
MULTIPLIER SPACES FOR THE MORTAR FINITE ELEMENT
METHOD IN THREE DIMENSIONS∗

CHISUP KIM† , RAYTCHO D. LAZAROV† , AND JOSEPH E. PASCIAK† ,

AND PANAYOT S. VASSILEVSKI‡

Abstract. We consider the construction of multiplier spaces for use with the mortar finite
element method in three spatial dimensions. Abstract conditions are given for the multiplier spaces
which are sufficient to guarantee a stable and convergent mortar approximation. Three examples
of multipliers satisfying these conditions are given. The first one is a dual basis example while the
remaining two are based on finite volumes. Finally, the results of computational examples illustrating
the theory are reported.
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1. Introduction. Domain decomposition methods have been widely used to de-
sign parallel algorithms for solving partial differential equations. The main idea of
such methods as is well-known is the following. The boundary value problem posed
on a given domain is discretized by finite elements, finite differences, spectral or other
approximation methods and as a result an algebraic problem is obtained. Precon-
ditioners that can utilize parallel computer architectures are based on splitting the
original problem into a number of subproblems with subsequent subproblem solutions
and iteration over the unknowns on the subdomain interfaces. This approach has
been extensively studied in the last two decades (see, e.g., [18, 19, 24, 25]). Often this
approach is referred to as a conforming domain decomposition method.

The rapid growth in the demand for large scale simulations and the proliferation
of CAD/CAM systems in the last decade led to the necessity for different research
teams to interact and use various computing environments and tools for solving com-
plex phenomena. Such interactions have resulted in the design of a new class of
domain decomposition methods, often called nonconforming or mortar methods. In
contrast with the conforming domain decomposition method, the subdomains now
can be meshed independently, that is, in general, the grids do not match across the
subdomain interfaces. The mortar method provides an approach to glue together the
approximations on the subdomains by imposing, in a weak sense, the continuity of the
solution across these interfaces. Since the introduction of the mortar method as a cou-
pling technique for spectral and finite element approximations (see, e.g., [8, 9, 10, 22]),
it has become a very successful technique for non-matching grids yielding a stable and
optimally convergent global approximation. The research in this approach has been
motivated by the flexibility of the method and by its potential for efficient parallel
implementation.

The mortar finite element method has been studied in [5, 6, 8, 9], where opti-
mal order convergence in H1-norm was established. Three-dimensional mortar finite
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element analysis has been given in [6] and the h-p version has been studied in [32].
Mortar mixed finite element approximations for second order elliptic problems have
been discussed in [4] and mortar methods for finite volume method approximations
are presented in [23].

The mortar approximations involve constraints, namely the weak continuity, on
the space. These constraints could be treated as Lagrange multipliers (see, e.g.,
[5]), leading to a saddle point problem, which is symmetric and indefinite. On the
other hand, it is also possible to view the mortar problem as a non-conforming fi-
nite element approximation. This approach leads to a symmetric positive definite
problem (see, e.g., [7, 26]). In our analysis, we consider the latter approach. In
either case, efficient iterative methods are essential for the overall performance of
the method. Multigrid/multilevel preconditioners for the mortar finite element ap-
proximations have been studied in [12, 17, 26, 27] while preconditioners based on
substructuring have been studied in [1, 2, 29].

The continuity of the solution across the subdomain interfaces is imposed in a
weak sense by using the multiplier space. The resulting multiplier approximates the
trace of the co-normal derivative of the solution at the subdomain interface. As
the multiplier most naturally belongs to a negative Sobolev space, continuity of the
functions in the mortar approximation subspaces is not necessary. However, most
of the finite element approximations of the mortar space used in the mortar finite
element method have been related to the traces of the finite element spaces on the
interfaces, which results in continuous functions. Some instances of discontinuous
mortar spaces have been considered in [4, 29, 33]. One approach used to construct
these spaces is based on the dual bases and has several important computational
advantages compared with continuous mortar functions. Specifically, the resulting
mass matrix is diagonal and so its inversion is trivial.

In this paper we construct three different mortar spaces in three dimensions; one
based on the dual basis approach and two additional examples based on finite volume
approaches. They all involve discontinuous functions and lead to relatively simple
constructions. The dual basis example is the most interesting. As mentioned above,
the mass matrix is diagonal and so the non-conforming basis elements have local sup-
port. In addition, we will show that this method remains stable and convergent even
in the presence of mesh refinement provided that the meshes are locally quasi-uniform
and that the triangulations align on the boundaries of the subdomain interfaces. In
contrast, stability of the mortar method with continuous multipliers requires addi-
tional conditions on the mesh (see [32] for the case of one dimensional interfaces).
These additional conditions are related to the stability of the elliptic projection in L2

and have been studied in [13, 16, 21] although in a different context.
We provide the construction and stability analysis of the mortar spaces via a set

of abstract conditions which are later verified for our particular examples. These con-
ditions are general enough to handle the general mesh refinement dual basis example.
For completeness, we also provide an error analysis of the method based on these
conditions.

Other work on the dual basis Lagrange multipliers was done concurrently with
that of this paper [34]. There they analyze a similar method as the dual basis example
considered in this paper using mesh dependent weighted norms under the assumption
of a globally quasi-uniform triangulation. They also consider multigrid methods for
solving the resulting systems of algebraic equations.

The remainder of the paper is organized as follows. In Section 2, we introduce
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Fig. 2.1. An example of a two-dimensional domain with 3 subdomains. The subdomains do
not align but the triangulation does.

the mortar finite element approximation of the Poisson equation with homogeneous
Dirichlet boundary condition. The abstract conditions on the multiplier spaces are
formulated in Section 3 and the error analysis of the method is presented. Three
examples of mortar spaces follow in Section 4. Finally, the results of numerical ex-
periments are presented in Section 5.

