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Abstract

We analyze non-gationary, but stabilized flow towards a well in a reservoir with impermeable externa
boundaries (volumetric reservoir.) Two operating conditions: fixed production rate and given wellbore
pressure are considered. Determination of conditions under which the Productivity Index (P1) is time
invariant is the focus of our study. For the fixed production rate case the flow regime providing constant Pl
is called pseudo-steady state. In case of constant wellbore pressure the flow regime characterized by time
invariant Pl is called boundary-dominated state. It is shown that for any reservoir-well geometry there
exists a one-parameter family of initial pressure distributions for which the Pl will be the same at any time,
if the production rate is kept constant. This pseudo-steady state Pl is independent of the actual production
rate. Similarly, there exists a one-parameter family of initial pressure distributions assuring boundary-
dominated state if the wellbore pressure is kept constant. The boundary-dominated PI does not depend on
the actual wellbore pressure. The two families of initial pressure distributions are different and the two
values of the Pl also differ. For the well located in the center of a closed circular reservoir we derive exact

mathematical expressions for both PI-s and compare the numerical values.

Keywords: well productivity, productivity index, pseudo-steady state, boundary-dominated flow, diffusivity
equation

1 Introduction

The Productivity Index is probably one of the oldest petroleum engineering concepts (Uren, 1924). It
expresses the intuitive feding that for a given reservoir-well geometry, the ratio of production rate to some
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pressure difference between the reservoir and the well is basically independent from production history or

even from actual operating conditions, once the well production is "stabilized".

For a special class of non volumetric reservoirs (with constant pressure at any portion of the externa
boundary and no-flow on the remaining portions), the stabilized state is the well known steady-state and the
Pl is closdy related to a widely studied mathematical concept: the capacity (Muskat, 1937). In the
expression of Pl, reservoir engineers may use several options to express the driving force, that is the
pressure difference between reservoir and well (Dake, 1978). We prefer to define this "driving force” asthe
difference between average pressure and wellbore pressure even for steady-state, and use this definition
consistently for comparison with other flow regimes. Also, one can consider steady-state as the asymptotic
flow regime reached gradually at late times, if the production starts from a constant initial pressure
distribution. In accordance with later discussion, however, we prefer to define steady-state as the unique
flow regime with the property of time invariance. It is obvious that for a given geometry, external boundary
pressure and wellbore pressure, there is one and only one initial pressure distribution starting from which
the reservoir isin steady-state already at start, and remains there “forever”.

In this paper we investigate an isolated (“volumetric”) reservoir. Hencetimeinvarianceis required only for
the P, since the pressure distribution itself must vary with time. The basic question we ask is. what
condition is necessary and sufficient for the initial pressure distribution in order to assure timeinvariant PI?
Recently Helmy and Wattenbarger (1998) have pointed out that time invariance of the Productivity Index
does not necessarily imply uniqueness. Therefore we are also interested in the deviation between

Productivity Indices for the same reservoir but with different operating conditions at the well.

In the first part we consider pseudo-steady state and the results will be presented in terms of an associated
dtationary problem. The second part describes the boundary-dominated case. Here the main results are
derived from a corresponding eigenvalue-eigenfunction problem. In order to obtain general statements the
formulation will be somewhat abstract. From the general treatment, however, practical results are easily
obtained, as we show on the example of the smplest model (fully penetrating well located in the center of a
circular drainage area.) Accurate calculations show that the two time invariant Pl values are numerically
close (at least for large drainage area and small well radius) but are always distinct. The underlying

conditions for theinitial pressure distributions are, however, quite different from each other.

The mathematical mode is the well known diffusivity equation describing single-phase flow through

porous medium:

Div(&r:) Np) =f c% D)

where the usual hypotheses are understood: dightly compressible fluid with constant compressibility (c),

the porosity of the reservoir (f) and the viscosity of the fluid (m) are also constant. In general, location x



might be a three dimensional vector and the location dependent permesability (k) might be a diagonal tensor.
Equation 1 can be derived combining Darcy's law, a smple equation of state, and the mass conservation

equation.

