ON THE ACCURACY OF THE FINITE VOLUME ELEMENT
METHOD BASED ON PIECEWISE LINEAR POLYNOMIALS

RICHARD E. EWING, TAO LIN, AND YANPING LIN

ABSTRACT. We present a general error estimation framework for a finite volume
element (FVE) method based on linear polynomials for solving second- order elliptic
boundary value problems. This framework treats the FVE method as a perturbation
of the Galerkin finite element method and reveals that regularities in both the exact
solution and the source term can affect the accuracy of FVE methods. In particular,
the error estimates and counter examples in this paper will confirm that the FVE
method cannot have the standard O(h?) convergence rate in the L? norm when the
source term has the minimum regularity, only being in L?, even if the exact solution
is in H2.

1. INTRODUCTION

In this paper, we consider the accuracy of finite volume element methods for the
following elliptic boundary value problem: find u = u(z) such that

(1.1) —V-(AVu)=f, 2€Q, ux)=0, z€0IQ,

where  is a bounded convex polygon in R? with boundary 92, A = {a;;(z)} is a
2 x 2 symmetric and uniformly positive definite matrix in €2, and the source term
f = f(z) has enough regularity so that this boundary value problem has a unique
solution in a certain Sobolev space.

Finite volume (FV) methods have a long history as a class of important numerical
tools for solving differential equations. In the early literature [25, 26] they were inves-
tigated as the so-called integral finite difference methods, and most of the results were
given in one-dimensional cases. Finite volume methods have also been termed as box
schemes, generalized finite difference schemes, or integral type schemes [19]. Gen-
erally speaking, finite volume methods are numerical techniques that lie somewhere
between finite difference and finite element methods, they have a flexibility similar to
that of finite element methods for handling complicated solution domain geometries
and boundary conditions, and have a comparable simplicity for implementation like
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finite difference methods when triangulations have simple structures. More impor-
tantly, numerical solutions generated by finite volume methods usually have certain
conservation features that are desirable in many applications. However, the analysis
of finite volume methods is far behind that for finite element and finite difference
methods. The readers are referred to [3, 16, 20, 21, 24| for some recent developments.

The finite volume element (FVE) method considered in this paper is a variation of
the finite volume method, which can also be considered as a Petrov-Galerkin finite
element method. There have been many publications on the accuracy of FVE methods
using linear finite elements. Some early work published in the 1950’a and 1960’s can
be found in [25, 26]. Later, the authors of [19] and their colleagues obtained optimal
order H' error estimates and superconvergence in a discrete H! norm. They also
obtained L? error estimates of the following form:

lu—wsllo < OW|[ullwaney, p> 1,

where u and uy, are the solution of (1.1) and its finite volume element solution, respec-
tively. Note that the order in this estimate is optimal, but its regularity requirement
on the exact solution seems to be too high compared with that for finite element
methods that can have an optimal order convergence rate when the exact solution is
in W2P(Q) or H%(€2). Optimal order H' estimates and superconvergence in a discrete
H' norm have also been given in [3, 16, 20, 21, 24] under various assumptions on the
form of the equations or triangulations.

More recently, articles [7, 8] presented a framework based on functional analysis
to analyze the FVE approximations. The authors in [10] obtained some new error
estimates by extending the techniques of [19]. The authors of [13, 14] considered
FVE approximations for parabolic integro-differential equations, which covers the
above boundary value problems as a special case, in both one and two dimensions. In
these articles, optimal order H' and W™ error estimates, superconvergence in H'
and W norms are obtained. In addition, they found an optimal order L> error
estimate in the following form:

mhmmwscmomuw+mm)

which is in fact an error estimate without any logarithmic factor. However, this
estimate still demands the H® regularity of the exact solution. Article [6] studied
the non-conforming Crouzeix-Raviart finite volume element methods and presentd
optimal order H' and L? error estimates. But again, the L? error estimate in this
article was based on the H? regularity of the exact solution.

To our best knowledge, there have been no results indicating whether the above
W3P(Q) regularity is necessary for the FVE solution with linear finite elements to
have the optimal order convergence rate. On the other hand, it is well known that
in many applications, the exact solution of the boundary value problem cannot have
W3P or H? regularity. In fact, the regularities of the source term f, the coefficient,
and the solution domain can all abate the regularity of the exact solution. A typical
case is the regularity of the solution domain that may force the exact solution not to
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be in W3? or H?® even for the best possible coefficient A and source term f such as
constant functions.

The central topic of this paper is to show that, by both error estimates and counter
examples, unlike the finite element method, the H? regularity of the exact solution
cannot guarantee the optimal convergence rate of the linear FVE method if the source
term has a regularity worse than H', assuming that the coefficient is smooth enough.
Namely, we will present the following error estimate:

u = wrllo < 0(h2||u||2 n h”5||f||/s>,

which leads to the optimal convergence rate of the FVE method only if f € H? with
£ > 1. Note first that, except for special cases such as when the dimension of €2 is one
or the solution domain has a boundary smooth enough, the H' regularity of the source
term does not automatically imply the H? regularity of the exact solution. On the
other hand, the H? regularity of the exact solution will lead to the H' regularity of the
source term when the coefficient is smooth enough, and this error estimate reduces to
the one similar to those obtained in [10, 17, 19]. Also, this error estimate is optimal
from the point of view of the best possible convergence rate and the regularity of
the exact solution. Moreover, counter examples given in this paper indicate that the
regularity of the source term cannot be reduced. Hence, we believe this is a more
general error estimate than those in the literature.

