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ABSTRACT. Compared with [16] and [17], a sharper L?-error estimate is obtained
for the nonFickian flow of fluid in porous media by means of a mixed Ritz-Volterra
projection instead of the mixed Ritz projection used in [16] and [17]. Moreover,
local L? superconvergence for the velocity along the Gauss lines and for the pres-
sure at the Gauss points is derived for the mixed finite element method via the
Ritz-Volterra projection, and global L? superconvergence for the velocity and the
pressure is also investigated by virtue of an interpolation post-processing tech-
nique. On the basis of the superconvergence estimates, some useful a-posteriori
error estimators are presented for this mixed finite element method.

1. INTRODUCTION

As mentioned in [16] and [17], the nonFickian flow of fluid in porous media is
complicated by the history effect which characterizes various mixing length growth
of the flow, and can be modeled by an integro-differential equation: Find u = u(z, t)
such that

u =V-o+cu+f in Q x J,
t
o :A(t)-Vu—/ B(t,s) - Vu(s)ds  in Q x J, (1.1)
0 :
u =g on 0) x J,
u :uo(x) z€Q, t=0,

where Q C R? (d = 2,3) is an open bounded domain with smooth boundary 99,
J=(0,T) with T > 0, A(t) = A(x,t) and B(t,s) = B(x,t,s) are two 2 x 2 or 3 x 3
matrices, and A is positive definite, ¢, f, ¢ and ug are known smooth functions.
Cushman and his colleagues [4, 5, 6, 7, 8, 21] have developed a non-local theory and
some applications for the flow of fluid in porous media. Furtado, Glimm, Lindquist,
and Pereira [19, 20], Neuman and Zhang [27], and Ewing [12, 13, 14] also studied
the history effect of various mixing length growth for flow in heterogeneous porous
media. In a recent laboratory experimental investigation of contaminant transport
in heterogeneous porous media [30], some nonlocal behavior of dispersion tensors
have been observed.
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There is now sizeable literature on the numerical approximations of the problem
(1.1). In [29], the method of backward Euler and Crank-Nicolson combined with a
certain numerical quadrature rule is employed to deal with the time direction, which
aims at reducing the computational cost and storage spaces due to the memory effect.
Finite element methods have been also developed for the problem (1.1) during the
past ten years [2, 3, 23, 24, 25, 26, 32|, in which optimal and superconvergence
can be found for the corresponding finite element approximations in various norms,
such as IP with 2 < p < oco. In particular, the method of using the Ritz-Volterra
projection, discovered by Cannon and Lin [2], proved to be a powerful technique
behind the analysis.

However, to the best of our knowledge, there are few results except [16, 17, 22]
available concerning the mathematical formulation and analysis of the mixed finite
element method for (1.1). In [16, 17] the authors dealt with general setting of the
problem. But the formulation and anaylsis given in [22] are valid for only a special
case, i.e., operator B is proportional to operator A, the reader is refered to [22]
for this special case. The mathematical difficulty associated with the analysis of
numerical approximations to the solution of (1.1) lies on the integral term added to
standard parabolic equations [31, 32].

In the present paper we are concerned with the approximate solutions of (1.1)
by mixed finite element methods. Sharper L?-error estimates than those in [16, 17]
are obtained by employing a mixed Ritz-Volterra projection rather than the Ritz
projection used in [16, 17]. In addition, local L? superconvergence for the velocity
along the Gauss lines and for the pressure at the Gauss points is derived, and with
the aid of an interpolation post-processing method global L? superconvergence is
also considered for the velocity and the pressure.

The paper is organized in the following way. In Section 2, we give some necessary
preparations, introduce the mixed Ritz-Volterra projection and analyze its approx-
imation properties. In Section 3, we derive a sharper error estimate for the mixed
finite element approximations in the L?-norm. Sections 4 and 5 are devoted to
the local and global superconvergence analysis of the mixed finite element method,
respectively.

2. THE MIXED RITZ-VOLTERRA TYPE PROJECTION

In this section, we give the mixed finite element approximate formula for the
parabolic integro-differential equation (1.1) and the mixed Ritz-Volterra projection.
For simplicity, the method will be presented on plane domains.

Let W := L?(Q2) be the standard L? space on 2 with norm || - [|op. Denote by

V= H(div,Q) = {0 € (L’(?))*: V-0c€eL*(Q)},
the Hilbert space equipped with the following norm:

1
lollv == (llellg + 11V - ollg)* -

There are several ways to discretize the problem (1.1) based on the variables o and
u; each method corresponds to a particular variational form of (1.1) [16, 17].

Let T}, be a finite element partition of €2 into triangles or quadrilaterals which is
quasi-uniform. Let Vj, x W), denote a pair of finite element spaces satisfying the
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Brezzi-Babuska condition. For example, the elements of Raviart and Thomas [28]
would be a good choice for V;, and W},. Although our results are based on the use
of Raviart-Thomas elements of any order k, their extension to other stable elements
can be discussed without any difficulty.

Let us recall from [16] that the weak mixed formulation of (1.1) is given by finding
(u,0) € W x V such that

(ug, w) — (V co,w) — (cu,w) = (f,w), Yw € W,
(ao,v) + / (M(t,s)o(s),v)ds+ (V-v,u) =(g,v-n), VveV, (2.1)
u(0, ) up(z) in L*(Q),

where a = A7 (t), M(t,s) = R(t,s)A™"(s) and R(t, s) is the resolvent of the matrix
AN () B(t, ) and is given by

R(t,s) = A 1 (t)B(t,s) + /lt A Y)B(t,7) R(r,8)ds, t>s>0.

