INTERIOR PENALTY DISCONTINUOUS APPROXIMATIONS OF
ELLIPTIC PROBLEMS

RAYTCHO D. LAZAROV, STANIMIRE Z. TOMOV, AND PANAYOT S. VASSILEVSKI

ABSTRACT. This paper studies an interior penalty discontinuous approximation
of elliptic problems on non—matching grids. Error analysis, interface domain de-
composition type preconditioners, as well as numerical results illustrating both,
discretization errors and condition number estimates of the problem and reduced
forms of it, are presented.

1. INTRODUCTION

In this paper we propose and analyze a simple strategy to construct composite dis-
cretizations of self-adjoint second order elliptic equations on generally non-matching
grids. The need for discretizations on non—-matching grids is motivated partially from
devising parallel discretization methods (including adaptive) for PDEs, which is a
much easier task if non—-matching grids are allowed across the subdomain bound-
aries. Another situation may arise when different discretizations techniques are
utilized in different parts of the subdomains and there is no a priori guarantee that
the meshes will be aligned.

Our method can be described as interior penalty approximation based on partially
discontinuous elements. The mortar method is a general technique of handling dis-
cretizations on non—matching grids. However, our motivation for using the penalty
approach, is that it eliminates the need for additional (Lagrange multiplier or mor-
tar) spaces. There is a vast number of publications devoted to the mortar finite
element method as a general strategy for deriving discretization methods on non—
matching grids. We refer the interested reader to the series of Proceedings of the
International Conferences on Domain Decomposition Methods (for more information
see, http://www.ddm.org).

In the present paper, we assume a model situation that the domain is split into
a fixed number of non—overlapping subdomains and each subdomain is meshed in-
dependently. Therefore in general, since the global mesh is not aligned along the
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subdomain interfaces, the employed finite element spaces will have functions which
are discontinuous along these interfaces. The jump in the values of the functions
along these interfaces is penalized in the variational formulation, which is a standard
approach in the interior penalty method (cf. [2], [3], [9], [14]). An important feature
of our approach, partially motivated by the paper [15], is that we skip the term in
the weak formulation that involves the co-normal derivative of the solution to the
interface boundaries since the latter may lead to non—symmetric discretization (cf.
[14]) of the original symmetric positive definite problem. Thus, for smooth solutions
we lose the optimal accuracy due to poor approximation at the interface, but on
the other hand produce symmetric and positive definite discrete problem which has
optimal condition number.

One can improve the accuracy by increasing the weight in the penalty term on the
expense of increased condition number and regularity of the solution, cf., e.g., [8].
Another approach that requires H?-regularity and has optimal order error estimates,
is based on using negative norm in the penalty term (see Remark 3.3). This approach
is quite feasible but also increases the condition number and in general requires more
involved implementation. Both approaches (increased penalty weight or negative
norm penalty terms) will increase the computational complexity of the method. Here
we downplay this issue since we believe that an adaptive grid refinement (approach
taken in the present paper) is a good alternative. In order to compensate for the
low accuracy near the subdomain interfaces we use local grid refinement based on
suitable a posteriori error estimators and indicators. Adaptive methods have been
extensively used for problems with local singular behavior. Our experience shows
that the proposed interior penalty method embedded in a multilevel adaptive grid
refinement environment leads to reasonably accurate and fast computations.

For less regular solutions, namely in H'™¢(Q), ¢ > 0, the proposed method is
also well suited. Such low regularity, for example, will have the solution of an
elliptic problem with discontinuous coefficients (interface problem). Finite element
Galerkin method with penalty for this class of problems (on matching grids) has
been proposed and studied in [3]. Similarly, in [8], the interface problem has been
addressed by recasting the problem as a system of first order (by introducing the
gradient of the solution as a new vector variable) and applying the least—squares
method for the system. Integrals of the squared jumps in the scalar and the normal
component of the vector functions on the interface are added as penalty terms in the
least—squares functional. In both cases an optimal with respect to the error method
leads to a non-optimal condition number of the discrete problem.

Other approaches for handling discretizations on non-matching grids can involve
different discretizations in the different subdomains, for example, mixed finite ele-
ment method in one subdomain and standard Galerkin on the other as proposed
in [17] and studied further in [11], or mixed finite element discretizations in both
subdomains, cf. e.g., [1], [12].