2. Problem formulation and notation. We consider the Dirichlet problem
on a bounded polyhedral domain Ω in R

3. Given f ∈ L2(Ω), we want to approximate
the solution u ∈ H1

0 (Ω) of

−∆u = f in Ω,
u = 0 on ∂Ω.

(2.1)

Extensions to more general second order elliptic partial differential equations and
systems and to more general boundary conditions are possible and demonstrated in
Section 5.

The domain Ω is partitioned into K non-overlapping polyhedral subdomains
Ωi, i = 1, ...,K, that is,

Ω =
K⋃
i=1

Ωi, with Ωi ∩ Ωj = ∅ for i �= j.

It is assumed that each subdomain Ωi is associated with a locally quasi-uniform
triangulation Ti of tetrahedra. We denote by h̄i the mesh size of Ti. In other words, h̄i
is the maximum of the diameters of the tetrahedra in the mesh Ti. The triangulations
in the subdomains are independent of each other.

To describe the subdomain interfaces, we define a set I by

I =

⎧⎨⎩ij
∣∣∣∣∣∣

1 ≤ i, j ≤ K,
∂Ωi ∩ ∂Ωj is a two-dimensional domain,
and ji /∈ I

⎫⎬⎭ .

For each pair ij ∈ I, we define Γij = ∂Ωi∩∂Ωj to be the interface between the mortar
subdomain Ωi and the non-mortar subdomain Ωj . The triangulation on an interface
Γij is denoted by Tij . This triangulation is inherited from that of the non-mortar
subdomain Ωj , namely Tj .

We now discuss the conditions on the subdomain partition and the triangulation.
To begin with, we do not require the subdomains to align. In other words, we allow
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Fig. 2.2. Examples of triangulations for an interface between three-dimensional subdomains.
The triangulations all match on the boundary of the interface.

a single face of a polyhedral subdomain to have non-empty intersections with faces
from more than one of the remaining subdomains. We do, however, require that the
triangulations align with the subdomain partition. That is, if a face of a tetrahedron
in a triangulation Ti or Tj intersects an interface Γij , then it must be completely
contained in Γij . A two-dimensional domain with non-aligning subdomain partition
and aligning triangulation is shown in Figure 2.1. In the analysis, we will also need
the following condition.

(M.1) The subdomain triangulations match on interface boundaries.

This condition is readily met in the two-dimensional case, where an interface boundary
degenerates into isolated points. In three-dimensions, as the examples in Figure 2.2
suggest, this is not too strict a restriction on the triangulation, although not a con-
dition as easily satisfied as in the two-dimensional case. These conditions could be
relaxed in the special case when the non-mortar mesh satisfies an inverse inequality
(see Remark 3.2 and [34]). This case of non-aligning triangulation is also of interest
since then there would be fewer restrictions in the meshing process in each subdomain.

Next, we consider the mortar finite element space. For the sake of simplicity,
piecewise linear finite element spaces will be used. Our theory, however, generalizes
to higher order finite element spaces without difficulty. Define, for each i = 1, ...,K,
the finite element space Xh,i in the subdomain Ωi by

Xh,i =

⎧⎨⎩v
∣∣∣∣∣∣
v is linear on each tetrahedron in Ti,
v is continuous on Ωi,
and v = 0 on ∂Ω ∩ ∂Ωi

⎫⎬⎭
and the unconstrained global space X̃h by

X̃h = {v | v|Ωi ∈ Xh,i for all i = 1, ...,K } .

The mortar finite element method is a non-conforming finite element method.
Since the L2-trace of the solution of (2.1) is continuous, some type of continuity
must be imposed on the space X̃h. However, the meshes defining Xh,i and Xh,j do
not necessarily align on Γij . Thus, to retain the approximation properties on the
interfaces, one can only impose continuity weakly. To this end, we introduce the
multiplier spaces Mh(Γij) for each ij ∈ I and define the mortar finite element space
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Xh by

Xh =

{
v ∈ X̃h

∣∣∣∣∣
∫

Γij

[v]ijϕ ds = 0 for all ϕ ∈Mh(Γij) and all ij ∈ I
}
.

Here, [v]ij = (v|Ωi )|Γij − (v|Ωj )|Γij . The multiplier space Mh(Γij) will be defined in
terms of the triangulation Tij inherited from that of the non-mortar subdomain. It
is the purpose of this paper to formulate abstract conditions and examples for these
spaces which give rise to stable finite element approximations. The mortar finite
element problem is now formulated as follows.

Find uh ∈ Xh such that

Ã(uh, v) = (f, v) for all v ∈ Xh, (2.2)

where

Ã(u, v) =
K∑
i=1

∫
Ωi

∇u · ∇v dx,

and

(f, v) =
∫

Ω

fv dx.

In the rest of this section, we set up additional notation which will be used in
this paper. We will denote by C and c generic positive constants. These constants
take on different values in different occurrences but are always independent of the
mesh parameters. The Sobolev space Hk(Ω), for a non-negative integer k, is the
set of functions in L2(Ω) whose weak derivatives of order up to k are also in L2(Ω)
(see, e.g., [15, 28]). For real s with k < s < k + 1 for some non-negative integer
k, Hs(Ω) is defined by interpolation (e.g. using the real method) between Hk(Ω)
and Hk+1(Ω) (see, e.g., [31]). There is a special interpolation space which will play
an important role in the analysis of the mortar method. This space is obtained by
interpolation between L2(Γij) and H1

0 (Γij), and is denoted by H
1/2
00 (Γij). As usual,

‖·‖s and |·|s denote the Hs(Ω) norm and seminorm. If we denote by D a subdomain
Ωi or an interface Γij , the Hs(D) norm and seminorm will be written ‖·‖s,D and |·|s,D
respectively. This convention applies also to the L2(D) inner product, which will be
denoted by (·, ·)D. We define the norm ‖|·|‖ by

‖|u|‖2 =
K∑
i=1

‖u‖2
1,Ωi

.