Here (-,-) indicates the L?-inner product on 9.
The corresponding semi-discrete version is to seek a pair (uy, o) € Wy, x V}, such
that

(une, wp) — (Vt' Oh, wh) — (cup, wy) = (f, wp), Vwy, € Wy,

(aop, vp) +/ (M(t,s)on(s),vp)ds + (up, V -vy) = (g,n-vy), Vv, € V.
0

(2.2)
The discrete initial condition uy (0, x) = ug s, where ug;, € W), is some appropriately
chosen approximation of the initial data ug(x), should be added to (2.2) for starting.
The pair (up, 0p,) is a semi-discrete approximation of the true solution of (1.1) in the
finite element space W}, x Vy, [1, 16, 17, 29], where 05,(0, x) is chosen to satisfy the
equation (2.2) with ¢t = 0; namely, it is related to g, as follows:

(@on(0), Vi) + (vop, V- Vi) = (go, 1+ Vi), (2.3)

where go = ¢(0, ) is the initial value of the boundary data.
In [16], utilizing the mixed Ritz projection we have obtained for the Raviart-
Thomas element of the lowest order that

t
[lu = unll5 + llo = onlls < Ch* {Huollﬁ ||Uo||?+/ ([Ju(s)II2 + ||ut(8)||§)d8} :
0

Also, we can extend easily the result to the case of any order k& (> 1) to get

t
=l +llr = ol < €2 a2 ol + [ a2+ (o))
0

(2.4)
for 2 < r < k+1. for In fact, we can improve the error estimate by extending the idea
from [2, 3] to introduce a new nonlocal projection incorporated with the memory
effects, which allows us to obtain a sharper error estimate in regularity than that
indicated in (2.4). This new projection is a natural extension of the standard Ritz-
Volterra projection in the standard finite element method to the case of the mixed
finite element approximations with memory. We refer the readers to [2, 3] and [26]
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for the analysis and applications of the Ritz-Volttera projection for standard finite
element apprroximations to parabolic and hyperbolic integro-differnetial eqautions.

Before the mixed Ritz-Volterra projection is given, we need the following Raviart-
Thomas projection [28]:

HhXPhiVXW%VhXWh,

which has the properties:
(i) Py is the local L*(£2) projection;
ii) IT;, and P, satisfy

(
(V : (O’ - Hha),wh) = 0, wy, € Wh and (V *Vp, U — Phu) = 0, vy € Vh. (25)

iii) the following approximation properties hold:

||lo = pallo < Ch7{lo]|y, l<r<k+1,
|V - (o —1o)||l s <Ch ||V -oll,, 0<r s<k+1, (2.6)
llu — Pyul| s < Ch™8||ull,, 0<r s<k+1.

Definition 2.1. For (u,0) € W x V we define a pair (ay,0p) : [0,T] = W), x 'V,
such that
t
<a(a — o) + / M(t,s)(o — ah)(s)ds,vh> + (V- vp,u—1up) =0, vy €V,
0

(V- (o= 0n),wn) + (c(u — tp), wp) =0, wp, € Wh,
(2.7)
where « = A™Y. The pair (uy,ay,) is called the mized Ritz-Volterra projection of
(u,0).

Let
Ei=0—0p, ni=u—1Up, v:=I10—0y, 7:=FPu—i, p:=u— Pu.

Then (2.7) becomes

t
(&g +/ M(ta 8)§(S)d‘97 Vh) + (V " Vh, 77) = 07 Vi € Vh, (2 8)
0 .
(V ’ ga wh) + (6777 wh) = 07 wp, € Wh,
or, according to (2.5)

(@&, vip) + (V vy, 7) = f(vi), Vi € Vy,

(V ’ 5’ wh) + (CTa wh) = g(wh)a wy, € Wh, (29)

where

¢
o= = ([ Msg)tsw ) and glun) = ~ep ).
0
In order to analyse (&, 7), let us recall from [10] the following results.

Lemma 2.1. Let the index k of Vi, x Wy, be at least one and let 0 < s < k — 1.
Assume that Q is (s+2)-regular [10]. Let £ € V, g e W' = L*(Q) and f = {fy, f1} €
V' with £, € (L*(Q))?, f1 € L*(Q) and

fv)=,v)+(fi,V-v), veV.
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If z € W), satisfies the relations

(&, vh) + (V- vi, 2) = f(vn), Vi € Vi, (2.10)
(V-&wp) + (cz,wn) = g(wn),  wp € Wh, '
then there exists hg > 0 sufficiently small such that for all 0 < h < hy,

l2ll-s < CLRFHIEllo + hF2(IV - Elo + [[fol|—s—1 + A" [[fo o
Hfill=s + 22l fillo + gll-s—2 + h*2[lgllo}

Lemma 2.2. Let the index k of V), x Wy, be non-negative, and let 2 be (k + 2)-
reqular [10]. Let £ € V, g € W' = L*(Q) and f = {f,,0} € V'. If = € W}, satisfies
(2.10), then there exists hy > 0 sufficiently small such that for all 0 < h < hy,

12l < C LR ((1ENo + 11V - €llo + [lfollo + 11gllo) + [1foll k-1 + [lgl] 52} -
Moreover, we also need the following lemma.

Lemma 2.3. Assume that the matriz A(t) is positive definite. Then, the norms
0|3 := (0,0) and ||o||} -1 := (A0, 0) are equivalent.

Proof. It is clear that
A lells < (A7he,0) < AyfllollG,

where Ay; and \j, are the smallest and largest eigenvalues of A(t), respectively. [
We are now ready to state and prove our main result in this section.

Theorem 2.1. For (u,0) € W x 'V its mized Ritz-Volterra projection (i, ap) de-
fined by (2.7) exists and is unique. Moreover, there is a positive constant C' > 0,
independent of h > 0 small, such that the error (u— up, 0 — ) can be estimated by

. h|[u(®)]]]2, if k=0,
||“_“h||0§0{ oI ifk>1and2<r<k+l,
llo = anllo < CRT[[Ju@)]]]r+1, flr<r<k+1,

IV (o = an)llo < CR[[[u(®)]|lr42, fO0<7r<k+1,
where

t
|||U(1t)|||r=||U(1t)||r+/0 lu(s)lvds, reR, t>0.

