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Abstract

We analyze non-stationary, but stabilized flow towards a well in a reservoir with impermeable external

boundaries (volumetric reservoir.) Two operating conditions: fixed production rate and given wellbore

pressure are considered. Determination of conditions under which the Productivity Index (PI) is time

invariant is the focus of our study. For the fixed production rate case the flow regime providing constant PI

is called pseudo-steady state. In case of constant wellbore pressure the flow regime characterized by time

invariant PI is called boundary-dominated state. It is shown that for any reservoir-well geometry there

exists a one-parameter family of initial pressure distributions for which the PI will be the same at any time,

if the production rate is kept constant. This pseudo-steady state PI is independent of the actual production

rate. Similarly, there exists a one-parameter family of initial pressure distributions assuring boundary-

dominated state if the wellbore pressure is kept constant. The boundary-dominated PI does not depend on

the actual wellbore pressure. The two families of initial pressure distributions are different and the two

values of the PI also differ. For the well located in the center of a closed circular reservoir we derive exact

mathematical expressions for both PI-s and compare the numerical values.

Keywords:  well productivity, productivity index, pseudo-steady state, boundary-dominated flow, diffusivity

equation

1 Introduction

The Productivity Index is probably one of the oldest petroleum engineering concepts (Uren, 1924). It

expresses the intuitive feeling that for a given reservoir-well geometry, the ratio of production rate to some

                                                       

* Corresponding author. Tel.: (US)-979-862-2757; fax: (US)-979-862-1272; E-mail: p-valko@tamu.edu



2

pressure difference between the reservoir and the well is basically independent from production history or

even from actual operating conditions, once the well production is "stabilized".

For a special class of non volumetric reservoirs (with constant pressure at any portion of the external

boundary and no-flow on the remaining portions), the stabilized state is the well known steady-state and the

PI is closely related to a widely studied mathematical concept: the capacity (Muskat, 1937). In the

expression of PI, reservoir engineers may use several options to express the driving force, that is the

pressure difference between reservoir and well (Dake, 1978). We prefer to define this "driving force" as the

difference between average pressure and wellbore pressure even for steady-state, and use this definition

consistently for comparison with other flow regimes. Also, one can consider steady-state as the asymptotic

flow regime reached gradually at late times, if the production starts from a constant initial pressure

distribution. In accordance with later discussion, however, we prefer to define steady-state as the unique

flow regime with the property of time invariance. It is obvious that for a given geometry, external boundary

pressure and wellbore pressure, there is one and only one initial pressure distribution starting from which

the reservoir is in steady-state already at start, and remains there “forever”.

In this paper we investigate an isolated (“volumetric”) reservoir.  Hence time invariance is required only for

the PI, since the pressure distribution itself must vary with time. The basic question we ask is: what

condition is necessary and sufficient for the initial pressure distribution in order to assure time invariant PI?

Recently Helmy and Wattenbarger (1998) have pointed out that time invariance of the Productivity Index

does not necessarily imply uniqueness. Therefore we are also interested in the deviation between

Productivity Indices for the same reservoir but with different operating conditions at the well.

In the first part we consider pseudo-steady state and the results will be presented in terms of an associated

stationary problem. The second part describes the boundary-dominated case. Here the main results are

derived from a corresponding eigenvalue-eigenfunction problem. In order to obtain general statements the

formulation will be somewhat abstract. From the general treatment, however, practical results are easily

obtained, as we show on the example of the simplest model (fully penetrating well located in the center of a

circular drainage area.) Accurate calculations show that the two time invariant PI values are numerically

close (at least for large drainage area and small well radius) but are always distinct. The underlying

conditions for the initial pressure distributions are, however, quite different from each other.

The mathematical model is the well known diffusivity equation describing single-phase flow through

porous medium:

t
pcpxkDiv

∂
∂=∇ φ

µ
))(( (1)

where the usual hypotheses are understood: slightly compressible fluid with constant compressibility (c),

the porosity of the reservoir (φ) and the viscosity of the fluid (µ) are also constant. In general, location x
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might be a three dimensional vector and the location dependent permeability (k) might be a diagonal tensor.

