integrals in s are discretized using a nonuniform composite rule with accuracy O(h4). The composite
rule is constructed as follows. Since the number of points is K + 1 = 3M + 5, an open nonuniform
rule involving only y1, y2, y3 is used for the first 5 points y0, y1, y2, y3, y4 and further, closed 4 point
rules are used for each of the set of points y4+3s, y5+3s, y6+3s, y4+3(s+1), s = 0, ...,M − 1. Each of
the 4-point rules have accuracy O(h5), while the open 5-point rule is of accuracy O(h4), thus the
composite rule is of order O(h4).

More specifically, assume that the solution u(x, t) is continuous and denote

Pmax = X max
(x,t)∈S

u(x, t).

Obviously Pmax is an upper estimate for P (t).
If

∂4u

∂t4
∈ C(S),

∂4β

∂P 4
,
∂4µ

∂P 4
∈ C

(
[0,X1] × [0, Pmax]

)
, (3.9)

and if ts = sh, s = 0, ..., N and Is = I(ts), then

P (tj) =P (tj−4) +
4
3
h(2Ij−3 − Ij−2 + 2Ij−1) + Ej

1, (3.10)

where Ej
1 ≤ C1h

5 and C1 is constant, depending on maxt∈[0,T ] |∂
4I(t)
∂t4

|, but independent of h, j.
If

∂4u

∂x4
∈ C(S),

∂4β

∂x4
,
∂4µ

∂x4
∈ C

(
[0,X1] × [0, Pmax]

)
(3.11)

then I(ts) are approximated as follows (recall that xK = X),

Is = −g(xK)u(xK , ts) +
K∑

l=1

ql[β(xl, P (ts)) − µ(xl, P (ts))]u(xl, ts) + Es
2 , s = 0, ..., N (3.12)
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where Es
2 ≤ C2h

4 and C2 is a constant depending on

max
(x,t)∈S

| ∂i

∂xi
{[β(x, P (t)) − µ(x, P (t))]u(x, t)}|, i = 3, 4.

The coefficients ql are calculated as:

qr =
∫ x4

0

ω1(x)
(x − xr)ω′

1(xr)
dx, r = 0, 1, 2, 3, 4,

q3s+r =
∫ x3(s+1)+4

x3s+4

ωs+1(x)
(x − x3s+r)ω′

s(x3s+r)
dx, r �= 4, s = 0, ...,M − 1,

q3s+4 =
∫ x3s+4

x3s

ωs(x)
(x − x3s+4)ω′

s(x3s+4)
dx +

∫ x3(s+1)+4

x3s+4

ωs+1(x)
(x − x3s+4)ω′

s+1(x3s+4)
dx, s = 0, ...,M − 1,

(3.13)

where
ω1(x) = (x − x0)...(x − x4), and ωs(x) = (x − x3s+4)...(x − x3(s+1)+4).

The sum in (3.12) represents the nonuniform rule.
Obviously, to apply the above formulae, we need to have approximations for u(xi, tj). To this

end, we need to assume also that

d5g

dx5
∈ C

(
[0,X1]

)
. (3.14)

Then we can use a discretization of (2.2):

u(xi, tj) = u(xi−2, tj−2)e−
h
3
[m(xi−2,P (tj−2))+4m(xi−1,P (tj−1))+m(xi,P (tj)] + O(h5), L ≥ i ≥ 2, N ≥ j ≥ 2

u(x1, tj) = u(0, tj−1)e−
h
2
[m(x0,P (tj−1)+m(x1,P (tj)] + O(h3),

u(0, tj) =
K∑

l=1

qlβ(xl, P (tj))u(xl, tj) + O(h4).

(3.15)

The estimates of the discretization order rely on the assumption that the values at the preceding
points (i.e. P (tj−n), u(xi−n, tj−n)) are known exactly. The expressions O(hq) above are used to
denote the approximation errors, which are of the form Ej

i ≤ Cph
q and Cp are constants independent

of i, j and h but dependent on max(x,t)∈S | ∂i

∂xi u(x, P (t))|, i = 3, 4, max(x,t)∈S | ∂i

∂ti
m(x, P (t)), i = 2, 4|,

max(x,t)∈S | ∂i

∂xi {β(x, P (t))u(x, t)}|, i = 2, 4.