We shall also use the following spaces. Let

S0
h(Γij) = Sh(Γij) ∩H1

0 (Γij)

where

Sh(Γij) =
{
v
∣∣ v = w|Γij for some w ∈ Xh,j

}
.

Finally, for each ij ∈ I, the mortar projection Πij : L2(Γij) → S0
h(Γij) is defined by

(Πiju, ϕ)Γij = (u, ϕ)Γij for all ϕ ∈Mh(Γij). (2.3)

This operator was used in [6, 7, 32] and plays a central role in the analysis of the
mortar finite element method.
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3. Abstract multiplier conditions and error analysis. We start this section
by giving some abstract conditions for the multiplier spaces which guarantee a stable
and convergent mortar finite element method. We introduce the following properties
for the multiplier spaces:

(A.1) For each ij ∈ I, Mh(Γij) contains constant functions.
(A.2) For each ij ∈ I, S0

h(Γij) and Mh(Γij) have the same dimension.
(A.3) There is a constant C not depending on the triangulation or ij ∈ I such that

‖θ‖0,Γij ≤ C sup
ψ∈Mh(Γij)

(θ, ψ)Γij

‖ψ‖0,Γij

,

for all θ ∈ S0
h(Γij) and ij ∈ I.

(A.4) There is a constant C not depending on the triangulation or ij ∈ I such that

inf
γ∈Mh(Γij)

‖σ − γ‖0,Γij ≤ Ch̄j‖σ‖1,Γij ,

for all σ ∈ H1(Γij) and ij ∈ Γij .

We note that the following two inequalities are simple consequences of (A.4).

inf
γ∈Mh(Γij)

(σ − γ, ζ)Γij ≤ Ch̄j‖σ‖1/2,Γij
‖ζ‖1/2,Γij

,

inf
γ∈Mh(Γij)

sup
η∈H1/2(Γij)

(σ − γ, η)Γij

‖η‖1/2,Γij

≤ Ch̄j‖σ‖1/2,Γij
,

(3.1)

for all σ, ζ ∈ H1/2(Γij).
When every interface mesh Tij is globally quasi-uniform, these conditions are

sufficient for stable mortar finite element approximation (see Remark 3.1). We shall
need an additional condition to handle the case when the mesh Tij is only locally
quasi-uniform. Let {φl | l = 1, . . . , n} denote the nodal basis for S0

h(Γij). Given a
function φ =

∑
dlφl ∈ S0

h(Γij), we define φ̂ =
∑
h−1
l dlφl. Here hl is the local mesh

size at the l’th node. To be precise, we can take hl to be the maximum of the diameters
of the triangles which meet at the l’th vertex. Given ψ ∈ Mh(Γij), we then define
ψ̂ ∈Mh(Γij) by

(φ, ψ̂)Γij = (φ̂, ψ)Γij for all φ ∈ S0
h(Γij). (3.2)

It follows from (A.2) and (A.3) that there is a unique ψ̂ ∈ Mh(Γij) satisfying (3.2).
When Tij is only locally quasi-uniform, we use the following condition:

(A.5) There is a constant C not depending on ij ∈ I or the triangulation such that∑
τ∈Tij

h2
τ‖ψ̂‖2

0,τ ≤ C‖ψ‖2
0,Γij

.

Here, hτ denotes the diameter of τ .

In general, this condition does not hold without further restriction on the triangu-
lation. However, we will show that it holds for the dual basis example without any
additional assumptions.
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The next theorem provides an error analysis for the mortar method under the
above conditions. For completeness, we include a proof and illustrate how (A.5) is
applied in the analysis.

Theorem 3.1. Let u and uh be the solutions for problems (2.1) and (2.2),
respectively. Assume that u ∈ H1

0 (Ω) and u|Ωi ∈ H2(Ωi) for all i = 1, ...,K. If
the conditions (M.1) and (A.1)–(A.5) are satisfied, then there is a constant C not
depending on {h̄i}Ki=1 such that

‖|u− uh|‖2 ≤ C

K∑
i=1

h̄2
i ‖u‖2

2,Ωi
.

For the proof of the theorem, we shall use two lemmas.
Lemma 3.2. Assume that the mesh Tij on Γij is locally quasi-uniform and that

(A.2), (A.3) and (A.5) hold. Then there is a constant C not depending on mesh size
or ij ∈ I satisfying

‖Πiju‖H1/2
00 (Γij)

≤ C‖u‖
H

1/2
00 (Γij)

for all u ∈ H
1/2
00 (Γij).

