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ABSTRACT

Interpolation between Subspaces of Hilbert Spaces and

Applications to Shift Theorems for Elliptic

Boundary Value Problems and Finite Element Methods. (December 2000)

Constantin Bacuta, B.S., “Al. I. Cuza” University of Iasi, Romania

Chair of Advisory Committee: Dr. James H. Bramble

In the real method of interpolation one starts with two Hilbert spaces, X and

Y , with certain properties and constructs a family of Hilbert spaces called the inter-

polation spaces. In applications to partial differential equations and finite element

methods, the following question often arises: If the interpolation spaces X and Y

are known Sobolev spaces, and if XM and YN are closed subspaces of X and Y , re-

spectively, what are the interpolation spaces of XM and YN ? For certain boundary

value problems, the answer to this kind of question, together with a complete char-

acterization of the range of the corresponding differential operator, leads to stability

estimates for solutions in terms of fractional norms. These types of estimates are

known as shift theorems. The thesis is concerned with developing new interpola-

tion results and shift theorems for the special case of polygonal plane domains, and

presents some applications of the new results.
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CHAPTER I

INTRODUCTION

Regularity estimates of the solutions of elliptic boundary value problems in terms of

Sobolev-fractional norms are known as shift theorems or shift estimates. The shift

estimates are significant in finite element theory. Applications of the shift theorems

can be found for example in the following.

• Nitsche’s duality argument for polygonal domains.

• Multigrid convergence theorems.

• Convergence of “mortar” finite element methods.

The shift estimates for the Laplace operator with Dirichlet boundary conditions

on nonsmooth domains are studied in [25], [28] and [32]. On the question of shift

theorems for second order elliptic boundary value problems with mixed boundary

conditions or biharmonic problem on nonsmooth domains, there seems to be no work

answering this question.

One way of proving shift results is by using the real method of interpolation of

Lions and Peetre [2], [29] and [30]. The interpolation problems we are led to are of the

following type. If X and Y are Sobolev spaces of integer order and XK is a subspace

of finite codimension of X then characterize the interpolation spaces between XK and

Y .

When XK is of codimension one the problem was studied by Kellogg in some par-

ticular cases in [25]. The interpolation results presented in Chapter II give a natural

formula connecting the norms on the intermediate subspaces [XK , Y ]s and [X, Y ]s.

The journal model is Mathematics of Computation.



2

The main result of Chapter II is a theorem which provides sufficient conditions (the

(A1) and (A2) conditions) to compare the topologies on [XK , Y ]s and [X, Y ]s and

gives rise to an extension of Kellogg’s method in proving shift estimates for more

complicated boundary value problems.

Kellogg’s approach in solving subspace interpolation problems on sector domains

involves reduction of the problem to subspace interpolation on Sobolev spaces defined

on all of R2. This reduction requires construction of “extension” and “restriction”

operators connecting Sobolev spaces defined on sectors and Sobolev spaces defined

on R2. Another difficulty in Kellogg’s method is finding the asymptotic expansion

of the Fourier transform of certain singular functions. The new approach taken in

this dissertation in solving subspace interpolation on sector domains, which avoids

the Fourier transform and the construction of the extension and restriction operators,

is to use a convenient scaling norm for the Sobolev spaces on a sector domain. An

example of a convenient scaling norm in our case is a multilevel norm originating from

multigrid theory [14], [16] and [34]. Using classical preconditioning techniques ([9]-

[15]), a proof of the fact that the multilevel norm on H1 is equivalent to the standard

norm on H1 is presented in Chapter III. In Chapter IV we use the multilevel norm

described in Chapter III in order to solve a codimension one subspace interpolation

problem which applies mainly for the special cases of polygonal domains and for sector

domains.

A new proof of the main subspace interpolation result presented in [25] and

an extension to subspace interpolation of codimension greater than one are given in

Chapter V.

In the general context of interpolation between Hilbert subspaces we consider

the problem of interpolating between H2(Ω) ∩ H1
D(Ω) and H1

D(Ω), where Ω is a

polygonal domain and H1
D(Ω) is the subspace of functions in H1(Ω) which vanish
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on the Dirichlet part D of the boundary of Ω. This question arose in [7] and [8].

In Chapter VI we exhibit some results concerning this problem and in Chapter IX

we deal with applications to a nonconforming finite element problem of the theory

presented in Chapter VI.

Shift theorems for the Poisson equation (with mixed boundary conditions) on

polygonal domains are considered in Chapter VII. The first step in the proposed

approach of this issue is to reduce the original shift estimate problem to a similar

problem on simpler domains, for example sector domains. The second step is to

characterize the range of the corresponding differential operator of the problem by

means of dual singular functions on sector domains [19], [23], [24], [27]. The next step

is to use an eigenfunction representation of the norm on Hα
D in order to check the

validity of the (A2) condition for the subspace of L2 involved here. The final step is

to use the equivalent multilevel norm on Hα
D and the interpolation results of Chapter

IV to check that the condition (A1) holds.

Shift estimates for biharmonic problems are considered in Chapter VIII. The

results of Chapter V combined with a Kellogg type approach are used in order to

solve the corresponding subspace interpolation problem.
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CHAPTER II

INTERPOLATION RESULTS

In this section we give some basic definitions and results concerning interpolation

between Hilbert spaces and subspaces using the real method of interpolation of Lions

and Peetre ([1], [29], [30]).

A. Interpolation between Hilbert spaces

Let X, Y be separable Hilbert spaces with inner products (·, ·)X and (·, ·)Y , respec-

tively, and satisfying for some positive constant c,⎧⎪⎨⎪⎩ X is a dense subset of Y and

‖u‖Y≤ c‖u‖X for all u ∈ X,
(2.1)

where ‖u‖2
X = (u, u)X and ‖u‖2

Y = (u, u)Y .

Let D(S) denote the subset of X consisting of all elements u such that the

antilinear form

v → (u, v)X , v ∈ X (2.2)

is continuous in the topology induced by Y . For any u in D(S) the antilinear form

(2.2) can be extended to a continuous antilinear form on Y . Then, by Riesz repre-

sentation theorem, there exists an element Su in Y such that

(u, v)X = (Su, v)Y for all v ∈ X. (2.3)

In this way S is a well defined operator in Y , with domain D(S). The next result

illustrates the properties of S .

Proposition II.1 The domain D(S) of the operator S is dense in X and conse-
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quently D(S) is dense in Y . The operator S : D(S) ⊂ Y → Y is a bijective, self-

adjoint and positive definite operator. The inverse operator S−1 : Y → D(S) ⊂ Y is

a bounded symmetric positive definite operator and

(S−1z, u)X = (z, u)Y for all z ∈ y, u ∈ X (2.4)

If in addition X is compactly embedded in Y , then S−1 is a compact operator.

The interpolating space [X, Y ]s for s ∈ (0, 1) is defined using the K function,

where for u ∈ Y and t > 0,

K(t, u) := inf
u0∈X

(‖u0‖X2 + t2‖u− u0‖Y 2)1/2.

Then [X, Y ]s consists of all u ∈ Y such that∫
0

∞
t−(2s+1)K(t, u)2 dt <∞.

The norm on [X, Y ]s is defined by

‖u‖2
[X,Y ]s

:= c2
s

∫
0

∞
t−(2s+1)K(t, u)2 dt,

where

cs :=

(∫
0

∞ t(1−2s)

t2 + 1
dt

)−1/2

=

√
2

π
sin(πs).

By definition, we take

[X, Y ]0 := X and [X, Y ]1 := Y.

The next lemma provides the relation between K(t, u) and the connecting operator

S.
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Lemma II.1 For all u ∈ Y and t > 0,

K(t, u)2 = t2
(
(I + t2S−1)−1u, u

)
Y
.

Proof. Using the density of D(S) in X, we have

K(t, u)2 = inf
u0∈D(S)

(‖u0‖X2 + t2‖u− u0‖Y 2).

Let v = Su0. Then

‖u0‖X2 = (u0, u0)X = (Su0, u0)Y = (S−1v, v)Y .

This implies that

K(t, u)2 = inf
v∈Y

((S−1v, v)Y + t2‖u− S−1v‖Y
2
). (2.5)

Solving the minimization problem (2.5) we obtain that the element v which gives the

optimum satisfies

(I + t2S−1)v = t2u.

For this v, (S−1u, v)Y is a real number and consequently,

(S−1v, v)Y + t2‖u− S−1v‖Y
2

= (S−1v, v + t2S−1v)Y + t2‖u‖Y 2 − t2(u, S−1v)Y

= t2((S−1v, u)Y + ‖u‖Y 2 − 2(u, S−1v)Y

= t2(u, u− S−1v)Y = (u, t2(u− S−1v))Y = (u, v)Y

= t2
(
(I + t2S−1)−1u, u

)
Y
.

Remark II.1 Lemma II.1 gives a new expression for the norm on [X, Y ]s, namely:

‖u‖2
[X,Y ]s

:= c2
s

∫
0

∞
t−2s+1

(
(I + t2S−1)−1u, u

)
Y
dt. (2.6)
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In addition, by this new expression for the norm (see Definition 2.1 and Theorem 15.1

in [29]), it follows that the intermediate space [X, Y ]s coincides topologically with the

domain of the unbounded operator S1/2(1−s) equipped with the norm of the graph of

the same operator. As a consequence we have that X is dense in [X, Y ]s for any

s ∈ [0, 1].

B. Interpolation between subspaces of Hilbert spaces

Let K = span{ϕ1, . . . , ϕn} be a n-dimensional subspace of X and let XK be the

orthogonal complement of K in X in the (·, ·)X inner product. We are interested in

determining the interpolation spaces of XK and Y , where on XK we consider again

the (·, ·)X inner product. For certain spaces XK and Y and n = 1, this problem was

studied in [25]. To apply the interpolation results from the previous section we need

to check that the density part of the condition (2.1) is satisfied for the pair (XK, Y ).

For ϕ ∈ K, define the linear functional Λϕ : X → C, by

Λϕu := (u, ϕ)X, u ∈ X.

Lemma II.2 (Bacuta, Bramble) The space XK is dense in Y if and only if the fol-

lowing condition is satisfied:⎧⎪⎨⎪⎩ Λϕ is not bounded in the topology of Y

for all ϕ ∈ K, ϕ �= 0.
(2.7)

Proof. First let us assume that the condition (2.7) does not hold. Then for

some ϕ ∈ K the functional Lϕ is a bounded functional in the topology induced by Y .

Thus, the kernel of Lϕ is a closed subspace of X in the topology induced by Y . Since

XK is contained in Ker(Lϕ) it follows that

XK
Y ⊂ Ker(Lϕ)

Y
= Ker(Lϕ).
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Hence XK fails to be dense in Y .

Conversely, assume that XK is not dense in Y , then Y0 = XK
Y

is a proper closed

subspace of Y . Let y0 ∈ Y be in the orthogonal complement of Y0, and define the

linear functional Ψ : Y → C, by

Ψu := (u, y0)Y , u ∈ Y.

Ψ is a continuous functional on Y . Let ψ be the restriction of Ψ to the space X.

Then ψ is a continuous functional on X. By Riesz Representation Theorem, there is

v0 ∈ X such that

(u, v0)X = (u, y0)Y , for all u ∈ X. (2.8)

Let PK be the X orthogonal projection onto K and take u = (I − PK)v0 in (2.8).

Since (I − PK)v0 ∈ XK we have ((I − PK)v0, y0)Y = 0 and

0 = ((I − PK)v0, v0)X = ((I − PK)v0, (I − PK)v0)X .

It follows that v0 = PKv0 ∈ K, and via (2.8), that ψ = Λv0 is continuous in the

topology of Y . This is exactly the opposite of (2.7), and the proof is completed.

Remark II.2 The result still holds if we replace the finite dimensional subspace K

with any closed subspace of X.

For the next part of this section we assume that the condition (2.7) holds. By

the above lemma, the condition (2.1) is satisfied. It follows from the previous section

that the operator SK : D(SK) ⊂ Y → Y defined by

(u, v)X = (SKu, v)Y for all v ∈ XK, (2.9)
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has the same properties as S. Consequently, the norm on the intermediate space

[XK, Y ]s is given by:

‖u‖2
[XK,Y ]s := c2

s

∫
0

∞
t−2s+1

(
(I + t2S−1

K )−1u, u
)
Y
dt. (2.10)

Let [X, Y ]s,K denote the closure of XK in [X, Y ]s. Our aim in this section is to

determine sufficient conditions for ϕi’s such that

[XK, Y ]s = [X, Y ]s,K. (2.11)

First, we note that the operators SK and S are related by the following identity:

S−1
K = (I −QK)S−1, (2.12)

where QK : X → K is the orthogonal projection onto K. The proof of (2.12) follows

easily from the definitions of the operators involved.

Next, (2.12) leads to a formula relating the norms on [XK, Y ]s and [X, Y ]s. Before

deriving it, we introduce some notation. Let

(u, v)X,t :=
(
(I + t2S−1)−1u, v

)
X

for all u, v ∈ X. (2.13)

and denote by Mt the Gram matrix associated with the set of vectors {ϕ1, . . . , ϕn}

in the (·, ·)X,t inner product, i.e.,

(Mt)ij := (ϕj , ϕi)X,t, i, j ∈ {1, . . . , n}.

Theorem II.1 Let u be arbitrary in XK. Then,

‖u‖2
[XK,Y ]s = ‖u‖2

[X,Y ]s + c2
s

∫
0

∞
t−(2s+1)

〈
M−1

t d, d
〉
dt, (2.14)

where < ·, · > is the inner product on Cn and d is the n-dimensional vector in Cn
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whose components are

di := (u, ϕi)X,t, i = 1, . . . , n.

Proof. Let u be fixed in XK and denote

w := (I + t2S−1)−1u and wK := (I + t2S−1
K )−1u. (2.15)

Then the norms on [XK, Y ]s and [X, Y ]s are given by

‖u‖2
[X,Y ]s

= c2
s

∫
0

∞
t−2s+1(w, y)Y dt (2.16)

and

‖u‖2
[XK,Y ]s = c2

s

∫
0

∞
t−2s+1(wK, y)Y dt, (2.17)

respectively. For v in Y , by using (2.12), we have

S−1
K v = S−1v −QK(S−1v) = S−1v −

n∑
i=1

αiϕi, (2.18)

where αi = (S−1v, ϕi)X . From (2.15) it follows that

(I + t2S−1
k )wK = u. (2.19)

Replacing S−1
K wK with the expansion given by (2.18), we obtain

(I + t2S−1)wK = u+ t2
n∑
i=1

αiϕi,

where αi = (S−1wK, ϕi). Equivalently, applying (I + t2S−1)−1 to both sides, we have

wK = w + t2
n∑
i=1

αi(I + t2S−1)−1ϕi. (2.20)

We calculate the coefficients αi by taking the (·, ·)X inner product with ϕj on both
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sides of (2.20) for j = 1, . . . , n. From (2.19) one sees that wK ∈ XK. Hence

n∑
i=1

(
(I + t2S−1)−1ϕi, ϕj

)
X
αi = −t−2(w, ϕj)X j = 1, . . . , n.

With the notation adopted in (2.15) and (2.13) the system becomes

n∑
i=1

(ϕi, ϕj)X,t αi = −t−2(u, ϕj)X,t j = 1, . . . , n.

Let α be the n-dimensional vector from Cn whose components are αi. Then

Mtα = −t−2d.

Since the vectors ϕ1, . . . , ϕn are linearly independent, the matrix Mt is invertible and

α = −t−2M−1
t d.

Now, going back to (2.20), we get

(wK, u)Y = (w, u)Y +

n∑
i=1

αi(t
2(I + t2S−1)−1ϕi, u)Y

= (w, u)Y +

n∑
i=1

αi(t
2S−1(I + t2S−1)−1ϕi, u)X

= (w, u)Y +
n∑
i=1

αi((ϕi, u)X − (I + t2S−1)−1ϕi, u)X

= (w, u)Y −
n∑
i=1

αid̄i.

Thus

(wK, u)Y = (w, u)Y + t−2
〈
M−1

t d, d
〉
. (2.21)

Combining (2.16), (2.17) and (2.21) completes the proof.

For n = 1, let K = span{ϕ} and denote XK by Xϕ. Then, for u ∈ Xϕ, the
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formula (2.14) becomes

‖u‖2
[Xϕ,Y ]s

= ‖u‖2
[X,Y ]s

+ c2
s

∫
0

∞
t−(2s+1) |(u, ϕ)X,t|2

(ϕ, ϕ)X,t
dt. (2.22)

Next theorem gives sufficient conditions for (2.11) to be satisfied. Before we state

the result we introduce the conditions:

(A.1) [Xϕi, Y ]s = [X, Y ]s,ϕi for i = 1, . . . , n.

(A.2) There exist δ > 0 and γ > 0 such that

n∑
i=1

|αi|2 (ϕi, ϕi)X,t ≤ γ 〈Mtα, α〉 for all α = (α1, . . . , αn)
t ∈ Cn, t ∈ (δ,∞).

Theorem II.2 (Bacuta, Bramble, Pasciak) Assume that, for some s ∈ (0, 1), the

conditions (A.1) and (A.2) hold. Then

[XK, Y ]s = [X, Y ]s,K.

Proof. Let s be fixed in (0, 1). Since XK is dense in both these spaces, in order

to prove (2.11) it is enough to find, for a fixed s, positive constants c1 and c2 such

that

c1‖u‖[X,Y ]s ≤ ‖u‖[XK,Y ]s
≤ c2‖u‖[X,Y ]s

for all u ∈ XK. (2.23)

The function under the integral sign in (2.14) is nonnegative, so the lower inequality

of (2.23) is satisfied with c1 = 1. For the upper part, we notice that, for u ∈ XK and

wK as defined in the proof of Theorem II.1,

(wK, u)Y =
(
(I + t2S−1

K )−1u, u
)
Y

= (u, u)Y − t2
(
S−1
K (I + t2S−1

K )−1u, u
)
Y

≤ (u, u)Y ≤ c(s)‖u‖2
[X,Y ]s

.
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Then, by using (2.17), (2.21) and the above estimate, we have that for any positive

number δ,

‖u‖2
[XK,Y ]s

≤ c(δ, s)‖u‖2
[X,Y ]s

+

∫ ∞

δ

t−2s+1(wK, u)
2
Y dt

≤ c(δ, s)‖u‖2
[X,Y ]s

+

∫ ∞

δ

t−2s+1(w, u)2
Y dt+

∫ ∞

δ

t−2s+1(M−1
t d, d) dt.

Hence the upper inequality of (2.23) is satisfied if one can find a positive δ and c = c(δ)

such that ∫ ∞

δ

t−2s+1(M−1
t d, d)dt ≤ c‖u‖2

[X,Y ]s
for all u ∈ XK. (2.24)

From (A.2), there exist δ > 0 and γ > 0 such that

〈
M−1

t α, α
〉
≤ γ

n∑
i=1

|αi|2 (ϕi, ϕi)
−1
X,t

for all α = (α1, . . . , αn)
t ∈ Cn, t ∈ (δ,∞). In particular, for αi = (u, ϕi)X,t,

i = 1, . . . , n, we obtain

〈
M−1

t d, d
〉
≤ γ

n∑
i=1

|(u, ϕi)X,t|2

(ϕi, ϕi)X,t
for all t ∈ (δ,∞), u ∈ XK,

where d = (d1, . . . , dn)
t. Thus, using the above estimate, (2.22) and (A.1), we have∫ ∞

δ

t−2s+1
〈
M−1

t d, d
〉
dt ≤ γ

n∑
i=1

∫ ∞

δ

t−2s+1 |(u, ϕi)X,t|
2

(ϕi, ϕi)X,t
dt

≤ γ
n∑
i=1

∫ ∞

0

t−2s+1 |(u, ϕi)X,t|
2

(ϕi, ϕi)X,t
dt

≤ γc−2
s

n∑
i=1

‖u‖2
[Xϕi ,Y ]s ≤ γc−2

s n‖u‖2
[X,Y ]s

Finally, (2.24) holds, and the result is proved.
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Remark II.3 By Lemma II.2, the space XK is dense in [X, Y ]s if and only if the

functionals Lϕ, ϕ ∈ K, ϕ �= 0 are not bounded in the topology induced by [X, Y ]s.

