
Tool-box for parallel adaptive computations
of 3-D convection-diffusion problems using

domain decomposition

S.Z. Tomov ∗

June 1, 2000

Abstract

In this report we describe the tools that we have used, developed, and imple-
mented in a computer system for simulation of flows in porous media. Our goal
was to create a simulator that uses various tools and that is based on discretization
by finite elements and finite volumes and uses efficient preconditioning iterative
methods for the resulting large sparse system. Also important features are error
control, adaptive grid refinement and parallel implementation on multiprocessor
computer systems utilizing the concept of domain decomposition. The tools in-
clude (1) 3-D mesh generator (NETGEN), (2) partitioning and load balancing
software (METIS), (3) local error control and refinement procedures, (4) precon-
ditioning methods based on domain decomposition and multigrid/multilevel, and
(5) MPI and the OpenMP standards for massively parallel computations .

1 Introduction

Discretization of fluid flows in 3-D gives rise to extremely large scale computation. Since
the finite element and finite volume discretizations lead to sparse systems it is natural to
consider iterative methods for their solution. The storage to assemble the global matrix
(in sparse format) is the same in both direct and iterative solution methods, but the di-
rect methods may produce an arbitrary amount of fill-ins that for 3-D problems might be
prohibitively high. Also, fundamental physical limitations on the computer processing
speed may require the exploitation of parallelism. Since matrix-vector operations can be
efficiently parallelized all iterative solvers can highly benefit the parallelism, while the
direct methods need sophisticated techniques to extract limited parallelism. One disad-
vantage of the iterative methods is that the rate of convergence is problem dependent

∗This work has been partially supported by the US Environmental Protection Agency under Grant
R 825207

1

and may be unacceptably slow. This stresses on one of the main aspects of the present
work, namely acceleration of the iterative methods by preconditioning techniques.

The above brief motivation for the direction of our study partially explains the tools
that we may need. First, since we discretize partial differential equations by finite
element and/or finite volume methods, we need a tool for generating a finite element
splitting of a given 3-D domain (described in Section 2). Our computational strategy
relies on the use of a mesh generator for the coarse mesh that describes the problem and
satisfies some regularity requirements. Then, based on an a posteriori error analysis,
the initial grid is refined via generation of a sequence of nested meshes until a “good”
one that resolves the solution adequately is found. This is done by another tool that we
have developed. Its description is given in Section 5.

In our brief motivation we mentioned that for the success of an efficient computa-
tional technology the employment of parallel computations may be essential. The tool
addressing this issue is given in Section 6. We discuss our strategy and give some useful
information for implementing parallel finite element/volume software using the Message
Passing Interface library (MPI) and the OpenMP standard.

When iterative methods are parallelized on a multiprocessor system the data distribu-
tion and the communication scheme are of greatest importance for an efficient execution.
Both the data distribution and the communication scheme are usually determined before
the execution of the solver by preprocessing. There are many ways to do this. It seems
that the most popular and efficient is the use of Domain Decomposition techniques.
Here by Domain Decomposition we first mean sub-domain splitting techniques (a tool
for sub-domain partitioning is given in Section 3). Since the sub-domains are going to
be mapped on different processors the goal (concerning the data distribution) is to split
the domain so that a good load balancing among the processors and (concerning the
communication) a small ratio of communication over computation is achieved. Second,
Domain Decomposition techniques addresses the question of preconditioning. These are
undoubtedly one of the best known and promising methods, which also take advantage
of the parallelism. The tool dealing with this type of preconditioning is given in Section
4. The multilevel structure obtained in the process of consecutive local refinements is
exploited by implementing multigrid preconditioners for the sub-domain solvers, which
is explained in the Domain decomposition section.

Having defined the main tools, below we summarize the overall computational strat-
egy. We use a 3-D mesh generator (NETGEN) to generate a good coarse mesh. Then
the considered problem is solved sequentially on the coarse mesh. The solution is used
to compute a posteriori error estimates, which are used as weights in an element based
splitting of the coarse mesh into sub-domains (using METIS). Such splitting insures that
the local refinements that follow will produce computational mesh with number of tetra-
hedrons balanced over the sub-domains. Every sub-domain is “mapped” to a processor.
Then, based on a posteriori error analysis, each processor refines consecutively its re-
gion independently. After every step of independent refinement there is communication
between the processors in order the mesh on that level to be made globally conforming.

2

Domain decomposition technique is used to solve the global problem. This leads to inde-
pendent computations on the sub-domains (performed by the corresponding processors)
and involves transfering interface data when necessary. For the local sub-domain solvers
we have implemented multigrid/multilevel preconditioners.

2 Mesh generation in 3-D (NETGEN)

Finding a “good” computational mesh is one of the key elements in the development
of any efficient computational methodology based on finite element or finite volume
method. Both methods require partitioning the domain of interest into a set of elements,
which have to possess certain regularity properties. As we mentioned in the introduc-
tion, our computational strategy (regarding mesh generation) is to use automatic mesh
generation to get a good coarse mesh (satisfying some regularity requirements) and a
posteriori error analysis to lead the process of obtaining the final mesh (see Section 5).

Mesh generator, which has good capabilities for generating coarse meshes and which
we use, is NETGEN. It’s a 3-D stand-alone mesh generator based on advancing front
method. The splitting is into tetrahedra. NETGEN is developed by Joachim Schöberl,
Johannes Kepler University, Linz, Austria. More information (than the presented below)
about this mesh generator can be found on Joachim Schöberl’s homepage 1. The software
is free for non-commercial applications and is available for Unix/Linux and Windows
98/NT platforms.