3.4 The Numerical Scheme

First we continue β and µ for negative values of P as

β(x, P ) = β(x,−P ), µ(x, P ) = µ(x,−P ), x ∈ [0,X1], P ∈ (−∞,∞).
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Obviously, β and µ are bounded and nonnegative, m = µ + g′ is nonnegative and ∂β
∂P and ∂µ

∂P are
continuous and bounded on [0,X1]× (−∞,∞) with the exception of the line P = 0 where ∂β

∂P and
∂µ
∂P may be discontinuous.

We introduce the grid functions ũj
i , i = 0, ..., L; j = 0, ..., N, defined on Z̃ and P̃j , defined on

I = {0, ..., tN }. For j ≥ 4 we use the following scheme to find the values of the grid functions, using
the uniform and the nonuniform quadrature rules.

P̃j = P̃j−4 +
4
3
h(2Ĩj−3 − Ĩj−2 + 2Ĩj−1), (3.16)

where

Ĩs = −g(X)ũs
K +

K∑
l=1

q̃l[β(yl, P̃s) − µ(yl, P̃s)]ũs
l , (3.17)

and q̃l are defined by using formulae (3.13) with yi instead of xi.

ũj
i = ũj−2

i−2e−
h
3
[m(yi−2,P̃j−2)+4m(yi−1,P̃j−1)+m(yi,P̃j)], i �= 0, 1, i ≤ L, 4 ≤ j ≤ N ;

ũj
1 = ũj−1

0 e−
h
2
[m(y1,P̃j)+m(y0,P̃j−1)],

ũj
0 =

K∑
l=1

q̃lβ(yl, P̃j)ũ
j
l .

(3.18)

For j = 0, 1, 2, 3 we use initial values defined later through the initialization process.

3.5 An estimate for the global discretization error

In this section we show that the global discretization error of the numerical scheme depends on the
accuracy of the initial values but is not better than O(h3). Let us denote:

ηj = P̃j − P (tj);

εj
i = ũj

i − u(xi, tj);

ζj = Ĩj − Ij;

σj = h
K∑

l=1

|εj
l |,

i = 0, ..., L, j = 0, ..., N.

(3.19)

Theorem 3.1. Consider the discretization scheme (3.16-3.18) with β and µ defined as in section
3.4. Suppose that the assumptions (3.9), (3.11) and (3.14) hold. Then for j ≥ 4 the following
discretization error estimates hold:

|ηj | ≤ W1h
3 + W2

(
max

i=0,1,2,3
|ηi| + max

l=0,...,L
max

j=0,1,2,3
|εj

l |
)
, (3.20)
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|εj
i | ≤ W3h

3 + W4

(
max

i=0,1,2,3
|ηi| + max

l=0,...,L
max

j=0,1,2,3
|εj

l |
)
, (3.21)

where Ws, s = 1, 2, 3, 4 are constants, independent of h, j, i.

Proof: Subtracting (3.10) from (3.16), we get

|ηj | ≤ |ηj−4| + 4
3
h|[2ζj−3 − ζj−2 + 2ζj−1]| + C1h

5, j ≤ N. (3.22)

Subtracting (3.12) from (3.17), we get:

|ζs| ≤ g(X)|εs
K |+

K∑
l=1

|(ql − q̃l)|βs
l u

s
l + q̃lβ̃l|εs

l | + q̃lu
s
l |βs

l − β̃s
l | +

K∑
l=1

|(ql − q̃l)|µs
l u

s
l + q̃lµ̃l|εs

l | + q̃lu
s
l |µs

l − µ̃s
l | + C2h

4,

(3.23)

where we have denoted f s
l = f(xl, P (ts)), f̃ s

l = f(xl, P̃s).
Taking into consideration that β, µ, ∂β

dP , ∂µ
dP and u(x, t) are bounded, and that

q̃l = O(h), |(ql − q̃l)| = O(h5) and |xl − yl| = O(h4), (3.24)

we can write

|ζs| ≤ g(X)|εs
K | + A|ηs| + B|σs| + C2h

4, (3.25)

where A,B,C1, C2 are positive constants, independent of h and s. In the derivation of the above
estimate we have used also that ∂β

dP , ∂µ
dP are continuous with the exception of the line P = 0. It is

easy to see that the possible discontinuity is not an obstacle to the derivation of the estimate.
In what follows we assume without loss of generality that the step h is less than some maximum

value, say hmax. Each time when we use the expression ”the constant C is independent of h”, the
meaning is ”the constant C is the same for all h ≤ hmax”. If C3 = C1hmax + C2, then

|ηj | ≤|ηj−4| + 4
3
h{A[2|ηj−3| + |ηj−2| + 2|ηj−1|] +

B[2|σj−3| + |σj−2| + 2|σj−1|] +

g(X)[2|εj−3
K | + |εj−2

K | + 2|εj−1
K |]} + C3h

4,

(3.26)

and C3 is independent of h and j.
Subtracting (3.15) from (3.18) and taking into consideration that m ≥ 0 and ∂β