In fact, the FVE method is a Petrov-Galerkin finite element method in which the
test functions are piecewise constant. As we can see later, the non-smoothness in
the test function demands a stronger regularity of the source term than the Galerkin
finite element method. Also, viewing the FVE method as a Petrov-Galerkin finite
element method suggests that we treat the FVE method as a perturbation of the
Galerkin finite element method [6, 19] so that we can derive optimal order L?, H'
and L* error estimates with a minimal regularity requirement just like finite element
methods except for the additional smoothness assumption on the source term f.
This error estimation framework also enables us to investigate superconvergence of
the FVE method in both H* and W* norms using the regularized Green’s functions
[22, 27], and obtain the uniform convergence of the FVE method similar to that in
(23] for the finite element method. In summary, we observe that the FVE method not
only preserves the local conservation of certain quantities of the solution (problem
dependent), but also has optimal order convergence rates in all usual norms. The
additional smoothness requirement on the source term f is necessary due to the
formulation of the method.

The results of this paper can be extended easily to cover more complicated models.
For example, most of the results and analysis framework are still valid if the differential
equation contains a convection term V - (b u), see [20] and [21], and the symmetry of
the tensor coefficient A(x) is not critical. Also, one may consider Neumann and Robin
boundary conditions on the whole or on a part of the boundary 0f2. In fact, the FVE
method was introduced in [2] as a consistent and systematic way to handle the flux
boundary conditions for finite difference methods. We also refer the readers to [1, 18]
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for FVE approximations of nonlinear problems, [11] for an immersed finite volume
element method to treat boundary value problems with discontinuous coefficients,
and [12] for the mortar finite volume element methods with domain decomposition.

This paper is organized as follows. In Section 2, we introduce some notations,
formulate our FVE approximations in piecewise linear finite element spaces defined on
a triangulation, and recall some basic estimates in the literature. All error estimates
are presented in the pertinent subsections of Section 3. Section 4 is devoted to counter
examples that demonstrate the necessity of the smoothness of the source term in order
for the FVE method to have the optimal order convergence rate.

2. PRELIMARIES

2.1. Basic notations. We will use the standard notations for Sobolev spaces W*?((2)
with 1 < p < oo consisting of functions that have generalized derivatives of order s
in the spaces LP(£2). The norm of W*P(Q) is defined by

1/p

lullop = llalleo = | [ 3 102z | for 1< p <o
Q

laf<s

with the standard modification for p = oo. In order to simplify the notations, we
denote W*2(Q2) by H*(2) and skip the index p = 2 and 2 whenever possible, i.e.,
we will use ||u|ls2.0 = ||u|ls.o = ||ulls. We denote by H}(Q2) the subspace of H'(Q)
of functions vanishing on the boundary 9 in the sense of traces. Finally, H~'(Q)
denotes the space of all bounded linear functionals on Hy(Q2). For a functional f €
H~'(Q), its action on a function u € H{ () is denoted by (f, u), which represents the
duality pairing between H~'(Q2) and Hj (). Without causing confusion, we use (-, -)
to denote both the L?(Q2)-inner product and the duality pairing between H () and

For the polygonal domain €2, we now consider a quasi-uniform triangulation 7},
consisting of closed triangle elements K such that Q = Uger, K. We will use N, to
denote the set of all nodes or vertices of T},:

Ny = {p: pis a vertex of element K € T, and p € Q},

and we let N = N, N Q. For a vertex z; € Ny, we denote by II(¢) the index set of
those vertices that are in some element of 7}, together with x;

We then introduce a dual mesh T} based upon 7},; the elements of T} are called
control volumes. There are various ways to introduce the dual mesh. Almost all
approaches can be described by the following general scheme: In each element K € T,
consisting of vertices x;,z; and xy, select a point ¢ in K, and select a point z;; on
each of the three edges 7;7; of K. Then connect ¢ to the points x;; by straight lines
7vij,x- Then for a vertex z; we let V; be the polygon whose edges are v;; x in which z;
is a vertex of the element K. We call V; a control volume centered at z;. Obviously
we have

UwiGNhV;' - ﬁa
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FiGureE 1. Control volumes with barycenters as internal point and
interface v;; of V; and V;.

and the dual mesh T} is then defined as the collection of these control volumes. Figure
1 gives a sketch of a control volume centered at a vertex x;.

We call the control volume mesh T} regular or quasiuniform if there exists a positive
constant C' > 0 such that

C~'h* < meas(V;) < Ch?, forall V;e Ty,

here h is the maximum diameter of all elements K € Tj,.

There are various ways to introduce a regular dual mesh 7 depending on the
choices of the point ¢ in an element K € T}, and the points x;; on its edges. In this
paper, we use a popuplar configuration in which ¢ is chosen to be the barycenter
of an element K € T}, and the points xz;; are chosen to be the midpoints of the
edges of K. This type of control volume can be introduced for any triangulation
Ty, and leads to relatively simple calculations for both two- and three-dimensional
problems. Besides, if T} is locally regular, i.e., there is a constant C' such that
Ch% < meas(K) < h?%., diam(K) = hg for all elements K € T}, then this dual mesh
Ty is also locally regular. Other dual meshes may also be used. For example, the
analysis and results of this paper for all the error estimates in the H' norm are still
valid if the dual mesh is the so-called Voronoi type [20].