Equation 1 can be derived combining Darcy's law, a simple equation of state, and the mass conservation

equation.

 

B (no flow outer boundary) 
 

W (well) 
 

G (reservoir) 
 

Figure 1. Isolated (volumetric) reservoir and producing well

The connected domain (reservoir) G (see Fig.1) has no-flow outer boundary B, therefore

Bonp 0=
∂
∂
ν

(2)

where 
ν∂
∂

 denotes the normal (with respect to B) derivative.  In the following, VG denotes the volume of

the reservoir.

The well is represented by the internal boundary W. In discussing the constant production rate and constant

wellbore pressure cases, the boundary conditions on W will differ from each other. The surface area of the

well (inner boundary) is denoted by  SW .

In general, we allow a non-uniform initial pressure distribution pi(x) and that will be crucial in the

following.
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Table 1. Dimensionless variables

Definition Circular Drainage Area, Constant-
rate

Circular Drainage Area, Constant -
pressure
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12 −= D
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Introducing the dimensionless variables  (see Table 1) and selecting the constants appropriate for the

geometry, physical properties and inner boundary conditions,  Eqs. 1 and 2 can be cast into

D

D
DDD t

p
pxkDiv

∂
∂=∇ ))(( (3)

and

Bonp

D

D 0=
∂
∂
ν

 (4)

2 Pseudo-steady State Flow Regime

We assume that the production rate (Q) is uniformly distributed along the surface W and is kept constant.

The dimensionless production rate – as seen from Table 1 – is unity. Then the inner boundary condition

becomes:
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WonpS
D

D
Dw 1−=

∂
∂
ν

(5)

2.1 Constant-Rate Productivity  Index

The dimensionless  PI for constant wellbore rate takes the simple form:

GDDWDD
Dcr tptp

J
)]([)]([

1
−

= (6)

where WDD tp )]([  is the pressure averaged on the well surface and GDD tp )]([  is the volumetric average

pressure in the reservoir.

2.2 Definition  of  Pseudo-steady State

We say that the flow regime is pseudo-steady state if the production index,  JDcr remains the same in any

time.

2.3 Definition of Auxiliary Problem 1

Let us suppose that pD1(xD)  is a  solution of  the time-invariant auxiliary problem:

DWDG
DD SV

pxkDiv
/
1))(( 1 =∇ (7)

BonpD 01 =
∂

∂
ν

(8)

WonpS D
DW 11 −=

∂
∂

ν
(9)

It is obvious that the solution to the above Poisson equation with given Neuman conditions (8)-(9) exists

and is unique up to an arbitrary constant.  To make it unique, we require that its average over the reservoir

volume is zero:  0][ 1 =GDp .
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We note that the physical interpretation of the associated problem is that a hypothetical source is uniformly

distributed in the whole reservoir volume. The volume integral of the source equals to the total wellbore

production rate.

2.4 Condition for Pseudo-steady State

By definition, in pseudo-steady state the Productivity Index is time independent. Starting from any initial

distribution the constant-rate solution can be written in the form of

),()(1),( 21 DDDDDD
DG

DDD txpxpt
V

txp ++=   (10)

The first term on the right hand side is uniquely determined by the fixed production rate, and )(1 DD xp  is

the solution of the Auxiliary Problem 1. The remaining term ),(2 DDD txp  is the solution of Auxiliary

Problem 2 discussed in the Appendix.

Since the first term on the right hand side of Eq. 10 drops out from the driving force and the dimensionless

production rate is unity,  the PI can be written as:

GDDWDDGDWDGDDwDD
Dcr tptppptptp

J
)]([)]([][][

1
)]([)]([

1

2211 −+−
=

−
=   (11)

From the requirement that JDcr is constant at any time, we obtain that  GDDWDD tptp )]([)]([ 22 −  must

remain constant with time.

Now our results can be summarized in the following simple way: Assume that the (uniform flux) well

production rate is fixed and the Productivity Index does not vary with time (that is the reservoir is in

pseudo-steady state.) Then the pressure distribution at any time can differ from )(1 DD xp  only by an

arbitrary constant. In particular, the initial pressure distribution must be of the form:

11 )()( cxpxp DDDDi +=  (12)

where the constant c1 is nothing else, but the average pressure at the initial time ti. If starting from such a

pressure distribution, the reservoir remains in pseudo-steady state.