C. Some useful lemmas

Lemma II.3 Let X, Y be separable Hilbert spaces and let X0, Y0 be closed subspaces

of X, Y , respectively. Let X0 and Y0 be equipped with the topology and the geometry

induced by X and Y , respectively, and assume that the pairs (X, Y ) and (X0, Y0)

satisfy (2.1). Then, for s ∈ [0, 1],

[X0, Y0]s ⊂ [X, Y ]s ∩ Y0.

Proof. For any u ∈ Y0 we have

K(t, u,X, Y ) ≤ K(t, u,X0, Y0).

Thus,

‖u‖[X,Y ]s ≤ ‖u‖[X0,Y0]s for all u ∈ [X0, Y0]s, s ∈ [0, 1], (2.25)

which proves the lemma.

For any two Banach spaces X and Y satisfying (2.1), the interpolating space

[X, Y ]s can be defined as in Section A by using the function K = K(t, u,X, Y ).

The next lemma will be used in Chapter VII.

Lemma II.4 Let X, Y be Banach spaces satisfying (2.1), let X1 be the space X

equipped with an equivalent norm ‖ · ‖X1 and let Y1 be the space Y equipped with an

equivalent norm ‖ · ‖Y1. Then, for s ∈ [0, 1], we have

[X1, Y1]s = [X, Y ]s. (2.26)
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Proof. The proof follows directly from the definition of the function K and the

definition of the interpolating spaces which appear in (2.26).

Lemma II.5 Let H i, H̃ i, (i = 1, 2), be separable Hilbert spaces such that the pairs

(H2, H1), (H̃2, H̃1) satisfy (2.1). We assume furthere that there are linear operators

E and R such that

E : H i → H̃ i is a bounded operator, i = 1, 2, (2.27)

R : H̃ i → H i is a bounded operator, i = 1, 2, (2.28)

REu = u for all u ∈ H2. (2.29)

Then, for s ∈ [0, 1], an equivalent norm on [H2, H1]s is given by ‖E(·)‖[H̃2,H̃1]s
, i.e.,

there are positive constants c1 and c2 such that

c1‖u‖[H2,H1]s ≤ ‖Eu‖[H̃2,H̃1]s
≤ c2‖u‖[H2,H1]s for all u ∈ [H2, H1]s. (2.30)

Proof. From (2.28), by interpolation, we obtain that for some positive constant

c1, we have

c1‖Rv‖[H2,H1]s ≤ ‖v‖[H̃2,H̃1]s
for all v ∈ [H̃2, H̃1]s . (2.31)

For u ∈ H2, let v = Eu. Then, using (2.29) and (2.31), we get

c1‖u‖[H2,H1]s ≤ ‖Eu‖[H̃2,H̃1]s
for all u ∈ H2. (2.32)

From the hypodissertation (2.27), again by interpolation, we have that

‖Eu‖[H̃2,H̃1]s
≤ c2‖u‖[H2,H1]s for all u ∈ [H2, H1]s, (2.33)
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for some positive constant c2. Thus, from (2.32) and (2.33) we obtain that the in-

equalities involved in (2.30) are satisfied for any u ∈ H2. By Remark II.1, H2 is dense

in [H2, H1]s. Therefore, (2.30) holds and lemma is completly proved.

Let Ω ⊂ Ω̃ be domains in R2 and V 1(Ω), V 1(Ω̃) be subspaces of H1(Ω), H1(Ω̃),

respectively. (On V 1(Ω), V 1(Ω̃) we consider inner products such that the induced

norms are equivalent with the standard norms on H1(Ω), H1(Ω̃), respectively). Let’s

denote the duals of V 1(Ω), V 1(Ω̃) by V −1(Ω), V −1(Ω̃), respectively. We suppose that

there are linear operators E and R such that

E : L2(Ω) → L2(Ω̃), E : V 1(Ω) → V 1(Ω̃) are bounded operators, (2.34)

R : L2(Ω̃) → L2(Ω), R : V 1(Ω̃) → V 1(Ω), are bounded operators, (2.35)

REu = u for all u ∈ L2(Ω). (2.36)

Let ψ ∈ L2(Ω) , ψ̃ = Eψ ∈ L2(Ω̃) and θ ∈ (0, 1) be such that

L2(Ω)ψ := {u ∈ L2(Ω) : (u, ψ) = 0} is dense in [L2(Ω), V −1(Ω)]θ, (2.37)

L2(Ω̃)
eψ := {u ∈ L2(Ω̃) : (u, ψ̃) = 0} is dense in V −1(Ω̃), (2.38)

[L2(Ω̃)
eψ, V

−1(Ω̃)]θ = [L2(Ω̃), V −1(Ω̃)]θ. (2.39)

Lemma II.6 Using the above setting, assume that (2.34)-(2.39) are satisfied. Then,

[L2(Ω)ψ, V
−1(Ω)]θ = [L2(Ω), V −1(Ω)]θ. (2.40)

Proof. Using the duality , from (2.34)-(2.36) we obtain linear operators E∗, R∗
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such that

E∗ : L2(Ω̃) → L2(Ω), E∗ : V −1(Ω̃) → V −1(Ω), are bounded operators, (2.41)

R∗ : L2(Ω) → L2(Ω̃), R∗ : V −1(Ω) → V −1(Ω̃) are bounded operators, (2.42)

E∗R∗u = u for all u ∈ L2(Ω), (2.43)

E∗ maps L2(Ω̃)
eψ to L2(Ω)ψ, (2.44)

R∗ maps L2(Ω)ψ to L2(Ω̃)
eψ. (2.45)

From (2.41) and (2.44), by interpolation, we obtain

‖E∗v‖[L2(Ω)ψ ,V −1(Ω)]θ ≤ c‖v‖[L2(eΩ)
eψ
,V −1(eΩ)]θ

for all v ∈ L2(Ω̃)
eψ. (2.46)

For u ∈ L2(Ω)ψ, let v := R∗u. Then, using (2.45), we have that v ∈ L2(Ω̃)
eψ. Taking

v := R∗u in (2.46) and using (2.43), we get

‖u‖[L2(Ω)ψ ,V −1(Ω)]θ ≤ c‖R∗u‖[L2(eΩ)
eψ
,V −1(eΩ)]θ

for all u ∈ L2(Ω)ψ. (2.47)

Also, from the hypothesis (2.39), we deduce that

‖R∗u‖[L2(eΩ)
eψ
,V −1(eΩ)]θ

≤ c‖R∗u‖[L2(eΩ),V −1(eΩ]θ
for all u ∈ L2(Ω)ψ. (2.48)

From (2.42), again by interpolation, we have in particular

‖R∗u‖[L2(eΩ),V −1(eΩ]θ
≤ c‖u‖[L2(Ω),V −1(Ω)]θ for all u ∈ L2(Ω)ψ. (2.49)
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Combining (2.47)-(2.49), it follows that

‖u‖[L2(Ω)ψ ,V −1(Ω)]θ ≤ c‖u‖[L2(Ω),V −1(Ω)]θ for all u ∈ L2(Ω)ψ. (2.50)

The reverse inequality of (2.50) holds because L2(Ω)ψ is a closed subspace of L2(Ω).

Thus, the two norms in (2.50) are equivalent for u ∈ L2(Ω)ψ. From the assumption

(2.37), L2(Ω)ψ is dense in both spaces appearing in (2.40). Therefore, we obtain

(2.40).

Remark II.4 The proof does not change if we consider Ω ⊂ Ω̃ to be domains in Rn

and H1 is replaced by any other Sobolev space of positive integer order k.
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CHAPTER III

MULTILEVEL REPRESENTATIONS OF NORMS

Let Ω be a domain in R2 and let M1 ⊂ M2 ⊂ . . . be a nested sequence of finite

dimensional approximating subspaces of H1(Ω) (or a subspace of H1(Ω)). Then, a

natural norm can be considered on H1(Ω) in terms of L2(Ω)-orthogonal projections

onto Mk, k = 1, 2, . . . . Under some special conditions, it turns out that the new

norm is equivalent with the standard norm on H1(Ω). These types of results have

been studied for the first time in the finite element multilevel theory (see , e.g.,

[34]) by means of tools from approximation theory. Inspired more by the theory of

preconditioning (as presented in [9], [14], [16]), this chapter provides complete proofs

of the norm equivalence result for the special cases of polygonal or sector domains.

A. Some results from the multilevel theory

In this section we present some lemmas which are used through the rest of the chapter.

A more complete presentation of multilevel theory can be found in [16].

Lemma III.1 Let ρ ∈ (0, 1) and let {lmn} be a double sequence of nonnegative real

numbers satisfying

lmn ≤ ρ|m−n| for all m,n = 1, 2, ... .

Then, for any a = {an}, b = {bn} ∈ l2 with nonnegative entries, we have

∞∑
m,n=1

lmnambn ≤ 1 + ρ

1 − ρ
‖a‖l2‖b‖l2 ,

where ‖ · ‖l2 denotes the norm on l2.
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Proof. By the Cauchy-Schwarz inequality we obtain

∞∑
m,n=1

lmnambn ≤
∞∑
n=1

anbn + 2
∞∑

m>n=1

ρm−nambn

≤ ‖a‖‖b‖ + 2
∞∑
k=1

∞∑
n=1

ρkan+kbn

≤ ‖a‖‖b‖ + 2‖a‖‖b‖
∞∑
k=1

ρk =
1 + ρ

1 − ρ
‖a‖‖b‖.

Lemma III.2 Let M be a Hilbert space with inner product (·, ·), and let {Mk} be

a sequence of nested subspaces of M (Mk ⊂ Mk+1, k = 1, 2, . . . ). Denote by Qk the

orthogonal projections onto Mk and for any positive integer J let BJ : MJ → MJ ,

BJ :=
∑J

k=1 λ
−1
k Qk, where λk > 0. Then BJ is a symmetric positive definite operator

and B−1
J exists and is characterized by

(B−1
J v, v) = min

{
J∑
k=1

λk‖vk‖2, v =
J∑
k=1

vk, vk ∈Mk

}
,

where ‖ · ‖ is the norm induced by the inner product (·, ·).

Proof. Obviously, BJ is a symmetric operator. For any v ∈MJ we have

(BJv, v) =

J∑
k=1

λ−1
k (Qkv, v) ≥ λ−1

max

J∑
k=1

(Qkv, v) ≥ λ−1
max‖v‖2.

Thus, BJ is a positive definite operator and a straightforward application of the Riesz

Representation Theorem shows that B−1
J exists with domain MJ . Now let v ∈ MJ ,

and let v =
J∑
k=1

vk be any decomposition of v such that vk ∈ Mk. By the Cauchy-
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Schwarz inequality we get

(B−1
J v, v) =

J∑
k=1

(B−1
J v, vk) =

J∑
k=1

(QkB
−1
J v, vk) ≤

J∑
k=1

(QkB
−1
J v,QkB

−1
J v)1/2(vk, vk)

1/2

=

J∑
k=1

λ
−1/2
k (QkB

−1
J v, B−1

J v)1/2 λ
1/2
k (vk, vk)

1/2

≤
(

J∑
k=1

λ−1
k (QkB

−1
J v, B−1

J v)

)1/2( J∑
k=1

λk(vk, vk)

)1/2

= (v, B−1
j v)1/2

(
J∑
k=1

λk(vk, vk)

)1/2

.

This leads us to the inequality

(B−1
J v, v) ≤ min

{
J∑
k=1

λk‖vk‖2, v =

J∑
k=1

vk, vk ∈ Mk

}
.

Since the equality can be obtained by taking vk = λ−1
k QkB

−1
J v, the proof is complete.

Lemma III.3 Assume that the hypotheses of Lemma III.2 are satisfied and that

λk < ρ λk+1 for some number ρ ∈ (0, 1). Then, there is a constant c independent of

J such that

(B−1
J v, v) ≤

J∑
k=1

λk‖(Qk −Qk−1)v‖2 ≤ c (B−1
J v, v), for all v ∈MJ . (3.1)

Proof. Let v ∈ MJ be fixed and define vk := (Qk − Qk−1)v. Clearly, vk ∈ Mk

and v =
J∑
k=1

vk. Thus, by Lemma III.2, we obtain the left part of (3.1). For the other

part, let v ∈MJ and v =
J∑
k=1

vk be any decomposition of v such that vk ∈Mk. Then,

(Qk −Qk−1)v =

J∑
i=k

(Qk −Qk−1)vi,
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and

‖(Qk −Qk−1)v‖ ≤
J∑
i=k

‖(Qk −Qk−1)vi‖ ≤
J∑
i=k

‖vi‖.

Consequently,

J∑
k=1

λk‖(Qk −Qk−1)v‖2 ≤
J∑
k=1

(
J∑
i=k

λ
1/2
k ‖vi‖

)2

=

J∑
k=1

(
J∑
i=k

(
λk
λi

)1/2

λ
1/2
i ‖vi‖

)2

.

Defining Λ to be the symmetric J × J matrix with entries Λik =
(
λk
λi

)1/2

for i ≥ k,

and 
x the J−dimensional vector with components λ
1/2
i ‖vi‖, we see that

J∑
k=1

λk‖(Qk −Qk−1)v‖2 ≤ ‖Λ
x‖2
l2
≤ ‖Λ‖2

l2
‖
x‖2

l2
.

By an easy application of Lemma III.1, ‖Λ‖l2 can be bounded uniformly in J , and

consequently, there is a constant c independent of J , v and the splitting of v, such

that

J∑
k=1

λk‖(Qk −Qk−1)v‖2 ≤ c

J∑
k=1

λk‖vk‖2 for all v ∈MJ .

The required inequality follows again by applying Lemma III.2.

B. Multilevel norm equivalence on H1

Let Ω be a domain in R2 with boundary ∂Ω = (∂Ω)D ∪ (∂Ω)N , where (∂Ω)D is not of

measure zero, and (∂Ω)D and (∂Ω)N are essentially disjoint. Let M = H1
D(Ω) denote

the space of all functions in H1(Ω) which vanish on (∂Ω)D. Assume that

M1 ⊂ M2 ⊂ ... ⊂MJ ⊂ ... ⊂ M,
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is a nested sequence of finite dimensional approximation subspaces of M in the sense

that ∪∞
k=1Mk is dense in M . Since H1

D(Ω) is dense in L2(Ω) it follows that for u ∈

L2(Ω), limk→∞Qku = u. Let (·, ·) denote the L2(Ω) inner product and let ‖ · ‖

be the norm on L2(Ω) induced by (·, ·). For k = 1, 2, . . . , we define the operator

Pk : M → Mk to be the orthogonal projection with respect to the inner product

A(·, ·), where

A(u, v) :=

∫
Ω

∇u · ∇v dx for all u, v ∈M,

and Ak : Mk →Mk is defined by

(Aku, v) = A(u, v) for all u, v ∈Mk.

Let µk be the largest eigenvalue of Ak and assume that the sequence {µk} is equivalent

to {4k−1}, i.e., there exist positive constants α1, α2 such that

α14
k ≤ µk ≤ α24

k, k = 1, 2, . . . . (3.2)

We denote 4k−1 by λk.

The goal of this section is to show that, under certain conditions on the sequence

of subspaces {Mk}, we have the following.

(ML.0) There exist positive constants c1 and c2 such that

c1A(u, u) ≤
∞∑
k=1

λk‖(Qk −Qk−1)u‖2 ≤ c2A(u, u) for all u ∈M.

All the considerations of this section remain valid if we replace {λk} by an equiv-

alent sequence, for example {µk}. In order to study the above norm equivalence we

start by introducing the following conditions:

(ML.1) There is a positive constant c independent of j and k and a number ρ ∈ (0, 1)
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such that

|A(uk, uj)| ≤ cρ|k−j|A(uk, uk)
1/2A(uj, uj)

1/2 for all u ∈M.

where uk := qku := (Qk −Qk−1)u.

(ML.2) There exists c independent of J such that

J∑
k=1

λk‖(Qk −Qk−1)u‖2 ≤ cA(u, u) for all u ∈MJ .

(ML.3) There exists c independent of k and J such that

‖(I − Pk−1)u‖≤ cλ
−1/2
k A(u, u)1/2, for all u ∈MJ .

Condition (ML.1) is known as a Strengthened Cauchy-Schwarz Condition. The

next result gives some connection between the above conditions. The result is known

in multigrid theory (see [16] or [15]). For completeness we provide the proof here also.

Proposition III.1 (a) The norm equivalence (ML.0) holds whenever Condition

(ML.1) and Condition (ML.2) are satisfied.

(b) Condition (ML.2) holds whenever Condition (ML.3) holds.

Proof of part (a). Let u ∈M be fixed. Then u =
∞∑
k=1

uk, where uk = qku ∈Mk.

From (3.2) we get that

A(uk, uk) ≤ cλk‖uk‖2, for all k = 1, 2, . . . . (3.3)

Using Condition (ML.1), we obtain

A(u, u) =
∞∑

k,j=1

A(uk, uj)≤ c
∞∑

k,j=1

ρ|k−j|A(uk, uk)
1/2A(uj, uj)

1/2.
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By Lemma III.1 and (3.3), we have

A(u, u)≤ c
1 + ρ

1 − ρ

∞∑
k=1

A(uk, uk)≤ c
1 + ρ

1 − ρ

∞∑
k=1

λk‖uk‖2,

which gives the lower inequality in (ML.0). For the other inequality consider a

sequence {uJ} convergent to u in the H1
D(Ω) norm, chosen such that uJ ∈MJ . Then

Condition (ML.2) implies that for any positive integer N ,

N∑
k=1

λk‖(Qk −Qk−1)uJ‖2 ≤ cA(uJ , uJ),

where c is independent of N , J and u. Letting J to tend to infinity in the above

inequality we have

N∑
k=1

λk‖(Qk −Qk−1)u‖2 ≤ cA(u, u) for all u ∈M.

Since N was arbitrary, this justifies the validity of the upper inequality of (ML.0).

Proof of part (b). First, Condition (ML.3) implies

‖(Pk − Pk−1)u‖2 = ‖(I − Pk−1)(Pk − Pk−1)u‖2

≤ cλ−1
k A((Pk − Pk−1)u, (Pk − Pk−1)u)), for all u ∈MJ ,

with c independent of k and J . Next, by applying Lemma III.2 and Lemma III.3

with v = u and vk := (Pk − Pk−1)u, we deduce that

J∑
k=1

λk‖(Qk −Qk−1)u‖2≤ c
J∑
k=1

λk‖(Pk − Pk−1)u‖2, for all u ∈MJ .

Combining the last two estimates, we have

J∑
k=1

λk‖(Qk −Qk−1)u‖2 ≤ c
J∑
k=1

A((Pk − Pk−1)u, (Pk − Pk−1)u))

= c

J∑
k=1

A((Pk − Pk−1)u, u) = cA(u, u), for all u ∈MJ ,
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with c independent of k and J . Therefore, Condition (ML.2) holds.

If the domain Ω is nice enough, for example Ω is a convex polygonal domain

and ∂Ω = (∂Ω)D and {Mk} is associated with a sequence of nested meshes on Ω,

then the regularity condition (ML.3) holds. The above result suggests that, in order

to prove Condition (ML.2), we can have an overlapping domain decomposition of

Ω such that on each subdomain Condition (ML.3) is satisfied. Then, we use the

above proposition to obtain Condition (ML.2) relative to each subdomain. To get

the result on the whole domain, one can use multiplicative Schwarz preconditioning

type arguments. Next, we shall make this outline more precise.