Proof. We first prove the existence and uniqueness of the mixed Ritz-Volterra
projection. If M = 0, then it follows from [1] that (@, 0y,) exists uniquely. If M is
non-zero, we see that (2.7) in fact can be written as a Volterra system for (@, 73 ),

ie.,
_ t _
A ") = F /B t Un Y g
h<0h> h+0 h(;5)<0h S,

where A; and By, are matrices with A, non-singular and F}, is a vector associated
with the solution (u, o). Hence, the theory of Volterra equations implies that (i, &)
exists uniquely.
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Next we turn our attention to error estimates. It follows from (2.6) and (2.9) that

t t
17l <€ [ lellods, I17ll-1 =€ [ 1l
0 0
lollo < Cllol loll-+ < Cllol
loll-2 < llll-1 < Cllell-r,— llell-s+ Alollo < Ch ]

Now, apply either Lemma 2.1 with s = 0 or Lemma 2.2 with k¥ = 0 to (2.9). Then,
for h small and for €2 2-regular we have for 0 < r < k + 1 that

el < © {hllello+ B2=519 - €lly + 11111+ A1l + lll|-2 + Allgll}
t
< {lela+ 125009 el + [ el + Bllellodds + lpll-s+ il }
0

t
Sc{h|||§|||0+h25’“°||V'§||0+/ ||§||_1ds+h’+1||u||r},
0

(2.11)
where

s _ 1 k=0,
=00  k#0.
Letting ¢ € (H'(€2))?, then we derive from (2.5) and (2.8) that

<a5+/tMtss(s>ds ¢)+(7 e
= <a£+/ M(t, s)&(s)ds, o — HW) (V- (¢ — ), n)
#(ag+ [ 20t 96 Tp) + (5 T
~ (ag+ / M0, )€ 60 o~ Tap) + (V- (= o)),

or

(ak,p) = / (M (t, $)€(3), ©)ds — (V- o, 1)

t
+ <a§ +/ M(t,s)é(s)ds, p — Hh<p> + (V- (¢ —up),u)
0
which, together with (2.6), indicates that
¢
(€, p)] SC/O E)-1ds]lell + Hnllol el |1
+Ch|[lE|[lollellL + Chl|ull |V - (¢ — TTxp)||-1
¢
sc(/ﬂ ||<,o||_1ds+||n||0+c~h|||§|||o+oh||u||1) el

that is,

t
I€]-1 < C {/0 1€(5)|-1ds + [Inllo + Ch([[I€]l]o + ||UI|1)} :
This, together with Gronwall’s lemma, implies that
€1 < C {nllo + Ch([|IENo + [|ul1)} - (2.12)
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Substitute (2.12) into (2.11) to obtain

t
1710 < C{/ ||77(8)||od8+h|||§|||o+h2‘5’“°|IV-§||o+h’"“||“||r}' (2.13)
0

Therefore, for 0 < r < k + 1 we have
lls < lello + lil
: C{/ ||77(S)||od8+h|||§|||o+h2_5"°|||V-§|||o+h’"||“||’"}’
0

and applying Gronwall’s lemma leads to
1110 < C {RlIE]llo + h*="[|V - &[0 + A" [ul], } (2.14)

Since, by (2.5), (V -v,wp) = (V- & wy) for wy, € Wy, it follows from (2.8) and the
choice w, = V - v € W,, that

(V-y,V-v)=(V-&,Vv) = —(en, V- v)

or
IV - vllo < Clnllo, (2.15)
so that

IV-€llo < [[V-vllo+|[V-(o=Tlho)llo < Cl[nllo+A"|V-0lly), 0 < ¢ <k+1. (2.16)
Also, according to (2.8) v satisfies

(ou/ + / tM(t, s)v(s)ds, ,,)

= <a§0+ /UtM(t, s)&(s)ds, u) + ga(Hha —0o)+ /OtM(t, s)(Io — a)(s)ds,l/>

=—(V-v,n)+ (oz(HhU —0) +/ M(t, s)(IIpo — o)(s)ds, 1/>
0
< |V - v[[§ +Inll§ + CllMho = o llfo] [¥[]o-
Then, we find from Lemma 2.3, (2.15) and the e-type inequality that

t
11l —C/ [lv(s)lleds < C(|Inllo + [Tk — olllo)
0

which, together with Gronwall’s lemma and (2.6), implies
llo < C([Inllo + |[|Iho = olllo) < Cllnllo + A" |llo[lm), 1 <m <k+1, (2.17)
and
€llo < Ivllo + |[TTho = allo < C([Inllo + A" |[lo|[lm), L <m <k+1.  (2.18)

If (2.16) and (2.18) are substituted into (2.14), then for 0 <r <k +1,0 < ¢ <
k+1,and 1 <m <k + 1 it follows that

[Inllo < C{Alllnlllo + " [ull, + R™H[|o||lm + B2RHV - o]}
Thus, for small h we obtain via Gronwall’s inequality that

Inlle < C{"[[ulle + "M lo]llm + 27059V - ol }
0<r, ¢<k+1,1<m<k+1
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Choose r =m + 1 =2+ g — i to gain that

il Chlllullly  if k=0,
MO=N onr(lulll,  itk>Tand2<r<k+1,

since ||o||y—1 + ||V - o[, < C[ull-
It then follows immediately that

1€llo < CR[|ulllr+1, 1<r<k+1,
IV -&llo < Ch[|ulllr42, 0<r <k+1.
Therefore, the proofs of Theorem 2.1 are complete. O

Theorem 2.2. Let (ap,d,) be the mized Ritz-Volterra projection of (u,0) € W xV
defined by (2.7). Then, there is a positive constant C' > 0, independent of h > 0
small, such that the error (u — 1y, 0 — &y,) can be estimated for any positive integer
m by

m(y o h[[w(®)]|]2,m, if k=0,
D" (u — an)lfo < C{ B ()]s ifk>1and2<r <k+1,

1D (0 = an)llo < CR[[[u(@®)][lr-+1,m, ifl<r<k+1,
1D (V- (0 = au))llo < CA|[[u@)llr12m, 0 <7 <k+1,

where

[|[u(?)]

m ; m
rm = Z || Diu(t)]], —|—/ Z ||Dlu(s)||.ds, reR,t>0.
j=0 0 =0

Proof. Differentiate (2.7), and then the result for m = 1 follows from the same
arguments as those for Theorem 2.1.