The corresponding PI is
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WDGDWD
DpsDDcr ppp

JtJ
][

1
][][

1)(
111

=
−

== (13)

and it does not depend on time, on c1 and not even on Q.

It follows from the previous discussion that condition (12) is both necessary and sufficient. In general, of

course we do not start production from such a special distribution. Starting from any other distribution, the

pressure distribution will asymptotically approach the form (12) with vanishing p1D. The PI will tend to the

pseudo-steady state value (with exponential rate).

One problem, investigated quite frequently is when the initial pressure distribution is constant. The

traditional reservoir engineering term for “transient flow” corresponds to the initial time interval when the

PI is still notably different from the pseudo-steady state value. The “time to reach pseudo-steady state” is

often defined as the time when the PI is already in a prescribed vicinity (say 1 %) of its limit value.

Another (less frequently investigated but equally important) initial pressure distribution is that

corresponding to a pseudo-steady state determined by a previous (usually larger) production rate. We note

that the time to reach pseudo-steady state is therefore a misnomer, because the actual deviation from the

limit value depends on "how far we were at the start". Intuitively it is obvious, that if the starting pressure

distribution is pseudo-steady state with respect to a previous production rate and the new production rate

differs from the previous one by a small amount only, then the "time to reach the new pseudo-steady state"

will be small. In addition, “transient” does not imply larger PI. In particular, if the production rate has been

changed downward, the PI temporarily jumps to a lower value and during the following “transient” regime.

it is gradually returning to its previous value.

2.5 Example: Homogeneous Reservoir of Circular Shape in pseudo-steady

state

For the circular drainage area with ratio of external radius to wellbore radius, RD,  the dimensionless

problem is written in the form:

DD
D

D

D

D

DD

D Rr
t
p

r
p
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p ≤≤

∂
∂=

∂
∂+

∂
∂

1
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2
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 (14)
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∂
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(15)
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The associated time-invariant problem for )(1 DD xp  is:
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The solution to the auxiliary problem can be written as:
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1

 (20)

because it satisfies Eqs. 17-19 and its average over the reservoir volume is zero.

In order to be in pseudo-steady state, the initial pressure distribution may deviate from 1Dp only by an

arbitrary constant. During the pseudo-steady state operation the time-invariant component of the pressure

distribution remains the same, only the “constant” varies (in fact linearly) with time, where the depletion

speed is determined by the production rate. In other words, the pressure distribution is continuously and

evenly shifted downwards.

According to Eq. 21 the dimensionless Productivity Index in pseudo-steady state, JDps is

)ln(4341
)1(4

)(
1

442

22

11 DDDD

D

rDD
Dps RRRR

R
rp

J
D

+−+−
−==

=

 (21)

A well-known approximation, often used in practice is the dimensionless “standard” deliverability3:
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)ln(
4
3

1

D

Dst

R
J

+−
= (22)

that can be obtained from Eq. 15 by assuming RD>>1 .

Similar asymptotic approximations for other reservoir shapes are usually given in the form of shape factors,

as introduced by Dietz (1965).

3 Boundary-dominated Flow Regime

We assume that the pressure along the inner boundary (W)  is kept constant both with respect to time and to

location. (The latter is often considered as the consequence of infinite conductivity in the well.)  Then the

inner boundary condition becomes:

Wonptxp DwDDDw =),( (23)

3.1 Constant-Pressure Productivity Index

The dimensionless  PI for constant production rate is calculated from

 
GDDDw

DD
Dcp tpp

tQJ
)]([

)(
−

= (24)

where GDD tp )]([  is the volumetric average pressure in the reservoir and )( DD tQ  is the (time varying)

production rate:

∫∂
∂=

W
DWDD

D
DD dStxptQ ),()(

ν
(25)

3.2 Definition  of Boundary-dominated Flow Regime

We say that the flow regime is boundary-dominated if the Productivity Index,  JDcp remains the same in any

time.