Let MJ =
n∑
i=0

M i
J be a splitting of MJ associated with an overlapping domain

decomposition of Ω

Ω =
n⋃
i=1

Ωi, (3.4)

i.e.,

M i
J = {u ∈MJ : supp(u) ⊂ Ωi}. (3.5)

Let Qi
k : L2(Ω) → M i

k, P
i
k : M → M i

k be the orthogonal projections with respect to

(·, ·) and A(·, ·), respectively. A useful condition about the splitting of MJ is

(ML.4) For each u ∈MJ there exists a partition u =
n∑
i=0

ui, with ui ∈M i
J , satisfying

n∑
i=0

A(ui, ui) ≤ cA(u, u),

where c is independent of J and u ∈MJ .

Lemma III.4 Assume that Condition (ML.4) is satisfied and that Condition (ML.3)
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holds on each subdomain, i.e.,

‖(I − P i
k−1)ui‖≤ cλ

−1/2
k A(ui, ui)

1/2, for all ui ∈ M i
J , i = 1, .., n, (3.6)

for some constant c independent of J and i. Then Condition (ML.2) is also satisfied.

Proof. By Proposition III.1(b), there is a constant c independent of J such

that

J∑
k=1

λk‖(Qi
k −Qi

k−1)ui‖2 ≤ cA(ui, ui) for all ui ∈M i
J . (3.7)

For any u ∈ MJ we consider the decomposition u =
n∑
i=0

ui, with ui ∈ M i
J given by

Condition (ML.4). Then,

J∑
k=1

λk‖(Qk −Qk−1)u‖2 ≤ n

J∑
k=1

λk

n∑
i=1

‖(Qk −Qk−1)ui‖2

= n
n∑
i=1

J∑
k=1

λk‖(Qk −Qk−1)ui‖2.

Next, for each fixed i and ui ∈M i
J ⊂MJ we have that

ui =

J∑
k=1

(Qi
k −Qi

k−1)ui,

where (Qi
k −Qi

k−1)ui ∈ M i
k ⊂Mk. Thus, by applying Lemma III.2, Lemma III.3 and

(3.7), we obtain that

J∑
k=1

λk‖(Qk −Qk−1)ui‖2≤ c
J∑
k=1

λk‖(Qi
k −Qi

k−1)ui‖2≤ cA(ui, ui).

Combining the above estimates with Condition(ML.4), we have

J∑
k=1

λk‖(Qk −Qk−1)u‖2 ≤ cnA(u, u),

with c independent of J .
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Therefore Condition (ML.2) is satisfied.

The last part of this section is concerned with the Strengthened Cauchy-Schwarz

Condition (ML.2) for the case of polygonal domains.

Let Ω be a polygonal domain with with boundary ∂Ω = (∂Ω)D ∪ (∂Ω)N , as

considered at the beginning of the section, and let (Tk) be a quasi-uniform sequence

of nested triangulations of Ω such that the parameter hk associated to (Tk) is hk ≈ 2−k.

For k ≥ 1 the space Mk is defined to be the space of all functions which are piecewise

linear with respect to Tk, vanish on (∂Ω)D and are continuous on Ω. We denote the

space H1
D(Ω) by M .

Lemma III.5 Under the above considerations, the Strengthened Cauchy-Schwarz

Condition (ML.1) holds.

Proof. Let 1 ≤ k < j be fixed. For τ ∈ Tk, u, v ∈ M we adopt the notation

Dτ (u, v) :=

∫
τ

∇u · ∇v dx.

First, we prove the existence of a constant c, independent of k and j, such that

A(u, v) ≤ c
(
h−1
k A(u, u)

)1/2 (
h−1
j ‖v‖2 + hjA(v, v)

)1/2
, (3.8)

for all u ∈Mk, v ∈Mj .

Indeed, let u ∈Mk, v ∈Mj and start by writing

A(u, v) =
∑
τ∈Tk

Dτ (u, v). (3.9)

Using Green’s formula and the fact that u is linear on τ we have

Dτ (u, v) =

∫
∂τ

∂u

∂n
v ds. (3.10)
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Since u is linear on τ we have, in addition,∫
∂τ

(
∂u

∂n

)2

ds ≤ c1h
−1
k Dτ (u, u), (3.11)

where c1 is independent of k, j, τ and u. Further, by the trace inequality we get∫
∂τ

v2 ds ≤ c2

(
h−1
j ‖v‖2

L2(τ) + hjDτ (v, v)
)
, (3.12)

where c2 is independent of k, j, τ and v. From (3.9)-(3.12) and the Cauchy-Schwarz

inequality we obtain

A(u, v) ≤ c
∑
τ∈Tk

(
h−1
k Dτ (u, u)

)1/2 (
h−1
j ‖v‖2

L2(τ) + hjDτ (v, v)
)1/2

,

where c =
√
c1c2. Finally by applying the Cauchy-Schwarz inequality for vectors we

conclude that (3.8) holds.

Next, let u ∈M and let uk = (Qk−Qk−1)u, uj = (Qj −Qj−1)u. Using standard

estimates for the L2 projections we have

‖uj‖2 = ‖(I −Qj−1)uj‖2 ≤ ch2
jA(uj, uj),

where c is another constant independent of j and u. Taking u = uk and v = uj in

(3.8) and combining with the above estimate we obtain

A(uk, uj) ≤ c

(
hj
hk

)1/2

A(uk, uk)A(uj, uj).

Therefore, Condition (ML.1) holds with ρ = 1/
√

2.
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C. The case of polygonal-sector domains

In this section we choose a specific sequence of approximating subspaces {Mk} and

verify that the sufficient conditions used in proving (ML.0) are satisfied for a par-

ticular type of polygonal domain. Though the considerations which follow might be

true for a more complicated domain Ω, we restrict our study to a simple case when

Ω is the polygonal-sector domain. We say that Ω is a polygonal-sector domain (see

Figure 1) if

Ω =
n+1⋃
i=1

τi, (3.13)

where, for i = 1, . . . , n + 1, τi is a triangular domain with vertices Si, O, Si+1 and

O is taken to be the origin of a Cartesian system of coordinates in the plane.
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FIGURE 1. Polygonal-sector domain.

We assume, without loss of generality, that S1 lies on the positive semi-axis. For

i = 1, . . . , n + 2, let Γi denote the segment [O, Si], and for i = 1, . . . , n + 1, let αi
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be the measure of the angle between Γi and Γi+1, and define the angle ω of Ω by

ω :=

n+1∑
i=1

αi.

For our results concerning interpolation, it is enough to consider only the cases

(∂Ω)N = ∅, (∂Ω)N = Γn+2 or (∂Ω)N = Γ1 ∪ Γn+2. Let T1 = {τ1, . . . , τn} be the

initial triangulation of Ω. We define multilevel triangulations recursively. For k > 1,

the triangulation Tk is obtained from Tk−1 by splitting each triangle in Tk−1 into four

triangles by connecting the midpoints of the edges. The space Mk is defined to be the

space of all functions which are piecewise linear with respect to Tk, vanish on (∂Ω)D

and are continuous on Ω. Let Qk denote the L2(Ω) orthogonal projection onto Mk

and λk = 4k−1.

In addition, for i = 1, . . . , n, we define the subdomain Ωi of Ω to be the domain

made up by τi and τi+1 ( Ωi = τ̄i ∪ τ̄i+1), and define the subspaces M i
k of Mk to be

M i
k = {u ∈Mk : supp(u) ⊂ Ωi}, k = 1, 2, . . . .

Lemma III.6 Let Ω be a polygonal-sector domain as defined above and assume that

(∂Ω)N = ∅ or (∂Ω)N = Γn+2. Then the splitting MJ =
n∑
i=0

M i
J satisfies Condition

(ML.4).

Proof. For i = 2, . . . , n+ 1, let Ωi be the polygonal-sector domain such that

Ωi =
i−1⋃
j=1

τj .

Then Γi is a part of ∂Ωi (see Figure 1). We fix J , and for u ∈ MJ , we define γiu to

be the restriction of u to Γi. By standard results about traces of functions in H1, we

have

γiu ∈ H
1/2
00 (Γi)
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and

‖γiu‖H1/2
00 (Γi)

≤ c‖u‖H1(Ωi)≤ cA(u, u) for all u ∈M. (3.14)

Throughout the whole proof of this lemma, c is a constant independent on J , i, and

it might be different at different occurrences. For i = 2, . . . , n, we extend by zero γiu

to the rest of ∂τi and consider an extension of the new function to τi, denoted by ũi

and satisfying ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ũi ∈M i−1,i

J := {v|τi : v ∈M i−1
J },

|ũi|2H1(τi)
≤ c‖γiu‖H1/2

00 (Γi)
for all u ∈MJ .

(3.15)

For example, we can take ũi to be the discrete harmonic extension of γiu to τi.

Define ui ∈M i
J by

u1(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u(x) if x ∈ τ1

ũ2(x) if x ∈ τ2

0 if x ∈ Ω\Ω1,

ui(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u(x) − ũi(x) if x ∈ τi

ũi+1(x) if x ∈ τi+1

0 if x ∈ Ω\Ωi,

for i = 2, . . . , n− 1 and

un(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u(x) − ũn(x) if x ∈ τn

u(x) if x ∈ τn+1

0 if x ∈ Ω\Ωn.

Clearly, u = u1+u2+· · ·+un. Using (3.14), (3.15) and the Cauchy-Schwartz inequality
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we obtain that

A(ui, ui)≤ cA(u, u) for all u ∈MJ , i = 1, . . . , n.

Therefore,

n∑
i=1

A(ui, ui)≤ cnA(u, u) for all u ∈MJ ,

which concludes the validity of Condition (ML.4).

Theorem III.1 Let Ω be a polygonal-sector domain. Assume that (∂Ω)N = ∅ or

(∂Ω)N = Γn+2 or (∂Ω)N = Γ1 ∪ Γn+2. Assume that the angles of the polygon ∂Ω,

excepting ω, are not greater than π for those angles contained in (∂Ω)D, and not

greater than π/2 for the mixed angles with one edge in (∂Ω)D and the other edge in

(∂Ω)N . Let the sequence {Mk} of subspaces of H1
D(Ω) be as described before Lemma

III.6. Then Condition (ML.2) holds.

Proof. First we consider the case when (∂Ω)N = ∅ or (∂Ω)N = Γn+2. In this

case, by using the assumptions about the angles of ∂Ω, and eventually by increasing

the number n of subdomains, we have full regularity for the Laplace operator on

each subdomain Ωi. Thus (3.6) is satisfied (see, e.g., Theorem 2.3.7 in [24] and [16]).

On the other hand, from Lemma III.6 the splitting MJ =
n∑
i=0

M i
J satisfies Condition

(ML.4). Thus, by Lemma III.4, Condition (ML.2) holds.

Next, we study the case (∂Ω)N = Γ1∪Γn+2. If ω is not greater than π, Condition

(ML.3) is again fulfilled. According to Proposition III.1(b) we obtain that Condition

(ML.2) holds. Let ω be greater than π and define Ω̂ to be the polygonal domain

made up by completing Ω with τn+2 := [Sn+2, O, S1]. Let ∂Ω̂ be the boundary of Ω̂,

and define ˆ(∂Ω)N := ∅ and ˆ(∂Ω)D := ∂Ω̂. Assume, without loss of generality, that Ω̂
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is a convex domain. Consider

T̂1 := {τ0, .., τn+1, τn+2}.

Then we define the multilevel triangulation T̂k recursively in the same manner we

defined Tk. For k = 1, 2, . . . , the space M̂k is defined to be the space of all functions

which are piecewise linear with respect to T̂k, vanish on ˆ(∂Ω)D and are continuous on

Ω̂. The L2(Ω̂) orthogonal projection onto M̂k is denoted by Q̂k.

We fix J and for u ∈MJ we denote by γNu the restriction of u to (∂Ω)N . Thus,

we have

γNu ∈ H
1/2
00 ((∂Ω)N )

and

‖γNu‖H1/2
00 (ΓN )

≤ c‖u‖H1(Ω)≤ cA(u, u) for all u ∈MJ , (3.16)

where c is a constant independent of J , which might be different at different occur-

rences. The set (∂Ω)N is part of the boundary of τn+2. We extend γNu by zero to

the rest of ∂τn+2 and consider an extension of the new function to τn+2 denoted ũn+2

and satisfying ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ũn+2 ∈ M̂n+2

J := {v|τn+2 : v ∈ M̂J},

|ũn+2|2H1(τn+2)≤ c‖γNu‖H1/2
00 (ΓN )

for all u ∈MJ .

(3.17)

For example, we can take ũn+2 to be the discrete harmonic extension of γNu to τn+2.

Define û ∈ M̂J by

û(x) :=

⎧⎪⎨⎪⎩ u(x) if x ∈ Ω

ũn+2(x) if x ∈ τn+2.



35

Using (3.16), (3.17) and the Cauchy-Schwarz inequality we obtain that

A(û, û)≤ cA(u, u) for all u ∈MJ .

From Lemma III.2 and Lemma III.3, we obtain that

J∑
k=1

λk‖(Qk −Qk−1)u‖2≤ c

J∑
k=1

λk‖uk‖2 for all u ∈MJ and (3.18)

for any partition of u,

u =

J∑
k=1

uk, with uk ∈Mk.

On the other hand, we have û|Ω = u and

û =

J∑
k=1

(Q̂k − Q̂k−1)û.

The restrictions to Ω of functions in M̂k are in Mk. Hence, we can take

uk := ((Q̂k − Q̂k−1)û)|Ω in (3.18). In addition, since Ω̂ is a convex domain and

ˆ(∂Ω)N := ∅. Condition (ML.3) is fulfilled for Ω̂. By Proposition III.1(b), we obtain

that Condition (ML.2) holds on Ω̂. Then

J∑
k=1

λk‖(Qk −Qk−1)u‖2≤ c

J∑
k=1

λk‖(Q̂k − Q̂k−1)û‖2
L2(Ω)≤ c

J∑
k=1

λk‖(Q̂k − Q̂k−1)û‖2
L2(Ω̂)

≤ cA(û, û)≤ cA(u, u),

for all u in MJ . Therefore we have proved that Condition (ML.2) also holds in this

case and the proof of the theorem is complete .

The main result of this section is now easy to prove.

Theorem III.2 Let Ω be a polygonal-sector domain with ∂Ω = (∂Ω)D ∪ (∂Ω)N sat-

isfying the hypotheses of the previous theorem. Let {Mk} be the sequence of subspaces
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of H1
D(Ω) described before Lemma (III.6). Then (ML.0) holds.

Proof. The Strengthened Cauchy-Schwarz Condition (ML.1) holds for our

domain and the sequence {Mk} of subspaces of H1
D(Ω) given here (see Section B).

Moreover, by the previous theorem, Condition (ML.2) also holds. Thus, the theorem

follows from Proposition III.1.

D. The case of sector domains

Let Ω be a sector domain subdivided in say n+1 smaller sector domains. (See Figure

2). Then, (3.13) holds for τi being a triangle with one curved edge, i = 1, . . . , n.
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FIGURE 2. Triangulating a sector domain.

Next we preserve the setting from the previous section except that the sequence of

subspaces {Mk} is differently defined. Again we consider T1 = {τ1, . . . , τn} to be the
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initial triangulation of Ω and define multilevel triangulations recursively as follows.

For k > 1, the triangulation Tk is obtained from Tk−1 by splitting each triangle in

Tk−1 into four triangles by connecting the midpoints of the sides including the curved

sides (as suggested in Figure 2 for τ1). The space Mk is defined to be the space of all

functions which are are continuous on Ω, piecewise linear with respect to Tk, vanish

on (∂Ω)D and in addition vanish on all the curved triangles of Tk. The sequence

of subspaces {Mk} defined in this way remains a nested sequence of approximation

subspaces of H1
D(Ω) (see, e.g., [9]). We note that the parameter hk associated with

the quasi-uniform sequence of triangulations {Tk}, satisfies

lim
k→∞

2k hk = c > 0.

Thus, the assumption (3.2) about the eigenvalue µk of the operator Ak is satisfied.

The proof of the Strengthened Cauchy-Schwarz Condition (ML.1) can be carried out

in the same way we presented in Lemma III.5 for the case of polygonal domains.

Finally, the results presented in the previous section can be reproduced for the

case of the sector domain and we can conclude that the multilevel norm associated

with our sequence Mk provides an equivalent norm on H1
D(Ω).
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CHAPTER IV

SUBSPACE INTERPOLATION BY MULTILEVEL NORMS

Let Ω be a domain in R2 with boundary ∂Ω = (∂Ω)D ∪ (∂Ω)N , where (∂Ω)D is not of

measure zero, and (∂Ω)D and (∂Ω)N are essentially disjoint. Let H1
D(Ω) denote the

space of all functions in H1(Ω) which vanish on (∂Ω)D. Assume that

M1 ⊂ M2 ⊂, . . . ,⊂Mk ⊂ . . .

is a sequence of finite dimensional subspaces ofH1
D(Ω) whose union is dense in H1

D(Ω),

and assume that an equivalent norm on H1
D(Ω) is given by

‖u‖2
1 :=

∞∑
k=1

λk‖(Qk −Qk−1)u‖2, (4.1)

where Qk denotes the L2(Ω) orthogonal projection onto Mk, ‖·‖ = ‖·‖L2(Ω),

Q0 = 0, and λk = 4k−1. The goal of this chapter is to solve a codimension one

subspace interpolation problem by means of multilevel geometry and topology. From

the applications point of view, this is equivalent to providing sufficient conditions for

the function factored out from X = L2(Ω) in order to satisfy the Condition (A1) of

Theorem II.2.

A. Scales of multilevel norms

On H1
D(Ω) consider the norm given by (4.1) and define H−1

D (Ω) to be the dual of

H1
D(Ω). Then, the elements of L2(Ω) can be viewed as continuous linear functionals

on H1
D(Ω) and we have the natural continuous and dense embeddings

H1
D(Ω) ⊂ L2(Ω) ⊂ H−1

D (Ω).
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One can easily check that

‖u‖2
−1 :=

∞∑
k=1

λk
−1‖(Qk −Qk−1)u‖2 for all u ∈ L2(Ω), (4.2)

where ‖ · ‖−1 denotes the norm on H−1
D (Ω). Further, we consider the inner product

on Hα
D(Ω) to be

(u, v)α :=
∞∑
k=1

λk
α((Qk −Qk−1)u, v)L2(Ω) for all u, v ∈ Hα

D(Ω) ∩ L2(Ω), α = −1, 1.

Then the pairs (H1
D(Ω), L2(Ω)) and (L2(Ω), H−1

D (Ω)) satisfy the condition (2.1) and

the operator S associated with each of these pairs is given (in both cases) by

Su =

∞∑
k=1

λk(Qk −Qk−1)u, for all u ∈ D(S). (4.3)

For any θ ∈ [0, 1], let

Hθ
D(Ω) := [H1

D(Ω), L2(Ω)]1−θ, H−θ
D (Ω) := [L2(Ω), H−1

D (Ω)]θ,

and let ‖ · ‖α be the norm on Hα
D(Ω) for α ∈ [−1, 1]. By using (2.6), one can easily

check that

‖u‖2
α :=

∞∑
k=1

λαk‖(Qk −Qk−1)u‖2, for all u ∈ Hα
D(Ω) ∩ L2(Ω). (4.4)

Consequently, H−θ
D (Ω) is the dual of Hθ

D(Ω) for θ ∈ [0, 1].

Remark IV.1 For any α ∈ (0, 1], the norm on Hα
D(Ω) is given by (4.4). On the

other hand, for u ∈ Hα
D(Ω),

J∑
k=1

λαk‖(Qk −Qk−1)u‖2 = ‖u‖2 + (4α − 1)
J−1∑
k=1

λαk‖(I −Qk)u‖2 − λαJ‖(I −QJ )u‖2
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and

lim
J→∞

λαJ‖(I −QJ)u‖2 = 0.