In this paper we also address the issue of constructing preconditioners for solving
the system on the composite non—matching grids. We propose and investigate an
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interface domain decomposition type preconditioner (for two subdomains), that is
spectrally equivalent to the reduced on the interface algebraic problem.

Finally, the accuracy of the proposed method and the optimal condition num-
ber of the the preconditioned problem are demonstrated on a series of numerical
experiments on model problems.

The structure of the present paper is as follows. In Section 2 we formulate the
problem and its discretization. Section 3 contains the error analysis. The construc-
tion and analysis of the interface domain decomposition preconditioners are given
in Section 4. The numerical results can found in the final Section 5.

2. NOTATIONS AND PROBLEM FORMULATION

In this paper we use the standard notations for Sobolev spaces of functions defined
in a bounded domain 2 C RY, d = 2,3. For example, H*(Q) for s integer denotes
the Hilbert space of functions u defined on €2 and having generalized derivatives
up to order s that are square integrable in 2. For non-integer s > 0 the spaces
are obtained by the real method of interpolation (cf. [13]). Hj () is the space of
functions in H'(Q2) which vanish on 9. The norm of u € H*(Q) is denoted by
||u||s.. We also use the notation |u|sq for the semi-norm in H*(Q2). For the traces
of functions in H{(2) on a manifold T of dimension d — 1 (curves and surfaces)
and JI' C 012, we use the fractional order Sobolev spaces commonly denoted by
H&{Q (I"). The corresponding norm in this space can be characterized, for example
as the infimum of the H'(Q)-norm of all possible extensions of functions in H*(£2)-
norm vanishing on 0.

For a given bounded polygon (polytope) €2, a source term f € L*(2), and coeffi-
cient matrix a(z) that is symmetric and uniformly positive definite and bounded in
Q) we consider the following boundary value problem for u(z):

—V.-aVu = f(x), z e,
(2.1) u(z) = gp(x), =€ Ip,
aVu-n = gy(z), z€ Iy,

where 092 = 0Qp U 0y, n is the unit vector normal to 9 (pointing outward ),
09 p has a positive measure, and gp and gy are given functions.

To simplify our notation and the overall exposition, we further consider the case
of homogeneous Dirichlet data given on the whole boundary 09, i.e., Ty =0 (I'p =
9Q) and gp = ulp = 0. However, most of our numerical experiments were done
for the general case (2.1).

We shall study a discretization of this problem by the finite element method
while using meshes that may not align along certain interfaces. This situation
may arise when the domain € is split initially into a p nonoverlapping subdomains
Q;,i =1,...,p and each subdomain is meshed (triangulated) independently of the
others so that the mesh 7; is a quasi—uniform triangulation of €2;. This means that
if hy = diam(T) and |T| = meas(T) then |T| = h%, d = 2,3. Further, 7 = U;7,.
Denote by I';; the interface between two subdomains €2; and €2; and by I' the union
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of all interfaces I';;. We note that there is no assumption that along each interface
I';; the triangulations 7; and 7; produce the same mesh.

We now specify a “master” side of each interface I';;, i.e., the mesh from 7, for
k fixed, either equal to 7 or to j, will generate partition &;; of I';;. Then e € &;
defined as e = I';; N IT, for all T" € 7;. Finally, we define the set of interface
“master” elements & = U;;&;;.

Let V; be the conforming finite element spaces of piece-wise linear functions as-
sociated with the triangulation 7; and let V : V|Qi =V;,i1=1,...,p, be the finite
element space on 7. Since the meshes 7; in {2;, 7 = 1,. .., p are generally not aligned
along the subdomain interfaces I';; the functions v € V' are, in general, discontinuous
across I';;. However their traces on I';; from 2; and €); are well-defined.

We now introduce the second order elliptic bilinear forms

ai(vi: %‘) = / a;Vv; - Vi dx, v = /U‘Q,L , Y= WQZ. , forall v, ¢ € H&(Q):
Q;
where, a;(z) = a(z)|g, fori=1,...,p. Note, that the form a;(-,-) is well defined in
V: x V.

