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1 OBJECTIVES OF THE RESEARCH PROJECT

This project focused on the development of methods for simulation of multi-phase and multi-
component fluid flows in porous media that combine recent advances in numerical methods with
techniques for partitioning and load balancing based on graph theory and graph algorithms. Ac-
cording to the research plan, we have concentrated our efforts and achieved our goals in the follow-
ing interrelated groups of problems, which combine theoretical investigations with computational
experimental work:

e Construction, analysis, and implementations of finite volume element methods for reactive
flows in porous media,

Local error estimators and refinement strategies for finite volume methods,

Algorithms for partitioning and load balancing,

Domain decomposition for parallel computations in fluid flow modeling, and

Testing the developed methods on fluid flows in porous media.

The first four points are connected in the following computational strategy. We use a mesh
generator (triangle for 2-D meshes and NETGEN for 3-D meshes) to generate a good coarse mesh.
Then the considered problem is solved sequentially on the coarse mesh (by every processor). The so-
lution is used to compute a posteriori error estimates, which are used as weights in an element-based



splitting of the coarse mesh into sub-domains. Such splitting ensures that the local refinements
that follow will produce a computational mesh with a number of triangles/tetrahedrons balanced
over the sub-domains. Every sub-domain is “mapped” to a processor. Then, based on a posteriori
error analysis, each processor refines consecutively its region independently. After every step of
independent refinement, there is communication between the processors to make the mesh on that
level globally conforming. The last point concentrates on computer simulation and testing the
developed techniques on fluid flows in porous media. In Section 3 we give the results from applying
the developed computational methodology over the so-called Bioscreen Problem.

Additional information about this research project, including examples of results, can be found
on the Internet at http://www.isc.tamu.edu/EPA.

2 SUMMARY OF THE RESEARCH

2.1 Mathematical Model

The mathematical model of steady-state ground-water flows and transport in porous media yields
two basic equations. These are the Darcy equation for pressure, discussed in Subsection 2.1.1, and
the advection-dispersion (transport) equation, discussed in Subsection 2.1.2. The transport equa-
tion describes the steady-state distribution of a passive substance dissolved in the water, transported
by the flow, and absorbed by the soil. Further, this method can be extended to the case of transport
of multiple chemicals that react. Since many clean-up, remediation, and exploration strategies in
aquifers and petroleum reservoirs are based on treatment/injection/production through wells, we
also briefly discuss various well models.

2.1.1 Diffusion (pressure) equation

The fluid flow is due to the velocity v defined by Darcy’s law: v = —DVp, where p is the pressure,
and D is the permeability of the porous media. The pressure p satisfies the following equation
subject to various boundary conditions:

V-v=-V-DVp =], in €,
p =pp, onlp,
—DVp-n—+p =py, only,
P =Py, only.

Here € is a bounded polyhedral domain in R? with boundary Q2 =T = T'p Uy UT,, D is
symmetric, bounded and uniformly positive definite matrix in €2, n is the outer unit vector normal
to the boundary of Q, pp, pn, and v > 0 are given functions, p,, is a given constant (called
well-bore pressure), and f is the given source term. The last three equations prescribe Dirichlet,
Neumann, and well boundary conditions, respectively. The last one models injection/extraction of
fluid through a well, which is assumed to be a cylinder with radius r,. Since the well radius r,, is
very small compared to the reservoir size, the wells can be classified as small features of the media
and well boundary conditions will lead to solutions with almost singular behavior. For discussion
of well boundary conditions, including nonlinear ones, we refer to [20].



Another boundary condition that models injection/extraction of fluid from a reservoir is well
condition with a prescribed production rate ), but with unknown pressure p,, on the well surface:

P = Py, on I'y, p, unknown constant and DVp -nds = Q. (2)
Fw

Finally, on I';, we can prescribe the same type of boundary condition as on I'y. Namely, we

have the boundary condition :
~DVp-n=vp+@Q on Ty (3)

with Q a given constant. Note that here Q is the pointwise flux, while ) in (2) is the total debit
of the well. For v = 0 they are related by Q@ = @S,,, where Sy, is the area of the lateral surface of
the well. Our computations involving well models were done for condition (3) with v = 0.