B (no flow outer boundary)
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G (reservair)

Figure 1. Isolated (volumetric) reservoir and producing well

The connected domain (reservoir) G (see Fig.1) has no-flow outer boundary B, therefore

1o

=0 B 2
n on 2

where ﬂl denotes the normal (with respect to B) derivative. In the following, Vg denotes the volume of
n

thereservoir.

The wdl is represented by the internal boundary W. In discussing the constant production rate and constant
wellbore pressure cases, the boundary conditions on W will differ from each other. The surface area of the

well (inner boundary) is denoted by Sy .

In general, we allow a non-uniform initial pressure distribution Pi(X) and that will be crucia in the

following.



Table 1. Dimensionless variables
Definition Circular Drainage Area, Congtant- | Circular Drainage Area, Constant -
rate pressure
Po =Co(Pre - P) c = 2pkyh c = 1
P BnQ P P« - By
= B,
o =Cqq ¢, == c, = 3
Q 2ok (P - Pu)
Q, =¢,Q see above see above
Xp = CX c, =1/r, (x becomes r)
t, =Gt _ ko
C = 5
fcnr,
kp, =c.k c, =1/k,
J, =¢,PI _ 2pkoh
> Bm
2
-1
I:QD:re/rw SDW::I' VDG:RDZ

Introducing the dimensionless variables (see Table 1) and sdlecting the constants appropriate for the
geometry, physical properties and inner boundary conditions, Egs. 1 and 2 can be cast into

Div(k, (¥,)Rp,) = ’J{;’ A
D
and
Yo =0 on B (4)
in,

2 Pseudo-steady State Flow Regime

We assume that the production rate (Q) is uniformly distributed along the surface W and is kept constant.
The dimensionless production rate — as seen from Table 1 — is unity. Then the inner boundary condition

becomes:
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2.1 Constant-Rate Productivity Index

Thedimensionless Pl for constant wellbore rate takes the simple form:

_ 1
[r)D (tD)]W - [r)D (tD )]G

(6)

J Dcr

where [ Py (t; )]y, isthe pressure averaged on the well surface and [ P, (t )] is the volumetric average

pressurein the reservoir.

2.2 Definition of Pseudo-steady State

We say that the flow regime is pseudo-steady state if the production index, Jpg remains the same in any
time,

2.3 Definition of Auxiliary Problem 1

Let us suppose that Pp1(Xp) isa solution of the time-invariant auxiliary problem:

. ~ 1
Div(ky (X)Npy,) = W (7
DG W
IPos =9 onB (8)
fn
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It is obvious that the solution to the above Poisson equation with given Neuman conditions (8)-(9) exists

and is unique up to an arbitrary constant. To make it unique, we require that its average over the reservoir

volumeiszero: [Pp,]g =0.



We note that the physical interpretation of the associated problem is that a hypothetical source is uniformly
distributed in the whole reservoir volume. The volume integral of the source equals to the total wellbore

production rate.

2.4 Condition for Pseudo-steady State

By definition, in pseudo-steady state the Productivity Index is time independent. Starting from any initial

distribution the constant-rate solution can be written in the form of

1
Po (Xp:t5) = 51t + Pps(Xp) + Poa(Xp, 1) (10)
VDG
The first term on the right hand side is uniquely determined by the fixed production rate, and le(XD) is

the solution of the Auxiliary Problem 1. The remaining term Py, (X5 ,1,) is the solution of Auxiliary

Problem 2 discussed in the Appendix.

Since the first term on the right hand side of Eq. 10 drops out from the driving force and the dimensionless
production rateis unity, the Pl can be written as:

J = 1 = 1
P P (o) - [Po o)l [Poulw = [Podds +[Po2(to)lw - [Poz(ts)ls

(11)

From the requirement that Jpr is constant at any time, we obtain that [Py, (t5)]w - [Pp, (tp)]s must

remain constant with time.

Now our results can be summarized in the following simple way: Assume that the (uniform flux) well
production rate is fixed and the Productivity Index does not vary with time (that is the reservoir is in

pseudo-steady state.) Then the pressure distribution at any time can differ from |T)D1(XD) only by an

arbitrary constant. In particular, theinitial pressure distribution must be of the form:

Poi (XD) = le(XD) +C (12)

where the constant ¢, is nothing else, but the average pressure at the initia time t;. If starting from such a

pressure distribution, the reservoir remainsin pseudo-steady state.