∂P and ∂µ
∂P are

bounded and (3.24) we get

|εj
i | ≤ |εj−2

i−2 | + hD[|ηj−2| + |ηj−1| + |ηj |] + C4h
5, i, j > 1;

|εj
1| ≤ |εj−1

0 | + hH[|ηj−1| + |ηj|] + C6h
3;

|εj
0| ≤ G|ηj | + P |σj| + C7h

4,

(3.27)
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where Ci, i = 0, 4, ..., 7,D,H,G,P are positive constants independent of h and j.
By substituting the estimate for |εj

0| in the first 2 inequalities of (3.27), we get

|εj
1| ≤ G|ηj−1| + P |σj−1| + hH[|ηj−1| + |ηj |] + C8h

3;

|εj
2| ≤ G|ηj−2| + P |σj−2| + hD[|ηj−2| + |ηj−1| + |ηj |] + C9h

4;

|εj
3| ≤ G|ηj−3| + P |σj−3| + hF [|ηj−3| + |ηj−2| + |ηj−1| + |ηj |] + C10h

4,

(3.28)

where F and Ci, i = 8, ..., 10 are positive constants independent of h, j.
From (3.271) we get that for i ≥ 4, j ≥ 4 it holds:

|εj
i | ≤ |εj−4

i−4 | + 2hD[|ηj−4| + |ηj−3| + |ηj−2| + |ηj−1| + |ηj |] + C11h
5. (3.29)

We now consider |εs
K | and reiterate (3.271) until we get for s ≥ K

|εs
K | ≤ ... ≤ |εs−K+α

α | + 2hD{|ηs−K+α| + ... + |ηs|} + C1
11h

4, (3.30)

and for s < K:

|εs
K | ≤ ... ≤ |εα

K−s+α| + 2hD{|ηα| + ... + |ηs|} + C1
11h

4, (3.31)

where α takes the value 0 or 1 and C1
11 = C11Nh = C11T .

If s ≥ K, (3.28) and (3.27) give:

|εs−K+α
α | ≤ G|ηs−K | + P |σs−K | + hH

(|ηs−K | + |ηs−K+1|
)

+ C2
11h

3, α = 0, 1. (3.32)

If s < K, |εα
K−s+α| is of the order determined by the initialization process (see next section).

We combine (3.30) and (3.31) using (3.32) to write:

|εs
K | ≤ G|ηs−K | + P |σs−K | + 2hD1

(|ηs| + ... + |η0|
)

+ |ε0
K−s| + |ε1

K−s+1| + C3
11h

3, (3.33)

where εδ
γ = 0, ηκ = 0, σκ = 0 whenever γ < 0, or κ < 0.

Therefore from (3.26) and (3.33) we get:

|ηj | ≤ |ηj−4| + 8
3
h
{

A[|ηj−3| + |ηj−2| + |ηj−1|] + B[|σj−3| + |σj−2| + |σj−1|] +

g(X)
[
G

(
|ηj−3−K | + |ηj−2−K | + |ηj−1−K |

)
+ P

(
|σj−3−K | + |σj−2−K | + |σj−1−K|

)]}
+

g(X)
{

8h( max
0≤n≤K

|ε0
n| + max

0≤n≤K
|ε1

n|) + 16Dh2[|ηj−1| + ... + |η0|]
}

+ C4
11h

4,

(3.34)

where ηκ = 0, σκ = 0 whenever κ < 0.
Let j ≥ 4. Summing up (3.28) and (3.29) for i ≥ 4, multiplying the sum by h, and renaming

some constants, we get

|σj | ≤|σj−4| + hP [|σj−1| + |σj−2| + |σj−3|] + hG[|ηj−3| + |ηj−2| + |ηj−1|]
+ h2Q[|ηj−4| + |ηj−3| + |ηj−2| + |ηj−1| + |ηj |] + C12h

4.
(3.35)
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In the last several expressions, Q,D1, C11, C
1
11, C