Thus, we obtain that an equivalent norm on Hα
D(Ω) is given by

‖|u|‖2
α := ‖u‖2 +

∞∑
k=1

λαk‖(I −Qk)u‖2.

B. Sufficient conditions for (A1)

Let X = L2(Ω) and Y = H−1
D (Ω). For a fixed θ0 in the interval (0, 1), let φ ∈ L2(Ω)

satisfy the following conditions:

(C.0) φ /∈ Hθ0
D (Ω).

(C.1) There exist c1 > 0 and δ > 0 such that

(φ, φ)X,t =

∞∑
k=1

λk
λk + t2

‖(Qk −Qk−1)φ‖2 ≥ c1t
−2θ0 , for t ≥ δ.

(C.2) There exist c2 > 0 such that

‖(Qk −Qk−1)φ‖2 ≤ c2λ
−θ0
k , k = 1, 2, . . . .

Our goal in this section is to characterize the space [Xφ, Y ]θ for θ in (0, 1), θ �= θ0.

Remark IV.2 From (C.2) it follows that φ ∈ Hθ
D(Ω) for θ < θ0. Thus, from (C.0)

and (C.2), by applying Lemma II.2 (see the proof of (4.6)), we have that Xφ is dense

in Y . Consequently, the space [Xφ, Y ]s is well defined.

Theorem IV.1 Let φ ∈ L2(Ω) and satisfy (C.0)-(C.2). Then

[
L2(Ω)φ, H

−1
D (Ω)

]
θ

=
[
L2(Ω), H−1

D (Ω)
]
θ,φ
, 0 ≤ θ ≤ 1, θ �= θ0. (4.5)
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Furthermore, if θ0 < θ ≤ 1 then

[
L2(Ω)φ, H

−1
D (Ω)

]
θ

=
[
L2(Ω), H−1

D (Ω)
]
θ
. (4.6)

Proof. Let θ �= θ0 be fixed. Following the proof of Theorem II.2 until (2.24),

we see that in order to prove (4.5), it is enough to show that, for δ given by (C.1),

there is a positive constant c = c(θ, δ, c1, c2) so that we have

I :=

∫
δ

∞
t−(2θ+1) |(u, φ)X,t|2

(φ, φ)X,t
dt ≤ c‖u‖2

−θ for all u ∈ Xφ. (4.7)

Let u ∈ X = L2(Ω) be fixed. Denote Qk−Qk−1 by qk, with Q0 = 0, and for u ∈ L2(Ω)

denote

ũk := λ
−θ/2
k ‖qku‖ and ũ := {uk}. Then we have

‖u‖−θ = ‖ũ‖l2 .

Here (·, ·)X is simply the L2(Ω) inner product (·, ·). Then, we have

(u, φ)X,t =
(
(I + t2S−1)−1u, φ

)
=

∞∑
k=1

λk
λk + t2

(qku, qkφ).

Using the Cauchy-Schwarz inequality and the estimate given by (C.2) we obtain

|(u, φ)X,t| ≤ c2

∞∑
k=1

λ
1−θ0/2
k

λk + t2
‖qku‖. (4.8)

For u ∈ Xφ we have (u, φ) = 0. Then

∞∑
k=1

(qku, φ) = 0.

Thus,

(u, φ)X,t = −t2
∞∑
k=1

1

λk + t2
(qku, qkφ),
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and hence we also have the estimate

|(u, φ)X,t| ≤ c2t
2

∞∑
k=1

λ
−θ0/2
k

λk + t2
‖qku‖. (4.9)

Now we are prepared to estimate the integral I. The constant c, to be used next,

may have different values at different places in which it appears but depends only on

the constants θ, δ, c1 and c2 . First we will treat the case 0 < θ < θ0. Let θ1 = θ0 − θ.

Then, by (C.1) and the estimate (4.8), we have

I ≤ c

∫ ∞

δ

t−1+2θ1

( ∞∑
k=1

λ
1−θ0/2
k

λk + t2
‖qku‖

)2

dt

≤ c

∫ ∞

δ

t−1+2θ1

( ∞∑
m,n=1

(λmλn)
1−θ0/2

(λm + t2)(λn + t2)
‖qmu‖‖qnu‖

)
dt

= c
∞∑

m,n=1

(λmλn)
1−θ0/2‖qmu‖‖qnu‖

∫ ∞

δ

t−1+2θ1

(λm + t2)(λn + t2)
dt.

Next, we use the formula∫
0

∞ t3−2θ

(a+ t2)(b+ t2)
dt =

1

c2
θ

a1−θ − b1−θ

a− b
, 0 < θ < 2, θ �= 1, a, b > 0. (4.10)

The integral can be calculated by elementary calculus methods. If a = b, then the

right side of the above identity is replaced by 1−θ
c2
θ
a−θ. Thus,∫ ∞

δ

t−1+2θ1

(λm + t2)(λn + t2)
dt ≤

∫ ∞

0

t−1+2θ1

(λm + t2)(λn + t2)
dt = c−2

θ1
(λmλn)

θ1−1λ
1−θ1
m − λ1−θ1

n

λm − λn
.

Combining the above inequalities, we get

I ≤ c

∞∑
m,n=1

(λmλn)
θ1/2

λ1−θ1
m − λ1−θ1

n

λm − λn
λ−θ/2m ‖qmu‖λ−θ/2n ‖qnu‖.

Let

lmn = (λmλn)
θ1/2

λ1−θ1
m − λ1−θ1

n

λm − λn
.
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Then, the above estimate becomes

I ≤ c

∞∑
m,n=1

lmnũmũn.

An elementary calculation gives

lmn =
2(m−n)(1−θ1) − 2−(m−n)(1−θ1)

2(m−n) − 2−(m−n)
≤ 2−|m−n|θ1, m, n = 1, 2, . . . .

Now we can apply Lemma III.1 and obtain

I ≤ c‖ũ‖2
l2

= c‖ u‖2
−θ,

which proves (4.7) in this case.

For the remaining part, i.e., θ0 < θ < 1, we set θ1 := θ − θ0. The estimate

(4.7) can be done in the same manner. The only difference here is that we use the

inequality (4.9) instead of (4.8). This completes the proof of (4.6).

Now let θ0 < θ ≤ 1 be fixed. By the previous part, it is enough to show that

L2(Ω)φ is dense in H−θ
D (Ω). Using Lemma II.2, this is equivalent to proving that the

functional

u → (u, φ), u ∈ L2(Ω), (4.11)

is not continuous in the topology induced by H−θ
D (Ω). To see that, let {un} be the

sequence in L2(Ω) defined by

un :=
n∑
k=1

λθ0k qkφ.

From (C.0) we have that

(un, φ) =
n∑
k=1

λθ0k ‖qkφ‖2 → ∞,
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as n→ ∞. On the other hand, using (C.2)

(un, un)−θ =

n∑
k=1

λ−θ+2θ0
k ‖qkφ‖2

is uniformly bounded. Therefore, the functional defined in (4.11) is not continuous

and (4.6) is proved.
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CHAPTER V

INTERPOLATION BETWEEN SUBSPACES OF Hβ(RN) AND Hα(RN).

In this chapter we give a simplified proof of the main interpolation result presented

in [25]. An extension to the case when the subspace of interpolation has finite codi-

mension bigger than one is also considered.

Let α ∈ R and consider the Sobolev space Hα(RN) defined by means of the

Fourier transform. For a smooth function u with compact support in RN , the Fourier

transform û is defined by

û(ξ) = (2π)−N/2
∫
u(x)e−ixξ dx,

where the integral is taken over the whole RN . For u and v smooth functions the

α -inner product is defined by

(u, v)α =

∫
(1 + |ξ|2)α û(ξ)v̂(ξ) dξ.

The space Hα(RN ) is the closure of smooth functions in the norm induced by

the α -inner product. For α, β real numbers (α < β), and s ∈ [0, 1] it is easy to

check, using Remark II.1, that

[
Hβ(RN), Hα(RN)

]
s
= Hsα+(1−s)β(RN).

For ϕ ∈ Hβ(RN), we are interested in determining the validity of the formula

[
Hβ
ϕ(RN ), Hα(RN )

]
s
=
[
Hβ(RN), Hα(RN)

]
s,ϕ
. (5.1)

For certain functions ϕ the problem is studied by Kellogg in [25]. The goal of this

section is to give a new proof of Kellogg’s result concerning (5.1) and to extend it
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to the case when Hβ
ϕ(RN) is replaced by a subspace of finite codimension. First,

we consider the case when 0 = α < β. The operator S, associated with the pair

X = Hβ(RN), Y = H0(RN) = L2(RN), is given by

Su = µ2βu, u ∈ D(S) = H2β(RN),

where µ(ξ) = (1+ |ξ|2) 1
2 , ξ ∈ RN . For the remaining part of this chapter, Hβ denotes

the space Hβ(RN) and Ĥβ is the space {û |u ∈ Hβ}. For û, v̂ ∈ Ĥβ, we define the

inner product and the norm by

(û, v̂)β =

∫
µ2βûv̂ dζ, ||û||β = (û, û)

1/2
β .

To simplify the notation, we denote the the inner product (·, ·)0 and the norm || · ||0

on H0 or Ĥ0 simply by (·, ·) and || · ||, respectively.

Let φ ∈ Ĥβ be such that for some constants ε > 0 and c > 0,⎧⎪⎨⎪⎩ |φ(ξ) − b(ω)ρ−
N
2
−2β+α0 | < cρ−

N
2
−2β+α0−ε for all ρ > 1

0 < α0 < β,
(5.2)

where ρ ≥ 0 and ω ∈ SN−1 (the unit sphere of RN) are the spherical coordinates of

ξ ∈ RN , and where b(ω) is a bounded measurable function on SN−1, which is non

zero on a set of positive measure.

Remark V.1 From the assumption (5.2) about φ we have that

φ ∈ H2β−α if and only if α0 < α < β, (5.3)

and by using Lemma II.2, we find that

Hβ
φ is dense in Hα if and only if α ≤ α0. (5.4)

Theorem V.1 (Kellogg) Let ϕ ∈ Hβ be such that its Fourier transform φ satisfies
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(5.2), and let θ0 = α0/β. Then

[
Hβ
ϕ , H

0
]
s
=
[
Hβ
ϕ , H

0
]
s,ϕ
, 0 ≤ s ≤ 1, 1 − s �= θ0, (5.5)

Proof. Following the proof of Theorem II.2, we see that in order to prove (5.5),

it is enough to verify (2.24) for some positive constant c = c(s) and δ. Using (2.22),

the problem reduces to∫
δ

∞
t−(2s+1) |(u, φ)X,t|2

(φ, φ)X,t
dt ≤ c‖u‖2

[X,Y ]s for all u ∈ Xφ ,

where X = Ĥβ and Y = Ĥ0 = L2(RN). Denoting 1 − s = θ and Φ(t) = (φ, φ)X,t,

this becomes

I :=

∫
δ

∞
t2θ−3

∣∣∣( µ4βu
µ2β+t2

, φ
)∣∣∣2(

µ4βφ
µ2β+t2

, φ
) dt ≤ c‖u‖2

θβ for all u ∈ Ĥβ
φ . (5.6)

Using (5.2) it is easy to see that, for a large enough δ ≥ 1(
µ4βφ

µ2β + t2
, φ

)
≥ ct2(θ0−1) for all t ≥ δ, (5.7)

and (5.2) also implies that

|φ(ξ)| < c|ρ|−N
2
−2β+α0−ε for |ξ| > 1. (5.8)

Before we start estimating I, let us observe that by using spherical coordinates

‖u‖2
θβ =

∫ ∞

0

U2(ρ) dρ, u ∈ Ĥβ
φ , (5.9)

where

U(ρ) := µ(ρ)θβρ
N−1

2

( ∫
|ξ|=1

|u(ρ, ω)|2 dω
)1/2

, µ(ρ) = (1 + ρ2)1/2.
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First, we consider the case 0 < θ < θ0 and set θ1 := θ0 − θ. For u ∈ Ĥβ
φ we have∣∣∣∣( µ4βu

µ2β + t2
, φ

)∣∣∣∣2 = t4
∣∣∣∣( µ2βu

µ2β + t2
, φ

)∣∣∣∣2 .
Thus, by this observation and (5.7) we get

I ≤ c

∫ ∞

δ

t3−2θ1

(∫
µ(ξ)2β

µ(ξ)2β + t2
|u(ξ)φ(ξ)| dξ

)2

dt.

Then,

I1 =

∫ ∞

δ

t3−2θ1

( ∫
|ξ|<1

µ(ξ)2β

µ(ξ)2β + t2
|u(ξ)φ(ξ)| dξ

)2

dt

≤ c

∫ ∞

δ

t3−2θ1

t4

( ∫
|ξ|<1

|u(ξ)φ(ξ)| dξ
)2

dt≤ c

∫ ∞

δ

t−(1+2θ1) dt ‖u‖2 ‖φ‖2 ≤ c(θ)‖u‖2
θβ.

On the other hand, by Fubini’s theorem, we have

I2 =

∫ ∞

δ

t3−2θ1

( ∫
|ξ|>1

µ(ξ)2β

µ(ξ)2β + t2
|u(ξ)φ(ξ)| dξ

)2

dt

=

∫ ∞

δ

t3−2θ1

( ∫
|ξ|>1

µ(ξ)2β

µ(ξ)2β + t2
|u(ξ)φ(ξ)| dξ

)( ∫
|η|>1

µ(η)2β

µ(η)2β + t2
|u(η)φ(η)| dη

)
dt

=

∫
|ξ|>1

∫
|η|>1

|u(ξ)u(η)φ(ξ)φ(η)|
(
µ(ξ)µ(η)

)2β∫ ∞

δ

t3−2θ1(
µ(ξ)2β + t2

)(
µ(η)2β + t2

) dt dη dξ,
and by using (4.10), the estimate (5.8) and spherical coordinates ξ = (ρ, ω), η = (r, ρ),

we obtain

I2 ≤ c(θ)

∫ ∞

δ

∫ ∞

δ

(µ(r)µ(ρ))2β−θ(rρ)−
1
2
−2β+α0R1−θ1(µ(r)2β, µ(ρ)2β)U(r)U(ρ) dρ dr,
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where for α ∈ (0, 1), x > 0, y > 0, we denote

Rα(x, y) =

⎧⎪⎨⎪⎩
xα−yα
x−y , for x �= y

αxα−1, for x = y.

The function x → Rα(x, y) is decreasing on (0,∞) for each y ∈ (0,∞) and it is

symmetric with respect to x and y.

Using this observation, we get

I2 ≤ c(θ)

∫ ∞

δ

∫ ∞

δ

(rρ)−
1
2
+βθ1R1−θ1(r

2β, ρ2β) U(ρ)U(r) dr dρ

≤ c(θ)

∫ ∞

0

∫ ∞

0

K(r, ρ)U(r)U(ρ) dr dρ,

where

K(r, ρ) = (rρ)−
1
2
+βθ1R1−θ1(r

2β, ρ2β). (5.10)

In order to estimate the last integral, we apply the following lemma.

Lemma V.1 (Schur) Suppose K(x, y) is nonnegative, symmetric and homogeneous

of degree −1, and f , g are nonnegative measurable functions on (0,∞). Assume that

k =

∫ ∞

0

K(1, x)x−
1
2 dx < ∞.

Then∫ ∞

0

∫ ∞

0

K(x, y)f(x)g(y) dx dy ≤ k

(∫ ∞

0

f(x)2 dx

) 1
2
(∫ ∞

0

g(y)2 dy

)1
2

. (5.11)

We will prove this lemma later. For the moment, we see that the functionK(x, y),

given by (5.10), is homogeneous of degree −1, and satisfies

k =

∫ ∞

0

K(x, 1)x−
1
2 dx < ∞.
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Indeed

k =

∫ ∞

0

x−1+βθ1
x2β(1−θ1) − 1

x2β − 1
dx

xβ=t
= β

∫ ∞

0

t1−θ1 − tθ1−1

t2 − 1
dt < ∞, for 0 < θ1 < 1.

By Lemma V.1,

I2 ≤ c(θ)

∫ ∞

0

U2(ρ) dρ ≤ c(θ)||u||2βθ

and by combining the estimates I1 and I2, we obtain (5.6).

Let us consider now the case θ0 < θ < 1, and let θ1 = θ − θ0. Then, by using

(5.7), we have

I ≤ c

∫ ∞

δ

t2θ1−1

(∫
µ(ξ)4β

µ(ξ)2β + t2
|u(ξ)φ(ξ)| dξ

)2

dt.

The remaining part of the proof is very similar to the proof of the first case. The

theorem is proved.

Proof of Lemma V.1. By Fubini’s theorem, it follows∫ ∞

0

∫ ∞

0

K(x, y)f(x)g(y) dx dy =

∫ ∞

0

f(x)

(∫ ∞

0

K(x, y)g(y) dy

)
dx

=

∫ ∞

0

f(x)

∫ ∞

0

xK(x, xt)g(xt) dt dx =

∫ ∞

0

f(x)

∫ ∞

0

K(1, t)g(xt) dt dx

=

∫ ∞

0

K(1, t)

∫ ∞

0

f(x)g(xt) dx dt

≤
∫ ∞

0

K(1, t)

(∫ ∞

0

f(x)2 dx

) 1
2
(∫ ∞

0

g(xt)2 dx

) 1
2

dt

≤
∫ ∞

0

K(1, t)t−
1
2 dt

(∫ ∞

0

f(x)2 dx

) 1
2
(∫ ∞

0

g(xt)2 dx

) 1
2

.

Next we prepare for the generalization of the previous result.

Let φ1, φ2, . . . , φn ∈ Ĥβ(RN) such that for some constants ε > 0 and c > 0 we
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have ⎧⎪⎨⎪⎩ |φi(ξ) − φ̃i(ξ)| < cρ−
N
2
−2β+αi−ε for |ξ| > 1

0 < αi < β, i = 1, . . . , n,
(5.12)

where

φ̃i(ξ) = bi(ω)ρ−
N
2
−2β+αi , ξ = (ρ, ω),

and bi(·) is a bounded measurable function on SN−1, which is non zero on a set of

positive measure.

Define

Φij(t) =

(
µ4βφi
µ2β + t2

, φj

)
, φ̃ij(t) =

(
|ξ|4βφ̃i

|ξ|2β + t2
, φ̃j

)
, θi =

αi
β
,

[Φ̃i, φ̃j] :=
1

β
(bi, bj)σ

∫ ∞

0

xθixθj

x(x2 + 1)
dx, i, j = 1, 2, . . . , n,

where (·, ·)σ is the inner product on L2(SN−1).

Clearly, [·, ·] is an inner product on span{φ̃i | i = 1, 2, . . . , n}.

Lemma V.2 With the above setting we have

Φ̃ij(t) = [φ̃i, φ̃j]t
θi+θj−2 (5.13)

|Φij(t) − Φ̃ij(t)| ≤ ctθi+θj−2−η , t > δ, (5.14)

for some constants c > 0, η > 0 and δ ≥ 1.

Proof. By using spherical coordinates, we have

Φ̃ij(t) =

∫ |ξ|4β
|ξ|2β + t2

φ̃iφ̃j dξ =

∫ ∞

0

ραi+αj−1

ρ2β + t2
dρ

∫
|ξ|=1

bi(ω)bj(ω) dω.
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The change of variable ρβ = tx in the first integral completes the proof of (5.13). The

proof of (5.14) is straightforward.

Theorem V.2 (Bacuta, Bramble, Pasciak) Let ϕ1, ϕ2, . . . , ϕn ∈ Hβ be such that the

corresponding Fourier transforms φ1, φ2, . . . , φn satisfy (5.12) and in addition, the

functions φ̃1, φ̃2, . . . , φ̃n are linearly independent.