The corresponding Pl is



1 _ 1
[pm]w' [r)Dl]G [r)m]w

Joe (tp) = Jpps = (13)

and it does not depend on time, on ¢; and not even on Q.

It follows from the previous discussion that condition (12) is both necessary and sufficient. In general, of
course we do not start production from such a specia distribution. Starting from any other distribution, the
pressure distribution will asymptotically approach the form (12) with vanishing p;p. The Pl will tend to the
pseudo-steady state value (with exponential rate).

One problem, investigated quite frequently is when the initial pressure distribution is constant. The
traditional reservoir engineering term for “transient flow” corresponds to the initial time interval when the
Pl is ill notably different from the pseudo-steady state value. The “time to reach pseudo-steady state” is
often defined as the time when the Pl isalready in a prescribed vicinity (say 1 %) of itslimit value.

Ancther (less frequently investigated but equally important) initial pressure distribution is that
corresponding to a pseudo-steady state determined by a previous (usually larger) production rate. We note
that the time to reach pseudo-steady state is therefore a misnomer, because the actual deviation from the
limit value depends on "how far we were at the start”. Intuitively it is obvious, that if the starting pressure
distribution is pseudo-steady state with respect to a previous production rate and the new production rate
differs from the previous one by a small amount only, then the "time to reach the new pseudo-steady state"
will be small. In addition, “transient” does not imply larger Pl. In particular, if the production rate has been
changed downward, the PI temporarily jumps to alower value and during the following “transient” regime.

itisgradually returning to its previous value.

2.5 Example: Homogeneous Reservoir of Circular Shape in pseudo-steady
state

For the circular drainage area with ratio of externa radius to wellbore radius, Ry, the dimensionless
problem iswritten in the form:

Tos 1 1o, _ o,
— = 1£1, £ (14)
w2 r, I, Tt o £ R

AP,

)
I =0 t,30 (15)
ﬂrD ﬂD:RD



2 Tp, 0
grD -+
firo g, 2

=-1 t,30 (16)

The associated time-invariant problem for Py, (Xp) is:

Too, , 1Py, 2
— = 1£r, £ 17
e o TRl iR (17)

?ﬁg =0 (18)

ﬂrD ﬂD:RD

E?D TP, =g (19)
firo g, =1

The solution to the auxiliary problem can be written as:

Poa(rp) =
r2D2 ] ZRS In(r, ) - 1+2R? - 3R§ +4I2?g In(R;,) 1£r ER, (20)
2R-1) Ry-1 AR? - 1)

because it satisfies Egs. 17-19 and its average over the reservoir volumeis zero.

In order to be in pseudo-steady state, the initial pressure distribution may deviate from P, only by an

arbitrary constant. During the pseudo-steady state operation the time-invariant component of the pressure
distribution remains the same, only the “constant” varies (in fact linearly) with time, where the depletion
speed is determined by the production rate. In other words, the pressure distribution is continuoudy and

evenly shifted downwards.

According to Eqg. 21 the dimensionless Productivity Index in pseudo-steady state, Jpps IS

J = 1 = 4(Ré - 1)2
ops le(rD)|rD:1 - 1+4R|§ - 3Rg +4Rg In(R,)

(21)

A well-known approximation, often used in practiceis the dimensionless “standard” deliverability®:



1

R
i j+|n(RD)

(22)

that can be obtained from Eq. 15 by assuming Rp>>1 .

Similar asymptotic approximations for other reservoir shapes are usually given in the form of shape factors,
asintroduced by Dietz (1965).