The proof is completed by treating m > 2 inductively, using the further differen-
tiation of (2.7). O

Corollary 2.1. Let (up,dy) be the mized Ritz-Volterra projection of (u,0) € WXV
defined by (2.7). Then,

[lu = tn]loe < Ch" (|u

roo + Ul|lr1), E>1and 1 <r <k.
Proof. we see easily from (2.13) and Theorem 2.1 that
I7llo < CR"M||ul||,41 for k>1 and 1<7r <k,
and by the inverse inequality that
17l < ChHI7llo < CH|[[ul[r41-
Thus, we have for £ > 1 and 1 < r < k that

lu = anlloo <l = Prulloo + [[7]]oo

< Ch([[ullro0 + [lull]r41)-
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Remark 2.1 For £ = 0 we have no order estimate for the quantity ||u — @p||co-
However, using the superconvergence analysis we know from Corollary 5.1 that for
the rectangular Raviart-Thomas elements of the lowest order, there holds

|lu— unlloe < Ch,
where (u,0) and (uy,0p,) are the solutions of (2.1) and (2.2), respectively.
Theorem 2.3. Assume that (@, &p,) is the mized Ritz-Volterra projection of (u, o) €

W x V defined by (2.7). Then, there is a positive constant Cy, > 0, independent of
h > 0 small, such that for m > 0

m

t
D" anllw +[|1Dfonllv < C {Z(HDiUHv + [[Dyullw) +/ (llollv + ||u||w)d8} :
=0 0

(2.19)

Proof. Rewrite (2.7) as
(acn,vp) + (V- vy, ap) = F(vy),  vi € Vp,
(V- Gp,wp) + (ctp, wp) = G(wy),  wy, € Wh,
where .
F(vy) = ao +/ M(t,s)(o — ah)(s)ds,vh> + (V- vp,u),
G(wy) = (V -0, wz) + (cu, wy,).

F(vy) and G(wy,) can be considered as linear functionals of v, and wy, defined on
V), and Wy, respectively. Thus, we have from the stability result of [1] that

F
anllv + llapllw < C< su | (Vh)|+ su 7|G(wh)|
[&nllv + |Tn]] p p
vinevy [[Vallv  weew, [lwallw

t t
<c{lloliv + [ lolivas + ulbw + [ lionlives .
0 0

or, by Gronwall’s inequality,

t
wmv+mmwsc@ww+/Wwww+uww}
0

which demonstrates that (2.19) is true for m = 0.
We can also prove (2.19) for m > 1 by differentiating (2.7) with respect to time ¢
and repeating the same arguments above with mathematical induction. O

Remark 2.2 This stability result (2.19) is needed in the analysis of the backward
Euler time-discretization scheme. See [17] for the details.

3. SHARP L? ERROR ESTIMATES

In this section, we shall show a sharper L? error estimate than that one indicated
in (2.4) for the time-continuous approximation scheme (2.2), where the regularity
requirement is one order lower than that in (2.4), by means of the mixed Ritz-
Volterra type projection instead of the mixed Ritz projection used in [16] to obtain
(2.4). Here, let us consider the Raviart-Thomas elements of higher order k > 1 (see
[16] for the lowest-order case).
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Theorem 3.1. Assume that (u, o) and (uy,op) are the solutions of (2.1) and (2.2),
respectively, ||Ppug — un(0)]| < CR"||uplly and ||[Tao(0) — 0x(0)]| < Ch"||ug||rs1-
Then, we have for k > 1 that

t
[lu(t) = un(t)[5 SWW%W%+/WW@W+WM$W%} 2<r<k+1
0

t
o) = onolly < Cn {luallz + [ o) + lua(olEJds b 1<k,
Proof. Let (@p,5,) be the mixed Ritz-Volttera projection of (u,o) defined by
(2.7), and we rewrite the errors as:
u—up = (u—1ay)+ (ap — up) == p+ pn,
o—o, =(0c—ap)+ (0h—0op) =0+ 6.

Then, we know from Theorems 2.1 and 2.2 that

[lpllo < CR"[[|u(®)]]], k>1 and 2<r<k+1, (51)
lpello < CA” ([l + [[lwe(@)llr), k>1 and 2<r <k+1,
and
10@)]lo < CP|[[ulllrr, 1<r<k+1 (3:2)
Thus, only ||pn||o and ||04]]o need to be estimated.
It follows from (2.1)-(2.2) and (2.7) that (py, 0),) satisfies
aby, + ltM(t, S)Gh(s)ds,vh> + (V-vu,pn) =0, v, € Vy, (3.3)

0
(Pn,ts wn) — (V- On, wn) — (cpn, wn) = —(p, wn), wp, € Wh.
Therefore, setting wy, = p, and v, = 6, in (3.3) we obtain from their sum that

1d t
Sl = o)+ lnlB == ([ 210900515, 0) = (o)
t
< [ 164(5)llods|6nll + llulol oo
0

and by means of Lemma 2.3 that

1d t 1
S gllenlls + 110l < © (||ph||3+/ ||eh||?4_1ds) + 5 (1613 + Ll 5)
0

Integrating from 0 to ¢ leads to

t t S t
lonll2 + / 10nI1ds < [lon(O)]2 + / [||ph||§+ / ||9h(s>||2,1ds]+ / locl 2ds

which, together with Gronwall’s lemma, implies

t t
onll2 + / ||eh<s>||zldssc{||ph<o>||§+ / ||pt||3ds}. (3.4)
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It follows from (2.6), Theorem 2.1 and our initial approximation assumption that