3.3 Definition of Auxiliary Problem 3

Let us suppose that  pD3(xD)  is a  solution of the time-invariant auxiliary problem:
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0))(( 3 =∇ DD pxkDiv (26)

Bon
p

D

D 03 =
∂
∂
ν

(27)

Wonxp DD 1)(3 = (28)

In virtue of the maximum principle, the unique solution is 1)(3 =DD xp  .

3.4 Condition for Boundary-dominated Flow Regime

Now the solution of the system of Eqs. 3,4 and 23, can be written as the sum of two functions:

),(1),()(),( 443 DDDDDDDDDDD txptxpxptxp +=+=   (29)

where ),(4 DDD txp  is the solution of Auxiliary Problem 4 (see Appendix) and can be written as:

mDiD tt
Gm

m
mGDD ectp λϕ )(

4 ][)]([ −−∑= (30)

It follows, that the constant-rate PI can be expressed as:

DGtt
Gm

m
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m
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ec

ec
tJ

mDiD

mDiD
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∑
∑

=  (31)

If we assume that the initial pressure distribution is such that

021),( mDiDD ctxp φ+=   (32)

(where c2 is an arbitrary constant) then the constant-rate Productivity Index becomes constant:

DGmDDcp VtJ 0)( λ=  (33)
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It is crucial to note that in the domain G, only the first eigenfunction does not change sign (Mizohata,

1973). Therefore, if the initial distribution is one of the eigenfunctions, it must be the first one.

It follows from the previous discussion that for the constant wellbore pressure case there exists a family of

initial pressure distributions such that the Productivity Index does not depend on time. This family is

determined by the first eigenfunction of the auxiliary problem:

121)( mDDi cxp φ+=  (34)

where the positive constant c2 is nothing else, but  1)]([ −GDiD tp  .

Then the PI is time independent and given by

DGDbdDDcp VJtJ 1)( λ== (35)

Note that the dimensionless productivity index does not depend on time, on the selected wellbore pressure

or on the constant c2.

Condition (34) is both necessary and sufficient. Of course in general, we do not start production from such

a special distribution. Starting from any other distribution, the pressure will asymptotically approach the

form (34) and the PI will exponentially approach the boundary-dominated value (see A-15).

One problem, investigated occasionally in the literature is when the initial pressure distribution is constant.

Then the “transient” period is the initial time interval necessary for the PI to “reach” its limiting value.

Another (equally important) initial pressure distribution is that corresponding to a boundary-dominated

state determined by a previous (usually larger) wellbore pressure. We note that the time to reach the

boundary-dominated flow regime is not well defined (not only because we never “reach” the limiting PI but

also) because the actual deviation from the limiting value depends on "how far we were at the start".

Intuitively it is obvious that if the starting pressure distribution is the boundary-dominated one with respect

to a previous wellbore pressure, and the new wellbore pressure differs from the previous one only by a

small amount, then the length of the transient period, necessary to stabilize again the boundary-dominated

state, will be small.

We note that in the strict sense the boundary-dominated regime does not exist, if the well boundary

condition is formulated as a time invariant but otherwise non-uniform pressure distribution on the well

surface. In such case the PI will vary with time, whatever initial pressure distribution is present in the

reservoir (see A-16).
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3.5 Example: Homogeneous Reservoir of Circular Shape in Boundary-

Dominated State

As previously, we write the dimensionless problem as:

DD
D

D

D

D

DD

D Rr
t
p

r
p

rr
p ≤≤

∂
∂=

∂
∂+

∂
∂

1
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00 ≥=





∂
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=
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D t
r
p

DD

(37)

but with internal boundary condition:

01)( ≥= DDDw ttp (38)

To obtain the first eigenvalue now we have to calculate the first positive root of the following equation:

0)()()()( '
000

'
0 =− zY

R
zJ

R
zYzJ

DD

(39)

where  )(0 zJ is  the Bessel function of the first kind of zero order and )(0 zY  is the Bessel function of the

second kind of zero order (see e.g. Abramowitz and Stegun, 1972). For finding the root we use Newton’s

method.