Proof. We need to verify that Πij is stable in L2(Γij) and H1
0 (Γij). Then, the

result will follow from interpolation.
The proof of L2(Γij) stability is standard. We observe that by (A.3), if θ ∈ S0

h(Γij)
satisfies (θ, ψ)Γij = 0 for all ψ in Mh(Γij) then θ = 0. This and (A.2) imply the unique
solvability of (2.3). By (A.3),

‖Πijw‖0,Γij≤ C sup
ψ∈Mh(Γij)

(Πijw,ψ)Γij

‖ψ‖0,Γij

= C sup
ψ∈Mh(Γij)

(w,ψ)Γij

‖ψ‖0,Γij

≤ C‖w‖0,Γij . (3.3)

Now we check the stability in H1
0 (Γij). Since the mesh is locally quasi-uniform,

there is an operator Q0 : L2(Γij) → S0
h(Γij) satisfying (see, e.g., [20])

‖Q0u‖2
1,Γij

+
∑
τ∈Tij

h−2
τ ‖(I −Q0)u‖2

0,τ≤ C‖u‖2
1,Γij

, (3.4)

for all u ∈ H1
0 (Γij). Fix u ∈ H1

0 (Γij). By (3.4) and triangle inequality, the lemma
will follow if we show that

‖(Πij −Q0)u‖1,Γij≤ C‖u‖1,Γij . (3.5)

Let φ = (Πij −Q0)u =
∑
dlφl. Then, by local inverse inequalities,

‖(Πij −Q0)u‖2
1,Γij

≤ C
∑
τ∈Tij

h−2
τ ‖(Πij −Q0)u‖2

0,τ . (3.6)

We clearly have ∫
τ

φ2 dx 	 h2
τ (d

2
l1 + d2

l2 + d2
l3)

where {lk} are the indices for the vertices of τ . Here we used the notation A 	 B to
mean that there are constants c and C not depending on the triangulation, functions
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in the subspaces defining A and B, or ij ∈ Γij such that cA ≤ B ≤ CA. The constants
c and C may depend on the minimal angle condition. By the local quasi-uniformity
of Tij , it follows that

∑
τ∈Tij

h−2
τ ‖(Πij −Q0)u‖2

0,τ 	
n∑
l=1

d2
l 	 ‖φ̂‖2

0,Γij
, (3.7)

where φ̂ is as in (3.2). Now, by (A.3), (3.4) and (A.5),

‖φ̂‖0,Γij≤ C sup
ψ∈Mh(Γij)

(φ̂, ψ)Γij

‖ψ‖0,Γij

= C sup
ψ∈Mh(Γij)

((I −Q0)u, ψ̂)Γij

‖ψ‖0,Γij

≤ C sup
ψ∈Mh(Γij)

(∑
τ∈Tij

h−2
τ ‖(I −Q0)u‖2

0,τ

)1/2(∑
τ∈Tij

h2
τ‖ψ̂‖2

0,τ

)1/2

‖ψ‖0,Γij

≤ C‖u‖1,Γij .

(3.8)

Combining the above inequalities (3.6), (3.7) and (3.8) establishes (3.5) and hence
completes the proof of the lemma.

Remark 3.1. When Tij is globally quasi-uniform, that is hτ ≥ ch̄j for all τ ∈ Tij ,
the above lemma can be proved without condition (A.5). Under this condition, the
argument following (3.6) can be simplified. By (A.3) and (3.4), for u ∈ H1

0 (Γij),

‖(Πij −Q0)u‖0,Γij≤ C sup
ψ∈Mh(Γij)

((Πij −Q0)u, ψ)Γij

‖ψ‖0,Γij

= C sup
ψ∈Mh(Γij)

((I −Q0)u, ψ)Γij

‖ψ‖0,Γij

≤ Ch̄j‖u‖1,Γij .

This and (3.6) gives (3.5).
The next lemma gives the approximation property for the space Xh.
Lemma 3.3. Let u ∈ H1

0 (Ω) and u|Ωi ∈ H2(Ωi) for all i = 1, ...,K. Assume that
the conditions (M.1), (A.2), (A.3), and (A.5) hold. Then there is a constant C not
depending on {h̄i}Ki=1 such that

inf
χ∈Xh

‖|u− χ|‖2 ≤ C

K∑
i=1

h̄2
i ‖u‖2

2,Ωi
.

Proof. There is a discrete extension operator Eij : S0
h(Γij) → Xh,j which satisfies

(see, e.g., the construction in [32])

Eijv =
{
v on Γij ,
0 on ∂Ωj\Γij ,

and

‖Eijv‖1,Ωj ≤ C‖v‖
H

1/2
00 (Γij)

, (3.9)
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for all v ∈ S0
h(Γij). Let ū ∈ X̃h be the nodal finite element interpolation of u. Take

χ = ū+
∑
ij∈I EijΠij [ū] ∈ Xh. By the triangle inequality, we get

‖|u− χ|‖2 ≤ 2

⎛⎝‖|u− ū|‖2 + ‖|
∑
ij∈I

EijΠij [ū]|‖2

⎞⎠ .

The first term is bounded by standard finite element estimates. For the second, we
note that condition (M.1) guarantees that [ū] ∈ H

1/2
00 (Γij). Then, by Lemma 3.2 and

(3.9),

‖|
∑
ij∈I

EijΠij [ū]|‖2 ≤ C
∑
ij∈I

‖[ū]‖2

H
1/2
00 (Γij)

. (3.10)

Now

‖[u− ū]‖1,Γij ≤ ‖(u− ū)|Ωi‖1,Γij + ‖(u− ū)|Ωj‖1,Γij

≤ C
(
h̄

1/2
i + h̄

1/2
j

)
|u|3/2,Γij

.
(3.11)

Similarly,

‖[u− ū]‖0,Γij ≤ C
(
h̄

3/2
i + h̄

3/2
j

)
|u|3/2,Γij

. (3.12)

Interpolating between (3.11) and (3.12) gives

‖[ū]‖
H

1/2
00 (Γij)

= ‖[u− ū]‖
H

1/2
00 (Γij)

≤ C
(
h̄

1/2
i + h̄

1/2
j

)1/2 (
h̄

3/2
i + h̄

3/2
j

)1/2

|u|3/2,Γij
.