2.1.2 Convection-diffusion-reaction (transport) equation

The second basic equation gives the concentration of a passive chemical dissolved and distributed
in the water due to the processes of advection, diffusion, and absorption. The equation describes
the conservation of mass of the chemical. The steady-state distribution of the concentration c is
described by the following general boundary value problem for convection-diffusion-reaction equa-
tion:

( =V -KVc+V:(bc) +ac =f, in Q,

¢ =cp, on I'p,
¢ (=KVc+be) - n =cp, onI‘é(%, (4)
~KVe-n =0, onTD%¥,

\ C =y, only.

Again, Q is a bounded polyhedral domain in R® with boundary 0, that is split into Dirichlet,
Neumann, and well parts, namely 9Q) =T' = I'p UT'y UT',,. Further, the Neumann boundary is
divided into two parts: Ty = ' UT9¥, where T'? = {z € Ty : n(z) - b(z) < 0} and T = {z €
I'n:n(x)-b(r) > 0}. We assume that the diffusion-dispersion tensor K is a symmetric, bounded,
and uniformly positive definite matrix in €, b is the given convection vector field, n as before is the
outer unit vector normal to 92, a > 0, f, ¢p, cy and v > 0 are given functions. The boundary
condition on I'y, models the case of a given concentration on the well surface, which corresponds
to the case of an injection well.

In our computations, we take the advection vector-field b = v, where the Darcy velocity v is
obtained after solving the problem in Equation (4). Then the diffusion-dispersion tensor is given
by K = kgiprI + k" v/|v]+ ki(|v]*I —v"v)/|v], where kg; ¢, ki, and k; are constants characterizing
correspondingly the diffusion, transverse dispersion, and longitudal dispersion.

In the case of a production well, we have to impose boundary conditions that model appropri-
ately the extraction of the dissolved substance by the well activity. In the case when the flow is
determined by the solution of problem (4) with well boundary condition (3), we get the following
boundary condition for the concentration:

KVec-n=0 onTl,. (5)



2.2 Finite Volume Element Methods for Flows in Porous Media

Many clean-up, remediation, and exploration strategies in aquifers and petroleum reservoirs are
based on treatments/actions through wells. Therefore, accurate numerical simulation of the well
is an important problem. We have restricted our research on the following two main directions:
accurate numerical well models and adaptive local grid refinement.

First, we have theoretically studied the well models for Darcy‘s and Forchheimer’s flows treated
numerically by finite differences, finite elements, and mixed finite elements. This research has
resulted in a paper by Ewing, R. Lazarov, S. Lyons, D. Papavassiliou, J. Pasciak, and G. Qin,
which has appeared in Computational Geosciences (see paper 9 of the List of Publications Resulting
from This Grant). This study is a basis for our further research in 3-D problems, as well as more
complex flows.

Mathematical formulations in terms of parabolic problems with integral terms in time have been
used in various engineering models, such as nonlocal reactive transport in underground water flows
in porous media done by Dagan [12] and Cushman and collaborators [11], and radioactive nuclear
decay in fluid flows investigated by Shelukhin [19]. These equations model quite adequately the
process of multi-component flows in porous media and lead to better understanding of the physical
processes and their properties. A very important characteristic of all of these models is that they all
express a conservation of a certain quantity (mass, heat, etc.) in any moment for any sub-domain.
In many applications, this is a desirable feature of the approximation method when it comes to
numerical solution, and application of the corresponding models to real life problems.

We have studied finite volume element methods for one-dimensional and two-dimensional prob-
lems of this type. Namely, we have developed a general framework for obtaining finite volume
element approximations and studying their error analysis. In 1-D, we consider the lowest-order
(linear and L-splines) elements. These schemes are locally conservative and have optimal approxi-
mation properties. We have shown that the finite volume element approximations are convergent
with optimal order in H' norm, suboptimal in the L? norm and super-convergent in a discrete H'
norm. In 2-D we have also studied the convergence in L°°-norm and shown optimal error estimates.
This work has been reported by Ewing, Lazarov, and Lin in paper 11 of the List of Publications
Resulting from This Grant. We have implemented an upwind version of the approxiamtaion which
has the same properies as the stibilized methods of [18] and at the same time has local conservation.

2.3 Local Error Estimators and Refinement Strategies

The solutions of flow and transport problems in porous media exhibit local behavior. Therefore,
it is essential that local grid refinement, based on a posteriori error analysis, is applied. Our goal
was to implement and experiment with various local error estimators and indicators, to develop
adaptive finite element and finite volume codes for both 2-D and 3-D problems. The methods
were based on the previous research by Babuska and Rheinboldt [4], [5]; Zienkiewicz and Zhu [23];
Becker and Rannacher [8]; Bank and Weiser [7]; Brenner [10].