2
11, C

3
11, C

4
11 and C12 are positive constants inde-

pendent of h, j.
Let us denote ρj = |σj | + |ηj |.
We rewrite (3.34) as

|ηj | ≤ |ηj−4| + hU1(ρj−3 + ρj−2 + ρj−1) + hU2(ρj−3−K + ρj−2−K + ρj−1−K) +

h2U3(|ηj−1| + ... + |η0|) + Rh( max
0≤n≤K

|ε0
n| + max

0≤n≤K
|ε1

n|) + C4
11h

4.
(3.36)

where Ui and R are constants, independent of j, h.
We substitute |ηj | in (3.35) with its upper estimate, and write:

|σj | ≤ |σj−4| + hV1(ρj−4 + ρj−3 + ρj−2 + ρj−1) +

h2Q{|ηj−4| + hU1(ρj−3 + ρj−2 + ρj−1) + hU2(ρj−3−K + ρj−2−K + ρj−1−K) +

h2U3(|ηj−1| + ... + |η0|) + C3
11h

4} + RQh3( max
0≤n≤K

|ε0
n| + max

0≤n≤K
|ε1

n|) + C1
12h

4.

(3.37)

where C1
12, Vi are constants, independent of j, h.

We now add (3.36) and (3.37) to obtain after renaming some constants:

ρj ≤ρj−4 + hY1[ρj−1 + ρj−2 + ρj−3 + ρj−4 + ρj−1−K + ρj−2−K + ρj−3−K]

+ h2Y2(ρj−1 + ... + ρ0) + hS( max
0≤n≤K

|ε0
n| + max

0≤n≤K
|ε1

n|) + C13h
4,

(3.38)

where S is a constant independent of h and j and ρα = 0, whenever α < 0.
Reiterating the inequality and renaming some constants we get

ρj ≤ ρqj + ST ( max
0≤n≤K

|ε0
n| + max

0≤n≤K
|ε1

n|) + hZ[ρj−1 + ... + ρ0] + C14h
3, (3.39)

where Z,C13, C14 and Y1, Y2 are positive constants independent of h, j and qj is an integer taking
one of the values 0, 1, 2 or 3.

Applying a discrete Gronwall inequality, [6], p.41, we conclude that

ρj ≤
{

C14h
3 + ρqj + ST ( max

0≤n≤K
|ε0

n| + max
0≤n≤K

|ε1
n|)

}
(1 + hZ)j <

[
C14h

3 + ρqj + ST ( max
0≤n≤K

|ε0
n| + max

0≤n≤K
|ε1

n|)
]
(1 +

T

N
Z)N <

[
C14h

3 + ρqj + ST ( max
0≤n≤K

|ε0
n| + max

0≤n≤K
|ε1

n|)
]
eTZ .

(3.40)

Since
max

j=0,1,2,3
ρqj ≤ max

j=0,1,2,3
|P̃i − P (ti)| + max

l=0,...,K
max

j=0,1,2,3
|ũj

l − u(xl, tj)|,

then

|ηj | ≤
{
C14h

3 + max
i=0,1,2,3

|P̃i − P (ti)| + (1 + ST ) max
l=0,...,K

max
j=0,1,2,3

|ũj
l − u(xl, tj)|

}
eTZ ,

|σj | ≤
{
C14h

3 + max
i=0,1,2,3

|P̃i − P (ti)| + (1 + ST ) max
l=0,...,K

max
j=0,1,2,3

|ũj
l − u(xl, tj)|}eTZ .

(3.41)
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Let us turn back now to (3.27), denoting 1 + ST = S∗.

|εj
i | ≤ |εj−2

i−2 | + 3hD
{

C14h
3 + S∗ max

i=0,1,2,3
|P̃i − P (ti)| + max

l=0,...,K
max

j=0,1,2,3
|ũj

l − u(xl, tj)|
}

eTZ + C4h
5

≤ |εpj
ri | + C15h

3 + C16

{
max

j=0,1,2,3
|P̃i − P (ti)| + max

l=0,...,K
max

j=0,1,2,3
|ũj

l − u(xl, tj)|
}

,

(3.42)

where C15 and C16 are positive constants independent of h, j and ri and pj take the values 0 or 1.
Taking into consideration the last equation in (3.27) and the first one of (3.28) together with

(3.41), we conclude that

|εj
i | ≤ C17h

3 + C18

{
max

j=0,1,2,3
|P̃i − P (ti)| + max

l=0,...,L
max

j=0,1,2,3
|ũj

l − u(xl, tj)|
}

, (3.43)

where C17 and C18 are positive constants independent of h, j.
This concludes the proof.
So, the global error of the method depends on the local error of the first 4 time layers, but

cannot be of order higher than 3. Mind that the 3rd order of the discretization error occurred only
because εj

i is of that order.
In the next section we show how we can find initial approximations for the first several time

layers.