1on(O)I5 = [12A(0) — un(0)[I§ < [n(0) — uoll§

o — Prug 2 + || Prtto — un (0)]2 (3.5)
< O ug 2.
Combining (3.1) and (3.5) with (3.4) we gain
t
HM%SWW@WW+AHMﬁW+MMMW%- (3.6)

In order to get the estimate for 6 (¢), we first differentiate (3.3) to obtain
t
<Oét9h + ol + M(,1)0, + / M(t, 5)9h(5)d57Vh> + (V- Va,png) =0, v, € Vi,
0

and then by setting v, = ), in the above equation and w;, = pp,; in (3.3) we have
that

t
||ph,t||g + (aﬁhyt, Hh) + (atﬁh, Hh) = — (M(t, t)9h —|—/ Mt(t, s)Hh(s)ds, 9h>
0
+(cpn, pri) — (Pes Pht)-
(3.7)
Since
a(ei)t = (aefzb)t - 04t9f2u
then
1 d, o
(Oéehyt, Gh) = aﬁhﬁh = 5 ad—(Hh)
“rd p
1
—; [ Gt =5 [ st
2 dQ dt 12 Q
1
= §—t||9h||§;—1 - 5( 10n, On).-
Hence, (3.7) can be rewritten as
, 1d ) 1 !
lonal + 5 g l10nIlis + 5 (b, 8) == ( M(E )6+ | Mt 5)6(s)ds. 0

+(cpn, put) — (pr, Phg)-

Thus, from the e-inequality we derive that

d t
b 001 < {1l + [ 160 Bds + 1B + Nl

and then via integrating from 0 to ¢, Lemma 2.3 and Gronwall’s lemma that

164115 < C{Il9h(0)||§+/0 [Ilph(8)||3+||pt(8)||3]}- (3:8)

It follows from (2.6), Theorem 2.1 and our initial approximation assumption that
10, (0)I[5 = 11on(0) — o (0)[1F < [|on(0) — o (0)][3
+|e(0) — po (0)[[5 + 1Mo (0) — on (0)I15 (3.9)
< CIM|uo| [}

||t
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If (3.1), (3.6) and (3.9) are substituted into (3.8), then we can obtain

t
16,12 < OB {||uo||m + [Tt + ||ut(s>||$1ds} .

Then, the proofs of Theorem 3.1 are complete via the triangle inequality. U

Remark 3.1 The assumption in the above theorem ||P,ug — us(0)||o < Ch"||uoll,
and ||II,0(0) — 0,(0)||o < Ch"||ug]|;+1 is available. In fact, from (2.1) and (2.3) we
know that

(a(0)(o — o) (0),vh) + ((w — up)(0),V-vy) =0, v € V. (3.10)
When we choose u(0) = Pyug, (3.10) becomes
(04(0)(0' — O'h)(O),Vh) = 0, vy € Vh,

since (ug — Pyug, V - vi,) = 0 according to (2.5). Thus, we have by virtue of (2.6)
that

(0(0)(04(0) — Mxo(0)), va) = (a(0)(0(0) = Tho(0)), va) < Ch"[[uo||r+1[|Vallo
which, together with Lemma 2.3, indicates that
[lon(0) = ao (0)[lo < CA[Juol[r41-

4. LOCAL L? SUPERCONVERGENCE ON RECTANGULAR ELEMENTS

In the last decade considerable attention has been given to the analysis of su-
perconvergence of mixed finite element approximations to elliptic ([11, 15, 33, 34])
and parabolic ([4, 5]) problems under various norms associated with the Gauss lines
for the gradient and the Gauss points for the solution itself. In this section, we will
extend these superconvergence results in mixed finite element approximations to our
problem of parabolic integro-differential equations.

Following [15] we assume that  C R? is rectangle and define semi-norms on V
and W as follows. Letting e = [a, b] X [c, d] € T},, we denote by (g1, g1, , gk+1) the

Gauss points in [a, b] and (g1, g2, - - , Jk+1) the Gauss points in [c, d], and define
k+1
el =3 /m 520,
k+1
lloae =D )[*ds,

where A; >0, j=1,2,--- |k + 1, are the coefficients of the Gauss quadrature rule
n [—1,1]. Thus, for v = (vy,v2) € V and w € W, we define

V112 = (ol [+ el [, [eilllF =Y llloill e, i = 1,2,

ecTy
k+1
[Hwl][? = ZZAA area(e) [w(gi, g;)|*-
eEThZJ 1

Clearly, these two semi-norms are equal to the L?-norm of functions from Vj, and
W), respectively [11, 15], where V), x W, is the Raviart-Thomas finite element space
of index k (> 0). Moreover, let u’ represent the interpolation function of u of degree
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k with respect to z and y, respectively, on each element associated with the (k+ 1)?
Gauss points. First of all, we need the following lemmas.

Lemma 4.1. Assume that o € (Hk+2(Q))2 NV, u € H™2(Q), and u! is the in-
terpolation function of u defined by (k + 1)? Gauss points. Then, we have for some

constant C > 0 that
l|o — o[l < Ch*2||o]|kse,

[1Phu = u'flo < ChF2|[u g2
Proof. The proof can be found in [11, 15]. O
Lemma 4.2. Assume that o € (Hk+2(Q))2 NV, u € HY(Q), ¢ and B are two
Wh2(Q) functions. Then we have for some constant C > 0 that
[(e(Phu — ), wn)| < ChF*2 fullsfwnllo,  wn € Wh,
[(B(Iho — o), va)| < CHF2[olerallvallo,  vi € Vi

Proof. Let ¢ := / ¢/|Qdx, where |2 is the measure of . Then,
Q

|c(z,t) — &z, 1) < Chllefl1,00
which, together with the definition of the L2-projection operator Py, yields
|(e(Phu — u),wn)| = [((¢ = &)(Pau — u), wy)]
< Ch||Pyu = ullo|[wallo
< CR**2|[ullgs1l[walfo.