The weak form of the boundary value problem (2.1) is: Find u € H}(Q) such that

(2.2) a(u, ) = ai(u, p) = (f, @), forall p € H(Q).

For the interior penalty finite element method we shall need some additional con-
structions. To simplify our notations and exposition we take d = 2 (for d = 3 in
the construction below we have to take |e|'/? instead of |e|). First, we introduce the
following bilinear form on V' x V:

(23 b(onie) = 7 [lonllel. e

el

Here, [¢]. is the jump of ¢ across e € &; C &, ie. [¢lc = @i|, — ¢;|, where &; is
a partition of I';; obtained from the master triangulation 7, (kK =i or k = j) and
le| is the measure of e. Since the triangulations 7; are assumed quasi—uniform, we
have that |e|] ~ hy.

The weight o(e) can be defined in various ways with the simplest o(e) = 1. Better
numerical results in the case of coefficients with large jumps across the interface I" or
anisotropy gives the following weight, which uses harmonic averages of the coefficient
matrix a(z):

ole) = —2

;
/'ii—i—/'ij

1
WZE/WW%&WWQM@hwﬂ

where n.(z) denotes the unit normal vector to e at the point z € e.
We study the following discretization method (called further interior penalty dis-
cretization):
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Find u, € V such that

(2.4) an(un, @) = alun, @)+ by(un, ©) = (f, ¢), forall p e V.

Since the finite element space contains functions that are discontinuous across I" the
penalty form by (-,-) imposes a weak compatibility of the solution across I', i.e., it
controls the size of the jump [up].

The bilinear from ay(-,-) defined in (2.4) is symmetric and positive definite. It
is related but much simpler than the corresponding discontinuous Galerkin method
used in [2], [14]. The simplification comes from the fact that we have disregarded
the term involving the co-normal derivative aVu - n along the interface I' with unit
normal vector n. This simplification comes with a cost: the proposed approximation
will not have optimal order of convergence, in contrast to the nonsymmetric interior
penalty Galerkin method, studied in [14]. However, our formulation leads to a
symmetric and positive definite problem and combined with local grid refinement
generated by an a posteriori analysis produces efficient and accurate computational
method as demonstrated by our numerical experiments.

3. ERROR ESTIMATES

In this section we derive the basic error estimates for the proposed interior penalty
method (2.4). We assume that the following two conditions:

(A.1) The solution u(z) of (2.2) is H2T(Q)-regular, with a > 0;

(A.2) The solution u(z) of (2.2) satisfies the estimate ||u||%+aQ < C|f o

(A.3) The maximum step-size of 7; is h; and h; ~ h, for i =1,...,p.

The condition (A.3) means that the mesh 7 is a global quasi—uniform partition
of Q.

For u, € V we define the “energy” norm ||us|3, = an(un,us). Obviously this
norm is well defined for u € Hg(Q2) and [|u[[},, = a(u, u).

The following theorem is the main result in this section:

Theorem 3.1. Assume that the conditions (A.1), (A.3) hold. Then
(3.1) llu = unllip < CLAY2 ful]s 40 q-

If in addition (A.2) holds, then

(3.2) lu = unllon < Cohllully s

The constants Cy and C are independent of h and o > 0.

Remark 3.1. The condition (A.1) requires a little bit more reqularity than the stan-
dard Galerkin method, where H'"¢(Q)-reqularity gives O(h®) convergence rate in en-
ergy norm. We can make our analysis work for this case as well. However, we prefer
to keep the exposition on simple level and to avoid all technicalities when working
with the trace of aVu - n in Sobolev spaces with negative indez.
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Proof. We first note that the exact solution u satisfies the identity,

a(u, ) =(f, )+ /aVu -nfp] do, forall p € V.

r

We here used the that the exact solution has continuous (in a weak sense) normal
flux, i.e., in particular, [aVu - n]|r = 0.
Similarly, the discrete solution uy solves the problem,

ah(ulw 90) = Zai(ulw (10) + bh(u]w (10) - (f7 90) for all RS V.

i

Let 1, be the nodal interpolant of the exact solution in V. Note, that v, is
discontinuous on I', but its jump [¢] is small, since u is a continuous function in 2.