We started the problem investigation by developing, implementing, and testing a 2-D grid
refinement strategy based on the known error estimator and indicators. In the context of the finite
element method, our work was mostly concentrated on the ”h-version” adaptive refinement, where
the error is reduced by adaptively refining the grid and leaving the degree of the approximating
polynomials the same. The results of this research are summarized in the technical report by R.
Lazarov, J. Pasciak, S. Tomov, Error control, local grid refinement, and efficient solution algorithms
for singularly perturbed problems (this is paper 18 of the List of Publications Resulting from This



Grant). Here we show examples of a homogeneous reservoir and a non-homogeneous reservoir with
two wells.

We extended the developed 2-D adaptive code to 3-D. We worked on, tested, and implemented
three error indicators, namely residual based refinement (first introduced by Babuska and Rhein-
boldt [4]), Zienkiewicz-Zhu technique (see [23]), and hierarchical refinement (see [6], [7]). We have
adapted the first two techniques for the finite volume element method. In R. Lazarov, S. Tomov,
(paper 21 of the List of Publications Resulting from This Grant), Adaptive finite volume element
method for convection-diffusion-reaction problems in 3-D, we present an adaptive numerical tech-
nique for solving steady-state diffusion and convection-diffusion-reaction equations in 3-D (including
the case of dominant convection) using finite volume approximations. Computational results of var-
ious model simulations of fluid flow and transport of passive chemicals in non-homogeneous aquifers
are presented and discussed in this work.

In our research we have mostly used triangular and tetrahedral meshes for the 2-D and 3-D
case, correspondingly. The actual mesh refinement is important since the consecutive refinements
have to be done in such way that the element shapes do not degenerate. Our adaptive 3-D mesh
generation is based on the bisection algorithm (see, e.g. Arnold et al. [3]). In the 2-D case, the
triangles marked for refinement are split uniformly into four equal parts, and the mesh is refined
to conformity by bisection through the longest element edge.

Finally, we implemented the refinement in parallel using the Message Passing Interface Library
(MPI). Each processor refines its part of the domain independently. After achieving local confor-
mity, the processors communicate to obtain global conformity. Realistic 2-D and 3-D examples of
flows in porous media are given in the Bioscreen Problem.

2.4 Algorithms for Partitioning and Load Balancing

We have concentrated our efforts on implementation issues, working on two versions of our parti-
tioning algorithms. The first implementation uses a simpler strategy for searching the graph based
on the levels of a breadth-first search combined with recursive bisection. In addition, separators
that give a better ratio of component to boundary sizes were were given higher priority than those
that give a better balance. In addition, issues related to the optimal combination of smaller com-
ponents into components of the final partition were addressed. The advantages of this approach
are that the resulting algorithms are very fast and produce good results for triangulations with
good quality characteristics and that the algorithms will work with almost no modification for 3-D
meshes. The second implementation is of an algorithm that exploits the planar nature of the mesh
and divides the graph directly into p parts, instead of recursively subdividing. This algorithm works
better for triangulations of high aspect ratios (see paper 3 of the List of Publications Resulting
from This Grant and [13, 16, 17]).

2.4.1 Constructing good separators under complex criteria

We studied graph separation as a basic tool for achieving even distribution of data among processors
and to reduce the cost of communication between processors in a parallel computer. In graph
separation algorithms, one has to construct a small set of vertices or edges called a separator whose
deletion divides the input graph into small and roughly equal parts. If the input graph describes a
finite element mesh, then the data associated with the elements corresponding to each component of
the partition will be assigned to the same processor. The separator theorems give a guarantee that



the data partition is optimal according to certain criteria (see paper 7 of the List of Publications
Resulting from This Grant and [14, 16, 17]).

According to the research plan, we studied separation in graphs where vertices or edges will
have one or more types of weights and costs associated with them. We constructed an algorithm
that finds in O(n) time a separator of an arbitrary planar graph of n vertices. In case of vertex costs

in the original graph the total sum of vertex costs of the separator is at most \/8 2 vev (@) (cost(v))?

and in case of edge costs the total sum of edge costs is at most 4\/d D vV (G) (cost(v))2, where d is

the maximum vertex degree. This result is tight within a constant factor.