Thus, we obtain the first estimate in Lemma 4.2.
The proof for the second estimate is referred to [11]. O

Theorem 4.1. Let (up, ;) be the mized Ritz-Volterra projection of (u,0) defined
by (2.7). Then, there exists a positive constant C' > 0, independent of h, such that
forany 0 <t <T,

t
= anlll. + lllo = aalll, < CH=+ (||u||k+2 ol + [ ||a||k+2ds) .
0

Proof. We first observe by the equality of the norms ||| - |||« and || - ||¢ for the
functions in the finite element spaces W) and V, that

v =l < (llfw = Paullls + [[Phu = walfo,
llo = anllls < |llo = pallls + [[Txo = Talo-

Since u—u! = 0 at the (k+1)? Gauss points in each element e, we have according
to Lemma 4.1 that

11Pyu = ulll. = [||Pyu — u' ]| = [|Pou — u'llo < CR2|Ju |j+o.
In addition, from Lemma 4.1 we also know
llo = Mol < CH*2|o] |42

Hence, it is sufficient to bound ||P,u — @y||o and ||II,0 — 64| to complete the proof
of Theorem 4.1.
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Let & ;=10 — 5, and 7 := Pyu — @y,. Then, we see from (2.5) and (2.7) that
(@&, vp) + (V- vp,7) = Fo(vp) + Fi(vy),  vi €V, ()
(V- & wp) + (em,wp) = Go(wp), wy, € Wy,

where

Fy(vy) = — (a(a — o) + /Ot M(t,s)(oc — Hha)(s)ds,vh> , v, € Vy,
Fi(vy) =— (/OtM(t, s)g(s)ds,vh> , vy, € Vy,
Go(wn) = —(c(u — Pyu), wy), wy, € Wy

Since the terms Fy, F; and G can be regarded as linear functionals of v, and w,
defined on V,, and W}, respectively, and we then know from the stability result of
[1] that for any fixed time 0 <t <T

Fy(vy) + Fy(v Golw
HﬂW+Hﬂwsc{sw'(‘“ vl Lﬂiﬂ} (12)
vRLEV ||Vh||V wp W ||wh||W
Let
F, G
Fo(t) = sup [Fo(va)l and  Go(t) = sup M,
vREV ||Vh||V wpEW}, ||wh||W

and notice that

Ryl KAEW”W@“”O‘

sup ————— = sup
vevy |Vallv  viev, [[Va|lv

Therefore, we find from (4.2) that

soluaﬂwm

|KM+Hﬂw§CQMﬂ+%®+CAHﬂﬂW®»

and by Gronwall’s inequality that
Ellv + lITllw < C(Fo(t) + Go(t))- (4.3)
Now we apply Lemma 4.2 to Fy(t) and Gy(t) to obtain

t
Flt) £ 1 (lollsat [ llo(e)lhads)  and - Galt) < O ljulus
0

which, together with (4.3), indicates

1Elv + lI7llw < CRF2([[ulless + Mo lkr2)-
0

Corollary 4.1. Let (ap, ) be the mized Ritz-Volterra projection of (u,o). Then,
11De(u = @)l + 11 De(o = an)llls - < CRE2{fullkgr + el k42 + [|o]lk+2

+lloulle+2 +/0 u(s)lk2 + [lo(s)l]k42lds}-
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Proof. Differentiating (4.1) with respect to time ¢, then we see that & and 7
satisfy the same equations with the right-hand sides replaced by

Fi(vy) = —(aloy — poy) + (o + M(t, 1)) (0 — o), vp)
t
+ ( / My(t, 5)(o — Hha)(s)ds,vh> | i€V,
0
t
Ry = (Mg [ ane o). Vi €V,
0
Gy(wp) = —(c(u — Pyu+7),wp) — (c(u — Pyu)y, wy), wy, € Wy,
Thus, Corollary 4.1 follows from the same argument above. 0]

In order to obtain superconvergence results for mixed element approximations for
our parabolic integro-differential equations we choose our initial data approximation
(un(0),0,(0)) ~ (up(x), A(0)Vug(x)) as the mixed elliptic projection:

((0)(an(0) = 0(0)),vh) + (V - Vi, un(0) — ug) =0, Vi, € Vi,
(V- (o,,(0) = 0(0)), wp,) + (c(0) (up,(0) — ug), wp) =0,  wp € W,
Theorem 4.2. Let (u,0) and (uy,04) be the solutions of (2.1) and (2.2), respec-

tively, and (up(0),04(0)) is chosen according to (4.4). Then, there exists a positive
constant C' > 0 such that for any 0 <t < T,

(4.4)

e = unl[l« + [[lo = onl]l«
t 1/2
< Ch’“”{llullk+z+|lffllk+z+ UO (||u||i+1+||U|Ii+z+||ut||i+1+||0t|li+z)d8] }

Proof. First, the errors are decomposed as
u—up = (u—ay) + (ap —up) == p+ pp,
o—o,=(0—3ap)+ (0, —0p) =0+ 06,
and by Theorem 4.1 that
ol + 1011 < CH*2([ullkre + [llo]]]5+2).
Moreover, from (2.7) and (4.4) we derive that
((0)0,(0),vy) + (V - v, pr(0)) =0, vy, € Vi,

(V -0y (0), wh) + (C(O)ph(O), wh), wy, € Wy,
which, together with the uniqueness of the solution to (2.7), implies

Furthermore, from the proof for Corollary 4.1 we know that

I7ello < CAM 2 {{llullliess + oo + el lkr + [oel s}

which, together with the definition of the local L?-projection operator P, demon-
strates that

[(pts n)| = |(76, pn)|
< OP 2 {J|Julllks1 + |oe+2 + Nwelles1 + 1owl k423 ol lo-
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Noticing that |||pnl|l« = llpnllo and [[|04]]]« = [|0n]]o as well as (4.5), we can obtain
the desired estimates for p, and 6, in L?-norm through the same procedure as that
in Theorem 3.1 for p, and 6. l

5. GLOBAL L? SUPERCONVERGENCE ON QUADRILATERALS

In [18, 23] superconvergence has been obtained in mixed finite element methods
on quadrilaterals for elliptic equations. Here we shall extend these results to our
parabolic integro-differential equations. The strategy employed here is that we first
examine the superclose accuracy between the interpolation function of the exact
solution and the mixed finite element solution of (1.1) by means of integral identities,
and then we use a suitable interpolation post-processing method to obtain global
superconvergence approximations [23, 24]. As by-products, these superconvergence
results can be utilized to form a class of useful a-posteriori error estimators to assess
the accuracy of the mixed finite element solutions in applications.