Cauchy-Schwarz inequality and a trace theorem yields

‖[u− ū]‖2

H
1/2
00 (Γij)

≤ C
(
h̄2
i + h̄2

j

)
|u|23/2,Γij

≤ C
(
h̄2
i ‖u‖2

2,Ωi
+ h̄2

j‖u‖2
2,Ωj

)
.

Combining the above estimates and summing over ij ∈ I completes the proof of the
lemma.

Remark 3.2. The conclusion of the previous lemma is still valid without (M.1)
provided that the mortar triangulation Ti is globally quasi-uniform. For example,
one could allow a face from the mortar triangulation Ti which intersects an interface
Γij but is not completely contained in Γij . This is illustrated in Figure 3.1 for a
rectangular mesh and a similar situation occurs in our third numerical example in
Section 5. Similar results have already been obtained in [11] in the case of continuous
multipliers. We include this remark since it conforms to our numerical experiments.

In this case, [ū] is no longer contained in H
1/2
00 (Γij) and (3.10) does not make

sense. The global quasi-uniformity condition implies that for all v ∈ L2(Γij),

‖Πijv‖H1/2
00 (Γij)

≤ Ch̄
−1/2
j ‖Πijv‖0,Γij . (3.13)

By (3.9), we have

‖|
∑
ij∈I

EijΠij [ū]|‖2 ≤ C
∑
ij∈I

‖Πij [ū]‖2

H
1/2
00 (Γij)

.
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Fig. 3.1. An example of a non-aligning face in rectangular mesh. The dotted lines depict the
face Γij with the mesh inherited from the non-mortar subdomain Ωj, while the solid lines show the
mesh from the mortar subdomain Ωi. None of the mortar boundary faces are contained in Γij .

Then, for each ij ∈ I, by the inverse inequality and the L2(Γij)-stability of Πij , we
obtain

‖Πij [ū]‖2

H
1/2
00 (Γij)

≤ Ch̄−1
j ‖[ū]‖2

0,Γij
≤ Ch̄−1

j

(
‖(u− ū)|Ωi‖2

0,Γij
+ ‖(u− ū)|Ωj‖2

0,Γij

)
≤ Ch̄−1

j

(
h̄3
i ‖u‖2

2,Ωi
+ h̄3

j‖u‖2
2,Ωj

)
.

Then,

‖Πij [ū]‖2

H
1/2
00 (Γij)

≤ C

(
1 +

h̄i

h̄j

)(
h̄2
i ‖u‖2

2,Ωi
+ h̄2

j‖u‖2
2,Ωj

)
and the conclusion of the lemma follows summing over ij ∈ I.

We now prove Theorem 3.1.
Proof of Theorem 3.1. It follows from [7] that the bilinear form Ã(·, ·) is coercive

on the space of functions v that are in H1(Ωi) in each Ωi, zero on the boundary ∂Ω
and satisfy

∫
Γij

[v]ds = 0 on each interface Γij . By (A.1), Xh is contained in this
space. Thus, by Strang’s Lemma (see, e.g., [15]), we have

‖|u− uh|‖ ≤ C

(
inf
χ∈Xh

‖|u− χ|‖ + sup
η∈Xh\{0}

|Ã(u− uh, η)|
‖|η|‖

)
. (3.14)

Integration by parts gives

Ã(u− uh, η) =
∑
ij∈I

(
∂u

∂n
, [η]
)

Γij

(3.15)

for all η ∈ Xh. Here, n is the outward normal vector on Γij from the mortar subdomain
Ωi. Now, for any γ ∈Mh(Γij),(

∂u

∂n
, [η]
)

Γij

=
(
∂u

∂n
− γ, [η]

)
Γij

≤ Ch̄j‖
∂u

∂n
‖1/2,Γij

‖[η]‖1/2,Γij
.
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Applying trace theorems, we obtain

‖∂u
∂n

‖1/2,Γij
≤ C‖u‖2,Ωj , (3.16)

and

‖[η]‖1/2,Γij
≤ C

(
‖η‖1,Ωi + ‖η‖1,Ωj

)
. (3.17)

Combining (3.15)–(3.17) and applying Cauchy-Schwarz inequality gives that

|Ã(u − uh, η)| ≤ C‖|η|‖
(

K∑
i=1

h̄2
i ‖u‖2

2,Ωi

)1/2

.

The theorem follows from (3.14) and Lemma 3.3.
Remark 3.3. Suppose that for any f ∈ L2(Ω), the solution u to the problem

(2.1) is in H2(Ω) and satisfies

‖u‖2 ≤ C‖f‖0.

If the mesh on Ω is globally quasi-uniform with size h, then conditions (M.1) and
(A.1)–(A.4) imply

‖u− uh‖0 ≤ Ch2‖u‖2.

The proof is based on Aubin-Nitsche duality argument and is omitted.

4. Examples of multiplier spaces. We consider three examples of multiplier
spaces satisfying the conditions of the previous section. Specifically, we consider
one dual basis example and two finite volume examples. The dual basis approach
is the most interesting since it gives rise to the most efficient implementation and
also extends to the case of locally quasi-uniform meshes. The finite volume multiplier
spaces do not produce a diagonal mass matrix. However, these two spaces fit very well
into the finite volume method for non-matching grids and lead to locally conservative
approximations (see, e.g., [23]).