2.2. The Finite Volume Element Method. We now let S}, be the standard linear
finite element space defined on the triangulation T}:

Sp={v e C(Q): v|g is linear for all K € T}, and v|gq = 0}
and its dual volume element space S}:
Sy ={v e L*): vy is constant for all V € Ty and v|sq = 0}.

Obviously, Sy = span{¢;(x) : z; € N)} and S; =span{x;(z) : z; € NP}, where ¢;
are the standard nodal basis functions associated with the node z; and x; are the
characteristic functions of the volume V;. Let I, : C'(Q2) — S, and [} : C(Q2) — S;
be the usual interpolation operators, i.e.,

Ihyu = Z u(z;)pi(x), and [ju= Z u(z;)xi(x).

z; ENp, z; ENp,
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Then, the finite volume element approximation u; of (1.1) is defined as a solution
to the problem: find u;, € S;, such that

(2.1) a(up, Lyvp) = (f,I;vy), vp € Sy
or
(2.2) a(un,vn) = (f,vn), wvn €S,

Here the bilinear form a(u, v) is defined as follows

— vi/ AVu - ndS,, (u,v) € Hf N H? x S},
(2.3) a(u,v) = N, 7OV
AVu - Vudz, (u,v) € H} x H,
Q

where n is the outer-normal vector of the involved integration domain. Note that
the bilinear form a(u,v) has different definition formulas according to the function
spaces involved. We hope that this will not lead to serious confusion while it simplifies
tremendously the notations and the overall exposition of the material.

To describe features of the bilinear forms defined in (2.3), we first define some
discrete norms on S, and Sj:

lunlsn = (un,un)op, With (up, vp)os = Z meas(V;)uv; = (Iyup, Ivy),
CEiGN}L

unlty = D D meas(Vi) ((u; — uy)/dij)°,

z; €Ny, x5 €11(3)

Nunll3 ) = Tunlop + lunltp,  Nuallly = (un, iun),

where d;; = d(x;, z;) is the distance between x; and z;.

In the lemmas below, we assume that the lines of discontinuity (if any) of the
matrix A(z) are aligned with edges of the elements in the triangulation 7}, and the
entries of the matrix A(x) are C'-functions over each element of Tj,.

Lemma 2.1. (see, e.g. [7, 20]) There exist two positive constants Cy,Cy > 0, inde-
pendent of h, such that

Colvnlon < lunllo < Cilvnlop,  vn € Sh,
Colllvnlllo < [lonllo < Cilllvnlllo,  vn € S,
Collvnllip < lunll < Cillunllin,  vn € Sh.

Lemma 2.2. (see, e.g. [7, 20]) There exist two positive constants Cy,Cy > 0, inde-
pendent of h, and hy > 0 such that for all 0 < h < hy

(2.4) |a(un, Tyvn)| < Cillun|lipllonllin, — wn, vn € Sh,
(25) a(uh,f,’:uh) Z C’0||uh||ih, Up, Vp € Sh.
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3. ERROR ESTIMATES FOR THE FVE METHOD

3.1. Optimal order H' Error Estimates. We first consider the error of the FVE
solution uy in the H! norm. We start with the following two lemmas.

Lemma 3.1. For any uy, v, € Sy, we have

(3.1) a(up, Iyvy) = a(up, vn) + Ep(up, vs),
with
Eh Uh,Uh Z/ A AK Vuh V’Uh dx
KeTy,
+) Z / (A — Ag)Vuy, - ndS(v; — vj),
JEN i€ll(y
and

1

Moreover, if A is in W1°(QQ), then there is a positive constant C' > 0, independent
of h, such that

| En(un, vn)| < Chllup| | pl|vnl]1n-
Proof. See [11, 12]. O

Lemma 3.2. Assume that uy, is the finite volume element solution defined by (2.1),
then we have

(32) a(uh,vh) = (f, I;’Uh) — Eh(uh,vh), Vp, € Sh.
Proof. 1t follows directly from Lemma 3.1. O

Theorem 3.1. Assume that u and u, are the solutions of (1.1) and (2.1), respec-
tively, u € H(Q), f € H(Q) with 0 <a < <1, and A € WH®(Q), then we
have

(3.3) [lu — unllx SC<h5||f||—1+ﬁ+hQIIUII1+a>-

Proof. By (3.1) and (1.1), we see that for ¢, = Iu — up,
Collu —un|l} < alu— up,u — Iyw) + alu — uy, )
= a(u—un,u — Iyu) + (f, ¢n — L01) + Ep(un, dn)
< Ch®[Ju — up|lilJullisa + CH2|| Fll-1ssl@nllin + Chllunllllénlln

Notice that from Lemma 2.2 and approximation theory we have

Cllfll-r S ClIfll =148
|u — upl|r + Ch*||ul| 1403

|[wnl|1n
IEim

the proof is then completed by combining these inequalities. O

<
<
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Remark: The main idea in the proof above is motivated by [6], which is somewhat
different from those in [3, 16, 19, 20, 24]. The approach is also more direct and simpler
because the key identity (3.2) allows us to employ the standrad error estimation
procedures developed for finite element methods. In particular, the estimate for
||Inu — upl| is not needed in this proof. Moreover, the estimate here describes how
the regularities of the exact solution and the source term can affect the accuracy of
the FVE solution independently.