Furthermore, we studied applications of our result for solving problems in diverse areas. In
graph embedding, we showed that any m-vertex planar graph of maximum degree d and non-
negative edge costs whose squares sum up to n can be embedded into a binary tree, a hypercube,
a butterfly graph, a shuffle-exchange graph, a cube-connected-cycles graph, or a de Brujn graph
with O(log d) average weighted dilation. For the graph pebbling problem, which has applications in
register allocation and memory management, we showed that any n-vertex planar acyclic directed
graph G with non-negative vertex costs can be pebbled so that, the sum of the costs of all vertices

with pebbles be O cost(v))? + I'logn). (Here I denotes the maximum sum of costs
veV(Q)

on the predecessors of any vertex of G.) We also found efficient solution of the tree congestion
problem using our separation algorithms. No previous efficient algorithms were known for those
problems. These results have been presented in paper 11 of the List of Publications Resulting from
This Grant and in [2, 15, 16, 17]).

2.4.2 DMaintaining partitions in a dynamic environment

Using graph partitioning algorithms, one can distribute the data among the processors so that the
computational load is balanced and the communications are minimized. This initial partitioning,
however, might later need to be updated after such operations on the mesh as mesh refinement
(adding new points or edges) and mesh coarsening (removing existing points and edges). The
currently existing graph partitioning algorithms construct the new partitioning from scratch, which
is time consuming, and they also may result in a new data reallocation that differs much from the
original one and thus might require many data transfers.

We develop a new algorithm for maintaining a balanced partitioning for dynamic planar graphs,
i.e., such that can be changed by local vertex or edge addition or deletion operations. Our algorithm
uses a tree-like data structure that takes only O(n) space, where n is the size of the graph, and can
be updated in O(logn) time after any local change of the graph of the above type. Furthermore,
the updated partition is close to the original one, which means that only a few (O(logn) in the
worst case) blocks of data have to be moved between processors in order to maintain the required
properties of the partition (see paper 1 of the List of Publications Resulting from This Grant).

2.4.3 Using separators for adaptive mesh partitioning

The generation of a mesh with appropriate characteristics is a very important phase of the simu-
lation, since the shapes of the finite elements have influence on the accuracy of the approximation
and the numerical stability of the method. We investigated issues of mesh smoothing based on the
so call spring embedding method, which has recently been studied in graph drawing applications.
The idea of this method is to find a placement of the vertices of the mesh in such positions that



minimize the total sum of squares of the edge lengths. This simulates a mechanical system, where
edges are replaced by strings which attract the corresponding endpoint of of the edge with force
proportional to the length of the edge. There are also variants where repulsive forces are assigned
to some of the edges. Our study showed that in many cases this method produces bad solutions,
but there are cases where the resulting mesh be very bad or even the method can produce an invalid
mesh. We investigated an improved version of the method, where real valued weights are assigned
on the vertices and edges of the mesh. We showed that appropriate combination of weights can
produce an optimal placement for any mesh.

2.5 Ready-made software

We have also used METIS in our codes. This is a software package for partitioning large irregular
graphs/meshes and computing fill, thus reducing the sequencing of sparse matrices. This software
has been developed by George Karypis and Vipin Kumar from the University of Minnesota. The
algorithms in METIS are based on multilevel graph partitioning, where the graph is made pro-
gressively coarse, the coarse graph is partitioned, and then the computed partitions are projected
into the fine graph. Below we give several 2-D and 3-D examples of sub-domain partitioning using
METIS.

2.6 Implementation of the Domain Decomposition Structure on Parallel Com-
puters

We have completed a domain decomposition implementation featuring the following:

e Sub-domain partitioning providing good load balance and minimization of the number of
shared nodes between the sub-domains nodes (called interface nodes);

e A posteriori error estimators and indicators leading the refinement process and providing
input for weighted sub-domain partitioning;

e Parallel multilevel local refinement preserving the mesh quality and providing (combined with
the above two features) load balance and minimization of the interface node number over the
different refinement levels;

e Relatively independent sub-domains “mapped” to different processors with data structures
providing efficient access to the interface nodes; and

e Efficient solvers, visualization etc.

The implementation, using C++, is in an object-oriented style. The parallel computations are
done using the Message Passing Interface Library (MPI). The main classes, their hierarchy, data
members, and methods are given in Figure 1.