JFrom the above identities for u and wy it is clear then that 6, = uy, — 1y, solves
the discrete problem,

i o+ 5D [0lel de
=a(u — ¢y, ) — / aVu - nfpldo — ) o() /Wh]e[@]e do,

r cee |6|

for all p € V.
Taking into account that —[iy]. = [u— ). and using the definition of ay(+,-) we
rewrite this equation in the form:

an(0n, ©) = ap(u — Yy, p) — / aVu - n [p] do.

r

Now choosing ¢ = d;, and applying Schwarz inequality to both terms on the right,
we get

an(On, 0n) < [an(w— n, w—n) an(8h, 6,)]">

1/2 1/2
+ (Z % /e(avu -n)? dQ> (Z % /e[éh]i dQ) ,

ecf ee€

which after applying the inequality a;b; + asby < \/a? + a3+/b? + b2 yields,
1t az\/01+ 03

1
2

ah(éh, 5h) S [ah(u — ¢h, u — wh) + Z % /(aVu . n)2 dQ] [2&h(5h, 5h)] .

S
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Using this inequality and taking into account that e, = u —uy, = u — ¥, — o, we get
the following basic bound for the error ey:

HehHih = ap(en, en) < 2ap(u — Yp, u—Yy) + 2a3(6p, On)
< dan(u — ¥n, U—¢h)+22ﬂ/(avu'n)2 do
3.3
( ) E4a(u—’¢h, wh +4Z / _wh]zd

eel

+2Y —— [(aVu-n)* do.
Z o(e) / ’

Since the solution u(z) is H2*(Q)-regular, a > 0, the last term is easily bounded
by the trace theorem

e
(3.4) Z ’—‘) /(aVu -n)? do < Ch||Vu-n|§ < C’hHuHsJr o

eef 0'(6

Note, that this term gives the largest contribution to the error. We show below
that all other terms in the right hand side of (3.3) are asymptotically smaller.

A bound for the term aj(u — 1y, uw — 1) is a corollary of the standard error
estimate for the interpolant ¢, of u on V:

(3.5) a(u—n, uw—1y) =Y ai(u—1p, u—1y) < CHu ul 0

i

We now consider the second term on the right-hand side of (3.3). First, we note

that
> |(|)/[u—wh do < Ch™* Z/ [ — )2
ec& Ei;CE
2
(3.6) < Ch™ Z/ (u = ¥n)lr, no0, — (u —wh)‘rijmaﬂj) do

5” ce

< Ch™ Z/ (u — p)2do

=1 an

Fix [, 1 <[ < p. Let T be an element of 7;, such that ¢, = 9T N 0, is an edge of

T. Since the triangulation 7; is quasi-uniform we have |¢;| ~ Chy and |T'| ~ Ch3..
We next recall the following (trace type) inequality

h1+2a

ia
7 loli 0r | for o € HE(T),

1 1
3.7 — [ ©*do < C | =]l
61 oo [P dese|qli e+ b
e

which is verified first for a domain of unit size and then by transforming 7" to a
domain of unit size to get the appropriate scaling.
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Summing (3.7) over all edges of T € 7; along 0¢);, and using the approximation
properties of the space V; (1, is the nodal interpolant of v in V') we get

hflfagl(“_wh)QdQ < C(h’QHu—whHé,gﬂrHu—whHigl)
< ChM™2[ul}

- 2

(3.8)
+a,$

and the final result follows by summation over .

Remark 3.2. Note that the mesh-sizes in the above formula are local near I', so
applying local refinement (see Subsection 5.3) for small additional cost for smooth
solutions one gets “first order” accurate scheme. Part of the additional cost is the
increasing condition number, which may be a problem if no preconditioning is used.
If the penalty term is increased, for example, by additionally multiplying by %E‘ one
gets first order scheme provided that the solution is smooth along I'. In that case a
new preconditioner has to be found.

We now continue with bounding the error in L?-norm, which is obtained by a
standard duality argument. Consider the dual problem:

Find z € H}(Q) such that a(z,p) = (ep, @) for every p € H}(Q). Let 2, € V be
the discrete solution of the dual problem obtained by the described above penalty
method, i.e. ap(zn, @) = (en, ) for all p € V.