Let K = span{ϕ1, ϕ2, . . . , ϕn}. Then

[Hβ
K, H

0]s = [Hβ, H0]s,K , (1 − s)β �= αi, for i = 1, 2, . . . , n.

Proof. We apply the Theorem II.2 forX = Hβ, Y = H0, K = span{ϕ1, . . . , ϕn}

and s such that (1 − s)β �= αi, i = 1, 2, . . . , n. By using the hypothesis (5.12) and

Theorem V.1, we get

[Hβ
ϕi
, H0]s = [Hβ, H0]s,ϕi, for i = 1, 2, . . . , n.

So (A1) is satisfied. In order to verify the condition (A2), we first observe that

(Mt)ij = Φij(t). By denoting Dt = diag(Mt), the condition (A2) can be written as

follows:

There are δ > 0 and γ > 0 such that

Mt − γDt ≥ 0, for all t ∈ (δ,∞),

where for a square matrix A, A ≥ 0 means that A is a nonnegative definite matrix.

From the previous lemma we obtain the behavior of (Mt)ij for t large:

(Mt)ij =
(
[φ̃i, φ̃j] + fij(t)

)
tθi−1tθj−1

where |fij(t)| < ct−η, for t > δ. Denote M̃t, M̃ the n x n matrices defined by

(M̃t)ij = [φ̃i, φ̃j] + fij(t), (M̃)ij = [φ̃i, φ̃j]
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and let Dt = diagM̃t, D̃ = diagM̃ . Next, for α = (α1, α2, . . . , αn) ∈ Cn, we have

〈
(Mt − γDt)α, α

〉
=
〈
(M̃t − γD̃t)αt, αt

〉
where < ·, · > is the inner product on Cn and (αt)i = αi t

θi−1, i = 1, 2, . . . , n.

Hence, the condition (A2) is satisfied if one can find γ > 0, δ > 0, such that

M̃t − γD̃t ≥ 0, for all t ∈ (δ,∞).

On the other hand, since φ̃1, φ̃2, . . . , φ̃n are linearly independent, M̃ is a symmetric

positive definite matrix on Cn and

lim
γ↘0

(M̃t − γD̃t) = M̃ > 0.

Thus, one can find γ > 0 so that M̃t − γD̃t > 0.

Finally,

lim
t→∞

(M̃t − γD̃t) = M̃ − γD̃t > 0.

Therefore, there are γ > 0, δ > 0 such that M̃t − γD̃t > 0, for all t ∈ (δ,∞), and

(A2) holds. The result is proved by applying Theorem II.2.

The corresponding case of interpolation between subspaces of Hβ of finite codi-

mensions and Hα, where α, β are real numbers, α < β, is a direct consequence of the

previous theorem.

Let α < β and ϕ1, ϕ2, . . . , ϕn ∈ Hβ be such that the corresponding Fourier

transform φ1, φ2, . . . , φn satisfy for some positive constants c and ε,⎧⎪⎨⎪⎩ |φi(ξ) − φ̃i(ξ)| < cρ−
N
2
−2β+γi−ε for |ξ| > 1

α < γi < β, i = 1, . . . , n,
(5.15)
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where

φ̃i(ξ) = bi(ω)ρ−
N
2
−2β+γi , ξ = (ρ, ω),

and bi(·) is a bounded measurable function on SN−1, which is non zero on a set of

positive measure.

Theorem V.3 Let ϕ1, ϕ2, . . . , ϕn ∈ Hβ be such that the corresponding Fourier trans-

forms φ1, φ2, . . . , φn satisfy (5.15), and in addition, the functions φ̃1, φ̃2, . . . , φ̃n are

linearly independent. Let L = span{ϕ1, ϕ2, . . . , ϕn}. Then

[Hβ
L, H

α]s = [Hβ, Hα]s,L , sα + (1 − s)β �= γi, for i = 1, 2, . . . , n. (5.16)

Furthermore , if sα + (1 − s)β < min{γi, i = 1, 2, . . . , n}, then

[Hβ
L, H

α]s = Hsα+(1−s)β. (5.17)

Proof. The first part follows from the main theorem V.2 and the fact that

T : Hα → H0 defined by T̂ u = µαû, u ∈ Hα is an isometry from Hα to Hγ−α for any

γ ∈ [α, β].

Now let s < min{γi, i = 1, 2, . . . , n}. By the first part of the theorem, in order

to prove (5.17) we need only to prove that Hβ
L is dense in Hsα+(1−s)β. By Lemma

II.2, this is equivalent to proving that⎧⎪⎨⎪⎩
Hβ � u

Λϕ−→ (u, ϕ)β = (û, ϕ̂)β,

is not bounded in the topology of Hsα+(1−s)β for all ϕ ∈ L, ϕ �= 0.
(5.18)

For a fixed ϕ ∈ L we have ϕ̂ =
n∑
i=1

ciφi.

Since φ̃1, φ̃2, . . . , φ̃n are assumed to be linearly independent, ϕ fails to be a “good”

function (better than ϕi, i = 1, 2, . . . , n). More precisely, the asymptotic expansion
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at infinity of ϕ̂ is of the same type (except maybe a different b-part) with one of the

functions φ̃1, φ̃2, . . . , φ̃n. Thus, it is enough to check (5.18) for φ ∈ {ϕ1, ϕ2, . . . , ϕn}.

Assuming that Λϕi is continuous, it implies that

(û, φi)β = (û, fi)sα+(1−s)β, u ∈ Hβ,

for a function fi ∈ Ĥsα+(1−s)β .

Thus, by using the density ofHβ inHs, for s < β, we get that fi = µ2βµ−2(sα+(1−s)β)φi.

On the other hand,∫
µ2(sα+(1−s)β)|fi|2 dξ =

∫
µ2β−2sα+2sβ|φi|2 dξ

≥ c

∫ ∞

δ

ρ2β−2sα+2sβρ−N−4β+2γiρN−1dρ

= c

∫ ∞

δ

ρ−1+2(γi−(sα+(1−s)β))dρ = ∞

for sα + (1 − s)β < min{γi, i = 1, 2, . . . , n}. This completes the proof.
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CHAPTER VI

INTERPOLATION BETWEEN H2(Ω) ∩H1
D(Ω) AND H1

D(Ω)

Let Ω be a polygonal domain in R2 with boundary ∂Ω = (∂Ω)D∪(∂Ω)N , where (∂Ω)D

is not of measure zero, and (∂Ω)D and (∂Ω)N are essentially disjoint and consist of a

finite number of line segments. Let H1
D(Ω) denote the space of all functions in H1(Ω)

which vanish on (∂Ω)D, and let s ∈ [0, 1] be fixed. In this section it will be shown

that

[H2(Ω) ∩H1
D(Ω), H1

D(Ω)]s = [H2(Ω), H1
D(Ω)]s ∩H1

D(Ω). (6.1)

The space H2(Ω) ∩H1
D(Ω) is dense in H1

D(Ω) (see for example Theorem 1.6.1 in

[24]). Applying Lemma II.3 with X = H2(Ω), Y = H1
D(Ω), X0 = H2(Ω) ∩ H1

D(Ω)

and Y0 = H1
D(Ω), we obtain that

[H2(Ω) ∩H1
D(Ω), H1

D(Ω)]s ⊂ [H2(Ω), H1
D(Ω)]s ∩H1

D(Ω). (6.2)

In order to prove the opposite inclusion of (6.2), we need to show that for a

positive constant c,

‖u‖[H2(Ω)∩H1
D(Ω),H1

D(Ω)]s ≤ c‖u‖[H2(Ω),H1
D(Ω)]s , (6.3)

for all u ∈ [H2(Ω), H1
D(Ω)]s ∩H1

D(Ω).

Let ∂Ω be the polygonal line P1P2 · · ·PmP1. Here we consider that the set

{P1, P2, . . . , Pm} consists of all vertices of ∂Ω and all the points of (∂Ω)D ∩ (∂Ω)N .

We will also call the points of (∂Ω)D ∩ (∂Ω)N vertices of ∂Ω.

For j = 1, 2, . . . , m, let Uj be an open disk centered at Pj such that Uj contains

no vertices other than Pj . Next we add more disks, say Uj, centered at Pj, j =
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m+ 1, . . .M, such that Pj ∈ ∂Ω or U j ⊂ Ω, and

Ω ⊂
M⋃
j=1

Uj .

By increasing the number M of disks and modifying the radii of the disks, we can

assume that Pk is not in Uj , for k �= j and the radii of the disks are equal to some

positive number r0. Then, there is {φj}Mj=1 a partition of unity subordinate to the

covering
M
∪
j=0

Uj such that

supp(φj) ⊂ Uj ,

M∑
j=0

φj(x) = 1 for all x ∈ Ω. (6.4)

Let us denote Uj∩Ω by Ωj and the restriction of φj to Ωj by ηj ( j = 0, 1, . . . ,M).

We note here that one can find r > 0 such that

dist(Ω\Ωj , supp uj) ≥ r j = 1, . . . ,M. (6.5)

Further, for j = 1, 2, . . . ,M , we define (∂Ωj)D and (∂Ωj)N to be

(∂Ωj)N := (∂Ω)N ∩ ∂Ωj , (∂Ωj)D := ∂Ωj\(∂Ωj)N ,

and denote the space of functions in H1(Ωj) which vanish on (∂Ωj)D by H1
D(Ωj).

Also we introduce the spaces

H2
∗ (Ωj) := {u ∈ H2(Ωj) ∩H1

D(Ωj) :
∂u

∂n
= 0 on ∂Ωj\(∂Ω)}.

We reduce the proof of (6.3) to the following result.

Theorem VI.1 Let Ωj be one of the domains defined above. Then, there exist a

positive constant c such that
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‖u‖[H2∗(Ωj),H1
D(Ωj)]s ≤ c‖u‖[H2(Ωj),H1(Ωj)]s for all u ∈ [H2

∗ (Ωj), H
1
D(Ωj)]s ∩Mj(r),

(6.6)

where Mj(r) := {u ∈ H1(Ωj) : dist(Ω\Ωj , supp u) ≥ r}.

In proving the main result of this section, we need also the following

Lemma VI.1 Let Ω0 ⊂ Ω be bounded domains in RN with Lipschitz boundary. Let

m be a nonnegative integer, 0 < s < 1 and r > 0. Define

M(r) := {u ∈ [Hm+1(Ω), Hm+1(Ω)]s : dist(Ω\Ω0, supp u) ≥ r}.

Then there is a positive constant c = c(N, s, r,Ω,Ω0) such that

‖u‖[Hm+1(Ω),Hm+1(Ω)]s ≤ c‖u‖[Hm+1(Ω0),Hm+1(Ω0)]s for all u ∈M(r). (6.7)

Proof. Since Ω has Lipschitz boundary (see, e.g., [5], [17]), an equivalent norm

on [Hm+1(Ω0), H
m+1(Ω0)]1−s = Hm+s(Ω) is the double integral norm

‖u‖2
m+s, Ω := ‖u‖2

Hm(Ω) +
∑
|α|=m

∫
Ω

∫
Ω

|Dαu(x) −Dαu(y)|2
|x− y|N+2s

dxdy.

Similar consideration holds for Ω0. Let u ∈M(r). Then,

‖u‖Hm(Ω) = ‖u‖Hm(Ω0)

and for a fixed α so that |α| = m we have

I : =

∫
Ω

∫
Ω

|Dαu(x) −Dαu(y)|2
|x− y|N+2s

dxdy = I1 + 2I2

:=

∫
Ω0

∫
Ω0

|Dαu(x) −Dαu(y)|2
|x− y|N+2s

dxdy + 2

∫
Ω\Ω0

∫
Ω0

|Dαu(x) −Dαu(y)|2
|x− y|N+2s

dxdy.
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Next, let K := {x ∈ Ω0 : dist(x,Ω\Ω0) ≥ r}. It follows that

I2 =

∫
Ω\Ω0

∫
K

|Dαu(x)|2
|x− y|N+2s

dxdy ≤ 1

rN+2s

∫
Ω\Ω0

∫
K

|Dαu(x)|2 dxdy

=
|Ω\Ω0|
rN+2s

∫
K

|Dαu(x)|2 dxdy ≤ |Ω\Ω0|
rN+2s

‖u‖2
Hm(Ω0).

Summing up these estimates we obtain

‖u‖2
m+s, Ω ≤ c ‖u‖2

m+s, Ω0
,

where c depends only on Ω, Ω0, N , s and r. Therefore, (6.7) holds and the proof is

complete.

Now we go back to our polygonal domain Ω ⊂ R2. Given Theorem VI, we can

prove the main result of this section.

Theorem VI.2 (Bacuta, Bramble, Pasciak) If Ω ⊂ R2 is a polygonal domain with

Lipschitz boundary then (6.1) holds.

Proof. The constant c , we use here, might be different at different occurrences.

Let u ∈ [H2(Ω), H1
D(Ω)]s ∩ H1

D(Ω). For j = 0, 1, . . . ,M , let uj := ηj u. Then,

u =
M∑
j=1

uj and by applying Lemma II.3, and Theorem we obtain

‖u‖[H2(Ω)∩H1
D(Ω),H1

D(Ω)]s ≤ c

M∑
j=1

‖uj‖[H2(Ω)∩H1
D(Ω),H1

D(Ω)]s

≤ c

M∑
j=1

‖uj‖[H2∗(Ωj),H1
D(Ωj)]s ≤ c

M∑
j=1

‖uj‖[H2(Ωj),H1(Ωj)]s .

Next, using Lemma VI.1 and the fact that multiplication by a smooth function is

continuous on [H2(Ω), H1(Ω)]s, we have

‖uj‖[H2(Ωj),H1(Ωj)]s ≤ c‖uj‖[H2(Ω),H1(Ω)]s ≤ c‖u‖[H2(Ω),H1(Ω)]s .
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Combining the above estimates we see that (6.3) follows. Finally, from (6.2) and (6.3)

we conclude the result.

A. Proving the reduction theorem

To begin with, we consider the case when Ωj = Uj , i.e., Ωj is a disk. We assume,

without loss of generality, that Ωj is the unit disk U centered at the origin of a

Cartesian system of coordinates. In this case we have (∂Ωj)D := (∂Ωj) and

H1
D(Ωj) = H1

0 (U), H2
∗ (Ωj) = H2

0 (U).

Let E : H1
0 (U) → H1(R2), be the extension by zero operator, and let

R : H1(R2) → H1
0 (U) defined as follows:

First, we introduce a cutoff function η ∈ D(R2) which depends only on the distance

r to the origin and satisfies

η(r) = 1 for 0 < r ≤ 1 and η(r) = 0 for r ≥ 2.

Then, for a function v ∈ H1(R2) we define Rv ∈ H1
0 (U) by

(Rv)(r, θ) := v1(r, θ) − 3v1(1/r, θ) + 2v1(1/r
2, θ), (r, θ) ∈ U,

where

v1(r, θ) := v(r, θ)η(r), (r, θ) ∈ R2.

The operators E, R satisfy the hypotheses of Lemma II.5 with H2 = H2
0 (U), H̃2 =

H2(R2) and H1 = H1
0 (U), H̃1 = H1(R2). Thus, according to this lemma, we deduce
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that

‖u‖[H2
0 (U),H1

0 (U)]s ≤ c‖Eu‖[H2(R2),H1(R2)]s for all u ∈ [H2
0 (U), H1

0 (U)]s,

for some positive constant c. On the other hand, for another constant c we have

‖Eu‖[H2(R2),H1(R2)]s ≤ c‖u‖[H2(U),H1(U)]s for all u ∈ [H2
0 (U), H1

0 (U)]s ∩M(r),

where

M(r) := {u ∈ H1(U) : dist(∂U, supp u) ≥ r}.

Using the above two estimates Theorem VII.1 is proved in this special case.

Before we consider the remaining cases, let us introduce some new notation. Let

α, β be real numbers such that α < β and β −α < 2π. Using polar coordinates (r, θ)

we define the sector domain

Sα,β := {(r, θ) : 0 < r < 1, α < θ < β}

and the following spaces:

H1
∗ (Sα,β) := {u ∈ H1(Sα,β) : u = 0 for r = 1 },

H2
∗ (Sα,β) := {u ∈ H2(Sα,β) : u =

∂u

∂n
= 0 for r = 1 },

H i
∗,γ(Sα,β) := {u ∈ H i

∗(Sα,β) : u = 0 for θ = γ },

H i
∗,α,β(Sα,β) := {u ∈ H i

∗(Sα,β) : u = 0 for θ = α and θ = β},

where i = 1, 2 , γ = α or γ = β and the functions are zero on line segments or arcs

in the trace sense.
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All the remaining cases of Theorem VII.1 can be reduced to the following stan-

dard ones:

The domain Ωj coincides with S0,ω for some real number ω ∈ (0, 2π) and

• Case 1. “Free-Free”: H1
D(Ωj) = H1

∗ (S0,ω) and H2
∗ (Ωj) = H2

∗ (S0,ω) or

• Case 2. “Dirichlet-Free”: H1
D(Ωj) = H1

∗,0(S0,ω) and H2
∗ (Ωj) = H2

∗,0(S0,ω) or

• Case 3. “Dirichlet-Dirichlet”: H1
D(Ωj) = H1

∗,0,ω(S0,ω) andH2
∗ (Ωj) = H2

∗,0,ω(S0,ω).

Next, we prove Theorem VII.1 in Case 1.

We define the infinite sector domain S̃0,ω by

S̃0,ω := {(r, θ) : r > 0, 0 < θ < ω}.

The operators E : H1
∗ (S0,ω) → H1

∗ (S̃0,ω) and R : H1
∗ (S̃0,ω) → H1

∗(S0,ω) defined in

the case of the disk, satisfy the hypotheses of Lemma II.5 with H i = H i
∗(S0,ω), and

H̃ i = H i
∗(S̃0,ω), i=1,2. Similar arguments used in the case of the disk can be used

now to show that

‖u‖[H2∗(S0,ω),H1∗(S0,ω)]s ≤ c‖u‖[H2(S0,ω),H1(S0,ω)]s (6.8)

for all u ∈ [H2
∗ (S0,ω), H

1
∗ (S0,ω)]s ∩M(r), where c is a positive constant and

M(r) := {u ∈ H1
∗ (S0,ω) : dist(∂U, supp u) ≥ r}.

Therefore, the proof for Case 1 is complete .

For the Case 2 and Case 3 we will use again Lemma II.5, but we need to construct

operators E and R with stronger properties.

In order to prove Theorem VII.1 in Case 2, let us assume for the moment that

the following existence result holds.
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Theorem VI.3 Let α < 0 be such that ω−α < 2π. Then, there are linear operators

E and R such that

E : H i
∗(S0,ω) → H i

∗(Sα,ω) is a bounded operator, i = 1, 2, (6.9)

R : H i
∗(Sα,ω) → H i

∗,0(S0,ω) is a bounded operator, i = 1, 2, (6.10)

REu = u for all u ∈ H2
∗,0(S0,ω). (6.11)

First, we observe that from (6.9), we get in particular that

E : H i
∗,0(S0,ω) → H i

∗(Sα,ω) is a bounded operator, i = 1, 2.

Thus, we can apply Lemma II.5 with H i = H i
∗,0(S0,ω), and H̃ i = H i

∗(Sα,ω), i=1,2 and

obtain that for a positive c,

‖u‖[H2
∗,0(S0,ω),H1

∗,0(S0,ω)]s ≤ c‖Eu‖[H2∗(Sα,ω),H1∗(Sα,ω)]s, (6.12)

for all u ∈ [H2
∗,0(S0,ω), H

1
∗,0(S0,ω)]s.

From (6.9), by interpolation, we have that for another constant c,

‖Eu‖[H2∗(Sα,ω),H1∗(Sα,ω)]s ≤ c‖u‖[H2∗(S0,ω),H1∗(S0,ω)]s , (6.13)

for all u ∈ [H2
∗ (S0,ω), H

1
∗ (S0,ω)]s.