3 Boundary-dominated Flow Regime

We assume that the pressure along the inner boundary (W) is kept constant both with respect to time and to
location. (The latter is often considered as the consequence of infinite conductivity in the well.) Then the

inner boundary condition becomes:

Pow(Xp:tp) = Pp,,  ONW (23)

3.1 Constant-Pressure Productivity Index

Thedimensionless Pl for constant production rate is calculated from

J - QD (tD)
o Pow - [r)D (tD )]G

(24)

where [ P (t5)]s is the volumetric average pressure in the reservoir and Qp (t;) is the (time varying)

production rate:

Q(t) = c‘)’%(xmtD)dsDW 25)

w

3.2 Definition of Boundary-dominated Flow Regime

We say that the flow regime is boundary-dominated if the Productivity Index, Jpe, remains the samein any
time,

3.3 Definition of Auxiliary Problem 3

Let us suppose that Pp3(Xp) isa solution of the time-invariant auxiliary problem:



Div(k, (X)Npp,) =0 (26)

Pos =0 onB (27)
ng
Pps(Xp) =1 onW (28)

In virtue of the maximum principle, the unique solution is Pp;(Xy) =1 .

3.4 Condition for Boundary-dominated Flow Regime

Now the solution of the system of Egs. 3,4 and 23, can be written as the sum of two functions:
Po (Xp,1p) = Ppa(%p) + Poa(Xp,tp) =1+ Ppu(Xp,1p) (29)

where Pp,(X5,1,) isthesolution of Auxiliary Problem 4 (see Appendix) and can be written as:
D -3 i - (to-toi ) m
[pD4(tD)]G - a Cm[l m]Ge (fortor) (30)
m
It follows, that the constant-rate Pl can be expressed as:

2 T - (to-toi)l m
a Cm[l m]Ge (fo-tor) I m
Joep(tp) =

B ClJae e e e
m m
m

If we assume that theinitia pressure distribution is such that
Po (Xp,1p)) =1+Cf o (32)
(where ¢, isan arbitrary constant) then the constant-rate Productivity Index becomes constant:

Joep (ts) =1 oVoe (33)
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It is crucial to note that in the domain G, only the first eigenfunction does not change sign (Mizohata,
1973). Therefore, if theinitial distribution is one of the eigenfunctions, it must be thefirst one.

It follows from the previous discussion that for the constant wellbore pressure case there exists a family of
initial pressure distributions such that the Productivity Index does not depend on time. This family is
determined by the first eigenfunction of the auxiliary problem:

Ppi (%) =1+cf (34)

where the positive constant ¢, isnothing else, but [P, (ty)]c - 1.

Then the Pl istime independent and given by
Joep (ts) = Jpowa =1 Vg (35)

Note that the dimensionless productivity index does not depend on time, on the selected wellbore pressure
or on the constant c,.

Condition (34) is both necessary and sufficient. Of course in general, we do not start production from such
a special digtribution. Starting from any other distribution, the pressure will asymptotically approach the
form (34) and the Pl will exponentially approach the boundary-dominated value (see A-15).

One problem, investigated occasionally in the literature is when the initial pressure distribution is constant.

Then the “transient” period istheinitial timeinterval necessary for the Pl to “reach” its limiting value.

Ancther (equally important) initial pressure distribution is that corresponding to a boundary-dominated
state determined by a previous (usually larger) wellbore pressure. We note that the time to reach the
boundary-dominated flow regimeis not well defined (not only because we never “reach” the limiting Pl but
also) because the actual deviation from the limiting value depends on "how far we were at the start".
Intuitively it is obvious that if the starting pressure distribution is the boundary-dominated one with respect
to a previous wellbore pressure, and the new wellbore pressure differs from the previous one only by a
small amount, then the length of the transient period, necessary to stabilize again the boundary-dominated
state, will be small.

We note that in the gtrict sense the boundary-dominated regime does not exist, if the well boundary
condition is formulated as a time invariant but otherwise non-uniform pressure distribution on the well
surface. In such case the Pl will vary with time, whatever initial pressure distribution is present in the

reservoir (see A-16).

11



3.5 Example: Homogeneous Reservoir of Circular Shape in Boundary-
Dominated State

As previously, we write the dimensionless problem as:

Tos 1 1o, _ o,
= = 1£r. £ (36)
LS A | S | 0 £ R

?p') =0 t,30 (37)

0
ﬂ
but with internal boundary condition:

Pow(tp) =1 1,20 (38)

To obtain the first eigenvalue now we have to calculate the first positive root of the following equation:

. Z Z .
3, (DY, () - J,(5)Yi(2) =0 39
(2) (RD) (RD) (2) (39)

where J,(2) is the Bessel function of the first kind of zero order and Y, (2) isthe Bessel function of the

second kind of zero order (see eg. Abramowitz and Stegun, 1972). For finding the root we use Newton’'s
method.