The input is 3-D domain described by boolean operations (or, and, not) on primitives,
such as planes, cylinders, spheres, cones and tubes. The primitives are used in the
following formats:

• plane(px, py, pz; nx, ny, nz) – half-plane given by a point p on the plane
and the outside normal vector n;

• cylinder(ax, ay, az ; bx, by, bz ; r) – cylinder of infinite length, given by
two points a and b on the axis and radius r;

• sphere(cx, cy, cz ; r) – sphere given by center c and radius r;

• cone(ax, ay, az ; ra; bx, by, bz ; rb) – cone given by the two points a
and b on the axis and their two corresponding radii;

• tube(p1,x, p1,y, p1,z, ... , pm,x, pm,y, pm,z ; r) – tube given by an
algebraic rational spline curve of order 2 and a global radius r. The spline curve
consisting of n pieces is given by 2n + 1 points, such that patch i is determined by
points 2i − 1, 2i and 2i + 1.

1http://www.sfb013.uni-linz.ac.at/∼joachim/

3

Figure 1: Crankshaft mesh. The domain is split into 5, 830 elements, with 4, 176 surface
elements and 2, 140 vertices.

Using the mentioned above boolean operations one may combine the primitives to
form solids, which may be used to form more complicated ones. The solid called all is
the final object. A simple example for generating a L-shaped domain follows.

algebraic3d

solid c1 = plane (-1, -1, -1; 0, 0, -1)

and plane (-1, -1, -1; 0, -1, 0)

and plane (-1, -1, -1; -1, 0, 0)

and plane (1, 1, 1; 0, 0, 1)

and plane (1, 1, 1; 0, 1, 0)

and plane (1, 1, 1; 1, 0, 0);

solid c2 = plane (0, -1.1, 0; 0, 0, -1)

and plane (0, -1.1, 0; 0, -1, 0)

and plane (0, -1.1, 0; -1, 0, 0)

and plane (1.1, 0, 1.1; 0, 0, 1)

and plane (1.1, 0, 1.1; 0, 1, 0)

and plane (1.1, 0, 1.1; 1, 0, 0);

solid all = c1 and not c2;

Note that the cube represented by solid c2 (the one that is subtracted from c1 in
order to get the L-shaped domain) is “bigger” than “necessary”. This is done in order
for NETGEN to be able to compute the necessary intersection (if for solid c2 points
(0,−1, 0) and (1, 0, 1) are used instead of correspondingly (0,−1.1, 0) and (1.1, 0, 1.1)
then NETGEN wouldn’t be able to split the domain). Another interesting point in
generating the input file, with which one has to be careful, may be demonstrated with the
following example that comes from a fluid flow domain generation. We have generated
solids domain and layer. Then the difference between

solid all1 = layer;

4

solid all2 = domain and not layer;

solid all1 = domain and layer;

solid all2 = domain and not layer;

is that in the first case the boundary between the layer and and the rest of the domain
is non-conforming. For both cases the tetrahedrons in the layer have attribute 1 and 2
for the rest of the domain.

An example showing NETGEN’s capabilities of dealing with more complicated do-
mains is given on Figure 1.

3 Sub-domain partitioning (METIS)

Domain decomposition methods are based on a technique called divide-and-conquer.
The main idea in this concept is that the global problem is split into sub-problems,
which are solved concurrently and the local solutions are merged or combined in order
to get the global one. In Domain decomposition (given in the next section) the above
idea translates into finding a splitting {Ti,h}N

i=1 of the global mesh Th, mapping every Ti,h

to a processor, doing independent computations on each Ti,h and transfering data when
necessary. Crucial for the efficient parallel execution of software based on this technique
is obviously the quality of the splitting {Ti,h}N

i=1.
In order to have load balance over the processors the number of tetrahedrons in each

Ti,h should be almost equal. On the other hand, in order to reduce the communication
the number of nodes on the boundary between the sub-domains should be minimal.
Although this problem is NP-complete many relatively simple and effective heuristic
methods have been devised (see the survey [7]).

In our tool-box we have used METIS, a software package for partitioning large ir-
regular graphs/meshes and computing fill reducing orderings of sparse matrices. This
software has been developed by George Karypis and Vipin Kumar from the University of
Minnesota. The algorithms in METIS are based on multilevel graph partitioning, where
the graph is consecutively coarsen, the coarse graph partitioned and then the computed
partitions projected into the fine graph.

We also have used the graph partitioning part of METIS, where the vertices of the
graph are the finite elements. In our case the vertices represent the set of tetrahedrons
and the graph cliks are the common feces. METIS provides two programs to partition
such graphs into k equal parts: pmetis and kmetis. The first one, pmetis is based
on multilevel recursive bisection algorithm (see [10]) and is preferable for partitioning
graphs into a small number N of sub-domains. The second one, kmetis, is based on
k-way partitioning (see [9]) and is prefered when the graph has to be split into more
than eight parts. Computationally our observations are that both programs produce
well balanced meshes with pmetis being better for small values of N and kmetis being
slightly better for large values of N . Unfortunately, often kmetis produces disconnected

5

domains, especially for large N . In general, pmetis produces “smoother” and “better
connected” domains.

Figure 2 shows the domain from Figure 1 split into 4 by pmetis. The domain is split
at places where one intuitively would do it in order to have balance of the elements in
the sub-domains and minimum interface between the sub-domains.

Figure 2: Crankshaft mesh split in 4 by pmetis. The partitions starting from left have
correspondingly 1458, 1457 , 1458 and 1457 tetrahedrons.

Program pmetis is invoked (similarly kmetis) by providing file with the graph of the
mesh and number of partitions that is desired. The format is

pmetis GraphFile Nparts

GraphFile may represent weighted or unweighted graph. The format for unweighted
graph is

< # of vertices > < # of edges >

< list of vertices with which node 1 is connected >

< list of vertices with which node 2 is connected >

. . .

where vertices in our case correspond to tetrahedrons and edges to interior faces.
As we mentioned in the introduction part, we would like to be able to give weights

on the tetrahedrons. These weights will come from a posteriori error analysis. Graph
partitioner that allows weights than will split the domain such that the error in the
subregions to be approximately the same. This insures that the local refinements that
follow will produce computational mesh with number of tetrahedrons balanced over the
sub-domains.