Let V,,(€) x W,(é) be the standard local Raviart-Thomas rectangular space on
the reference element é := [—1,1] x [—1,1] of order k£ (> 0); i.e.,

\A{h(é) = Qry1,k(8) X Qrp41(6),
Wh(é) = Qk,k(é)a
where @y, (€) indicates the space of polynomials of degree no more than m and n

in z and y on ¢, respectively. On arbitrary convex quadrilateral element e € T}, the
local Raviart-Thomas space is defined by

Vi(e) :={q=Gq oAFe_l :q € yh(é)},
Wi(e) :={w=wo F,': @€ W)},

where F, is the affine map which takes é onto e and G := |det(My)|~' M, with M,
being the Jacobian matrix (derivative) of F,. Of course, V,(e) C (C(e))? and
Wy(e) € C*(e) are no longer of polynomials on e unless e is a parallelogram.

The global Raviart-Thomas finite element space over the partition 7}, is defined
in the standard way as follows:

V, :={v e H(div; Q) : v|. € Vi(e), Ve € T},
Wy, = {w € L*(Q) : w|. € Wy(e), Ve € T,}.

Let ¢ and u are two vector-valued and scalar-valued functions, respectively, on the
reference element é. Recall that the interpolation functions (or the Raviart-Thomas

projection) I1,6 and P, over é are defined by the following linear systems:
[(&—ﬂh@-nqu:(), Vg € Pi(l), i =1,2,3,4,
[ (6 —11,5)- ¢ =0, Vo € Qr_14(€) X Qrr_1(é), and (5.1)
/(ﬂ - Phﬂ)q =0, Vg € Qrr(€), respectively,

where [; (1 =1,2,3,4) is one of the four sides of ¢, n is the outward normal vector to

é, and P, denotes the set of polynomials of total degree no more than r. If e € T}, is
an arbitrary quadrilateral element, o and u are two vector-valued and scalar-valued
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functions defined on e, then their interpolation functions II,o and P,u on e are
defined by

Mo == G(II,(G™'6)) and Pyu:= Py, respectively, (5.2)
where & := 0 o F, and @ := u o F,. Then, we have [18]
(V . (O’ — Hha),wh) =0, Ywy, € Wiy,
(V'Vh,u—Phu):O, Vv, € V.
The semi-discrete mixed finite element method for (1.1) is now defined as: Find
(Uh, O'h) e W, xVy, satisfying

(5.3)

(unes wn) = (V - onywn) — (cun, wn) = (f, wn), wy, € Wi,

(oo, vi) + / (M(t,s)on(s), vp)ds + (up, V- vy) = (g,n-vp), v, € Vy,
0

Uh(()) = PhUU, O'h(O) = HhO'(O)

(5.4)
From (2.1) and (5.4) we derive the following error equation:
(ug — upp, wp) — (V -t(a —op), wy) — (c(u —up),wp) =0, wp, € Wh,
(a(o — on), Vi) +/ (M(t,s)(o —on)(s),vh)ds + (u —up, V-vy) =0, v, €V,
0
(5.5)

From [18, 23] we recall the following lemmas.

Lemma 5.1. If P,u is the interpolation function of u defined as in (5.2) and ¢ €
Whoo(Q), then there exists a constant C' such that

|(c(u — Pyu), wn)| < CRM*2|[ullpal|wnllo,  wh € Wi

Lemma 5.2. If the finite element partition Ty, is h*-uniform ([18])or generalized
rectangular ([23]) and o is the interpolation function of o defined as in (5.2),
then there exists a constant C' such that for sufficiently smooth [

(B(o — o), va)| < Ch**2|allksal[Vallo,  vi € Vi
We are now ready to get our main theorem in this section.

Theorem 5.1. Assume that the finite element partition Ty, is h>-uniform or gener-
alized rectangular and (uy, oy) is the approzimate solution of (1.1) defined in (5.4)
by using quadrilateral elements of Raviart-Thomas of order k. If the exact solution
u and o satisfies u € H*1(Q) and o, 0y € (H*2(Q))?, then we have

t 1/2
=Pl lon~hlly < 00552 | [ (ulley + ol + lnliodas| . 6.9

Proof. Let pj := u, — Pyu and 0} := o5, — [I,0. Then, it follows from (5.3) and
(5.5) that

(b, vp) +/0 (M(t,s)0;(s),vi)ds + (p;, V - V1)

= (a(a —II,0) +/ M(t,s)(o — Hha)(s)ds,vh> : vi € V), (5.7)

0
(Ph s wn) — (V- 05, wn) — (cpp,wn) = —(c(u — Pyu),wy),  wp € Wi
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Thus, letting wy, = p;, and v, = 6}, in (5.7) we obtain from Lemmas 2.3, 5.1 and 5.2
as well as the e-type inequality that

5l 16213 < o { [ 16318ds + 418 + On 4 (luliz + o) |

Integrating from 0 to ¢ and noticing pj (0) = 0 yield according to Gronwall’s lemma
that

t t
LIz + / 167125 < Ch2*+ / (lal2r + ol )ds,
or
t 1/2
lbllo < CHE [ / (||u||z+1+||a||z+2>ds} . (5.8)

Following the same steps to get the estimate for 6, := &5, — 0}, in Theorem 3.1 we
can also obtain

t 1/2
165110 < OB+ UO (lullfgs + lollise + ||0t||i+z)d8] : (5.9)

Combining (5.8) with (5.9) implies (5.6). O

As a by-product of (5.6), we immediately gain the following corollary from the
inverse property of the finite element space and the approximation property of the
local L?-projection operator P.