The PCG method that solves a symmetric and positive definite system of linear equations
and the GMRES method that solves non-singular non-symmetric systems of linear equations are
implemented as C++ templates. To perform the algorithm, the templates rely on four routines (to
solve Ax = b):

e Given z compute Az;

e Given z and y, compute the inner product (z, y);

e Given scalars a and b, and vectors  and y, compute ax + by; and
e Given z, compute Bz, where B is a preconditioner to A.
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|

preconditioner)

- Update -add contrib. from no-owners
to owner, make no-owners 0.

Methods - send, receive; init. procedures

- Subdomain number; number of pack- | - UpdateNoOwners - update no-owners

\___@sadarayofpackets ;\__ withvduesfromowners p
Method 'Data 'Methods
- Functions initializing different stiffness
Matrix matrices

Data - pointer to the sparce structure and
values; pointers to other useful data

Methods - Action; ActionTranspose;
Matrix mult; Gauss Seidel iteration

- Preconditioners : multigrid; hierarchical
basis multigrid

- A posteriori error indicators: RB, ZZ,
Hierarchical, Second derivative

- Error computing functions : in discrete
12, HY, maximum and energy norms

- Arrays of unknowns, RHS (putin
Method for convinience)

I
|
- Solvers: CG, PCG, GMRES |
I
I
I

tetrahedron face
- 4 vertex indices - 3vertex indices
- 4 faceindices - 2 tetrahedron indices
- Linteger attribute

[ edge] vertex |
! - 2 vertex indices - 3 coordinates (double) !

- array of nodes on Dirichlet boundary

- sparse vertex connectivity structure (used for the stiffness matrix)
- [sparse vertex connectivity structure for hierarchical basis]

- [sparse vertex connectivity structure for interpolation]

- number of elements, faces, edges, vertices, levels

- Mesh constructor - initializes the mesh data from NETGEN output file

- Local Refine - input islist of tetrahedrons marked for refinement
- the result is updated Mesh (anew conforming mesh level) !

- Printing procedures (for Maple, MCGL, MTVPlot)
- Many auxiliary functions supporting the above methods and others

Figure 1: Code structure. Main classes along with their data members and methods.

As a result of this template mechanism, we have highly reusable pieces of software.

We have also investigated a new and very promising technique for domain decomposition com-
putations using non-matching grids. Namely, a multi-grid technique for uniformly preconditioning
linear systems arising from a mortar finite element discretization of second-order elliptic bound-
ary value problems has been introduced and analyzed by Gopalakrishnan and Pasciak (paper 16
of the List of Publications Resulting from This Grant). These problems are posed on domains
partitioned into sub-domains, each of which is independently triangulated in a multilevel adaptive
fashion. The multilevel mortar finite element spaces based on such triangulations (which need
not align across sub-domain interfaces) are in general not nested. Suitable grid transfer operators
and smoothers have been developed that lead to a variable V-cycle preconditioner resulting in a
uniformly preconditioned algebraic systems.

We have also implemented and tested initialization procedures connecting our software to pack-
ages such as HYPRE and PETSc. HYPRE is being developed at the Center for Applied Scientific



Computing (CASC) at Lawrence Livermore National Laboratory. It is developed to fill a need for
highly parallel preconditioners with scalable performance. PETSc is a toolkit providing variety of
scalable (parallel) solvers. This direction of our work is in close cooperation with the LLNL team
developing HYPRE and is now under intensive development.

3 SUMMARY OF FINDINGS & CONCLUSIONS:
BIOSCREEN PROGLEM: A PARTICULAR EXAMPLE OF FLOW IN POROUS ME-
DIA

Here we present a particular problem of flow in porous media. It is based on data supplied to us by
the Center for Biofilm Engineering at Montana State University. The setting is described below.
A steady state flow, with Darcy velocity v (measured in ft/yr), has been established in a
parallelepiped shaped reservoir of size 1000 x 1000 x 500. The problem setting (see below) gives
us symmetry with respect to the plane x5 = 0, so the equations are solved only in half of the
domain, the parallelepiped (0, 1000) x (0,500) x (0,500). The transport of a contaminant, in our
case benzene, dissolved in the water is described by the convection-diffusion-reaction equation (4),
where c is the benzene concentration, b is the Darcy velocity v, K is the dispersion-diffusion tensor,
and « is the biodegradation rate. We assume that the Darcy velocity v is obtained by solving the
pressure equation (1) for fully saturated porous media under appropriate boundary conditions.

3.1 Simulation Results

Here we present simulation results for the case of a homogeneous reservoir, a non-homogeneous
reservoir, and a non-homogeneous reservoir with a well.