Weights on the tetrahedrons in METIS can be specified either on the faces (i.e.
graph’s edges) or on both tetrahedrons and faces (i.e. graph’s vertices and edges). For
the first case after every vertex a weight follows and the first line is

<# of vertices> <# of edges> 1

6

For the second a number at the beginning of every row is added giving the weight for
the element. The first row is also changed and the format is as follows.

<# of vertices> <# of edges> 11

<node 1 weight> <list of ’<vertex> <weight>’ for vertices connected to 1>

. . .

Since often only the mesh file is available METIS also provides two auxiliary pro-
grams, mesh2nodal and mesh2dual, for converting a mesh into the described above graph
format.These programs convert triangular, tetrahedral or hexahedral (bricks) meshes
into graphs suitable correspondingly for vertex based partitioning and element based
partitioning. The mesh file format is

<# of elements> <type>

<list of vertices for element 1>

. . . ,

where type is 1, 2, 3 or 4 for correspondingly triangles, tetrahedra, hexahedra (bricks)
or quadrilaterals. The node indexing starts from 1.

The output, a partition file of a graph with n vertices, consists of n lines with a single
number per line. The i-th line of the file contains the partition number that the i-th
vertex belongs to. Partition numbers start from 0.

The various programs provided in METIS can also be directly accessed from a
C/C++ or Fortran program by using the stand-alone library METISlib. The interface
to METISlib routines and more information about METIS can be found on METIS’s
homepage 2. The software is free, written entirely in ANSI C, and is portable on most
Unix systems.

4 Domain decomposition

In this section we describe the data structures for the non-overlapping domain decompo-
sition methods. We start by briefly describing the Schur complement method and then
we explain the implemented data structures and how they utilize the main steps used in
the algorithm. Test results are given in Section 6, where the proposed data structures
were tested on a parallel implementation of the conjugate gradient method.

The matrix point of view of the Schur complement method is given as follows. The
discrete problem can be written in matrix form as Ax = f . We order the finite ele-
ment/volume unknowns into two groups: the unknowns inside the sub-domains, denoted
by xD and the unknowns on the sub-domain interface denoted by xΓ. Now we rewrite
the original problem in block form(

AD ADΓ

AΓD AΓ

) (
xD

xΓ

)
=

(
fD

fΓ

)
.

2http://www-users.cs.umn.edu/∼karypis/metis/main.shtml

7

Here ADΓ represents the sub-domain to interface coupling seen from the sub-domains
and AΓD the interface to sub-domain coupling seen from the interface. Since the basis
functions from different sub-domains have disjoint support, AD is block diagonal matrix
with diagonal blocks giving the stiffness matrices in the sub-domains (for finite element
space associated with the sub-domain with Dirichlet zero boundary condition on Γ). We
apply block Gauss elimination to get the following system for the interface unknowns
xΓ:

(AΓ − AΓDA−1
D ADΓ)xΓ = fΓ − AΓDA−1

D fD. (1)

The matrix S ≡ AΓ − AΓDA−1
D ADΓ is called Schur complement matrix associated with

the interface variables xΓ. Once xΓ is found xD can be computed by solving AD xD =
fD − ADΓ xΓ.

Some of the properties of S are as follows. If A is nonsingular then so is S and if
A is symmetric and positive definite then so is S. If we denote by RΓ : RΓx = xΓ the
restriction operator to Γ we have the identity S−1xΓ = RΓA−1(0, xΓ)T . This suggests
thata preconditioner for S may be based on solution techniques with the matrix A. We
note that the use of preconditoners for S is mandatory since it’s ill-conditioned with
condition number bounded by C h−1 for both 2 and 3-D problems.

A domain decomposition implementation should have sub-domain data structures
that provide easy access to the interface nodes (nodes on Γ). For parallel computa-
tions the sub-domains should be relatively independent. These requirements are met by
keeping the nodes of a particular sub-domain on one processor. Also, every sub-domain
keeps its “version” for the nodes on Γ and where the corresponding other “versions” are.
The implementation is done in an object oriented style, using C++. The main classes,
their hierarchy, data members and methods are given on Figure 3.

Class Subdomain, as seen from Figure 3, is on the top of the class hierarchy. One
object of this class may be considered and used as a stand-alone finite element/volume
solver. This independence and functionality is obtained through the functionality of
the class Method, which Subdomain inherits. Method keeps a finite element Mesh
(through class Mesh) and necessary stiffness matrices (trough class Matrix). These
matrices, depending on the solved problem, are generated by corresponding functions
in Method. Other functions that Method provides are different solvers (such as CG,
PCG and GMRES), preconditioners (multigrid, hierarchical multigrid), a posteriori error
indicators and error computing functions (in case the exact solution is known). In
terms of domain decomposition such functionality of Subdomain is useful because of
the following : provides efficient local solvers (for example actions with A−1

D for the
Schur complement matrix); easy to map on one processor; readable and easy for further
extensions data structure. Besides the stand-alone feature given by its inherited classes,
Subdomain has specific data fields that complete its functionality as a stand-alone unit
in a domain decomposition method. These specific data fields are used to define the
connections between the different sub-domains. Their description is as follow :

8

Method

Subdomain

- 4 face indices

- 2 vertex indices
[edge]

- [sparse vertex connectivity structure for interpolation]
- number of elements, faces, edges, vertices, levels

Methods - Local Refine - input is list of tetrahedrons marked for refinement

- Printing procedures (for Maple, MCGL, MTVPlot)

- sparse vertex connectivity structure (used for the stiffness matrix)
- array of nodes on Dirichlet boundary

- Mesh constructor - initializes the mesh data from NETGEN output file

- [sparse vertex connectivity structure for hierarchical basis]

- 1 integer attribute

- the result is updated Mesh (a new conforming mesh level)

- 3 vertex indices
- 2 tetrahedron indices

- 3 coordinates (double)
vertex

faceMesh

Data

Data Methods

Methods

tetrahedron
- 4 vertex indices

Methods - Action; ActionTranspose;

Matrix mult; Gauss Seidel iteration

- Error computing functions : in discrete
1L , H , maximum and energy norms2

Matrix

Packet

Data - pointer to the sparce structure and

 Data - vertex indices; sharing subd. and

subdomain, etc.