Combining (6.12) and (6.13) we obtain

‖u‖[H2
∗,0(S0,ω),H1

∗,0(S0,ω)]s ≤ c‖u‖[H2∗(S0,ω),H1∗(S0,ω)]s , (6.14)

for all u ∈ [H2
∗,0(S0,ω), H

1
∗,0(S0,ω)]s.

Now we can use the proof of Case 1 to finish the proof of Case 2. More precisely,
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from (6.8) and (6.14), we see that

‖u‖[H2
∗,0(S0,ω),H1

∗,0(S0,ω)]s ≤ c‖u‖[H2(S0,ω),H1(S0,ω)]s , (6.15)

for all u ∈ [H2
∗,0(S0,ω), H

1
∗,0(S0,ω)]s ∩M(r). Here ,

M(r) := {u ∈ H1
∗,0(S0,ω) : dist(∂U, supp u) ≥ r}.

Therefore, we have proved Theorem VII.1 in this case too.

The Case 3 can be treated in a similar way. We assume that we have the following

result.

Theorem VI.4 Let α < 0 be such that ω−α < 2π. Then, there are linear operators

E and R such that

E : H i
∗,ω(S0,ω) → H i

∗,α,ω(Sα,ω) is a bounded operator, i = 1, 2, (6.16)

R : H i
∗,α,ω(Sα,ω) → H i

∗,0,ω(S0,ω) is a bounded operator, i = 1, 2, (6.17)

REu = u for all u ∈ H2
∗,0,ω(S0,ω). (6.18)

We can reduce the proof of Case 3 to an estimate which follows from the previous

case. The arguments are similar to those of Case 2.

B. Proving the existence of the operators E and R

The proofs of Theorem VI.3 and Theorem VI.4 are based on the following extension

result.

Lemma VI.2 Let Ω be a triangular domain in R2 with boundary ∂Ω = (∂Ω)D ∪

(∂Ω)N , where (∂Ω)N = Γ is one of the edges of ∂Ω (Γ is an open interval in R) and
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(∂Ω)D consists of the union of the other two edges. Then, there exist a linear operator

P such that

P : H
1/2
00 (Γ) → H1

D(Ω) and P : H̃3/2(Γ) → H2
D(Ω) are bounded operators. (6.19)

Here, H
1/2
00 (Γ) = [H1

0 (Γ), L2(Γ)]1/2, H
2
D(Ω) = {u ∈ H2(Ω) : u = ∂u

∂n
= 0 on (∂Ω)D },

and H̃3/2(Γ) is the space of all functions u defined on Γ such that ū ∈ H3/2(R), where

ū is the continuation of u by zero outside Γ.

Proof. For v ∈ H
1/2
00 (Γ) let ṽ denote the extension by zero of v to the rest of

∂Ω. Then, for some positive constant c we have

‖ṽ‖H1/2(∂Ω) ≤ c‖v‖
H

1/2
00 (Γ)

for all v ∈ H
1/2
00 (Γ). (6.20)

For v ∈ C∞
0 (Γ) we define Pv to be the solution of the problem:

Find b ∈ H2(Ω) such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∆2b = 0 in Ω,

b = ṽ on ∂Ω,

∂b
∂n

= 0 on ∂Ω.

(6.21)

It is known that (see, e.g., Proposition 1.3 in [21]) Problem (6.21) has exactly one

solution b ∈ H2(Ω) and

‖b‖H2(Ω) ≤ c‖v‖H3/2(Γ) ≤ c‖v‖H̃3/2(Γ) for all v ∈ C∞
0 (Γ), (6.22)

where c is a positive constant. In addition, since v ∈ C∞
0 (Γ), we have b ∈ H3(Ω) (see,

e.g., Section 3.4.2 in [24]).
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Next, in order to estimate ‖b‖H1(Ω) we consider the following fourth order prob-

lem. Find w such that ⎧⎪⎨⎪⎩ ∆2w = −∆b in Ω,

w ∈ H2
0 (Ω).

(6.23)

The (weak) solution w of the above problem satisfies w ∈ H3(Ω) ∩H2
0 (Ω) (see, e.g.,

Corollary 3.4.2 in [24]). Then, using Green’s first and second identities, we get

(∇b,∇b) = (−∆b, b) = (∆2w, b) = 〈∂(∆w)

∂n
, b〉 + (∆w,∆b),

where (·, ·) and 〈·, ·〉 are the inner products on L2(Ω) and L2(∂Ω), respectively. Since

w ∈ H2
0 (Ω) and ∆b is harmonic it follows from Green’s identity that (∆w,∆b) = 0.

Consequently,

‖b‖2
H1(Ω) ≤ c

∥∥∥∥∂(∆w)

∂n

∥∥∥∥
H−1/2(∂Ω)

‖b‖H1/2(∂Ω) for all v ∈ C∞
0 (Γ), (6.24)

where c is a positive constant. Next, we have∥∥∥∥∂(∆w)

∂n

∥∥∥∥
H−1/2(∂Ω)

= sup
ϕ∈H1/2(∂Ω)

〈∂(∆w)
∂n

, ϕ〉
‖ϕ‖H1/2(∂Ω)

. (6.25)

Denoting the harmonic extension of ϕ ∈ H1/2(∂Ω) to Ω by the same symbol ϕ, and

applying again Green’s identity, we obtain

〈∂(∆w)

∂n
, ϕ〉 = 〈 ∂ϕ

∂n
,∆w〉 − (∆b, ϕ). (6.26)

In order to estimate the right hand side of (6.26), on the one hand we have

|(∆b, ϕ)| = |(∇b,∇ϕ)| ≤ ‖b‖H1(Ω)‖ϕ‖H1(Ω) ≤ c‖b‖H1(Ω)‖ϕ‖H1/2(∂Ω), (6.27)
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and on the other hand we can prove that

|〈∆w, ∂ϕ
∂n

〉| ≤ c‖b‖H1(Ω)‖ϕ‖H1/2(∂Ω). (6.28)

Indeed, using trace inequalities we have

|〈∆w, ∂ϕ
∂n

〉| ≤ c‖∆w‖H1/2(∂Ω)‖∂ϕ/∂n‖H−1/2(∂Ω) ≤ c‖∆w‖H1(Ω) ‖∂ϕ/∂n‖H−1/2(∂Ω)

where ∥∥∥∥∂ϕ∂n
∥∥∥∥
H−1/2(∂Ω)

= sup
θ∈H1/2(∂Ω)

〈∂ϕ
∂n
, θ〉

‖θ‖H1/2(∂Ω)

.

Let us denote the harmonic extension of θ ∈ H1/2(∂Ω) to Ω by the same symbol θ.

By applying Green’s identity and the fact that ϕ is a harmonic function, we obtain

〈∂ϕ
∂n

, θ〉 = (∇ϕ,∇θ) ≤ ‖ϕ‖H1(Ω)‖θ‖H1(Ω) ≤ ‖ϕ‖H1/2(∂Ω)‖θ‖H1/2(∂Ω).

Next, since Ω is convex, the operator ∆2 defines an isomorphism from H3(Ω)∩H2
0 (Ω)

onto H−1(Ω) (Corollary 3.4.2 in [24]). Thus, we get

‖∆w‖H1(Ω) ≤ c‖w‖H3(Ω) ≤ c‖∆2w‖H−1(Ω). ≤ c‖∆b‖H−1(Ω).

Since ∂b
∂n

= 0, the Green’s identity and the definition of the negative norm gives

‖∆b‖H−1(Ω) ≤ ‖b‖H1(Ω).

Finally, from the above estimates we conclude that (6.28) is proved.

Combining (6.24)-(6.28) we deduce that

‖b‖H1(Ω) ≤ c‖b‖H1/2(∂Ω) for all v ∈ C∞
0 (Γ), (6.29)
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where c is a constant independent of the function v ∈ C∞
0 (Γ). From (6.20), (6.21)

and (6.29) we have

‖b‖H1(Ω) ≤ c‖v‖
H

1/2
00 (Γ)

for all v ∈ C∞
0 (Γ), (6.30)

Using (6.22), (6.30) and the density of C∞
0 (Γ) in both H̃3/2(Γ) and H

1/2
00 (Γ), we can

extend the definition of P so that (6.19) is satisfied.

Proof of Theorem VI.3. Let O denote the origin of a polar coordinate system

used to describe the sector domain Sα,ω. Let ε > 0 be fixed, and let A, B, C, D

denote the points with polar coordinates (1, 0), (1, ω), (1, α) and (ε, π), respectively

(see Figure 3). Let I := (O,A) ≡ (0, 1), I1 := (D,A) ≡ (−ε, 1) and denote by T ,

T1 the triangular domains O, A, C and D, A, C, respectively. For u ∈: H1
∗ (S0,ω),

D O A

C

B

ω

α

FIGURE 3. Sector domain.

define γu to be the trace of u to the interval I and γ̃u an extension of γu to the whole
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interval I1 such that γ̃u ≡ 0 on the interval (on the real line) (−ε,−ε/2) and

‖γ̃u‖
H

1/2
00 (I1)

≤ c‖u‖H1(S0,ω) for all u ∈ H1
∗ (S0,ω), (6.31)

‖γ̃u‖H̃3/2(I1) ≤ c‖u‖H2(S0,ω) for all u ∈ H2
∗ (S0,ω), (6.32)

where c is a positive constant. By Lemma VI.2, we can extend γ̃u to a function

b = P (γ̃u) defined on the whole triangular domain T1 and such that (6.19) is satisfied

for Ω = T1 and Γ = I1. Next, we consider the restriction of b to the triangular domain

T and the extension by zero of the new function to the sector domain Sα,0. Let b̃ be

the function obtained by this process. Then, define an extension operator denoted

Eb mapping functions defined on S0,ω into functions defined on Sα,ω by

(Ebu)(x) =

⎧⎪⎨⎪⎩ u, if x ∈ S0,ω

b̃, if x ∈ Sα,0.

Combining (6.31) and (6.32) with the fact that the operators involved in defining b̃

are continuous, we get that

Eb : H i
∗(S0,ω) → H i

∗(Sα,ω) is a bounded operator, i = 1, 2. (6.33)

Now we introduce another extension operator denoted Eo, which coincides with the

classical odd extension operator when ω = −α, mapping functions defined on S0,ω

into functions defined on Sα,ω by

(Eou)(r, θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u(r, θ), if (r, θ) ∈ S0,ω

u(r, ω
α
θ), if (r, θ) ∈ Sα,0.
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Finally, we define the required operators E and R, by

(Eu)(r, θ) :=
α

ω
(Eou)(r, θ) + (1 − α

ω
)Eb(r, θ), (r, θ) ∈ Sα,ω,

and

(Rv)(r, θ) :=
ω

α− ω
(v(r, θ) − v(r,

α

ω
θ)), (r, θ) ∈ S0,ω.

Simple computations show that E and R have the desired properties.

The proof of Theorem VI.4 is similar. The only difference is that we can avoid

using the triangular domain T1 in constructing the extension operator P and apply

Lemma VI.2 directly for Ω = T and Γ = I.
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CHAPTER VII

SHIFT THEOREM FOR THE LAPLACE OPERATOR ON POLYGONAL

DOMAINS

Let Ω be a polygonal domain in R2 with boundary ∂Ω = (∂Ω)D∪(∂Ω)N , where (∂Ω)D

is not of measure zero, and (∂Ω)D and (∂Ω)N are essentially disjoint and consist of

a finite number of closed line segments. Let ∂Ω be the polygonal arc P1P2 · · ·PmP1.

Here we consider that the set {P1, P2, . . . , Pm} consists of all vertices of ∂Ω and all

the points of (∂Ω)D ∩ (∂Ω)N . We will also call the points of (∂Ω)D ∩ (∂Ω)N vertices

of ∂Ω. At each point Pj, we denote the measure of the angle at Pj (measured from

inside Ω) by ωj. Set Pm+1 = P1 and P0 = Pm. For j = 1, 2, . . . , m, let us define

γj := max{ωj/π, 1} if both edges [Pj−1, Pj] and [Pj , Pj+1] belong to the same set

(∂Ω)D or (∂Ω)N , and γj := max{2ωj/π, 1} if one edge belongs to (∂Ω)D and the

other edge belongs to (∂Ω)N . Let γ := max{γj : j = 1, 2, . . . , m}. We consider the

boundary value problem for the Poisson equation on Ω.

Given f ∈ L2(Ω), find u such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∆u = f in Ω,

u = 0 on (∂Ω)D,

∂u
∂n

= 0 on (∂Ω)N .

(7.1)

The variational formulation of (7.1) is :

Find u ∈ H1
D(Ω) such that

a(u, v) =

∫
Ω

fv dx for all v ∈ H1
D(Ω), (7.2)

where H1
D(Ω) denotes the space of all functions in H1(Ω) which vanish on (∂Ω)D. It

is known that for f ∈ L2(Ω) the variational problem has a unique solution



72

u ∈ H1
D(Ω) and

‖u‖H1(Ω)≤ c‖f‖H−1
D (Ω) for all f ∈ L2(Ω), (7.3)

where H−1
D (Ω) is the dual of H1

D(Ω).

Let u be the solution of (7.2). By taking v in D(Ω), the space of all infinitely

differentiable functions with compact support in Ω, one has

−∆u = f

in the sense of distributions in Ω, so the equality is satisfied pointwise, almost every-

where in Ω. Also, the solution u of (7.2) satisfies the boundary conditions of (7.1)

(see [24], Chapter 2 therein). In addition, if γ = 1 then u belongs to H2(Ω) ∩H1
D(Ω)

(see, e.g., [23]), and

‖u‖H2(Ω)≤ c‖f‖L2(Ω) for all f ∈ L2(Ω). (7.4)

If we define T : H−1
D (Ω) → H1

D(Ω) by Tf := u, where u is the solution of (7.2),

then T is a bounded operator. Moreover, if γ = 1, T is a bounded operator from

L2(Ω) to H2(Ω). Thus, by interpolation, we have for any s ∈ [0, 1],

‖u‖H1+s(Ω)≤ c‖f‖H−1+s
D (Ω) for all f ∈ H−1+s

D (Ω). (7.5)

Here, H1+s(Ω) := [H2(Ω), H1(Ω)]1−s and H−1+s
D (Ω) := [L2(Ω), H−1

D (Ω)]1−s.

We will prove in this section that for γ > 1, the shift estimate (7.5) still holds for any

s < 1/γ.
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A. Reduction to sector domains

For j = 1, 2, . . . , m, let Uj be an open disk centered at Pj such that Uj con-

tains no vertices other than Pj . Next we add more disks with centers in ∂Ω, say

Uj , centered at Pj , j = m+ 1, . . . ,M, such that Uj contains no vertices other than

Pj, and

∂Ω ⊂
M⋃
j=1

Uj.

By increasing the number M of disks, we can assume that for some positive numbers

r0 and ε we have

Uj ∩ Ω = {(rj, θj) : 0 < rj < r0, 0 < θj < ωj }

⊂ {(rj , θj) : 0 < rj < (1 + ε)r0, 0 < θj < ωj} := Ωj ⊂ Ω , j = 1, 2, . . . ,M,

where (rj, θj) are the polar coordinates with origin at Pj , ωj = π for j = m+1, . . . ,M

and Pk is not in Ωj , for k �= j. Let U0 and Ω0 be two domains with smooth boundaries

such that U0 ⊂ Ω0 and Ω0 ⊂ Ω and such that

Ω ⊂
M⋃
j=0

Uj .

Then, there is {φj}Mj=0 a partition of unity subordinate to the covering
M
∪
j=0

Uj. Let us

denote the restriction of φj to Ωj by ηj ( j = 0, 1, . . . ,M). Further, we define (∂Ωj)D

and (∂Ωj)N to be

(∂Ωj)N := (∂Ω)N ∩ ∂Ωj , (∂Ωj)D := ∂Ωj\(∂Ωj)N ,

and denote the space of functions in H1(Ωj) which vanish on (∂Ωj)D by H1
D(Ωj), for

j = 1, 2, . . . ,M . Also (∂Ω0)D = ∂Ω0.
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We reduce the proof of (7.5) to the case when Ω is a sector domain. Let’s assume

for the moment that, for j = 1, 2, . . . ,M , the following holds.

Theorem VII.1 The variational solution uj of (7.2) relative to Ωj satisfies

‖uj‖H1+s(Ωj)≤ c‖f‖H−1+s
D (Ωj)

for all f ∈ L2(Ωj), 0 < s < γ−1
j , (7.6)

where we take γj = 1 for j = m+ 1, . . . ,M .

Given this result, we can prove that (7.5) holds for γ > 1 and s < 1/γ.

Indeed, let f ∈ L2(Ω) and let u be the solution of (7.2). For j = 0, 1, . . . ,M , let

uj := ηj u. Then, in the sense of distributions in Ωj, we obtain

−∆uj = fηj − u∆ηj − 2∇u · ∇ηj .

Since the boundary conditions of (7.1) are satisfied on (∂Ωj)D and (∂Ωj)N for u = uj,

we have (see [24], Theorem 2.1.1 therein) that uj is the unique variational solution of

the problem:

Find uj ∈ H1
D(Ωj) such that

Aj(uj, v) =

∫
Ωj

fjv dx for all v ∈ H1
D(Ωj), (7.7)

where fj = fηj − u∆ηj − 2∇u · ∇ηj and

Aj(uj, v) :=

∫
Ωj

∇uj · ∇v dx.

Now, fj is a function in L2(Ωj) and by Theorem VII.1, we get

‖uj‖H1+s(Ωj)≤ c‖fj‖H−1+s
D (Ωj)

, j = 1, 2, . . . ,M. (7.8)

For j = 0 the estimate (7.8) holds for any s ∈ [0, 1], because the boundary of Ω0 is

smooth and we can apply the regularity result for domains with smooth boundaries.
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From the way we have defined the domains Ωj one can find r > 0 such that

dist(Ω\Ωj , supp uj) ≥ r j = 0, 1, . . . ,M.

Thus, by applying Lemma 6.7, we have

‖uj‖H1+s(Ω)≤ c‖uj‖H1+s(Ωj).

Here c is independent of f and j. Since u =
M∑
j=0

uj , using the triangle inequality, the

estimate (7.8) and the above observation, we obtain

‖u‖H1+s(Ω) ≤ c
M∑
j=0

‖fj‖H−1+s
D (Ωj)

. (7.9)

The estimate of ‖fj‖H−1+s
D (Ωj)

is as follows. First, L2(Ωj) is continuously embedded

in H−1+s
D (Ωj), and multiplication by a smooth function is continuous on H−1+s

D (Ωj).

Thus,

‖fj‖H−1+s
D (Ωj)

≤ ‖fηj‖H−1+s
D (Ωj)

+ c ‖u∆ηj + 2∇u · ∇ηj‖L2(Ωj)

≤ c(‖f‖H−1+s
D (Ωj)

+ ‖u‖H1(Ωj)).

Second, the extension by zero operator E : H1
D(Ωj) → H1

D(Ω) is continuous. It follows

that

‖f‖H−1
D (Ωj)

≤ c‖f‖H−1
D (Ω) for all f ∈ H−1

D (Ω).

Also,

‖f‖L2(Ωj) ≤ ‖f‖L2(Ω) for all f ∈ L2(Ω).

By interpolation, we get

‖f‖H−1+s
D (Ωj)

≤ c‖f‖H−1+s
D (Ω) for all f ∈ H−1+s

D (Ω).
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Third, we have

‖u‖H1(Ωj) ≤ ‖u‖H1(Ω)≤ c‖f‖H−1
D (Ω)≤ c‖f‖H−1+s

D (Ω) for all f ∈ H−1+s
D (Ω).