3.2. Optimal Order L? Error Estimates. In this section, we derive an optimal
order L? error estimate for the FVE method with the minimal regularity assumption
for the exact solution w. This error estimate will also show how the error in the L2
norm depends on the regularity of the source term.

The following lemma gives another key feature of the bilinear form in the FVE
method.

Lemma 3.3. Assume that uy, v, € Sy, then we have

(3.4) a(up,vp) = alun, Lyvp) + Z /M( (AVuy, - n) (vy, — I vy)dS

KeTy,

— Z /K(VAVuh) (vp, — Iyvp)dz.

KET}L

Proof. Tt follows from Green’s formula that

Z (V . AVuh,vh> = Z / V - AVuyvpdx
K

KeTy K KeT,
= Z / (AVuy, - n) v,dS — a(up, vp)
KeT, 7 9K
and
Z <V . AVuh, I;;Uh>
KETy, K
= Z Z <V . AVuh, [;;Uh>
KeTy, jeNy, Kﬂ‘/}‘
= Y / (AVuy, - 0)TopdS + ) / (AVuy, - n)IFo,dS
KeTy, Y 9K jeN; OV;
= Z / (AVuy, - n)lv,dS — a(up, I o).
KeT, Y 9K
Then the proof is completed by taking the difference of these two indentities. O

Theorem 3.2. Assume that u and u, are the solutions of (1.1) and (2.1), respec-
tively, and u € H?(Q), f € H? (0 < 8 < 1) and A € W?>®(Q2). Then there exists a
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positive constant C' > 0 such that

(3:5) ||u—uh||0§C<h2||u||2+h1+ﬁ||f||5>.

Proof. Let w € H} () be the solution of
V- AVw=u—u,, x€Q and w=0 on 0N.

then we have ||w||a < ||u — up|lo. By Theorem 3.1 we have

u—uplp = alu— up,w—wy) + alu — up, wy)
< C(h*[ulliya +h [ o) lw — walls + alu — up, wh), (0< a<1),

Then by Lemma 3.3,
a(u — up, wp) = Jy(up, wp) + Jo(up, wp) + J3(up, wy),

where J/s are defined for uy, w, € S;, by

Jl(uha wh) = Z (fa wp, — I;wh)fﬁ

KeTy,
(36) JZ(U/h, ’LUh) = Z (V : AVuh, Wwp — [,’;wh> y
KeTy, K
J3(up,wy) = — Z / (AV(u — uy) - n> (wh — I,";wh> ds.
Kery, 9K

and the continuity of Vu - n on each 0K is used.
Since the dual mesh is formed by the barycenters, we have

/ (w, — Ijwy)de =0 VK €Ty,
K

so that
Ji = Z (f = frcwn — Lywp) k. < ChP||£]|g] lwn

KeTh

1L,h

where fr is the average value of f on K. Similarly, using the fact that A € W,
we have

T = =) (V-AVuh — (V- AVup)k, (wp —I;;wh))

KeTy, K

< Ch1+a||uh||1,h||wh||1,h‘

For J3, according to the continuity of Vu - n and the shape of the control volume,
we have

Jy = Z/6K<(A—AK)V(u—uh)-n>(wh—I;wh)dS,

KeTy,
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where Ay is a function designed in a piecewise manner such that for any edge E of
a triangle K € T},

Ak (z) = A(x.), x € E,

and z. is the middle point of E. Since |A(z) —Ax| < h||A||1 00, we have from Theorem
3.1 that

J3 S ChZ/ ’LL—’LLh Il| |wh—lf’;wh|d5

KeTy,

< Oh Y Pl )

KeTy,
< {2 wnlloe + b2 lfwn = Tiwn o |
< CRlullsllwnl

Thus, it follows by taking w, = Iw that

P sc(wmm+wwwm)mmm

< c@ﬂmm+hHWﬂm)m—uMm

therefore, we have

IW—uMOSCOﬂmm+hHWﬂm>

and the proof is completed. O

Corollary 3.1. Assume that u € H'T*(Q), f € H*(Q) with 0 < a < 1, and A €
W2°(Q). Then we have

|W—umO§CW“OWWM+MHM>

Proof. Let f, be the L? projection of f into Sy, and consider S(u, f) = (u—up, f — f1)
as a linear operator from H®* x H %% to H® x H~! for any s > 0. For any (u, f) €
HS x H7'*5 we let

G, I = Tells + 112 14
Then, by Theorem 3.2, we have
15(u, F)llo < CR||(u, )l and  [[S(u, f)llo < Cll(w, £l

Hence, according to the theory of interpolation spaces [4, 5], we have

18 (s H)llo < CR*|I(w )14
which in fact is (3.7). O
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Remark: When the source term f is in H', the order of convergence in Theorem
3.2 is optimal with respect to the approximation capability of finite element space.
Note that, in many applications, the H' regularity of f does not imply the W3 or
H? regularity of the exact solution required by the L? norm error estimates in the
literature. Moreover, counter examples presented in the next section indicate that
the regularity assumption on f cannot be reduced. The result in Theorem 3.2 reveals
how the regularities of the exact solution and the source term can affect the error
of the FVE solution in L? norm, and this is a more general result than those in the
literature.