Methods - send, receive; init. procedures

ets and array of packets

- Parallel solve : CG, PCG (with multigrid
preconditioner)

- Update -add contrib. from no-owners
to owner, make no-owners 0.

- UpdateNoOwners - update no-owners
with values from owners

- Solvers : CG, PCG, GMRES
matrices

values; pointers to other useful data

(put in
Method for convinience)

- Functions initializing different stiffness

Hierarchical, Second derivative
- A posteriori error indicators : RB, ZZ,

basis multigrid
- Preconditioners : multigrid; hierarchical

- Initialization procedures

- Arrays of unknowns, RHS

- Many auxiliary functions supporting the above methods and others

corresponding packet number; owner

- Subdomain number; number of pack-

Data

Figure 3: Code structure. Main classes along with their data members and methods.

• SN – the sub-domains are numbered starting from 0. Every object of class Subdo-
main keeps its number in SN;

• NPackets – nodes on Γ, shared by the same sub-domains, are grouped into Packets.
NPackets is integer giving how many packets are defined for this sub-domain;

• Packets – array of packets for this sub-domain (their number is given by the
previous field).

The idea of grouping the nodes on Γ into packets is to define the different types
of communication between the sub-domains. Such preprocessing is necessary in order
to speed up the procedures of sending/receiving data between the sub-domains. The

9

benefits of such structure are explained in our parallel computations Section 6. More
precise definition of the Packet’s data fields follow :

• Vertices – array of the indices of the nodes belonging to the packet. Their number
is stored in variable NPoints;

• Subdomains – array of the indices of the sub-domains that share the nodes in this
packet. The size is given in NSubdomains;

• PacketAddress – array of NSubdomains integers. Every sub-domain from the
array Subdomains has its own “version” of this packet (according to its local vertex
indexing). PacketAddress[i] gives the packet number ot that “version” in sub-
domain Subdomains[i];

• Owner – one of the sub-domains sharing the nodes in this packet is defined as owner
and this field gives its number. The packet nodes in owner sub-domain are taken
as degrees of freedom, the others are considered as “slave” nodes.

Having such data structure for the nodes on Γ simplifies the following common to domain
decomposition operations : global matrix actions; global vector operations; local on Γ
matrix actions (for example with AΓ from the Schur complement method); local on Γ
vector operations. The utilization of the global operations is shown in the parallel Section
6. The same could be applied for the local on Γ vector operations. We finish this section
with demonstration of how local (on Γ) matrix actions are implemented. The example
will be for AΓ from the Schur complement method. We will also use the sparse storage
format for the stiffness matrix A, which is given on figure 4. Every sub-domain stores

a00a05a06a07

0

5
6

7

10
12

VV

0 1
0 6

0 5 6 7 10 12

Vertices connected to 0 start from 0 (in VV) and their number is V[1]-V[0]

6 0

N-1. . .
. . .
. . .

V

A

Figure 4: Matrix sparse storage format explained for simplicity with a 2-D example.

a stiffness matrix in the format given on figure 4. The matrix corresponds to stiffness
matrix for the corresponding sub-domain with 0 Neumann boundary on Γ. Thus a global
action is action on the sub-domains plus adding the contributions from slave packets to
the owner (see Section 6). Using this global action we may get AΓxΓ by computing

A

(
0
xΓ

)
=

(
...

AΓxΓ

)
. Since we don’t need the first part of the resulting vector we

don’t do the full matrix action. We have the nodes on Γ so using the sparse storage

structure we can get AΓxΓ by multiplying

(
0
xΓ

)
only with the rows corresponding to

10

nodes on Γ. Similarly one may get efficient action implementation for the prolongation
and restriction matrices ADΓ and AΓD.

5 Adaptive grid refinement

The behavior of the physical process is greatly affected by local properties (coefficients,
sources, and boundary data) as well as the singularities due to corners, boundary layers
or nonlinear behavior. For such cases it is essential that the numerical method has
capabilities to resolve the local behavior of the solution. In the context of the finite
element method there are two main techniques for the error reduction. One is based on
increasing the order of the algebraic polynomials used in the approximation process, the
so called “p – version” of the finite element method (p–refinement), while the other uses
polynomials of the same degree, but adaptively refines the grid (by decreasing the mesh
size h), the so called “h–version” adaptive refinement (h–refinement).

Our work is mostly concentrated on the h–version of the finite element method. We
worked, implemented, and tested (both for 2 and 3-D problems) three error indicators
based on the h–version of the finite element method, namely residual based refinement
(first introduced by Babuska and Rheinboldt [3] and developed by Becker et. al. in
[5], [6], and Verfürth [16]), Zienkiewicz-Zhu technique (see [17, 18]), and hierarchical
refinement (see [4]). However, we had to adapt the existing technique of a posteriori
error estimators for the finite volume element method.

The mesh refinement algorithms are very important since the consecutive refinements
have to be done in a way such that the element shapes don’t degenerate. Our adaptive
mesh generation is based on the bisection algorithm (see, e.g. Arnold et all. [2]). The

refinement edge

Figure 5: Tetrahedron bisection.

main step in this algorithm is tetrahedral bisection (see figure 5), where a key element
is the careful choice of the edge for bisection (called refinement edge). The chosen
algorithm features data structure that simplifies both the selection of refinement edge
and the recursive refinement to conformity once some tetrahedra have been refined.
And most importantly, repeated application of the algorithm leads to only finitely many
tetrahedral shapes, i.e tetrahedra shape cannot degenerate as the mesh is refined.