4.1. Dual basis multipliers. In this section, we consider a multiplier space
defined in terms of a dual basis. We note that a dual basis approach for the mortar
method was considered in the two dimensional case in [33] where it was suggested
that although the method extends to three dimension, its extension was necessarily
more complicated. According to [33], the complications were reflected in the quoted
references [11] and [6] where restrictions on the triangles near the boundary were
imposed. We will demonstrate here that the dual basis method extends to three
dimensions without significant complication and any restrictions of the triangulation
near the boundary even in the mesh refinement case.

We will define a dual basis method in terms of a map Iij which takes S0
h(Γij) to

the space of discontinuous functions which are linear when restricted to the triangles
of Tij . Let τ be a triangle with vertices {yl | l = 1, 2, 3} and vl denote the value of a
function φ ∈ S0

h(Γij) at yl. We define Iijφ by the following rules:
1. If all three vertices of τ are in Γij then we set Iijφ = w where w is the

linear function with values w1 = 3v1 − v2 − v3, w2 = 3v2 − v1 − v3, and
w3 = 3v3 − v1 − v2.
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2. If exactly one vertex (say y1) of τ is on ∂Γij , then we set w1 = (v2 + v3)/2,
w2 = (5v2 − 3v3)/2, and w3 = (5v3 − 3v2)/2.

3. If exactly one vertex (say y1) of τ is in Γij , then we set w1 = w2 = w3 = v1.
4. If none of the vertices of τ are in Γij then we set w1 = w2 = w3 = vl where
vl is value of φ at the interior vertex which is closest to the triangle.

Let {xl | l = 1, . . . , n} be the nodes in Γij . We get a dual basis by defining
ψl = Iijφl, for l = 1, . . . , n. In fact, it easily follows from the above definitions that
{ψl | l = 1, . . . , n} is linearly independent and satisfies (φl, ψm) = 0 whenever l �= m.
We define Mh(Γij) to be the span of {ψl | l = 1, . . . , n}.

From the above construction, it is clear that there is an integer L (independent of
the local mesh size) such that if τ ∈ Tij and φ ∈ S0

h(Γij) is 1 on every node which is
within a distance of Lhτ of τ , then Iijφ equals one on τ . This property implies that
the space Mh(Γij) satisfies (A.1) and (A.4).

We next verify (A.3). Let φ =
∑
dlφl be in S0

h(Γij) and set ψ = Iijφ =
∑
dlψl.

Then,

(φ, ψ)Γij =
∑

d2
l (φl, ψl)Γij .

Using the above definitions, it is easy to check that for any triangle τ with xl as a
vertex,

(φl, ψl)τ =
|τ |
3
. (4.1)

Here |τ | denotes the area of the triangle τ . The local quasi-uniformity of the mesh
and (4.1) imply that ∑

l

d2
l h

2
l≤ C(φ, ψ)Γij .

It is clear that the eigenvalues of the matrix⎛⎝ 3 −1 −1
−1 3 −1
−1 −1 3

⎞⎠
are positive and hence∫

τ

(Iijφ)2 dx 	
∫
τ

φ2 dx 	 h2
τ (d

2
l1 + d2

l2 + d2
l3)

holds for triangles with interior vertices. Here {lk} are the indices for the vertices of
τ . Similar arguments can be applied to the remaining cases to show that∫

τ

(Iijφ)2 dx 	 h2
τ

∑
lj

d2
lj , (4.2)

where the sum above is over the indices of the nodes which determine Iijφ on τ . It
follows that

‖φ‖2
0,Γij

	 ‖Iijφ‖2
0,Γij

, for all φ ∈ S0
h(Γij). (4.3)
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Finally, by the local quasi-uniformity of the mesh,

‖φ‖2
0,Γij

	
∑
l

d2
l h

2
l , for all φ ∈ S0

h(Γij). (4.4)

Combining the above estimates gives

‖φ‖0,Γij≤ C
(φ, ψ)Γij

‖ψ‖0,Γij

.

This verifies (A.3).
We finally verify (A.5). Let φ =

∑
dlφl ∈ S0

h(Γij) and ψ =
∑
elψl ∈ Mh(Γij).

Then

(φ̂, ψ)Γij =
n∑
l=1

h−1
l dlel(φl, ψl) = (φ, ψ̂)Γij

where ψ̂ =
∑
h−1
l elψl. Now, by (4.2),

∑
τ∈Tij

h2
τ‖ψ̂‖2

0,τ≤ C
n∑
l=1

h4
l (h

−1
l el)2≤ C‖ψ‖2

0,Γij
.

This is (A.5).

4.2. Finite volume multipliers. In the remainder of this section, we construct
two examples of multiplier spaces involving piecewise constant functions defined over a
partition of the interface Γij . For both examples, we verify (A.1)–(A.4) so the abstract
theory of the previous section can be applied when the mesh is globally quasi-uniform
on each Γij . Condition (A.5) is more difficult for these applications and may not hold
without further assumptions on the meshes (more than locally quasi-uniform).

We start by splitting each triangle τ ∈ Tij into three quadrilaterals of equal
area by connecting its medicenter with the midpoints of the sides of the triangle
(see Figure 4.1). Thus, around each vertex xl ∈ Γij we take the quadrilaterals of
all triangles having xl as a vertex. We denote this partition by Vij . Obviously, this
partition contains volumes around all points on ∂Γij and the number of these volumes
is greater than the dimension of the space S0

h(Γij). We now reduce the number of
the finite volumes to be equal to the number of the internal vertices in Tij by the
following construction.

1. If a triangle has all three vertices on ∂Γij then we attach this triangle to the
adjacent one(s) through the common internal side(s).