Finally, from these inequalities we deduce

‖fj‖H−1+s
D (Ωj)

≤ c‖f‖H−1+s
D (Ω) for all f ∈ H−1+s

D (Ω). (7.10)

Thus, from (7.9) and (7.10), since L2(Ω) is dense in H−1+s
D (Ω), we obtain that

‖u‖H1+s(Ω)≤ c‖f‖H−1+s
D (Ω) for all f ∈ H−1+s

D (Ω).

Therefore we see that (7.5) holds for γ > 1 and all s < 1/γ.

B. Solving the problem on sector domains

Let Ω = Sω be the sector domain defined by

Sω := {(r, θ) : 0 < r < r0, 0 < θ < ω}, (7.11)

and let (∂Ω)N be in one of the possibilities listed below (Case 1, Case 2 or Case 3).

We assume, without loss of generality, that r0 = 1. Let V 2(Ω) be defined by

V 2(Ω) := {u ∈ H2(Ω) : u = 0 on (∂Ω)D and ∂u/∂n = 0 on (∂Ω)N}.

Then, (see, e.g., Theorem 2.2.3 in [24]) the Laplace operator ∆ : V 2(Ω) → L2(Ω) is

an injective Fredholm operator. Consequently,

‖u‖H2(Ω)≤ c‖∆u‖L2(Ω) for all u ∈ V 2(Ω), (7.12)

and the range of the operator has finite codimension. Grisvard characterized the

orthogonal complement N of the range of the Laplace operator for the case of a
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polygonal domain in [23] and [24]. In particular, for our sector domain Ω = Sω the

subspace N is described as follows:

• Case 1. “Dirichlet corner”; (∂Ω)N = ∅.

(i) 0 < ω ≤ π; N = {0}.

(ii) π < ω < 2π; N = span{ψ}, where

ψ(r, θ) = (r−
π
ω − r

π
ω ) sin

π

ω
θ.

• Case 2. ”Neuman corner”; (∂Ω)N = {(r, θ) ∈ ∂Ω : θ = 0 or θ = ω}.

(i) 0 < ω ≤ π; N = {0}.

(ii) π < ω < 2π; N = span{ψ}, where

ψ(r, θ) = (r−
π
ω − r

π
ω ) cos

π

ω
θ.

• Case 3. “Mixed corner”; (∂Ω)N = {(r, θ) ∈ ∂Ω : θ = ω}.

(i) 0 < ω ≤ π/2; N = (0).

(ii) π/2 < ω ≤ 3π/2; N = span{ψ1}.

(iii) 3π/2 < ω < 2π; N = span{ψ1, ψ2}, where

ψk(r, θ) = (r−νk − rνk) sin(νkθ), νk = (k − 1/2)
π

ω
.

For the (i)-cases, the estimate (7.6) holds for any s ∈ [0, 1]. For the remaining

cases we will use the interpolation results in Chapter II.

According to ours previous notation, L2(Ω)N denotes the orthogonal complement

of the the subspace N in L2(Ω). The Laplace operator is bounded with a bounded

inverse from V 2(Ω) to L2(Ω)N . Thus, the operator T : H−1
D (Ω) → H1(Ω) defined
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at the beginning of Chapter VII is a bounded operator from L2(Ω)N to H2(Ω) . By

interpolation, we obtain

‖u‖[H2(Ω),H1(Ω)]1−s≤ c‖f‖[L2(Ω)N ,H−1
D (Ω)]1−s for all f ∈ [L2(Ω)N , H

−1
D (Ω)]1−s.

(7.13)

Since [H2(Ω), H1(Ω)]1−s = H1+s(Ω) and [L2(Ω), H−1
D (Ω)]1−s = H−1+s

D (Ω) the only

thing which remains to be proved in order to obtain the estimate (7.5) for s < 1/γ

(Theorem VII.1 as well) is that

[L2(Ω)N , H
−1
D (Ω)]1−s = [L2(Ω), H−1

D (Ω)]1−s for s < 1/γ, (7.14)

where γ = ω/π in Case 1 and Case 2, and γ = 2ω/π in Case 3.

Let ψ = (r−ν − rν)g(θ) be one of the functions which defines the subspace N .

(Note that ν ∈ (0, 1)). The next result is of crucial importance in proving (7.14).

Theorem VII.2 If 0 < s < ν , then

[L2(Ω)ψ, H
−1
D (Ω)]1−s = [L2(Ω), H−1

D (Ω)]1−s. (7.15)

Our proof of the above theorem involves reduction of the problem, via the inter-

polation result of Section II C, to a similar interpolation problem where the domain

Ω is replaced by a polygonal-sector domain, containing Ω. We will give the proof of

this main result later.

When dim(N ) = 1, i.e., we are in one of the (ii)-cases listed above, (7.14) is

Theorem VII.2. Let us consider now the case in which dim(N ) = 2, i.e., Case 3 (iii).

In order to prove (7.14) we apply Theorem II.2. The condition (A.1) of Theorem II.2

follows easily from the Theorem VII.2. To verify (A.2) for X = L2(Ω), Y = H−1
D (Ω)

and K = N = span{ψ1, ψ2}, we start by deriving an eigenfunction representation of

the norm on Hα
D(Ω). To do this, we consider the following eigenvalue problem.
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Find real numbers λ and functions u ∈ H1(Ω), u �= 0 such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∆u = λu in Ω

u = 0 on (∂Ω)D,

∂u
∂n

= 0 on (∂Ω)N .

(7.16)

Let Jν be the Bessel’s function of the first kind, of index ν. For n = 1, 2, . . . , let

νn := (n− 1/2)
π

ω
and ϕn(θ) :=

√
2/ω sin(νnθ), θ ∈ (0, ω).

For each fixed n and k = 1, 2, . . . , let βk,n be the k-th positive zero of Jνn(r) = 0, and

let fk,n(r) := ck,nJνn(βk,nr), where c−2
k,n is the positive constant given by

c−2
k,n :=

∫ 1

0

rJνn(βk,nr)
2 dr.

Using separation of variables and polar coordinates for the Laplace operator, we find

the following set of (eigenvalue, eigenvector) pairs:

(λk,n, ϕk,n) =
(
β2
k,n, fk,n(r) ϕn(θ)

)
, k, n = 1, 2, . . . .

Since {ϕn}n≥1 is an orthonormal basis for L2([0, ω]) and for each fixed n, {fk,n}k≥1 is

an orthonormal basis for L2([0, 1]) with respect to the inner product with the weight

function w(r) = r (see, e.g., [35]), we obtain that {ϕk,n}k,n≥1 is an orthonormal basis

for L2(Ω). Furthermore, each pair (λk,n, ϕk,n) is a solution of (7.16), and by Green’s

formula we have that∫
Ω

∇ϕk,n · ∇v = λk,n

∫
Ω

ϕk,n v for all v ∈ H1
D(Ω).

Thus, if H1
D(Ω) is provided with the inner product

(u, v)1 =

∫
Ω

∇u · ∇v = A(u, v),
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then {λ−1/2
k,n ϕk,n}k,n≥1 is an orthonormal basis for H1

D(Ω) (see, e.g., [26]). Therefore,

the norm on H1
D(Ω) is given by

‖u‖2
1 =

∞∑
k,n=1

λk,n(u, ϕk,n)
2.

Next, the norm on Hα
D(Ω) for α ∈ [−1, 1] is given by

‖u‖2
α =

∞∑
k,n=1

λαk,n(u, ϕk,n)
2 for all u ∈ Hα

D(Ω) ∩ L2(Ω). (7.17)

With the notation adopted in Section II B, taking X = L2(Ω) and Y = H−1
D (Ω) we

have

(u, v)X,t =

∞∑
k,n=1

λk,n
λk,n + t2

(u, ϕk,n)(v, ϕk,n) for all u, v ∈ X. (7.18)

Theorem VII.3 If dim(N ) = 2 and s < 1/γ, then (7.14) holds.

Proof. Let s < 1/γ = ν1 be fixed. First, we verify the conditions (A.1) and

(A.2) of the Theorem II.2 for n = 2, X = L2(Ω), Y = H−1
D (Ω) and K = N . Since

ψk /∈ H1−νk
D , by Remark II.3, we have that L2(Ω)ψk is dense in [L2(Ω), H−1

D (Ω)]1−s,

for k = 1, 2. Thus, (A.1) is

[L2(Ω)ψk , H
−1
D (Ω)]1−s = [L2(Ω), H−1

D (Ω)]1−s, for k = 1, 2 (7.19)

which follows from Theorem VII.2.

Checking the condition (A.2) is easy in this case. From (7.18) we have

(ψ1, ψ2)X,t =

∞∑
k,n=1

λk,n
λk,n + t2

(ψ1, ϕk,n)(ψ2, ϕk,n).

Since (ψ1, ϕk,n) = 0 for n �= 1 and (ψ2, ϕk,n) = 0 for n �= 2, we obtain that

(ψ1, ψ2)X,t = 0 for all t > 0. Thus, (A.2) is trivially satisfied. By Theorem II.2 we
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obtain that

[L2(Ω)N , H
−1
D (Ω)]1−s = [L2(Ω), H−1

D (Ω)]1−s,N .

Using Remark II.3 again, one sees that L2(Ω)N is dense in [L2(Ω), H−1
D (Ω)]1−s. It

follows that

[L2(Ω), H−1
D (Ω)]1−s,N = [L2(Ω), H−1

D (Ω)]1−s.

Therefore (7.14) holds, and the proof is complete.

It remains to prove Theorem VII.2.

C. Proving the subspace interpolation theorem, Theorem VII.2

Let Sω be a sector domain defined by (7.11) and consider an extension of Sω to a

polygonal-sector domain Ω with the same angle ω and such that

Sω ⊂ {(r, θ) : 0 < r < 2r0, 0 < θ < ω} ⊂ Ω.

For Ω we use the notation given in Figure 1 and for simplicity we take r0 = 1.

Assume that the free part (∂Ω)N of ∂Ω is defined as follows:

(∂Ω)N = ∅ if Sω is in Case 1,

(∂Ω)N = Γ1 ∪ Γn+2 if Sω is in Case 2 and

(∂Ω)N = Γn+2 if Sω is in Case 3.

Let ζ ∈ D(Ω) be a cutoff function which depends only on the distance r to the origin

and satisfies

ζ(r, θ) = 1 for 0 < r ≤ 1/2 and 0 < θ < ω,
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ζ(r, θ) = 0 for r ≥ 1 and (r, θ) ∈ Ω.

Let ψ be one of the functions which defines the subspace N , and let ψ̃ be the extension

by zero of ψ to Ω. Then ψ̃ = φ+uR where φ(r, θ) = ζ r−νg(θ) and uR ∈ H1
D(Ω). The

next result is a version of Theorem VII.2 for polygonal-sector domains.

Theorem VII.4 If ν ∈ (0, 1) and 0 < s < 1/γ, then

[L2(Ω)ψ̃, H
−1
D (Ω)]1−s = [L2(Ω), H−1

D (Ω)]1−s,

for any function ψ̃ = φ+uR with φ(r, θ) = ζ r−νg(θ) and uR being arbitrary function

in H1
D(Ω).

Proof. Let {Mk} be the sequence of approximating subspaces of H1
D(Ω) intro-

duced in Section III C. From the results of Section IV B, we have that an equivalent

norm on Hα
D(Ω) is given by the multilevel norm (4.4). By Theorem IV.1, it is enough

to verify that the function ψ̃ satisfies the conditions (C.0)-(C.2) defined in Section

IV B with θ0 = 1 − ν.

To begin with, we will prove that the function φ satisfies (C.0)-(C.2). Let Mk

be the space of piecewise linear functions with respect to Tk defined on Ω, and let

Qk be the L2(Ω) orthogonal projection onto Mk. First step in verifying (C.0) and

(C.1) is to prove that there exists a positive constant c such that

‖(I −Qk)φ‖2 ≥ cλ−θ0k , k = 1, 2, . . . . (7.20)

We define τk1 to be the triangle in Tk which is the the image of τ1 ∈ T1 via the map

x̂→ hkx̂. Here, without lost of generality, we assume that h2
k = λ−1

k = 4−k+1. Then

‖(I −Qk)φ‖2
L2(Ω) ≥ ‖(I −Qk)φ‖2

L2(τk1 ) = ‖φ‖2
L2(τk1 ) − ‖Qkφ‖2

L2(τk1 ).

The projection Qkφ can be estimated on τk1 in terms of the three nodal functions
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ϕk1, ϕ
k
2, ϕ

k
3 associated with the three vertices of τk1 . If Mk is the 3 × 3 Gram matrix

associated with the set {ϕk1, ϕk2, ϕk3}, and Sk := (Skij), i, j = 1, 2, 3 is the inverse of

Mk, then

‖φ‖2
L2(τk1 ) − ‖Qkφ‖2

L2(τk1 ) =

∫
τk1

φ2 dx−
3∑

i,j=1

Skij

∫
τk1

φϕki dx

∫
τk1

φϕkj dx.

Further, by doing the change of variable x = hkx̂ in the above integrals, a simple

computation shows that

‖φ‖2
L2(τk1 ) − ‖Qkφ‖2

L2(τk1 ) = h2−2ν
k

(∫
τ1

φ2 dx̂−
3∑

i,j=1

S1
ij

∫
τ1

φϕ1
i dx̂

∫
τ1

φϕ1
j dx̂

)
= λ−θ0k

(
‖φ‖2

L2(τ1) − ‖Q1φ‖2
L2(τ1)

)
.

Since φ is not linear on τ1, the constant ‖φ‖2
L2(τ1) − ‖Q1φ‖2

L2(τ1) is strictly positive.

Combining the above estimates, we have proven that (7.20) holds. The second step

is to use (7.20) and the fact that Mk is a subspace of Mk, in order to obtain

‖(I −Qk)φ‖2 ≥ cλ−θ0k , k = 1, 2, . . . . (7.21)

From (7.21) we see that ‖|φ|‖θ0, defined in Remark IV.1, is not finite. Hence φ /∈

Hθ0
D (Ω). Using again (7.21) and the identity

‖(Qk −Qk−1)u‖2 = ‖(I −Qk−1)u‖2 − ‖(I −Qk)u‖2 , u ∈ L2(Ω),

we have

(φ, φ)X,t =
λ1‖φ‖2

λ1 + t2
+ t2

∞∑
k=1

λk+1 − λk
(λk+1 + t2)(λk + t2)

‖(I −Qk)φ‖2

≥ ct2
∞∑
k=1

(4k)1−θ0

(4k + t2)2
= t−2θ0

∞∑
k=1

(4k/t2)1−θ0

(4k/t2 + 1)2
.

Finally, the last sum can be bounded below by a positive constant independent of t
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as follows. Let us fix t ≥ 4 and let k0 be the integer such that 4k0 ≤ t2 < 4k0+1. Then

∞∑
k=1

(4k/t2)1−θ0

(4k/t2 + 1)2
>

(4k0/t2)1−θ0

(4k0/t2 + 1)2
≥ inf

x∈[1/4,1]

x1−θ0

(x+ 1)2
> 0.

Thus, (C.0) and (C.1) hold for the function φ.

To verify (C.2) we first observe that

‖(Qk −Qk−1)φ‖2 = ‖Qk(I −Qk−1)φ‖2 ≤ ‖(I −Qk−1)φ‖2.

Hence, it is enough to prove that there exists a positive constant c such that

‖(I −Qk)φ‖2 ≤ cλ−θ0k , k = 1, 2, . . . . (7.22)

Let ηk be a cutoff function which depends only on r and satisfies

ηk(r) = 0 for r ≤ hk, ηk(r) = 1 for r ≥ 2hk,

|η′k(r)| ≤ c/hk, |η′′k(r)| ≤ c/h2
k for all hk ≤ r ≤ 2hk, k = 1, 2, . . . ,

for some positive constant c. For example, we can take

ηk(r) = 1/2 + 1/2 sin

(
(r − 3hk/2)

π

hk

)
on [hk, 2hk].

Then, φ = (1−ηk)φ+ηkφ and ηkφ ∈ H2(Ω). Let Πk : H2(Ω) →Mk be the interpolant

associated with Tk. By applying standard approximation properties and (7.12) we

obtain

‖(I −Qk)φ‖ ≤ ‖(I −Qk)(1 − ηk)φ‖ + ‖(I −Qk)ηkφ‖ ≤ ‖(1 − ηk)φ‖ + ‖(I − Πk)ηkφ‖

≤ ‖(1 − ηk)φ‖ + ch2
k‖ηkφ‖H2(Ω) ≤ ‖(1 − ηk)φ‖ + ch2

k‖∆(ηkφ)‖L2(Ω).

Using a simple computation in polar coordinates, and the estimates for the derivative
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of ηk, we get

‖(1 − ηk)φ‖2 ≤ ch2θ0
k for all k = 1, 2, ...

and

h2
k‖∆(ηkφ)‖L2(Ω) ≤ ch2θ0

k for all k = 1, 2, ... .

Combining the above inequalities, we conclude that (7.22) is valid. Thus,(C.3) holds

for the function φ.

Verifying (C.0)-(C.3) for the function φ is mainly based on finding some positive

constants c1, c2 such that

c1λ
−θ0
k ≤ ‖(I −Qk)φ‖2 ≤ c2λ

−θ0
k , k = 1, 2, . . . . (7.23)

Since the function uR belongs to H1
D(Ω), we have

‖(I −Qk)uR‖2 ≤ cλ−1
k , k = 1, 2, . . . .

Therefore, the function ψ̃ satisfies an estimate of type (7.23) and (C.0)-(C.3) hold

for the function ψ̃ too. The result is now a direct consequence of Theorem IV.1.

Proof of Theorem VII.2. Let E : L2(Sω) → L2(Ω), be the extension by zero

operator, and let R : L2(Ω) → L2(Sω) be defined as follows: First, we introduce a

cutoff function η ∈ D(Ω) which depends only on the distance r to the origin and

satisfies

η(r, θ) = 1 for 0 < r ≤ 1 and 0 < θ < ω,

η(r, θ) = 0 for r ≥ 2 and (r, θ) ∈ Ω.
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Then, for a function v ∈ L2(Ω) we define Rv ∈ L2(Sω) by

(Rv)(r, θ) := v2(r, θ), (r, θ) ∈ L2(Sω),

where,

v1(r, θ) := v(r, θ)η(r, θ), (r, θ) ∈ Ω,

v2(r, θ) := v1(r, θ) − v1(2 − r, θ), (r, θ) ∈ L2
D(Sω).

Let ψ̃ denote the function E(ψ). According to Theorem VII.4

[L2(Ω)ψ̃, H
−1
D (Ω)]1−s = [L2(Ω), H−1

D (Ω)]1−s.

It follows that the function ψ and the operators E, R satisfy the hypotheses of

Lemma II.6 with θ = 1 − s, V 1(Ω) = H1
D(Sω) and V 1(Ω̃) = H1

D(Ω). Thus, (7.15)

holds for the sector domain Sω and the proof is complete.

Remark VII.1 Theorem VII.2 can be proved directly without using the transfer to

the polygonal sector domain. In order to do this, we just need to adapt all of the

considerations made through the proof of Theorem VII.4 to the case of sector domain.

The sequence of approximating subspaces on H1
D(Sω) which we can use is the one

defined in Section III D. In this different approach, we apply Lemma II.4 instead of

Lemma II.6. Consequently, we do not need to consider the extension and restric-

tion operators connecting the sector domain and the corresponding polygonal sector

domain.
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CHAPTER VIII

APPLICATION TO THE BIHARMONIC DIRICHLET PROBLEM

Let Ω be a polygonal domain in R2 with boundary ∂Ω. Let ∂Ω be the polygonal arc

P1P2 · · ·PmP1. At each point Pj , we denote the measure of the angle Pj (measured

from inside Ω) by ωj. Let ω := max{ωj : j = 1, 2, . . . , m}.