The residual method is based on equilibrating certain residuals over the elements.
In general, the residuals are obtained by substituting the approximate solution into the

11

problem’s weak formulation. Since the approximation is not smooth the residual over
one element is composed of two parts. The first part is contribution from the element
and the other one is contribution from jumps on the element’s boundary. All these
quantities are computable through the solution obtained on the current grid. The local
grid refinement strategy aims to reduce the finite element size so that the local residuals
are equilibrated within a given tolerance criterion.

Figure 6: Right: the mesh with 2972 nodes for solving the equation −∆u = 1 with ho-
mogeneous Dirichlet boundary data; Left: the mesh for the convection-diffusion equation
−10−3∆u + 2ux + uy = 0 with 1761 grid points

On Figures 6 and 7 we present the results for two examples of such refinement
procedure, applied to two 2-D and two 3-D problems. The left Figure 6 shows the mesh
obtained for the Poisson equation −∆u = 1 with homogeneous Dirichlet boundary data.
The right Figure 6 shows the mesh obtained for the following convection dominated
problem: −10−3∆u + 2ux + uy = 0 in Ω and Dirichlet boundary data so that the left
and on the upper edges of Ω the solution is zero while on the rest of the boundary the
solution is equal to 1. The solution develops a boundary layer at the upper 2/3 of the
right edge of Ω and an interior layer along the line x = 2y. Also, there are two corner
singularities at the origin and at the upper right corner due to the discontinuity of the
Dirichlet data. As seen from the figures the error estimator produces finer grids in the
regions where the solution has a boundary layer or singularity. The computed solutions
are monotone so no oscillations due to the numerical approximation are produced.

6 Parallel computations

This section describes the machinery that we used and developed for writing parallel
finite element software. We start with some fundamental scalar code optimization con-
cepts associated with modern parallel architectures (subsection 6.1). We discuss and

12

Figure 7: Computational meshes obtained by local refinement due to a corner singularity
(left) and delta function source term (right). Both meshes are obtained after six levels
of refinement and have 12, 350 and 11, 770 nodes, correspondingly.

give how these may help in a finite element code. The provided material may serve
for yet another motivation of why to use Domain decomposition techniques. The next
two subsections (6.2 and 6.3) give some key concepts in implementing parallel domain
decomposition. Also, they may serve as an introduction in writing parallel finite element
software under correspondingly shared and distributed memory paradigm.

All illustration and examples of how to use OpenMP/MPI are for C/C++ appli-
cations. The included examples were run on a SGI Origin 2000 system with 8 Mips
R10000 processors running at 250MHz, 4MB L2 cache each. Performance values are
limited to the same machine. Important about the architecture of such systems (dis-
tributed memory cc-NUMA) is that they are composed of node cards, which in turn
are composed of 2 R10000 processors. The main memory is distributed across the node
cards and although the memory is accessible to and shared by all the processors, the
latency for memory access by a processor to memory on the node board on which the
processor resides is less than the latency for memory access by a processor to memory
on a node board different from the one on which the processor resides. This is from
where the abbreviation NUMA (non-uniform memory access) comes.

6.1 Code optimization

In order to write efficient parallel programs one should first know how to achieve effi-
ciency on a single processor. There are two main concepts, whose understanding is vital
for writing efficient scalar code. These are Locality of reference (important in improving
memory performance) and Software pipelining (important in improving the CPU per-
formance). We will discuss both of them, but the stress will be on the first one since it’s
more critical and less machine dependent. As we stated at the beginning we consider

13

SGI Origin 2000.

6.1.1 Locality of reference

The importance of the concept Locality of reference (or simply the rule “Keep things that
are used together, close together”) arises from the memory hierarchy, and more precisely
from the different times of accessing data on the different levels in this hierarchy. For
example, to access the fastest memory (the registers) it takes 0 CPs (clock period or
cycle), L1 cache 3 CPs, L2 cache 6 CPs, and the main memory ≈ 200 CPs. The
mechanism of something entering the case is as follows. When the program refers to
data that is not in the cache the CPU requests a load of a cache line, which is a block
of 128B (the L1 cache line is 32B), i.e. refering an element from array of doubles will
bring a block of 16 elements in the L2 cache and 4 into the L1 cache. Due to the
pipelining architecture (explained below) the CPU can often continue working while
accessing data from the main memory, but still multiple successive cache misses can
bring the effective work to a halt because of waiting for data. That’s way, for example,
a simple computation like

A[i][j][k] += B[i][j][k] * C[i][j][k]

executed in loop order i, j, k = 0..100 is more that 10 times faster than the same com-
putation but performed in loop order k, j, i.

Programs that effectively apply the principle Locality of reference are sometimes
called cache friendly. Except loop interchange, depending on the application, there are
many possible techniques to develop cache friendly programs. Some of the possibilities
are : split computations over large datasets into computations over “data blocks” that
entirely fit in the cache memory (technique called blocking); group frequently used data
fields into single object so they tend to stay in the cache; avoid searching linked lists
(especially of big objects); use memalign() to allocate important objects on the 128B
boundaries and so on.

Developing cache friendly finite element software, when iterative solvers are used, is
important. Some of the most popular techniques are

• vertex reordering – the locality is increased by reordering the vertices. A simple
algorithm, which we implemented is Cuthill-McKee (see [13]);

• blocking – as we mentioned above this is technique where the data set is split
into blocks, so that the blocks fit into the cache. For parallel computations, when
applying divide-and-conquer technique, the cache used on one processor for solving
a local problem is greatly utilized. This technique is another motivation for using
domain decomposition for parallel computations;

• fusion – technique where multiple loops are merged into one. For example, in the
PCG/CG routine a sequence z = Ad; β = z · d; is better to be merged into one
loop, making re-use of the array z.