3.3. Superconvergence in the H' norm. We first recall the following supercon-
vergence estimates for the Lagrange interpolation [27] from finite element theory:

Lemma 3.4. Assume that u € W3?(Q) N Hy(Q), we have
|a(u — Tyu, va)| < CR?[[ullwso|vn]lwia v € Sh
where 1 < p,qg < oo and p~'+¢ ' =1.

Theorem 3.3. Assume that f € H'(Q), u € H3(Q) N HY(Q), and A € W®(Q),
then we have

1wt — unlls < Oh2<||f||1 ; ||u||3)-

Proof. Tt follows from Lemma 3.4 that

Colllnu — upn|)? < a(Iyu — up, Inu — up)
= a(lpu — u, Inu — up) + a(u — up, Iyu — up,)

< C’h2||u||3||[hu —up||1 + a(u — up, Iyu — up).

Following a similar argument used in the proof of Theorem 3.2, we see that

a(ut =, Ty — up) < 0h2<||f||1 ; ||u||2) 1w = ualls

because I,u — uy, is in Sy,. The result of this theorem follows by combining these two
inequalities. O

As one of the applications of the above superconvergence property of the FVE
solution, we can use it to obtain a maximum norm error estimate.

Corollary 3.2. Under assumptions of Theorem 3.3 and u € W»*°(Q) N H3(Q), we
have

2.00 1 [[ulls + | f]]1) -

1\ 12
=l < 01 (1053) (o
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Proof. 1t follows from Theorem 3.3 and approximation theory that

lu = unlloo < o= Int]oo + [Jun = Inullo

1\ /2
S C’h2||u||2,oo + C (logﬁ) ||’LLh — Ihu

1Lh

IN

1\ /2
O o+ 0 (1o ) (1511 + el )
]

We remark that this results is not optimal with respect to the regularity required
on the exact solution u. This excessive regularity can be removed according to the
result in the following section.

3.4. Error Estimates in Maximum Norm. Now, we turn to the L® norm and
W norm error estimates for the FVE solution. First, we recall from [9, 15, 22, 27]
the definition and estimates on the regularized Green functions.

For a point 2z = (21, 22) € Q, we define G* = G(z,z) € Hy(Q) N H*(2) to be the
solution of the equation

(3.7) -V - AVG*® =6;(z) in Q,

where 07 (z) € S, is a smoothed d-function associated with the point z, which has the
following properties:

(67, vn) = vn(2), Yup € Sh, |05 (x)] < Ch™2, supp(6}) C {z; |v — 2| < Ch}.

Let G be the finite element approximation of the regularized Green’s function,
i.e.,

a(G* =G, x) =0, x€S.
Following [27], for a given point z € Q we define 0,G* by

z+Az 1z
9.G° = lm ¢~
Az—0,Az//L |AZ|

for any fixed direction L in R?, where Az//L means that Az is parallel to L. Clearly
0,G* satisfies

a(0,G*, x) = — <825h,x> =0.x(2), X € Sh.

The finite element approximation 0,G7 of 0,G* is then defined by
a(0,G* — 0.G;,x) =0, x € Sh.

It is well-known that the functions G* and 0,G* have the following properties [27]:
for any w € Hy ()

(3.8) Pyw(z) = a(G*(t), w), 0,Pyw(z) = a(0,G*(t), w),

where P, is L?-projection operator on Sy, i.e. (u — Pyu,vs) = 0, Vo, € Sp.
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Moreover, the following estimates have be established in the literature [9, 15, 22, 27]:

1
(3.9) |G* = GFllia < C’hlogﬁ,
(3.10) 10.G* — 0,Gj|lia < C,
1
(3.11) |Gl < C’logﬁa
1
(3.12) 10.G*||11 < C’logﬁ,
(3.13) [Phu = ullg o + B[ Pru = ull o < Ch? [ull, o ,

with constant C' > 0, independent of h and z.
First, let us consider the W1 norm error estimate.

Theorem 3.4. Assume that u € W**(Q), f € L*(Q), and A € WH>®(Q), then
there exit positive constants C' > 0 and hy > 0, independent of u such that for all

0<h<hy
1
l|w — upl|i,00 < Ch log (E) <||u

Proof. Tt follows from (3.8) that
0.(Pyu —up)(2) = alu—upy,0,G%)

oot ||f||oo).

a<u — up, 0,G* — 0,G}, + 3zGZ>

= a(u — up, 0,G* — 0,G}) + a(u — up, 0,G7)
a(u — Iyu, 0,G* — 0,G}) + a(u — uy, 0,G})
Chllu|2,00]10.G* = 0.Gj |11

+(f, 0.G}, — 1,0.G}) + Ep(up, 0.Gy).