2. If a triangle has exactly two vertices on ∂Γij , we add this triangle and all
those attached to it to the volume corresponding to the third vertex, which
is in Γij .

3. If a triangle has exactly one vertex, say x1, on ∂Γij , we split it into two parts
by the median through x1 and add the parts to the volumes corresponding
to the internal vertices.

This forms a partition of Γij into disjoint volumes. This partition is denoted by V0
ij

(see Figure 4.1). Then the spaces of multipliers Mh(Γij) consists of all piecewise
constant functions with respect to the partition V0

ij .
From the above construction, it is clear that the conditions (A.1) and (A.2) are

satisfied.
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We now verify (A.3). The characteristic functions {χl}, corresponding to the
volumes {Vl ∈ V0

ij} form a basis for the space Mh(Γij). Let φ =
∑
clφl be in S0

h(Γij)
and set ψ =

∑
clχl. Then

(φ, ψ)Γij =
∑
l,m

clcm

∫
Γij

φlχm dx =
∑
τ∈Tij

∑
l,m

clcm(φl, χm)τ .

We consider the element “mass” matrices with entries (φl, χm)τ for φl ∈ S0
h(Γij),

χm ∈ Mh(Γij) and τ ∈ Tij . Straightforward computations show that for an element
τ with all vertices in Γij , the element “mass” matrix is given by

|τ |
108

⎛⎝22 7 7
7 22 7
7 7 22

⎞⎠ . (4.5)

Similarly, if the finite element τ has exactly one vertex on ∂Γij then the corresponding
“mass” matrix is the 2 × 2 matrix

|τ |
12

(
3 1
1 3

)
.

Finally, when τ has two vertices on ∂Γij then the matrix reduces to |τ |/3. Therefore,
we have

(φ, ψ) =
∑
τ∈Tij

∑
l,m

clcm(φl, χm)τ ≥ 1
8

∑
τ∈Tij

(c2l1 + c2l2 + c2l3) |τ | 	
n∑
l=1

h2
l c

2
l

where l1, l2, and l3 are the indices of the vertices of the finite element τ . These
inequalities are valid even for triangles with vertices on ∂Γij provided that the corre-
sponding clm ’s are set to be zero. Moreover,

‖ψ‖2
0,Γij

=
∑
Vl∈V0

ij

c2l |Vl| 	
n∑
l=1

h2
l c

2
l 	 ‖φ‖2

0,Γij
.

Here |Vl| denotes the area of Vl. Condition (A.3) follows immediately, combining the
above inequalities.

Verification of (A.4) is also straightforward and follows immediately from Friedrich’s
inequality on the domains in V 0

ij .

4.3. A second finite volume approach. We consider a second possibility for
defining the mortar space based on the finite volume partition Vij of the interface Γij .
This approach is similar to the approach of the dual basis discussed above. Namely,
we define a map Iij which takes S0

h into the space of discontinuous functions which
are constant when restricted to the volumes of Vij . The construction of the map Iij is
based on a dual partition of the interface Γij used in the finite volume method. Below
we construct such an operator and then define the space Mh(Γij) to be IijS0

h(Γij).

For any φ =
∑n

l=1 clφl ∈ S0
h(Γij), we set

ψ = Iijφ(x) =
∑
Vl∈Vij

dlχl(x) (4.6)
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Fig. 4.1. Finite element partition Tij of the interface Γij and its finite volume (dual) partition
V0

ij

Fig. 4.2. Examples of the support of the images Iijφ of the nodal basis function φ ∈ S0
h(Γij)

where χl(x) is the characteristic function of the finite volume Vl ∈ Vij , corresponding
to the vertex xl. The coefficients dl are determined in terms of the values of φ(x) in
the following manner:

1. If xl ∈ Γij then dl = cl.
2. If xl ∈ ∂Γij and all its neighboring vertices are also on ∂Γij then we assign

to dl the value of φ at the nearest internal vertex.
3. Finally, if xl ∈ ∂Γij and has the internal vertices xl1 , . . . , xlp (with lp ≥ 1) as

its neighbors then we set

dl =

∑lp
k=l1

αklck∑lp
k=l1

αkl
, (4.7)

where αkl = |τ1| + |τ2| with τ1 and τ2 being the triangles sharing the edge
connecting the vertices xl and xk.

A basis for the resulting space Mh(Γij) = IijS
0
h(Γij) is given by the images of the

nodal basis function φl ∈ S0
h(Γij) (see Figure 4.2 for the support of these functions).

We now need to verify the conditions of the previous section. It is easy to see
that Iijφ = 1 for the function φ which is one on each node of Γij . This verifies (A.1).
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We verify (A.2) as follows. The dimension of Mh(Γij) is less than or equal to that
of S0

h(Γij) since Mh(Γij) is the image of S0
h(Γij) under the linear map Iij . For the

other direction, let φ and ψ be as in (4.6) above. Then,

‖Iijφ‖2
0,Γij

=
∑
Vl∈Vij

d2
l |Vl| ≥

n∑
l=1

c2l |Vl| ≥ C‖φ‖2
0,Γij

, (4.8)

which shows that the dimension of IijS0
h(Γij) cannot be less than that of S0

h(Γij).
This verifies (A.2).