14

The second technique is shown to improve the cache memory use in Section 6.3 where
we test parallel CG method and get superliner speedup. This is a term used when the

speedup using p processors, denoted and defined as Sp =
exec time on 1 processor
exec time on p processors , is

bigger than p. The other two techniques, in a test problem of size 200, 000 unknowns
using the CG solver, gave a speed improvement from 864 seconds to 742 seconds (this
includes the time for reordering).

6.1.2 Software pipelining

The other main concept in code optimization, Software pipelining (SWP), is impor-
tant in improving the CPU performance. Such improvement is machine dependent and
in R10000 is possible because some of its functional units are pipelined. A pipelined
unit is unit partitioned into independent hardware subunits, each specializing a spe-
cific phase (to be executed in one CP) of the operation that the unit performs. Thus,
a unit partitioned in 4 will finish a pipelined sequence of n operations in n + 3 CPs,
compared to 4n CPs for non-pipelined operations. Now, SWP tries to find a valid
rearrangement of instructions (from the innermost loops only) so that to engage con-
currently as many pipelines as possible. SWP is carried out by the compiler and is
enabled if compiling options -r10000 -O3 are used. The use of SWP in computing
A[i][j][k]+=B[i][j][k]*C[i][j][k], i, j, k = 0..100 increased the CPU performance
from 13 Mflops to 1115 Mflops, making it ≈ 100 times faster.

Some of the cases when SWP looses efficiency are : data dependences occur; long
loops; branching (function calls, goto and if-else statements); low iteration counts. Pos-
sible techniques to improve SWP are

• inlining – in general one inlines only small functions which are called many times
within loops, for example, inner-product, vector addition/subtraction functions;

• splitting/fusing – splitting wide loops may sometimes enhance prospects for SWP;
fusing small loops provides a richer variety of instructions to schedule efficiently
with SWP (example for applying in FE software was given in the 6.1.1);

• outer loop unrolling – provides richer variety of instructions in the innermost loop
(done by increasing the step in the outer loop and explicitly writing the missed
iterations in the inner loop); May be combined with prefetching – assigning fre-
quently used in the inner loop array element to local variable (done in outer loop)
in order to benefit from register reuse; Prefetching is a very often used technique.

6.1.3 Performance monitoring

Tools for performance monitoring are very useful in code optimization. Optimization
efforts should be spent on most time consuming routines. ssrun may be used to get
information on the total amounts of time a program spends on the different routines.
To monitor program fem compile without optimizations and start with

15

> ssrun -fpcsampx fem

> prof -lines fem.fpcsampx.m####

where #### stands for process ID. The output for the case when no fusing or inlining
(for vector addition and inner-product) is done looks like

[index] secs % cum.% samples function (dso: file, line)

[1] 85.497 58.8% 58.8% 85497 Matrix::Action(double*,doubl

[2] 12.411 8.5% 67.3% 12411 Method::vvadd(int,double*,do

[3] 11.567 8.0% 75.3% 11567 Method::inprod(int,double*,d

[4] 7.998 5.5% 80.8% 7998 Method::Convection_LM(float*

. . .

To see the values of various hardware performance indices use

> perfex -a -x -y fem

The output includes statistics for performance indices such as cache line reuse, cache
misses, loads/stores, issued instructions, Mflops reached and so on. For more information
on how to use see the corresponding man pages.

More information about code optimization can be found in [11].

6.2 Parallel FEM using OpenMP

OpenMP is a standard agreed upon by major hardware and software vendors. It consists
of a portable set of compiler directives, library routines and environment variables that
can be used to specify shared memory parallelism in Fortran and C/C++. Advantages
of using OpenMP are that it’s simple, portable and has flexible interface. Unfortunately,
knowing OpenMP is not enough to write scalable parallel programs. Very often knowl-
edge about the machine is needed in order to perform a proper optimization. We saw
how important the optimization issue is in 6.1. It’s importance for parallel computations
is even greater. For example, it’s reasonable to expect that the following fragment of
Matrix-vector multiplication (y = Ax) is scalable.

#pragma omp parallel for private(j, end)

for(i=0;i<dimension;i++){

end = V[i+1];

y[i] = 0;

for(j=V[i]; j < end; j++)

y[i] += A[j]*v1[VV[j]];

}

In practice, tests on SGI Origin 2000 machines (NUMA architecture) show that the
parallel execution may be even slower than the consecutive! One of the problems is that

16

the used arrays are not properly distributed among the processors, which is obviously
crucial for the performance of a NUMA architecture machine.

The problem about the data distribution for NUMA machines is solved on software 3

level by introducing new pragmas (#pragma distribute and #pragma distribute reshape).
Both pragmas are used to allocate the memory for an array among the local memories of
the processors. The first one, called regular distribution, is constrained to distribution
in terms of pages (16KB) and is useful only if each processor’s portion of the array is
substantially larger then the page size. The second one, called reshaped, overcomes the
page-level constraints for the cost of certain restrictions on the usage of the reshaped
arrays. Once distributed, the arrays may be redistributed (#pragma redistribute).
For more information on the subject (syntax and so on) see [14], Chapter 5.

Having discussed the crucial issue of data distribution we concentrate again on the
development of parallel FE software. The easiest way to parallelize the FE code, using
the discussed until now techniques, is to use the sequential one and add some parallel
constructs. The algorithm is as follows. First, parallelize the loops using the OpenMP
directives and functions. Second, increase the locality by some vertex reordering tech-
nique. Finally, improve the data distribution. Such strategy looks feasible. The practical
implementation shows that the appeal is only theoretical. The problems are :

• inefficient memory usage – data distribution can be applied only to statically al-
located arrays (fixed size), whereas in an adaptive finite element the memory al-
location is usually dynamic. To overcome this problem one may have to allocate
“bigger” arrays and dynamically redistribute them on each refinement level using

block-cyclic distribution with blocks of size
⌈

nodes
processors

⌉
. Also, in an adaptive

FE one would like to make use of the different refinement levels by defining multi-
level preconditioners, which could further worsen the memory usage inefficiency;

• poor scalability – due to many synchronization points. Also, in Matrix-vector
product (y = Ax) even in a perfect data distribution one processor still have to
access parts of x residing on the local memories of other processors. We also
suspect that there is computational overhead using reshaped arrays;

• programming efforts – the use of reshaped arrays requires change of the syntax of
many functions, more precisely, it requires specific format for passing such arrays
as function arguments.