We consider the biharmonic problem Given f ∈ L2(Ω), find u such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∆2u = f in Ω,

u = 0 on ∂Ω,

∂u
∂n

= 0 on ∂Ω.

(8.1)

Let V = H2
0(Ω) and

a(u, v) :=
∑

1≤i,j≤2

∫
Ω

∂2u

∂xi∂xj

∂2v

∂xi∂xj
dx, u, v,∈ V.

The bilinear form a defines a scalar product on V and the induced norm is equivalent

to the standard norm on H2
0 (Ω). The variational form of (8.1) is : Find u ∈ V such

that

a(u, v) =

∫
Ω

fv dx for all v ∈ V. (8.2)

Clearly, if u is a variational solution of (8.2), then one has ∆2u = f in the sense

of distributions and because u ∈ H2
0 (Ω), the homogeneous boundary conditions are

automatically fulfilled. As done in Chapter VII, the problem of deriving the shift

estimate on Ω can be localized by a partition of unity so that only sectors domains

or domains with smooth boundaries need to be considered. If Ω is a smooth domain,

then it is known that the solution u of (8.2) satisfies

‖u‖H4(Ω) ≤ c‖f‖, for all f ∈ L2(Ω),
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and

‖u‖H2(Ω) ≤ c‖f‖H−2(Ω), for all f ∈ H−2(Ω).

Interpolating these two inequalities yields

‖u‖2+2s ≤ c‖f‖−2+2s, for all f ∈ H−2+2s(Ω), 0 ≤ s ≤ 1.

So we have the shift theorem for all s ∈ [0, 1]. Let us consider the case of a sector

domain. The threshold, s0, below which the shift estimate for a polygonal domain

holds is given, as in the Poisson problem, by the largest internal angle ω of the

polygon. Thus, it is enough to consider the domain Sω defined by

Sω = {(r, θ), 0 < r < 1,−ω/2 < θ < ω/2}.

We associate to (8.1) and Ω = Sω, the characteristic equation

sin2(zω) = z2 sin2 ω. (8.3)

In order to simplify the exposition of the proof, we assume that

sin

√
ω2

sinω2
− 1 �=

√
1 − sinω2

ω2
(8.4)

and

Rez �= 2 for any solution z of (8.3).

The restriction (8.4) assures that the equation (8.3) has only simple roots. Let

z1, z2, . . . , zn be all the roots of (8.3) such that 0 < Re(zj) < 2. It is known (see [19],



89

[23], [27], [31]) that the solution u of (8.2) can be written as

u = uR +

n∑
j=1

kjSj, (8.5)

where uR ∈ H4(Ω) and for j = 1, 2, . . . , n, we have Sj(r, θ) = r1+zjuj(θ),

uj are smooth functions on [0, ω], such that

uj(−ω/2) = uj(ω/2) = u′j(−ω/2) = u′j(ω/2) = 0,

kj = cj
∫
Ω
fϕj dx, ϕj(r, θ) = (r1−zj − r1+zj)uj(θ),

cj is nonzero and depends only on ω, and

‖uR‖H4(Ω) ≤ c‖f‖, for all f ∈ L2(Ω). (8.6)

The functions {Sj}, {ϕj} are called singular functions and dual singular functions,

respectively for the biharmonic problem.

Next, we define K = span{ϕ1, ϕ2, . . . , ϕn}. As a consequence of the expansion

(8.5) and the estimate (8.6) we have

‖u‖H4(Ω) ≤ c‖f‖, for all f ∈ L2(Ω)K. (8.7)

Combining (8.7) with the standard estimate

‖u‖H2(Ω) ≤ c‖f‖H−2(Ω), for all f ∈ H−2(Ω),

we obtain, via interpolation

‖u‖[H4(Ω),H2(Ω)]1−s ≤ c‖f‖[L2(Ω)K,H−2(Ω)]1−s , s ∈ [0, 1]. (8.8)

Let s0 = min{Re(zj) | j = 1, 2, . . . , n}. Then, we have

Theorem VIII.1 If 0 < 2s < s0 and Ω = Sω, then

[L2(Ω)K, H
−2(Ω)]1−s = [L2(Ω), H−2(Ω)]1−s. (8.9)
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Proof. First we prove that there are operators E and R such that

E : L2(Ω) −→ L2(R), E : H2
0 (Ω) −→ H2(R2),

R : L2(R2) −→ L2(Ω), R : H2(R2) −→ H2
0 (Ω)

are bounded operators, and REu = u, for all u ∈ L2(Ω).

Indeed, E can be taken to be the extension by zero operator.

To define R, let η = η(r) be a smooth function on (0,∞) such that η(r) ≡ 1 for

0 < r ≤ 1 and η(r) ≡ 0 for r > 2. Define α = ω
2
, a = α

π−α and

g1(θ) =
α− π

α
θ + π, g2(θ) =

π − α

α2
(α− θ)2 + α, θ ∈ [0, α].

Note that gi(0) = π and gi(α) = α, i = 1, 2. For a smooth function u defined on

R2 we define Ru := u3, where

Step 1. u1 = ηu.

Step 2. u2(r, θ) = u1(r, θ) + 3u1(1/r, θ) − 4u1(1/2 + 1/(2r), θ), r < 1, θ ∈ [0, 2π).

Step 3. For 0 < r < 1

u3(r, θ) =

⎧⎪⎨⎪⎩ u2(r, θ) + au2(r, g1(θ)) − (1 + a)u2(r, g2(θ)), 0 ≤ θ < ω/2,

u2(r, θ) + au2(r,−g1(−θ)) − (1 + a)u2(r,−g2(−θ)), −ω/2 < θ < 0.

One can check that, for u ∈ H2
0 (R2), u3 ∈ H2

0(Ω) and REu = u. The operator R can

be extended by density to L2(R2). The extended operator R satisfies all the desired

properties.

Next, let φj be the Fourier transform of Eϕj , j = 1, . . . , n. Using asymptotic

expansion of integrals theory ([3], [20], [33]), we have that the functions
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{Eϕj, j = 1, . . . , n} satisfy for some positive constants c and ε,⎧⎪⎨⎪⎩ |φj(ξ) − φ̃j(ξ)| < cρ−1+(−2+sj)−ε for |ξ| > 1

−2 < −2 + si < 0, i = 1, . . . , n,
(8.10)

where sj = Re(zj) and

φ̃j(ξ) = bi(ω)ρ−1+(−2+sj), ξ = (ρ, ω) in polar coordinates,

and bj(·) is a bounded measurable function on the unit circle, which is non zero on

a set of positive measure. A method to find the asymptotic form of the function φj

given in (8.10) can be found in [25].

Thus, we have that the functions {Eϕj, j = 1, . . . , n} satisfy the hypothesis

(5.15) of Theorem V.3 with N = 2, β = 0, α = −2 and γj = −2 + sj, j = 1, . . . , n.

Denoting L := span{Eϕj , j = 1, . . . , n}, by Theorem V.3 applied with 1− s instead

of s, we have that

[L2(R2)L, H
−2(R2)]1−s = [L2(R2), H−2(R2)]1−s = H−2+2s(R2), (8.11)

for 2s < s0 := min{Re(zj), j = 1, 2, . . . , n}.

Finally, using (8.11), the operators E , R and Lemma II.6 (adapted to the case

when we work with subspaces of codimension n > 1), we conclude that (8.9) holds

for 2s < s0.

From the estimate (8.8) and the interpolation result (8.9) we obtain

‖u‖2+2s ≤ c‖f‖−2+2s, for all f ∈ H−2+s(Ω), 0 ≤ 2s < s0.

The above estimate still holds for the case when Ω is a polygonal domain and s0

corresponds to the largest inner angle ω of the polygon. Figure 4 below gives the



92

graph of the function ω → 2+s0(ω) which represents the regularity for the biharmonic

problem. On the same graph we represent the the number of singular (dual singular)

functions as function of ω ∈ (0, π). Note that if ω is bigger than 1.43π, which is an

approximation for the solution in (0, 2π) of the equation tanω = ω, the space K has

the dimension six.

 

omega 2Pi 1.43Pi 1.23Pi .7Pi 0

1

2

3

4
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6

 

FIGURE 4. Regularity for the biharmonic problem.
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CHAPTER IX

AN APPLICATION TO A NONCONFORMING FINITE ELEMENT PROBLEM

Let Ω be a polygonal domain in R2 with boundary ∂Ω. The L2(Ω)-inner product and

the L2(Ω)-norm are denoted by (·, ·) and ‖·‖, respectively. We consider the Dirichlet

problem ⎧⎪⎨⎪⎩ −∆u = f in Ω,

u = 0 on ∂Ω.
(9.1)

The variational formulation of (9.1) is :

Find u ∈ V := H1
0 (Ω) such that

a(u, v) = F (v) for all v ∈ H1
0 (Ω), (9.2)

where F ∈ V ′ := H−1(Ω) and

a(u, v) =

∫
Ω

∇u · ∇v dx for all u, v ∈ H1
0 (Ω).

Let Th be a quasi-uniform triangulation of Ω and let h = max
τ∈Th

diam(τ).

Next, we consider the Crouzeix-Raviart finite element nonconforming space

Vh := {v| v is linear on all τ ∈ T ,

v is “continuous” at the midpoints of the edges

v = 0 at the midpoints situated on ∂Ω},

and define on V + Vh the bilinear form

ah(u, v) :=
∑
τ∈Th

Dτ (u, v), where Dτ (u, v) =

∫
τ

∇u · ∇v dx
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and the associated norm

‖u‖h :=
√
ah(u, u).

The form ah(·, ·) is positive definite on Vh because v ∈ Vh and ah(v, v) = 0 implies

v ≡ 0. Assuming that F ∈ V ′ has a linear extension to V + Vh, which will still

be denoted by F, we consider a first type discretized problem associated with the

variational problem (9.2):

Find uh ∈ Vh such that

ah(uh, v) = F (v) for all v ∈ Vh. (9.3)

The next statement is a version of Strang’s Lemma [4], [17].

Proposition IX.1 Let u ∈ V and w ∈ Vh be completely arbitrary. Then

‖u− w‖h ≤ inf
v∈Vh

‖u− v‖h + sup
v∈Vh

ah(u− w, v)

‖v‖h
(9.4)

Proof. Let ũ ∈ Vh satisfy

ah(ũ, v) = ah(u, v) for all v ∈ Vh.

Then, ah(ũ− u, v) = 0 for all v ∈ Vh and consequently,

‖u− ũ‖h = inf
v∈Vh

‖u− v‖h.

Thus,

‖u− w‖h ≤ ‖u− ũ‖h + ‖ũ− w‖h = ‖u− ũ‖h + sup
v∈Vh

ah(ũ− w, v)

‖v‖h
.

Moreover,

ah(ũ− w, v) = ah(ũ− u+ u− w, v) = ah(u− w, v).
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Combining the above estimate and equalities we obtain (9.4).

In particular, when u is the solution of (9.2) and w = uh is the solution of (9.3)

we obtain the estimate

‖u− uh‖h ≤ inf
v∈Vh

‖u− v‖h + sup
v∈Vh

ah(u− uh, v)

‖v‖h
. (9.5)

If u ∈ H2(Ω)∩H1
0 (Ω), the first term of the right-hand side of (9.5) can be estimated,

using standard approximation properties, by ch|u|H2 (with c independent of u and

h). For the second term we can use the following known result (see, e.g., [4], [18]).

Lemma IX.1 Let u ∈ H2(Ω) ∩H1
0 (Ω) be the solution of (9.2), where

f = −∆u and F (v) = (f, v) for all v ∈ V + Vh. Let uh be the solution of the

discrete problem (9.3). Then, for some positive constant c

ah(u− uh, v)

‖v‖h
≤ ch|u|H2, for all v ∈ Vh, u ∈ H2(Ω) ∩H1

0 (Ω). (9.6)

Consequently,

‖u− uh‖h ≤ ch|u|H2 for all u ∈ H2(Ω) ∩H1
0 (Ω). (9.7)

For completeness we include a proof.

Proof. By Green’s Formula we have

ah(u− uh, v) = ah(u, v) − (f, v) =
∑
τ∈Th

Dh(u, v) − (f, v) =
∑
τ∈Th

∫
∂τ

∂u

∂n
v ds.

Let e be one of the three edges of an arbitrary τ ∈ Th. Denote by Ieu the nodal

interpolant of the trace of u on e (where the nodes are just the ends of e).

For v ∈ V , let v̄e denote the average of the trace of v on e. Because v is linear

on each τ ∈ Th and “continuous” at midpoints, v̄e does not depend on the triangle τ

such that e ∈ ∂τ . Next, we need the following
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Proposition IX.2 Let τ ∈ Th be a triangle and e be one of its edges. Then

||v − v̄e||L2(e) ≤ ch
1
2 |v|H1(τ), for all v ∈ H1(τ), (9.8)

with c independent of τ ∈ Th.

The proof is based on trace estimate and the Bramble-Hilbert lemma [6], [22].

Next, using the above proposition, we have

∑
τ∈Th

∫
∂τ

∂u

∂n
v ds =

∑
e∈τ

∂u

∂n
(v − v̄e) ds =

∑
τ∈Th

∑
e∈∂τ

∫
e

(
∂u

∂n
− ∂(Ieu)

∂n

)
(v − v̄e) ds

≤
∑
τ∈Th

∑
e∈∂τ

(∫
e

|∇(u− Ieu)|2 ds
) 1

2
(∫
e

|v − v̄e|2 ds
) 1

2

≤ c
∑
τ∈Th

h1/2|u|H2(τ) h
1/2‖v‖h ≤ c

∑
τ∈Th

h|u|H2(τ) ‖v‖h.

This ends the proof of Lemma IX.1.

The method given by the discretized problem (9.3) has the disadvantage of not being

stable on H1(Ω). A modified method was shown to the author by Joseph Pasciak.

This modified method is as follows:

First, we define Th
2

to be the triangulation obtained from Th by joining the

midpoints of the edges of the triangles in Th. Let Sh
2

be the standard conforming

finite element space of all functions in H1
0 (Ω) which are linear on each triangle τ ∈ Th

2
.

Note that Sh
2
⊂ V .

Next, we define the operator T : Vh −→ Sh
2

by Tv = w, where

1. v(x) = w(x) when x is a midpoint of an edge in Th,

2. v(x) = 0 when x is a vertex of ∂Ω,

3. v(x) = 1
nx

nx∑
j=1

w(yj) when x is an interior vertex of Th, where y1, y2, . . . , ynx are

the midpoints of those edges in Th, that are adjacent to x.
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Clearly, nx is bounded above by a fixed natural number. Let Mh be the set of all

midpoints of the edges in Th. Let Eh be the set of all line segments connecting in

each triangles in Th the mid points of the edges. Finally, let Eh/2 be the set of all

edges in Th
2
. Then,

‖v‖ ≈ h2
∑
yi∈Mh

v2(yi), v ∈ Vh,

‖v‖h ≈
∑

(yi,yj)∈Eh

(v(yi) − v(yj))
2, v ∈ Vh,

and

|w|2H1(Ω) ≈
∑

(xi,xj)∈Eh/2

(w(xi) − w(xj))
2, w ∈ Sh/2.

From the way we defined T and by using the above equivalences, it is easy to verify

that

|Tv|2H1(Ω) ≤ c ah(v, v), for all v ∈ Vh, (9.9)

‖Tv − v‖2 ≤ ch2 ah(v, v), for all v ∈ Vh, (9.10)

for some positive constant c. Consider the following modified version of problem 9.3:

Given F ∈ V ′ find ũh ∈ Vh such that

ah(ũh, v) = F (Tv), for all v ∈ Vh, (9.11)

Using the interpolation results of Chapter VII, we deduce an error estimate for the

new method.

Theorem IX.1 Let u be the solution of (9.2) and let ũh be the solution of (9.11).
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Then, for s ∈ [0, 1] we have the following error estimate:

‖u− ũh‖h ≤ chs‖u‖H1+s(Ω), for all u ∈ H1+s(Ω) ∩H1
0 (Ω). (9.12)

Proof. By taking v = ũh in (9.11) and by using (9.9) we get

‖ũh‖2
h = F (T ũh) ≤ ‖F‖V ′|T ũh|H1(Ω) ≤ c‖u‖H1(Ω)‖ũh‖h.

Hence

‖ũh‖h ≤ c‖u‖H1(Ω), for all u ∈ H1
0 (Ω). (9.13)

Let Phu = ũh, u ∈ H1
0 (Ω). Then (9.13) implies

‖(I − Ph)u‖h ≤ c‖u‖H1(Ω), for all u ∈ H1
0 (Ω). (9.14)

Next, for u ∈ H2 ∩H1
0 , from Proposition IX.1, we obtain

‖u− ũh‖h ≤ inf
v∈Vh

‖v − u‖h + sup
v∈Vh

ah(u− ũh, v)

‖v‖h
.

Using standard approximation properties, we have

inf
v∈Vh

‖u− v‖h ≤ inf
v∈Sh

‖u− v‖h ≤ ch|u|H2(Ω).

To estimate the second term in the right-hand side of the above inequality, we proceed

as follows:

ah(u− ũh, v) = ah(u− uh, v) + ah(uh − ũh, v), v ∈ Vh.

From Lemma IX.1,

ah(u− uh, v) ≤ ch|u|H2(Ω)‖v‖h.
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On the other hand, with the help of (9.10),

ah(uh − ũh, v) = ah(uh, v) − ah(ũh, v) = (f, v) − (f, Tv)

≤ ‖f‖ ‖v − Tv‖ ≤ ch|u|H2(Ω)‖v‖h.

Combining the above estimates, we have

‖(I − Ph)u‖h ≤ ch‖u‖H2(Ω), for all u ∈ H2(Ω) ∩H1
0 (Ω). (9.15)

Finally, from (9.14) and (9.15) by using interpolation and the result of Chapter VI

we obtain

‖(I − Ph)u‖h ≤ chs‖u‖[H2∩H1
0 ,H

1
0 ]1−s = chs‖u‖H1+s(Ω) for all u ∈ H1+s(Ω) ∩H1

0 (Ω),

which proves the theorem.

The interpolation result of Chapter VI allows us to adapt the above result with

no difficulties to the Dirichlet problem with mixed boundary conditions.
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CHAPTER X

CONCLUSIONS

Our studies on subspace interpolation have contributed to new results concerning

shift theorems for boundary value problems on nonsmooth domains. The theorems

and the lemmas presented in Chapter II are proved on abstract Hilbert spaces and

one can use them for particular subspace interpolation problems where the subspaces

involved are of finite codimension. The choice of the inner product which provides

a norm equivalent to the original norm on a Hilbert space is important in solving

subspace interpolation. In studying the shift theorem of Chapter VII, for example,

the multilevel inner product we have chosen, leads to a simple way of dealing with

the subspace interpolation problem.

The multilevel representation of norms presented in Chapter III is self-contained

and may be used in numerical methods for solving certain partial differential equa-

tions. A multilevel norm equivalent to the standard norm on H2
0 (for polygonal or

sector domains) is needed in order to prove shift theorems for the Biharmonic Dirich-

let problem without involving extension and restriction operators and asymptotic

expansions of Fourier transforms. This is an area of further research.

Other alternative for a future research comes from the subspace interpolation

theory presented in Chapter V. The results concerning interpolation between Sobolev

spaces on RN , could be extended to the case when the functions to be factored out

from the space Hβ have a more complicated asymptotic expansion. If the orthogonal

complement of the range of the operator associated with a certain boundary value

problem can be characterized in terms of functions with asymptotic expansion (for

the Fourier transform) different from the form we have presented through Chapter

V, then the issue is worth addressing.
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The positive answer obtained in Chapter VI concerning interpolation between

H2 ∩ H1
D and H1

D and the error estimate for finite element problem of Chapter IX

gives hope for new methods and new ways to prove error estimates for conforming

and nonconforming finite element problems.
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