IN

For the second term on the right-hand side we have
* z z * z 1
(1.0.Gi = 1:0.G) < |1 1]10.65 - 0.6l < € (1o ) [l

For the third term, by the definition of Ej, given in Lemma 3.1 and the fact that 0,Gj,
is a piecewise linear polynomial, we have

Eh(uh,azGi) = Eh(uh—Ihu+Ihu,8zGi)

Ch(nuh Lyl + ||fhu||1,oo) YA

IN

1,00-

1 1
< Ch logEHuh — Iyul|100 + Ch logﬁHu
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Thus, we obtain
1 1
1Ps =l < O g Hullaoe + 111 ) + O o l1Pi =
so that we have for some hy > 0 such that 0 < h < hy
1
1Pv = e < O tog (11l + 11 )

Applying this inequality and (3.13) in

1o + [|Pru —u

| — unl|100 < ||Pru — up 1,005

leads to the result of this theorem. O

The following theorem gives a maximum norm error estimate for the FVE solution.

Theorem 3.5. Assume that u € W3*(Q), f € WH>(Q), and A € W3>(Q), then
there exit constants C' > 0 and hy > 0, independent of u, such that for all 0 < h < hy

l,oo> .

Proof. We follow an idea similar to the proof for the previous theorem, but we now
use the regularized green function G* and its finite element approximation G7.

1
o= vl < € 1o (3) (1hlloe + 1

(Pou—up)(2) = alu—uy, G*+ G —G})
= a(u—up, G* = G}) +a(u —up, —G)
= a(u— Lyu,G* - G}) + a(u — up, G})
= COhllul]200]|G" = Gi[11
+J1(Uh, GZ) + JQ(’LLh, G}Zl) + Jz(uh, GZ)

The functionals Jy, Jo and J; above are defined in the way given in the proof of
Theorem 3.2. For Ji(uy, G}), from (3.6) we have

Ti(un, G;) = Y (f = [, Gi = ;Gh)x

KET}L
< Chllfllee Y I1GE = LiGillia)
KET}L
1
< OP||flleol|Gilliy < Ch* log = fl1.0,
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Similarly, we have

Jo(up, G) = Z(m-vuh,G;—f;;Gg)

KET}L
= ) <(VA — (VA)k) - Vuy, GF — 1;;G;;>
KET}L

< Chl[Allosollunlliee Y 11GE = LGl

KeTy,

We know by Theorem 3.4 that

lunlhoo < ||u—Uh 1o F |t ]1,00

< Ch log (

)+ lulh

,OO

Therefore, there exists a small hg > 0 such that for 0 < h < hy,
(un,G) < € tog (11l + 1 )

As for J3(up, G3), we note that G} is a piecewise linear polynomial and

Js(un, G;) = Y [ (A= Ax)V(u—uy)- (G; - 1;;G;§> ds.
Ker, 0K
Thus, it is easy to see from Theorem 3.4 (3.11) that
J3(un, G;) < Chl|All1sollt = unllioo Y IGh = LGl o)
KeTy,

l,oo||G}Zl 1,1

Combining the estimates obtained above for .Js, we have

< Chllu—up

1
< Ch?logﬁ <|

N

||Phu — uh”oo S h2 IOg (|

This together with (3.13) completes the proof. O

The following theorem gives a superconvergence property in the maximum norm
for the FVE solution.

Theorem 3.6. Under the same conditions as in Theorem 3.5, we have

1
s = e < 01 g () (Tl + 171 )
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Proof. 1t follows from the properties of 0,G7 and 0,G*, and Lemma 3.4 that

0,(Inu —up)(2) = a(lpu — up, 0,G* — 0,G;, + 0,G})
= a(lpyu — up, 0,G})
= a(lpu —u,0,G}) + a(u — uy, 0,G})
= Ch*[Jull3,0/|0:G} |11
+J1(up, 0,G}) + Ja(up, 0,G3) + Jo(up, 0,G7).

We see from (3.6) and (3.11) that
1
Ji(up, 0,G5) < C’hzlogﬁ||f||1,oo.
Whe h > 0 is small, we also have

1
Jo(up, 8,G3) < Ch?logﬁ | [1,00

1
< Ch? log- <||u||2,oo +1If

1,00) .

Js(up, 0,G3) < ch2||u—uh||1,ooz/ 0,G% — I70,G%|dS
oK

keTy,

For J3(up, 0,G5), we have

1
< O fu = ] |1,0010:Gil |11 < Ch*log [ = un 1,00,

because 0,G7j is piecewise linear in each element K € 7Tj. Finally, the proof is
completed by combining the above estimates. O

3.5. Uniform convergence for v in H}(Q). In many applications, the exact solu-
tion u of (1.1) may be in the space H'(Q), but not in H'**(Q) for any a > 0. In this
situation, the authors of [23] showed that for any ¢ > 0, there exists hy = hy(€) > 0
such that for all 0 < h < hg, we have

[lu —unll < el f]],

for the Galerkin finite element solution u;, € Sy, (or the Ritz projection of u into S,
of the exact solution of (1.1)). This implies that u, converges to u uniformly even
though there is no order of convergence for uy,.

The following theorem shows that the FVE solution also has this uniform conver-
gence feature.