Denoting the first root of Eq. 39 by z1,  the eigenvalue is obtained from

 2

2
1

1
DR

z=λ (40)

Since  for this geometry

2
12 −= D

DG
R

V (41)

we obtain
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2

2
2
1 2

1

D

D
Dbd R

R
zJ

−= (42)

In order to assure boundary-dominated flow, the initial pressure distribution must be of the form:

)]()()()([1)( 1
'

0
1

0
1

01
'
02 zYr

R
zJr

R
zYzJcrp D

D
D

D
DDi −+−= (43)

During the boundary-dominated state only the “constant” c2 varies (in fact exponentially with time, where

the depletion speed is determined by the wellbore pressure). In other words, the deviation of the pressure

distribution in the reservoir from the constant wellbore pressure is continuously and evenly shrinking.

4 Comparison of the Productivity Indices for Circular Drainage

Area

Calculating the standard approximation (Eq. 22), the pseudo-steady state (Eq. 21) and the boundary-

dominated (Eq. 42) dimensionless Productivity Indices, we obtain the results shown in Table 2. (The

calculations were done in Mathematica, 1998.)

Table 2. Comparison of Dimensionless Productivity Indices
Ratio of drainage radius
to wellbore radius,  RD

Standard approximation,
JDst

Pseudo-steady state,
JDps

Boundary-dominated,
JDbd

10 0.644087 0.627240 0.601888

100 0.259392 0.259330 0.256797

1,000 0.162397 0.162396 0.161765

10,000 0.118199 0.118199 0.117955

100,000 0.092912 0.092912 0.092794

As seen from the Table, the standard approximation is fairly good for the pseudo-steady state PI, but it is

less accurate for the boundary-dominated flow regime. The reason why the pseudo-steady state  PI is

greater than the corresponding boundary-dominated value is that the origin of the produced fluid is evenly

distributed in the reservoir if the flow regime is pseudo-steady state, while in the boundary-dominated case

more fluid is coming from the area being further from the well, and hence more energy is dissipated. (By

the same token, the steady-state Productivity Index is the least of the three.)
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Conclusions

In this work we considered the necessary and sufficient conditions for the time invariance of the

Productivity Index of a well producing from an isolated (volumetric) reservoir. The investigation showed

that for two distinct operating conditions: given production rate and given wellbore pressure, the nature of

the time invariant flow regimes is markedly different.

For the fixed production rate case, in the time invariant (in other words: pseudo-steady state) flow regime

the pressure distribution in the reservoir can differ from the solution of Auxiliary Problem 1 only by a

constant (representing the average pressure at that particular time point) and the corresponding PI is

determined by this solution.

For the given wellbore pressure case, in the time invariant (in other words: boundary-dominated) flow

regime the pressure distribution in the reservoir must be the member of another one-parameter family,

related to the first solution of an eigenvalue-eigenfunction problem (Auxiliary Problem 4). The

corresponding PI is determined by the smallest eigenvalue.

The Productivity Indices, calculated for the two distinct flow regimes, are different, even considering the

simplest (circular) drainage area.

The obtained results can be used to describe the (long-time) deliverability of petroleum producing wells

under various operating conditions. The insight gained is also significant from the point of view of

reservoir simulation, because it opens up the possibility to improve currently used well models.

Nomenclature

Bo = formation volume factor,-

cT = total compressibility, 1/Pa

cx = 1/characteristic length, 1/m

ct = 1/characteristic time, 1/s

cp = 1/characteristic pressure, 1/Pa

cq = 1/characteristic production rate, s/m3

cJ = 1/characteristic productivity index, s/(m3 Pa)

ck = 1/characteristic permeability, 1/m2

h = height, m

k = permeability, m2

p = pressure, Pa

q = flow rate, m3/s

Q = well production rate (constant), m3/s

r = radius, m
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rw = wellbore radius, m

re = drainage radius, m

t = time, s

φ = porosity, -

µ= viscosity, Pa⋅s
VG = resrvoir volume, m3

Sw = wellbore surface area, m2

PI = Productivity Index, (m3/s)/Pa

JD = Dimensionless Productivity Index, -

 Wp][ = average over domain W

      mc = Fourier coefficient

mλ = eigenvalue

mϕ = eigenfunction

Subscripts

D dimensionless

G reservoir domain

B external boundary

W inner boundary (wellbore)

i initial

n normal

ref reference

st standard approximation

ps pseudo-steady state

bd boundary-dominated state

cr constant (wellbore) rate

cp constant (wellbore) pressure

Appendix

Auxiliary Problem 2 for the Pseudo-steady State Flow Regime

Let us suppose that )(2 DinitD xp  is defined as the difference of the initial pressure distribution in the

reservoir from the solution of the time-invariant Auxiliary Problem No 1:
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)(),()( 12 DDDiDDDinitD xptxpxp −= (A-1)