3.1.1 Homogeneous aquifer

The pressures at the the faces 1 = 0 and z; = 1000 are constants, 1000 and 0, respectively,
and the permeability tensor is D = 321, I is the identity matrix. On the rest of the boundary,
a homogeneous Neumann condition is specified. This setting creates a uniform Darcy velocity
v = (32,0,0) ft/yr. A steady-state leakage on boundary strip z; = 0, z3 = 50..350 of 30 mg/I has
been established. The dispersion/convection process causes the dissolved benzene to disperse in the
reservoir. The dispersion tensor has the form K = kg;rrl + kew? v/|v| + ki(Jv]*I — v"'v)/|v|, where
kairr = 0.0001, k; = 21 and k; = 2.1. The biodegradation is transforming the pollutant into a solid
substance which is absorbed by the soil. This leads to a decrease in the benzene. Its concentration
level curves are shown on Figure 2 for the case of low biodegradation rate a = 0.1 mg/yr and on
Figure 3 for medium biodegradation rate a = 0.2 mg/yr. We have started with an initial coarse
mesh with 52 nodes.

3.1.2 Non-homogeneous aquifer

Here the problem setting is as above, but a layer is added (see Figures 2, 3, and 4). In the layer strip
we take the permeability Dj,ye, to be twice smaller than in the rest of the domain, i.e. Djgye, = 161.
Now the Darcy velocity is not constant and the error estimators force the grid to be refined around
the layer. The obtained grid is shown on Figure 2.

After the pressure is found with prescribed accuracy we solve the corresponding problem for
the concentration. Figure 3 shows the obtained mesh and the isolines for the concentration in
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Figure 2: Pressure computations for a non-homogeneous reservoir; (left) the locally refined 3-D
mesh on level 2 with 4,053 nodes; (right) Contour curves of the pressure for level 2
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Figure 3: Concentration computations for a non-homogeneous reservoir; (left) the 3-D mesh on
refinement level 4 with 39,445 nodes; (right) contour curves of the concentration for the cross-
section z9 = 0; the permeability in the layer is two time smaller than the rest of the domain

the reservoir cross-section 3 = 0 on grid refinement level 4. Two more experiments varying the
permeability tensor are shown on Figure 4. The first one shows the concentration isoline in the
reservoir cross-section o2 = 0 when the permeability in the layer is 5-times and 10-times smaller
than the permeability in the rest of the reservoir. The initial coarse mesh in both cases has 235
nodes. The solution method is borroed from [9] and utilizes multigrid concepts. The highest level
of refinements has 67,509 nodes.

3.1.3 Non-homogeneous aquifer with a well

Finally, we consider a problem with one well using the well model described in Section 2 and the
approximation given in Section 3. The well has an axis along the segment z; = 250, x5 = 0,
xz3 = 0..400, and its production rate is = 200,000 [/yr. On Figure 5, we show the adapted
mesh and the level curves for the pressure in the reservoir cross-section o = 0. On Figure 6 we
show the computational mesh and the level curves obtained for the concentration in the reservoir
cross-section xg = 0 on grid refinement level 5.
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Figure 4: Concentration computations for a non-homogeneous reservoir; contour curves of the
concentration for permeabilities in the layer 5 times (left) and 10 times (right) smaller than the
permeability in the rest of the domain
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Figure 5: Pressure computations for a non-homogeneous reservoir with a well; (left) the 3-D Mesh
on level 3 with 34,236 nodes; (right) contour curves of the pressure on level 3

3.2 Conclusions

The developed methodology allowed us to simulate fairly large problems related to groundwater
reservoirs (flow, diffusion and dispersion of passive chemicals) in a parallel computer environment.
The resulting problems could easily reach more than one million unknonws which, when combined
with a grid refinement technique, ensure high resolution and qulity of the numerical results.
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5 STUDENT PARTICIPATION AND SUPPORT

Four Ph.D. students participated and were supported by this grant. J. Gopalakrishnan (defened
Ph.D. in 1999) developed efficient multi-grid/multilevel methods for non-conforming domain de-
composition and mortar methods. C. Kim (Ph.D. expected in 2001) developed mortar spaces based
on a dual approach. S. Tomov (Ph.D. expected in 2002) was the main constructor of the data struc-
ture for parallel computations and implemented both finite element and finite volume methods with
local grid refinement. C. Bacuta (defended Ph.D. in 2000) participated in the analysis of various
multilevel methods and refinement strategies.
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