Corollary 5.1. Assume that T}, is h*-uniform or generalized rectangular and the
exact solution u and o satisfies u € Wb (Q) and o € (H**2(Q2))%. Then, we have

for the mized finite element solution u, defined by (5.4) that

t 1/2
|u — up||o < CHFH {||u||k+l,oo + [/ (Nullg + ||0||i+2)d8} } :
0

In order to improve the accuracy of the finite element approximation to the exact
solution on a global scale, a reasonable post-processing method is proposed according
to (5.1) and Theorem 5.1 [23, 24]. For this end, we need to define two post-processing
interpolation operators Iy, and Py to satisfy

oy 1Ty, = oy,

[M2nvallo < Cllvallo, Vv, € Vi,

Mo —alo < CH ol Vo (2@,
Poy Py, = Pop,

|| Panwn]lo < Cllwllo, Vwy, € Wh,

|| Popu — ullo < ChF2]|u||ry0, Vu € HF2(Q).

For easy exposition, we demonstrate our idea mainly for the case of £k = 2. Thus,
we assume that the standard rectangular partition 7}, has been obtained from 75, =
{7} with mesh size 2h by subdividing each element of Ty, into four small congruent

4 N
rectangles. Let 7 := |J é; with é; € T),. Thus, we can define two interpolation
i=1
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operators f[% and Pgh associated with Tgh of degree at most 3 in x and y on T,
respectively, according to the following conditions:

ﬂ2h6|f € Qs3(7), 152h11|% € Qs3(7),

/(5 —IIp,6) -ngds =0, Vge P(ly), i=1,2,---,12,
l;

~ ~ _ (5.11)
(6 —Ty5) =0, i=1,2,3,4, and
/ (@ — ]52h11)q =0, Vg e Qia(é:), i =1,2,3,4, respectively,
where [; (1 =1,2,--+,12) is one of the twelve sides of the four small elements é;
(i=1,2,3,4).

Obviously, the following properties can be easily checked by (5.1) for &k = 2 and
(5.11):

[ T1y = Mo,

s ¥4 llo < C[1¥al]o, Vv, € Vi,

it~ ol < CHlloll Vo e (@) -
Pop Py = Pop,

|| Pontion |0 < C]ton]]o, Vi, € W,

| Poniic — ilo < ChY|iil]s, Vi€ HY(Q).
Then, we can define two interpolation operators Ily, and P, associated with Ty, by
o0 == G(IIyu (G 'o 0 F,)) and Pyu:= Py(uoF,), respectively, (5.13)

which satisfy (5.10) by (5.2) and (5.12).

Similarly, we can also define Ily;, and Py, for the case of k # 2.

By virtue of the two interpolation operators Iy, and P, we immediately gain the
following global superconvergence theorem.

Theorem 5.2. If there is, besides the conditions of Theorem 5.1, u € H*?2(Q),
then we have

|| Ponur, — ullo + [[Honon — ollo
t 1/2
< Ch? {||u||k+2 Tl + [ [ Ul + o2+ ||at||i+2>ds] }
0

Proof. From one of the properties of the operator Py, in (5.10) we find that
Popup, —u = Pop(up, — Pyu) + (Popu — u).
Therefore, it follows from Theorem 5.1 and (5.10) that
[Panun — ullo < Cllun — Puullo + [|Panu — ullo

t 1/2
schk+2{||u||k+2+ [ / (||u||z+1+||a||z+2>ds] }
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Analogously, we can obtain

t 1/2
||H2hah—a||os0h'f+2{||a||k+2+ [l o+ Nl s }
0

O

It is of great importance for a mixed finite element method to have a computable
a-posteriori error estimator by which we can assess the accuracy of the mixed finite
element solution in applications. One way to construct error estimators is to employ
certain superconvergence properties of the finite element solutions. In fact, we have

Theorem 5.3. We have under the conditions of Theorem 5.2 that
||’LL—’LLh||0 = ||P2huh —uh||0+0(hk+2), (514)
llo = anllo = [[Tzn0n — onllo + O(A*+). (5.15)

In addition, if there exist positive constants Cy, Cy and small €1, €3 € (0,1) such
that

|lu — unllo = CLA* 27, (5.16)

llo — onllo > Con™ 2, (5.17)
then there hold

lim e =l _ (5.18)

h=0 || Popup, — up|lo
l|o — onllo

lim =1. 5.19
h—0 ||H2h0h_ah||0 ( )

Proof. It follows from Theorem 5.2 and
U — uUp = (Pghuh — Uh) + (u — chuh)
that
v — unllo = || Panus, — unllo + O(R*F?).
Thus, from (5.16) we know

||P2hUh - Uh||0

+Ch™ >1
[|u = unllo

or
i ||P2hUh - Uh||0
im

h —0 ||U - Uh||0
Similarly, it follows from (5.16) and

| Pantin = unllo = [Ju — unllo + O(h**?)

> 1. (5.20)

that
l.—||P2hUh — ullo
im
h=0  ||u — unllo
which, together with (5.20), leads to (5.18).

Analogously, we can obtain (5.15) and (5.19). O

We know from (5.14) that the computable error quantity ||Papup — upllo is the
principal part of the mixed finite element error ||u — uy|o, and can be used as a
reliable a-posteriori error indicator to assess the accuracy of the mixed finite element

<1
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solution under the condition (5.16). Also, (5.16) seems to be a reasonable assumption
since O(h**1) is the optimal convergence rate of the mixed finite element solution
in L? norm. The same comments are also valid to (5.15) and (5.17).
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