No we consider the homogeneous transient problem:

t
ppxkDiv D

DD ∂
∂=∇ 2

2 ))(( (A-2)

Bonp

D

D 02 =
∂
∂
ν

(A-3)

Wonp

D

D 02 =
∂
∂
ν

(A-4)

with initial condition A-1. The unique solution of this problem is denoted by ),(2 DDD txp . An important

property of the function ),(2 DDD txp  is that with time it tends to a constant, c1 where the constant is

nothing else, but the volumetric average of the initial pressure distribution, GDiD tp )]([ . Moreover, the

average, GDD tp )]([ 2  does not vary with time (it remains c1 .)

Auxiliary Problem 4 for the Boundary-dominated Flow Regime

Let us define )(4 DinitD xp  as the difference of the initial pressure distribution in the reservoir from the

solution of the time-invariant Auxiliary Problem 3:

1),()(),()( 34 −=−= DiDDDDDiDDDinitD txpxptxpxp (A-5)

No we consider the homogeneous transient problem:

t
ppxkDiv D

DD ∂
∂=∇ 4

4 ))(( (A-6)

Bonp

D

D 04 =
∂
∂
ν

(A-7)
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WonpD 04 = (A-8)

with initial condition A1. The unique solution of this problem is denoted by ),(4 DDD txp  and can be

represented in the form of Fourier Series (Egorov and Kondratiev, 1996).

mDiD tt
Dm

m
mD excp λϕ )(

4 )( −−∑= (A-9)

Where )( Dm xϕ and mλ denote a corresponding eigenfunction - eigenvalue pair of the problem:

mmmxkDiv ϕλϕ =∇ ))(( (A-10)

0=
∂

∂
ν

ϕ m (A-11)

Wonm 0=ϕ (A-12)

and cm is the m-th Fourier coefficient of the function )(4 DinitD xp .  The average value at time tD is given

by

mDiD tt
Gm

m
mGDD ectp λϕ )(

4 ][)]([ −−∑= (A-13)

and obviously, it tends to zero.

In virtue of the Gauss-Ostrogradsky theorem (see e.g., Egorov and Kondratiev7) and because the

eigenfunction )( Dm xϕ  is a solution of problem A-10  to  A-12, we obtain

∫ ∂
∂
∂=

W
DW

m
GmmDG SV

ν
ϕϕλ ][ (A-14)

where SDW is the wellbore surface, VDG is the reservoir volume.

Then
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If the deviation of the initial pressure distribution from the wellbore pressure is such, that it is orthogonal to

all eigenfunctions )( Dm xϕ  except the first one, )(1 Dxϕ  then all coefficients  cm  except  c1  are equal to

zero in A-15.  Then

DGDDcp VtJ 1)( λ= (A-16)

(In the main text we discuss why the first eigenvalue-eigenfunction pair has a special significance. )

It is in order to remark that if )(3 DD xp  in Eq. 28 is not constant (non-uniform pressure distribution on the

well) then

DGtt
Gm

m
mGDWD

m
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Gm
m
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DDcp V
ecpp

ec
tJ
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mDiD
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ϕ

λϕ
)(
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)(

][][][
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)( −−

−−

∑
∑

+−
= (A-17)

It can be concluded from Ibragimov (1985), that the difference between average on the well and average in

the reservoir, GDWD pp ][][ 43 −  can be zero only if )(3 DD xp  is constant in the whole reservoir.

Therefore,  if the pressure on the well is a given (non-uniform) function of location, )( DDcp tJ  is time

dependent for any initial pressure and (in the strict sense) there exists no boundary-dominated flow regime.
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