Based on the mentioned problems and our computational experience, the conclusion
is that data placement is unlikely to help for direct parallelization of finite element code
and redesign of the algorithm is needed in order to get efficient, well scaled software.
The choice is of course the use of domain decomposition. The proposed data structure is
easy to use on a shared memory machine. Only basic OpenMP directives and functions

3On hardware level there is the so called page migration, which is automatic reallocation in the main
memory of whole pages (16KB)

17

are used. The code looks like a translation of the MPI version. For example, the sub-
domain initialization in the main function, using OpenMP (compared to MPI, see the
next subsection) looks like :

#include <omp.h>

. . .

Subdomain **S;

main(){

int np; // Number of available processors

cout << "Insert the number of processors : "; cin >> np;

cout << "\nInput the file name : "; cin >> fname;

Method m(fname, 0, 0); // Initialize mesh, where fname is

// the output from Netgen.

int *tr;

tr = new int[m.GetNTR()];

m.DomainSplit(np, tr); // Split the domain into "np" domains

// using Metis.

S = new PSubdomain[np]; // For simplicity we take S :

// Subdomain **S; to be global.

omp_set_num_threads(np); // Set the number of threads

#pragma omp parallel // Parallel region - to initialize

{ // the sub-domains

int myrank;

myrank = omp_get_thread_num(); // Get the thread number

S[myrank] = new Subdomain(myrank, &m, tr);

}

. . .

}

We don’t use the complicated OpenMP data distribution constructs. Instead we use
the so called first touch rule. This is a rule that memory is allocated to the processors
which are the first to access or touch the data. In the example above processor with
thread number myrank allocates in its local memory sub-domain with index myrank.
The communication between the sub-domains is done using the shared memory. For
example in implementing a global action, instead of non-owners sending contributions to
owners (next sub-section) here the owners directly take and add the slave contributions.
This is done after the non-owner have prepared the packages (as in the MPI case)
in consecutive addresses, so that cache reuse is achieved. For dot products we use
#pragma omp critical to add the sub-domains’ dot products. The other alternative,

18

the OpenMP reduction, seems computationally not efficient. To use the OpenMP
functions one have to include file omp.h. The compilation should be with -mp option.

6.3 Parallel FEM using MPI

Message-Passing Interface or MPI is a complex system of 129 functions which allow dis-
tributed memory parallel programing model. In such model the computation comprises
one or more processes that communicate by calling library routines to send and receive
messages to other processes. Although there are many MPI functions usually 5 or 6 are
enough. We will describe these main functions and show how they are used in our code.
The examples will be how the data structure was used in a parallel implementation of
CG using MPI (in C++). A simple introduction model may be demonstrated with a
fragment of our main function.

#include <mpi.h> // Has to be included

int main(int argc, char *argv[]){

char fname[100];

int Refinement;

int np;

cout << "Insert the number of processors : "; cin >> np;

cout << "\nInput the file name : "; cin >> fname;

Method m(fname, 0, 0);

int *tr;

tr = new int[m.GetNTR()];

m.DomainSplit(np, tr);

int myrank;

MPI_Init(&argc, &argv); // Initiate an MPI computation

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);// Determine the process identifier

// (in myrank)

Subdomain dd(myrank, &m, tr); // Initialize sub-domain ‘‘myrank’’

dd.Solve(); // Parallel solve

MPI_Finalize(); // Terminate the computation

}

Another function, used in implementing dot-product, is MPI Allreduce. Solve from
the last example is called from all the processes. In Solve we have a call to a standard
CG. The only change in the consecutive dot product in this CG routine is that at the end
we add the following :

19

. . . // compute res = (x, y)

#ifdef DOMAIN_DECOMPOSITION

double total;

MPI_Allreduce(&res, &total, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

return total;

#else

return res;

#endif

The meaning of the arguments is what intuitively one would guess looking at the ex-
ample. The other vector operations (addition/subtraction, scaling) are as in the con-
secutive version. The other important MPI functions, sending and receiving, will be
demonstrated in the realization of a parallel global Matrix-vector product (y = Ax).

void Matrix::Action(double *x, double *y){

#ifdef DOMAIN_DECOMPOSITION // The owners update the values of x

Subdomain->Update_Slave_Values(x); // in the slave nodes

#endif

. . . // standard y = A x

#ifdef DOMAIN_DECOMPOSITION

Subdomain->Update(y); // Slave nodes add their values

#endif // (contributions) to the owners

}

Functions Update Slave Values and Update have similar implementation and they use
the same MPI functions, so we will show only function Update. This function updates
the values of its argument by adding the contributions from no owners to owners. It
also makes the values at the no-owned nodes 0.

void Subdomain::Update(double *x){

int i, j, k, PNum, n = 0, start;

double Buf[MAX_PACKET], Bdr[6*MAX_PACKET];

MPI_Request request;

MPI_Status Status;

for(i=0; i<NPackets; i++)

if (Packets[i].Owner != SN){

start = n;

for(j=0; j<Packets[i].NPoints; j++){ // Put in Bdr all the infor-

Bdr[n++] = x[Packets[i].Vertices[j]]; // mation that has to be sent.

x[Pa[i].Ve[j]] = 0.;