Denoting thefirst root of Eq. 39 by z;, the eigenvalueis obtained from
= i (40)
Since for this geometry

2
-1
Voe = RD2 (41)

we obtain

12



_oRi-1

Jowa =2 oR? (42)

In order to assure boundary-dominated flow, the initial pressure distribution must be of the form:
(1) =- 1+ G, [0y (2 1) - Jo(2 1)V, 43
Poi () C[Jo(2) O(RD ) O(RD r5)Yo(2)] (43)

During the boundary-dominated state only the “constant” ¢, varies (in fact exponentially with time, where
the depletion speed is determined by the wellbore pressure). In other words, the deviation of the pressure

distribution in the reservoir from the constant wellbore pressure is continuoudy and evenly shrinking.

4 Comparison of the Productivity Indices for Circular Drainage

Area
Calculating the standard approximation (Eq. 22), the pseudo-steady state (Eq. 21) and the boundary-

dominated (Eqg. 42) dimensionless Productivity Indices, we obtain the results shown in Table 2. (The
calculations were done in Mathematica, 1998.)

Table 2. Comparison of Dimensionless Productivity Indices
Ratio of drainageradius | Standard approximation, | Pseudo-steady state, | Boundary-dominated,
towelboreradius, Ry Jpst Jops Jbbd
10 0.644087 0.627240 0.601888
100 0.259392 0.259330 0.256797
1,000 0.162397 0.162396 0.161765
10,000 0.118199 0.118199 0.117955
100,000 0.092912 0.092912 0.092794

As seen from the Table, the standard approximation is fairly good for the pseudo-steady state PI, but it is
less accurate for the boundary-dominated flow regime. The reason why the pseudo-steady state Pl is
greater than the corresponding boundary-dominated value is that the origin of the produced fluid is evenly
distributed in the reservair if the flow regime is pseudo-steady state, while in the boundary-dominated case
more fluid is coming from the area being further from the well, and hence more energy is dissipated. (By
the same token, the steady-state Productivity Index isthe least of the three)

13



Conclusions

In this work we considered the necessary and sufficient conditions for the time invariance of the
Productivity Index of a well producing from an isolated (volumetric) reservoir. The investigation showed
that for two distinct operating conditions. given production rate and given wellbore pressure, the nature of

the time invariant flow regimes is markedly different.

For the fixed production rate case, in the time invariant (in other words: pseudo-steady state) flow regime
the pressure distribution in the reservoir can differ from the solution of Auxiliary Problem 1 only by a
constant (representing the average pressure at that particular time point) and the corresponding Pl is
determined by this solution.

For the given wellbore pressure case, in the time invariant (in other words: boundary-dominated) flow
regime the pressure distribution in the reservoir must be the member of another one-parameter family,
related to the first solution of an eigenvalue-eigenfunction problem (Auxiliary Problem 4). The

corresponding PI is determined by the smallest eigenvalue.

The Productivity Indices, calculated for the two distinct flow regimes, are different, even considering the
simplest (circular) drainage area.

The obtained results can be used to describe the (long-time) deliverability of petroleum producing wells
under various operating conditions. The insight gained is also significant from the point of view of

reservoir simulation, because it opens up the possihility to improve currently used well models.

Nomenclature

Bo

cr= total compressibility, 1/Pa

formation volume factor -

= 1/characterigtic length, 1/m
¢.= 1/characteristic time, 1/s
C, = l/characteristic pressure, 1/Pa

= 1/characteristic production rate, S'm’
c;= 1/characteristic productivity index, s/(m® Pa)
o= 1/characteristic permeability, 1/m?
h=height, m
k= permeability, n?
p= pressure Pa
q= flowrate, m¥s
Q= well production rate (constant), m*/s

r= radius, m

14



= wellboreradius, m
re= drainageradius, m
t= time s
f = porogty, -
m=  viscosity, Pass
Vg = resrvoir volume, m’
= wellbore surface area, n
Pl = Productivity Index, (m¥/s)/Pa