3.6 The initialization

We shall first find approximations with sufficient accuracy for P and u at t = 0, h, 2h, 3h. We first
calculate

P̃0 =
K∑

l=1

q̃lu0(yl). (3.44)

Obviously,
P̃0 = P (0) + O(h4).

The error comes from the numerical quadrature and the inaccuracy of the nodes and the coefficients
ql.

Further, we calculate

P̃1 = P̃0 − hg(X)u0(X) + h

K∑
l=1

q̃l[β(yl, P̃0) − µ(yl, P̃0)]u0(yl) (3.45)

Then P̃1 − P (t1) = O(h2).
Further,

ũ1
i = u0(yi−1)e−

h
2
[m(yi−1,P̃0)+m(yi,P̃1)], i = 1, ..., L,

for which one can establish easily that

|ũ1
i − u(xi, t1)| = O(h3).

13



Let P̃1 = P old
1 and let us apply a trapezoid rule in time and an open nonuniform rule in space.

P̃1 =P̃0 +
h

2

{
−g(X)[u0(X) + ũ1

K ] +
K∑

l=1

q̃l[β(yl, P̃0) − µ(yl, P̃0)]u0(yl)

+
K∑

l=1

q̃l[β(yl, P̃
old
1 ) − µ(yl, P̃

old
1 )]ũ1

l

}
.

(3.46)

One can establish that the new value of P̃1 is more accurate:

P̃1 − P (t1) = O(h3).

We cannot improve the accuracy of u1
i anymore, however, because the third order error comes

from the trapezoid rule in the exponential. A more accurate rule cannot be applied at this layer
(first t-layer) because we do not have more than 2 available values of P .

Note that we applied a procedure of step by step accuracy refinement by first finding approxi-
mate values for P , using them to calculate approximations for u and then refining the approximation
for P again. Theoretically, one can use the new values to refine the approximations for u, but as
we already saw, this ”PuP”- procedure gives result only a finite number of times.

We calculate finally

ũ1
0 =

K∑
l=1

q̃lβ(yl, P̃1)ũ1
l = u(0, h) + O(h3). (3.47)

Now we find P̃2 by using the midpoint rule in the discretization of the time integrals:

P̃2 = P̃0 − 2h
{

g(X) ũ1
K +

K∑
l=1

q̃l[β(yl, P̃1) − µ(yl, P̃1)]ũ1
l

}
, (3.48)

which can be written as
P̃2 = P̃0 + 2hĨ1.

Then one can find that
|P̃2 − P (t2)| = O(h3).

Further, u2
i is calculated as

ũ2
i = u0(yi−2)e−

h
3
[m(yi−2,P̃0)+4m(yi−1,P̃1)+m(yi,P̃2], for i ≥ 2,

ũ2
1 = u0(0)e−

h
2
[m(0,P̃0)+m(y1,P̃1)].

(3.49)

One can find that

ũ2
i = u(xi, t2) + O(h4), i ≥ 2,

ũ2
1 = u(x1, t2) + O(h3).

(3.50)
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We do the ”PuP -procedure” to calculate P̃2 using these values of u2
l using Simpson’s rule.

P̃2 = P̃0 +
h

6
[Ĩ0 + 4Ĩ1 + Ĩold

2 ], (3.51)

where Ĩold
2 is calculated according to formula (3.17) but with the value P old

2 instead of P̃2.
One can see that

P̃2 = P (t2) + O(h4).

Further, we recalculate ũ2
i , i = 1, ..., L using formula (3.49) with the so found P2. We obtain

new values ũ2
i , i = 2, ..., L :

ũ2
i = u(xi, t2) + O(h4),

and
ũ2

1 = u(x1, t2) + O(h3).

Finally, we calculate u2
0:

ũ2
0 =

K∑
l=1

q̃lβ(yl, P̃2)ũ2
l , (3.52)

thus obtaining that
ũ2

0 = u(0, t2) + O(h4).

We continue to obtain P̃3 by using a 4 - point open formula Ropen to approximate the time
integrals:

P̃3 = P̃0 +
3h
2

[Ĩ1 + Ĩ2], (3.53)

thus obtaining
P̃3 = P (t3) + O(h3).

We further calculate ũ3
i , i = 3, ..., L as

ũ3
i = u0

i−3e
− 3h

8
[m(yi−3,P̃0)+3m(yi−2,P̃1)+3m(yi−1,P̃2)+m(yi,P̃3)],

thus obtaining local approximation of order O(h4).