}

// Send to the owner Packets[i].Owner - the corresponding packet

20

// number is Packets[i].Pack_Num_Owner (see the receiving part)

MPI_Isend(&Bdr[start], Packets[i].NPoints, MPI_DOUBLE, Packets[i].Owner,

Packets[i].Pack_Num_Owner, MPI_COMM_WORLD, &request);

}

// The owners receive packets from neighboring subdomains and do the

// necessary corrections.

for(i=0; i<NPackets; i++)

if (Packets[i].Owner == SN){ // Every owner should read

for(j=0; j<Packets[i].NSubdom; j++){ // Pa[i].NSubdom packets

MPI_Recv(Buf, MAX_PACKET, MPI_DOUBLE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &Status);

MPI_Get_count(&Status, MPI_DOUBLE, &n);// how many were read

PNum = Status.MPI_TAG;

for(k=0; k< Packets[PNum].NPoints; k++)

x[Packets[PNum].Vertices[k]] += Buf[k];

}

}

}

We put in Bdr all the information that has to be send in order to use non-blocking send
(function MPI Isend). The alternative, using blocking send, is slower since the sending
procedure MPI Send doesn’t complete until the whole message is delivered. A possibility
of deadlock is possible in this case.

The header file mpi.h has to be included. The compilation should be with -mpi op-
tion. The executable is started with mpirun -np # of processors executable. More
about the syntax of the used and other MPI functions can be found in [8].

With the so implemented parallel CG method we get superliner speedup. As we
mentioned before this is a term used when the speedup using p processors, denoted

and defined as Sp =
exec time on 1 processor
exec time on p processors , is bigger than p. Such phenomena

is possible and is explained with the efficient cache use due to reducing the problems
by the splitting of the original domain. The demonstration results are from solving
−�u = 1 with homogeneous Dirichlet boundary data on a rectangular parallelepiped of
size 1000 × 500 × 500. The results are summarized in table 6.3.

21

problem Time in seconds/speedup
size 1 processor 2 processors 4 processors 8 processors

6,481 1.00 0.53 0.34 0.22
1.90 2.92 4.52

17,913 2.98 1.33 0.73 0.52
2.24 4.08 5.73

43,293 13.52 5.78 3.12 1.64
2.34 4.33 8.24

69,910 31.75 14.95 6.37 3.32
2.12 4.98 9.56

447,972 699.7 338.7 159.7 75.5
2.07 4.38 9.27

Table 6.3. Computational results for the time and the corresponding speedups for different
problem sizes. We solve −�u = 1 with homogeneous Dirichlet boundary data on a rectangular
parallelepiped of size 1000 × 500 × 500. Problem size is the number of degrees of freedom.

References

[1] M. Ainsworth and J. T. Oden: A unified approach to a a posteriori error estimators
based on element residual methods. Numer. Math., 65 (1993) 23-50

[2] D.N. Arnold, A. Mukherjee, and L. Pouly: Locally adapted tetrahedral meshes
using bisection.

[3] I. Babuska and W. C. Rheinboldt: Error estimates for adaptive finite element com-
putations. SIAM J. Numer. Anal., 15 (1978) 736-754

[4] R. E. Bank and R. K. Smith: A posteriori error estimates based on hierarchical
bases. SIAM J. Numer. Anal., 30 (1993) 921-932

[5] R. Becker, C. Johnson, and R. Rannacher: Adaptive error control for multigrid
finite element methods. Computing, Springer-Verlag, 1995

[6] R. Becker and R. Rannacher: Weighted a posteriori error control in finite element
methods. Preprint 96-1 (SFB 359), Proc. ENUMATH - 95, Paris, 1995

[7] U. Elsner: Graph Partitioning: A Survey. Technical Report SFB393/97-27, TU
Chemnitz, 1997

[8] W. Gropp: Tutorial on MPI: The Message-Passing Interface. Mathematics and
Computer Science Division, Argonne National Laboratory (available on Internet 4)

4http://www-unix.mcs.anl.gov/mpi/tutorial/index.html

22

[9] G. Karypis and V. Kumar: Multilevel k-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed Computing, 48(1):96-129, 10 January
1998

[10] G. Karypis and V. Kumar: A fast and highly quality multilevel scheme for parti-
tioning graphs. SIAM Journal on Scientific Computing, Volume 20, Number 1 pp.
359-392,1998

[11] D.A. Padua and M.J. Wolfe: Advanced Compiler Optimizations for Supercomput-
ers. Communications of ACM (special issue), vol. 29, no. 12, pp. 1184-1201, Dec.
1986

[12] A. Quarteroni and A. Valli: Domain Decomposition Methods for Partial Differential
Equations. Clarendon Press, Oxford, 1999

[13] Y. Saad: Iterative methods for Sparse Linear Systems. PWS Publishing Company,
1995

[14] Silicon Graphics, Inc.: MIPSpro C and C++ Pragmas. Document Number 007-
0701-130 (available on Internet 5), 1999

[15] Silicon Graphics, Inc.: C Language Reference Manual. Document Number 007-
3587-003 (available on Internet 6), 1999

[16] R. Verfürth: A posteriori error estimators for convection-diffusion equations. Nu-
mer. Math., 80 (1998) 641–663

[17] O.C. Zienkiewicz, and J.Z. Zhu: A Simple Error Estimator and Adaptive Procedure
for Practical Engineering Analysis. Int. J. Numer. Meth. Engng., 24 (1987) 337-357

[18] O.C. Zienkiewicz, J.Z. Zhu, A.W. Craig, and M. Ainsworth: Simple and Practical
Error Estimation and Adaptivity: h and h-p Version Procedures. Adaptive Methods
for Partial Differential Equations, SIAM, 1989

5http://autarch.loni.ucla.edu/ebt-bin/nph-dweb/dynaweb/SGI Developer/
6http://autarch.loni.ucla.edu/ebt-bin/nph-dweb/dynaweb/SGI Developer/

23