Jo = Dimensionless Productivity Index, -

[Pl = average over domain W
C_= Fourier coefficient
| = eigenvalue

] »= egenfunction

Subscripts
D dimensionless
G reservoir domain
B external boundary
W inner boundary (wellbore)
i initial
n normal
ref  reference
st standard approximation
ps pseudo-steady state
bd boundary-dominated state
cr  constant (wellbore) rate

cp constant (wellbore) pressure

Appendix

Auxiliary Problem 2 for the Pseudo-steady State Flow Regime

Let us suppose that P (Xp) is defined as the difference of the initial pressure distribution in the

reservoir from the solution of the time-invariant Auxiliary Problem No 1:

15



Poainit (X6) = Po (Xp:t5) = P (%) (A-1)

No we consider the homogeneous transient problem:

Div(k, ()Np,,) = % (A-2)
TPo. =0 onB (A-3)
n,
TPo, =0 onW (A-4)
n,

with initial condition A-1. The unique solution of this problem is denoted by P, (Xp,ty) . Animportant
property of the function Pp,(Xy,ty) is that with time it tends to a constant, c; where the constant is

nothing else, but the volumetric average of the initial pressure distribution, [Py (t; )]s . Moreover, the

average, [ Pp,(t;)]s doesnot vary with time (it remainsc; .)

Auxiliary Problem 4 for the Boundary-dominated Flow Regime

Let us define Pp i (Xp) as the difference of the initial pressure distribution in the reservoir from the

solution of the time-invariant Auxiliary Problem 3:

Poaint (Xp) = Po (Xo,t51) = Pos(Xp) = Pp (Xp,tpi) - 1 (A-5)

No we consider the homogeneous transient problem:

Div(k, ()Np,,) = ﬂ';tD“ (A-6)
TPos =0 onB (A-7)
o
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Py, =0 onW (A-8)

with initial condition A1. The unique solution of this problem is denoted by Pp,(X;,t;) and can be

represented in the form of Fourier Series (Egorov and Kondratiev, 1996).

Pos = A Cof m(Xp)E 7' (A-9)

Where| . (Xy)and | , denote a corresponding eigenfunction - eigenvalue pair of the problem:

Div(k()Nj ) =1 j . (A-10)
Ti

=0 A-11

n (A-11)

] »,=0 on W (A-12)

and Cmis the m-th Fourier coefficient of the function Py, (Xp) . The average value at time tp is given
by

[Pos(to)le = Q Coll mle€ @' (A-13)

m

and obvioudly, it tends to zero.

In virtue of the Gauss-Ostrogradsky theorem (see eg., Egorov and Kondratiev’) and because the

eigenfunction ] ,(Xy) isasolution of problem A-10 to A-12, we obtain

Vsl m e = C)’L’TT’“HSDW (A-14)
w

where Sy isthe wellbore surface, Vpg isthereservoir volume.

Then

17



o] — (b -t
a Cm[l m]Ge o tDI)ImI m
m

Qo (tp) - Qo (tp) _
[Po(to)lc -1 [Poalto)ls éCm[l‘_m]Ge_(tD'tDi)lm

Joe (tp) = Vog (A-15)

If the deviation of the initia pressure distribution from the wellbore pressureis such, that it is orthogonal to
all eigenfunctions ] (X)) except thefirstone, j (X, ) then all coefficients Cm except C; areequal to

zeroin A-15. Then
Joep(tp) =1 Vpe (A-16)
(In the main text we discuss why the first eigenval ue-eigenfunction pair has a special significance. )

Itisin order to remark that if Ppy5(Xy) in Eg. 28 isnot constant (non-uniform pressure distribution on the

well) then

é Cm[i_m]Ge_ (tD_tDi)ImI m
Joe(tp) = m \Y A-17
220 by - [Porle +8 ol plee @7 o -

It can be concluded from Ibragimov (1985), that the difference between average on the well and averagein

the reservoir, [Ppslyw - [Poals can be zero only if Ppys(Xy) is constant in the whole reservoir.

Therefore, if the pressure on the well is a given (non-uniform) function of location, JDCp (ty) istime

dependent for any initial pressure and (in the strict sense) there exists no boundary-dominated flow regime.
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