ũ3
i = u(xi, t3) + O(h4), i = 3, ..., L.

The values ũ3
1 and ũ3

2 can be only calculated with O(h3) accuracy:

ũ3
1 = u2

0e
−h

2
[m(0,P̃2)+m(y1,P̃3)] = u(x1, P (t3)) + O(h3)

ũ3
2 = u2

1e
−h

2
[m(y1,P̃2)+m(y2,P̃3)] = u(x2, P (t3)) + O(h3)

(3.54)

The ”PuP -procedure” will give a better estimate for P3 now by using a 4-point closed rule F 3
8

for
the time integral:

P̃3 = P̃0 +
3h
8

[Ĩ0 + 3Ĩ1 + 3Ĩ2 + Ĩold
3 ] = P (t3) + O(h4), (3.55)
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where Ĩold
3 has an obvious meaning.

No further improvement in the accuracy of ũ3
i can be achieved, so we proceed to calculating ũ3

0,

ũ3
0 =

K∑
l=1

q̃lβ(yl, P̃3)ũ3
l = u(0, t3) + O(h4). (3.56)

This concludes the initialization process.

3.7 The magnitude of the global discretization error

Combining the results of the initialization process and Theorem 3.1, we can formulate the following
result.

Theorem 3.2. If the assumptions of Theorem 3.1 hold, the global discretization error of the nu-
merical scheme (3.16-3.18) combined with the initialization described in section 3.6 is of the order
O(h3).

Going through the proof of Theorem 3.1 we can notice that the 3rd order of the global error is
actually due to the 3rd order discretization error in the calculaton of u(h, tj). If this layer could be
calculated with a better accuracy, the algorithm would benefit by producing a higher order of the
global error.

4 Implementation of the Numerical Algorithm

A Fortran code implementing the proposed algorithm was written by the author and is available
upon request. It works for problems with X = X1 = 1, but can be easily modified for a larger class
of problems.

The method was tested on the following example.

ut + (e−xu)x = −(1 + e−x +
e−x sin x

2 + cos x
)u, x ∈ (0, 1], t > 0,

u(0, t) =
∫ 1

0

3
2 + cos x

u(x, t)dx

u(x, 0) = 1 +
cos x

2
,

(4.1)

which has the exact solution u(x, t) = e−t(1 + cos x
2 ).

The solution was calculated for t ∈ [0, 69] with 4 different values of the step. The code calculates
the grid by solving (2.1) by a Runge-Kutta 4th order method. The following table reports a
summary of the numerical results in terms of the maximum error ηmax = maxj=0,...,N |ηj |, εmax =

maxi,j |εj
i | and the average error ηav = 1

N+1

∑N
k=0 |ηk|, εav =

P
i=1,...L,j=1,...N |εj

i |
N.L . The experimental

results agree closely with the theoretical ones.
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Table 1. Amount of the error for various h

Step h ηmax ηav εmax εav

0.09044 6.83×10−4 1.24×10−4 1.25×10−4 9.8×10−7

0.0505 1.27×10−4 1.93×10−5 2.75×10−5 1.59×10−7

0.0268 1.97×10−5 2.54×10−6 4.67×10−6 2.1×10−8

0.0139 3.13×10−6 4.68×10−7 1.096×10−6 8.75×10−9

5 Discussion

Note that, to apply the method, we needed to continue µ and β for negative P and to assume
boundedness of β, µ, ∂β

∂P , ∂µ
∂P for all P . The problem (1.1) by itself requires that the vital rates are

defined only for P ≥ 0. The continuation of β, µ becomes necessary in case that the solution tends
to 0 and negative values of P̃i might appear, although these would be good approximations of P (ti).

A similar method which will always generate positive Pi (and therefore a continuation of β, µ
will not be needed) can be proposed. It can be one that utilizes a different formula for the time
discretization (3.10) of P . Such a formula can be

P (tj) = P (tj−5) + h
5
24

(11Ij−4 + Ij−3 + Ij−2 + 11Ij−1),

based on the quadrature rule
∫ x5

x0

f(x)dx = h
5
24

[11f(x1) + f(x2) + f(x3) + 11f(x4)] − 95
144

f (4)(ζ)h5.

The error analysis will go along the same line as in Theorem 3.1. The price to be paid for using
such a formula is to calculate one more initial time layer with accuracy O(h4). Such a method will
not ease the requirements for boundedness of β, µ and their P - derivatives.
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