Theorem 3.7. Asssume that A is uniformly continuous and f € L*(Q). Let u €
H{(Q) and uy, € Sy, be the solutions of (1.1) and (2.1), respectively. Then for any
€ > 0, there exists h* = h*(€) > 0 such that for all 0 < h < h*, the following holds:

[lu = unlls < €l o
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Proof. As in the proof in Theorem 3.3, we have
Cllu—up||} < alu—up,u—up) = alu — up,u —v) + alu — up, @)
< Cllu = up|lillu = vy + alu — up, @)

where ¢ = v —uy, € Sp, for any v € S,. Since A(z) is uniformly continuous in €,
for any ¢y > 0, there exists hy = ho(ey) > 0 such that |[A(x) — A(y)| < € for all
|z — y| < hy. Thus, by Lemma 3.4 we can take h € (0, hgy) to obtain

|En(un, ¢)| < Ceollun|i,nll¢
where F), is defined in Lemma 3.1. By Lemma 3.2, we have

a(u — up, @) (f,0—1;0) + En(un, ¢)
Cllfllohll@l|1.n + Ceol|un
C(h+ eo)llfllol|®l]1,n

< C(h+€0)||f||0<||u—v||1+||U—Uh||1>-

1,h>

0]l

< Lh
<

Thus it follows from the triangle inquality that
lu— il < € <(h+eo)||f||o+ inf ||u—v||1).
vESH

Lemma 2 of [23] indicates that for any €; > 0, there exits h; = hy(e;) > 0 such that
ui&fh |Ju—vl[i < el f]o-

Notice that the constant C' > 0 above is indepedent of u, f and A; therefore, the
theorem follows from the last two inequalities.
O

4. COUNTER EXAMPLES

In thise section, we will present two examples to show that, when the source term
f(z,y) is only in L?(€2), the FVE solution generally cannot have the optimal second
order convergence rate even if the exact solution u(x,y) has the usual H? regularity.
The first example is based on theoretical error estimates, while the second is presented
through numerical computations.

4.1. A one-dimensional example. First, we consider an example in one dimension:
(4.1) —u"=f=2""% 0<z<l, u(0)=u(l)=0.

where f € L%*(0,1) but not in H'(0,1) if 0 < a < 1/2. Clearly this problem has an
exact solution

2T — g

(1-—a)(2—a)

u =

which is in the space H?(0,1).
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Let T}, be the uniform partition of the interval [0, 1] such that z; = hj,j =0,1,..N
and zj110 = h(j +1/2), j=0,1,...N — 1. Let S be the piecewise linear finite
element space. Let uy € S), be the finite element solution of (4.1) defined by

a(ufavh) ::(favh)a Up € Sﬁ,

and let u;, be the finite volume element solution. Then we have

(4.2) a(en, vn) = (f = fu,vn) + (fnyvn — Iyon),  vn € Sh
with e, = uy — uy, and

1 [Tit1/2

Ca —/ ™%z, v € (Tj1/2,Tjrye), =1, N —1,
fh = ajh - h Tj_1/2
0, z € (0,212) U (n_1/2,1).
Our main task is to show that there exists a constant C' > 0 such that
llun = ugllo > CR*7,

This inequality and
(4.3)  [lu—uallo [lun = ugllo = [lu —ugllo
[lun = ugllo = CR*[ullz > [|un = usllo — CR?[| f]]o
together imply that the FVE solution cannot have the optimal L? norm convergence
rate for 0 < a < 1/2.

We start with the estimates of the error function e(x) at the nodes. Let G(x,y) be
the Green’s function defined by

>
>

(4.4) G(z,y) :{ ‘Zg:i; giyyi:f

Then, we have

eh(xk)

= <f — fh,G(-,:ck)) = /Ol(a:a —z7)G(x, xp)dx
= /Oh/2 r x(l — xp)de + kz;/

Tjt1/2
(7% — 2, )z (1 — xp)dx

Tj—1/2

Ty Tk41/2
+/ (7% — 2, “)x(1l — xy)dx +/ (7% —2,") zp (1 —x)dx

Tk—1/2 Tk

j=k+17 %i=1/2

(4.5) 4 i /‘%j+1/2(xa —x,%) x (1 —x)dz

+/ (7% —x,%) zp (1 —x)dx + (fn, G(-, ) — [;G(-, z1))
1-h/2

= J1—|—J2+J3+J4+J5—|—J6+J7.
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Now we will estimate the J/s one by one under the assumptions that
1
0<a< 50 Tk € [1/3,2/3].
For .J; and Jg it follows easily from a simple calcultion that
1— a h 2
Jl = o )
2—a \ 2

AN !
|Js] < 2 <1 — —) xk/ (1 —x)dz < Cexph?® < Csh?.
2 1—=h/2

For J5, we have

]+1/2
J5 = —X Z / —x,;o‘) xdx

j=k+17Tj-1/2

:1:]_,_1/2
— e
= E / ¢ — ) dx

j=k+1" Tj-1/2

11—«
Tk Tiijp T x9+1/2 NS
= 14 ( Z 5 h — : z %z | .

j=k+1 k+1/2
Note that
L. .
(4.6) @(x )=(1—a)(—a)x .
Thus there is a positive constant C5 independent of A such that

| Js| < Csh?

because of the error estimate for the trapezoidal quadrature formula. Now consider
Js and Jy. First rewrite J; + J; as

J3 + Jy
T Tr41/2
= / (7% — 2, )2 (1 — xp)dx +/ (7% — 2, ) o (1 — x)dx
Tk—1/2 Tk
Tk41/2
4.7y = —/ (7% — x, “)rxpde
Tr—1/2
T Tr41/2
+/ (7% — x, “)xdx +/ (7% — 2, ) wpde
Tk—1/2 Tk