Next, we verify (A.3). We again let φ and ψ be as in (4.6). Let τ be a triangle of
Γij , φτl , l = 1, 2, 3, be the local linear nodal basis functions on τ and χτl , l = 1, 2, 3,
be the characteristic functions associated with the intersections of τ and the volumes
in Vij . The element mass matrix with entries (φτl , χ

τ
m)τ is given by (4.5). It follows

that

(φ, ψ)Γ̃ij∩τ ≥ 1
8
(c2l1 + c2l2 + c2l3)|τ |

where Γ̃ij = ∪xl∈ΓijVl. The above inequality is still valid when τ has nodes on ∂Γij
as long as clm is defined to be zero for xlm ∈ ∂Γij . Summing the above inequality
gives

(φ, ψ)Γ̃ij
≥ 1

8

∑
τ∈Tij

(c2l1 + c2l2 + c2l3)|τ | 	
n∑
l=1

h2
l c

2
l . (4.9)

Let xl be a boundary node. If all of its neighbors are on ∂Γij , then φ vanishes
on Vl and thus the value of ψ on Vl does not affect (φ, ψ)Γij . If xl1 , . . . , xlp are
the neighbors of xl which are in Γij , then dl is given by (4.7) and an elementary
computation gives

(φ, ψ)Vl
=

7dl
108

lp∑
k=l1

αklck =
7d2
l

108

lp∑
k=l1

αkl ≥ 0.

Combining this with (4.9) gives

(φ, ψ)Γij ≥ C

n∑
l=1

h2
l c

2
l . (4.10)

It is easy to see that (4.3) holds for this space as well. Thus (A.3) follows from (4.10),
(4.3) and (4.4).

From the above construction, it is clear that there is an integer L (independent
of the mesh) such that if τ ∈ Tij and φ ∈ S0

h(Γij) is one on every node which is within
a distance of Lhτ of τ , then Iijφ equals one on τ . As in the dual basis example, this
property implies that the space Mh(Γij) satisfies (A.4).

5. Numerical results. In this section, we present three numerical examples.
In the first example, both the subdomain partition and the triangulation align, while
in the others neither does. Subdomain partitions and mesh structure of the first two
examples are illustrated in Figures 5.1-5.3 and those of the third in Figure 5.4. The
non-matching grids at some of the interfaces for the first two examples are illustrated
in Figures 5.2 and 5.3, respectively.
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Fig. 5.1. Subdomain partitions for the first (left) and second (right) examples.

0 1 2
0

1

2

0 1 2
0

1

2

Fig. 5.2. Initial mesh for the first example at z = 1 for the upper (left) and the lower (right)
subdomains. Solid lines denote subdomain boundaries and dashed lines the mesh.

In each example, trilinear finite elements on meshes of rectangular parallelepipeds
and the corresponding dual basis multiplier are used. To construct this multiplier
space for our rectangular mesh, which in fact is the tensor product of the two dimen-
sional dual basis multiplier considered in [33], we use a straightforward extension of
the techniques developed in Section 4.1 for general triangular mesh. Even though the
theory given in the previous sections was for tetrahedral meshes, it extends to the
approximation described above without difficulty.

The first two examples deal with a Dirichlet problem (2.1) on Ω = (0, 2)3. The
error behavior in the norms ‖ · ‖0 and ‖|·|‖ for the known solution

u(x, y, z) = e−(x−1/2)2−(y−1)2−(z−3/2)2xyz(2 − x)(2 − y)(2 − z)

is reported in Tables 5.1 and 5.2. At each level after the first, a finer mesh is obtained
by partitioning each element into 8 identical ones. In both examples, we observe
second order convergence in the ‖ · ‖0-norm and first order convergence in the ‖|·|‖-
norm.

In our third example, a linear elasticity problem is considered. We solve for
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0 1 2
0

1

2

0 1 2
0

1

2

Fig. 5.3. Initial mesh for the second example at z = 1 for the upper subdomain (left) and the
4 lower (right) subdomains. Solid lines denote subdomain boundaries and dashed lines the mesh.

level number of elements ‖ · ‖0-error ‖|·|‖-error
1 140 5.14e-2 4.74e-1
2 1120 1.28e-2 2.36e-1
3 8960 3.16e-3 1.17e-1
4 71680 7.87e-4 5.84e-2

Table 5.1
Error behavior for the first example.

u = (u1, u2, u3) satisfying, for each j = 1, 2, 3,

3∑
i=1

∂

∂xi
σij(u) = 0 in Ω,

uj = 0 on ΓD,
3∑
i=1

σijni = fj on ΓN ,

where, for each i, j = 1, 2, 3,

σij(u) = 2µεij(u) + λδij∇ · u,

εij(u) =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

with µ = 8.2 and λ = 10 (kg/cm3), the Lamé coefficients for steel. Here, f =
(f1, f2, f3) is given by f1 = f2 ≡ 0 and

f3 =

{
−0.35 if 22 ≤ y ≤ 28,
0 otherwise.

Our computational domain Ω in this example is an I-beam contained in (0, 50)×
(0, 10) × (0, 13), constructed by combining 3 plates, one at the top, another in the
middle, and the other at the bottom. Each plate makes a subdomain, as shown in
the left picture of Figure 5.4. This yields a non-aligning subdomain partition. Then
each subdomain is meshed independently of the others, resulting in a non-aligning
global mesh. We compute the displacement u when the beam is fixed at ΓD, the two
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level number of elements ‖ · ‖0-error ‖|·|‖-error
1 84 6.30e-2 5.58e-1
2 672 1.59e-2 2.73e-1
3 5376 3.98e-3 1.35e-1
4 43008 9.95e-4 6.74e-2

Table 5.2
Error behavior for the second example.

Fig. 5.4. Subdomain partition (left) and the computed solution with the mesh (right) for the
I-beam example.

I-shaped ends, and a constant vertical force f is applied to ΓN , a central region of the
top surface. The resulting deformation of the beam, along with the mesh, is presented
in the right image of Figure 5.4.
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