Ty Tr41/2
= / (7% — 2, %) (v — xp)dx — 2y, / (7% — x, “)xdr

Tr—-1/2 Tr—-1/2

- N1 —|—N2
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Clearly, we have
h —a—1
N1 < Cav (mk - 5) h?

and
h —l-a
|N2| < Caxy, (xk — 5) h?.
Hence
|J5 + J4| < C3h?.
For J,, following a calculation similar to that for .J; we have

k-1
1y x] 12+ JUg+1/2 Thot/z
Jy = T~ o (Z 5 h — : Tz %dx ).

j=1 1/2

Letting g(x) = 217, and applying the error formula for the trapezoidal quadrature
rule, we have

1—£Uk h3 ,,

1—1 h2 k—1 Tp—1/2 Tp—1/2
- ==L <|g"(5>| b= [ g @lde s [ ) dx>
.7 T1/2 T1/2

1-— Tk h2 — /x]"'_l/2 / /// T2
< wldy )+ [ g @) ds
1 — h2 Tjt1/2 Tp—1/2
< T (Zh e >|dx> / |g"(x>|dx]
j=1 Tj—1/2 T1/2
(1 — z) A\ (1 —zp)h? e
= 3 (20[ + 1) 5 — T (Oéhxk_ll/Q + xk_1/2>
Hence
J+Jy > — | Jo|
L—axp (A% (1 —ap) A\ (1= zp)h? I
> 34 <§> ST e (5) T (e )

A 20+ 1Y\ (1 —z4)h? e
= (1—a3) <§> (2 " 3 ) + 19 <ahxkil/2 + xk71/2>

2—«
> ) <g> — Cyh?

for 0 < < 1/2 and z € [1/3,2/3].
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For .J; we have

Ljt1/2
J; = / fh,j<G(x,xk)—G(x,xk)>dx
j=1 Y j-1/2
Tk Tr41/2
= ([ amme =i+ [ - 1)
Tk—1/2 Tk
h2
= for—=

where fy; = fr,® € (xj_1/2,2j11/2) for j =1,2,--- N — 1. It is obvious that

h —
Trp < <$k — 5) .

|J7| < C/h2.

Hence

Finally, it follows from the above estimates for the .J/s that there is a positive constant
Cy > 0, independent of h, such that for all z;, € [1/3,2/3],
G(ZL‘k) Z Jl + J2 - |J3 + J4| - |J5| - |J5| — |J7|
> Cgh?™™ — Cyh?.

which in turn implies that
lleallo > Coh*™®

for all small h > 0 due to the equivalence of the discrete and continous norms on
Sh, given in Lemma 2.1. This clearly indicates that the convergence rate of the FVE
solution for this example cannot be O(h?) if 0 < v < 1/2.

4.2. A two-dimensional example. We consider the following boundary value prob-
lem:

2
—Au(z) = —=x,°, 2= (21,22)" € Q,

u(r) = $1%a (z1,m2)" € 09,

where 2 is the unit squre (0,1) x (0,1). It is easy to see that the exact solution to
this boundary value problem is

8
u(r) = z7,
which is in H*(Q) but not in H3(Q). On the other hand, the source term f(z) =
~3357% is just in L2(Q).
We have applied the FVE method (2.1) to generate the FVE solution up(x,y) to
this boundary value problem by the usual uniform partition 7}, of the unit square
with the partition size h. Due to the lack of regularity in the source term, an exact
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h e(h)
1/10 | 0.0020009047803123
1/20 | 0.0005653708096634
1/40 | 0.0001617344656601
1/80 | 0.0000470141958737
1/160 | 0.0000139164337159
1/320 | 0.0000041963842193

TABLE 1. Errors of the FVE solutions for various partition size h.

integration formula is used to carry out all the quadratures in (2.1) that involve the
source term f(x,y). In fact, we can show that for each triangle A A; Ay Ay with vertices

_ [ W _ [ Y _ [ Y3
Al_(zl>7A2_(Z2>7A3_<Z3>7
JRCLE
AA1AsA>

M ((Zh - y2)(y1 - y3) * (yz - y1)

we have

<
[N oo

8
Y3
_|_
y2—ys)  (ys — ) (vs ))
with
M = |ys(21 — 20) + Y1 (22 — 23) + y2(23 — 21)|.
Note that this formula is valid only if the vertices of the triangle AA;AsA; have
distinct coordinate values. This is true when AA;A5A, is a triangle used in the
intergration over a control volume.

Table (4.2) contains the errors of the FVE solutions for this boundary problem
with various typical partition sizes h. In this table,

_ \/ / [un(a) — u(a)[? d,

is the usual L? error of a FVE solution uy(x, y). Obviously, the FVE solutions in these
computations do not seem to have the standard second order convergence because
the error is not reduced by the factor of four when the partition size is reduced by a
factor of two. Also see the counter example in [17].

5. CONCLUSION

In this paper, we have considered the accuracy of FVE methods for solving second-
order elliptic boundary value problems. The approach presented herein combines
traditional finite element and finite difference methods as a variation of the Galerkin
finite element method, revealing regularities in the exact solution and establishing
that the source term can affect the accuracy of FVE methods. Optimal order H*
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and L? error estimates and superconvergence have also been discussed. The exam-
ples presented above show that the FVE method cannot have the standard O(h?)
convergence rate in the L? norm with the source term has the minimum regularity in
L?, even if the exact solution is in H?.
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