Use now the fact that z;, and wu;, are the solution of the discrete problems approx-
imating z and u respectively, one gets,

H€h||(2) = CL(Z, eh) + \/FCLVZ ‘n [eh]dg

=a(z — zp, en) +alzn, en) + / aVz-n [ey)do
r

<2 = znllinllenllin — bu(zn, w—1un) + /
T

aVu-n [z]do + / aVz-n [e]do.

r

Thus, from the Cauchy—Schwarz inequality and the energy error estimate (3.1),
we have

—bp(zn, w—up) =bp(z— 2z, u—1up)

N

< [br(z = zn, 2 — 2p)bp(u — up, u—up)]
< Iz = znllunllu = unlln

1
< Chz|z]s 40 0llenllin

One also has, using the Cauchy-Schwarz, the trace inequality, the energy error
estimate (3.1) for z — z;,, and assumption (A.2)

[naVu-n[z]do < Ch2 [[-(aVu - n)? dg}% [on(2 = 2n, 2 — Zh)]%

< Chllulls paallZlls ran < Chllulls o allenllo
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Finally, apply again the trace inequality and assumption (A.2) to get
/F(aVz -n)?dp < CHzHQ%WVQ < Cllenl3.

Using these estimates we get

1
leall? < € (412l allenllin + Bllzlls s lall3 o) < Chllulls o leallo
which yields (3.2). O

Remark 3.3. One can achieve optimal order error estimates if the penalty term is
taken in negative norm which will allow a different penalty weight to be used. More
precisely, one may use the following negative norm interior penalty boundary form:

1 —a
Pirea [v], [w])p-

For simplicity assume two subdomains, p = 2 and let k = 1 be the master side of
the boundary I' = T'15. Then Ay, : Vi — Vi defines an H&(F)—equivalent norm on
Vilp. For a € [0, %] one gets a scale of interior penalty forms. By a straightforward
modification of the above error analysis one can get a O(h%ﬂv) error estimates in
energy norm for u € H%JFO‘(Q). Unfortunately, the condition number of the resulting
matrices increases to O(h™272%), instead of O(h™2), the condition number of the
unpenalized problem. Also, use of negative norm penalty forms raises the question
of computing the actions of the corresponding boundary operator, which in general
gives rise to dense matrices. If one assumes a multilevel structure of the mesh in 21,
then one potential candidate for A, which is inexpensively computable can come
from the (boundary) Sobolev norms of negative fractional order studied in [7]. It is
clear that use of negative norm operators leads to more involved implementation and
in the present paper we have taken the somewhat simpler approach of utilizing local
refinement near the interface boundary in order to control the accuracy.

4. ITERATIVE SOLUTION OF THE RESULTING LINEAR SYSTEM

In this section we study some preconditioning technique for solving the system of
algebraic equations produced by the interior penalty method. Here we shall study
the case p = 2, so that I'\; = I', and assume that I' intersects 0f).

We next introduce the reduced problem on the interface I', which corresponds
to eliminating the interior for £2; and €2, nodes thus leading to an interface Schur
complement system for the unknowns on I'.

First, we introduce the Schur complement operators S; : V|, — V|, i =1,2:

(Sivi, ) = inf ai(vi, i),

v €Vi: vi|p=1;

where the pairing (-, ) here represents integration on T
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Next, we introduce the reduced system on the interface I': Find ¢; € Vj|, such
that,

(41) (Slgpla wl) + (52()027 ¢2) + bh((pa 1@ = (ga 1@, for all w € V.

One can further reduce the problem, by looking at the Schur complement
(4.2) (0191, 1) = inf [(Sapz, @2) +bules ¢)]-

so that the final reduced on I' problem reads,

(4.3) (S11, 1) + (0191, Y1) = (g1, Y1), for all 9.

Obviously, Sy + 01 : Vi|p — Vil is a symmetric an positive definite operator
The following main result holds:

Theorem 4.1. The reduced boundary operator Sy + o1 is spectrally equivalent to its
principal part Sy, that is
(S1h1, Y1) < ((S1+01)¥1, 1) < C(S191, 1), for all ¥y

with a constant independent of h and on Z—;

Proof. We only have to prove that o; is bounded in terms of S;. Note that S; defines
1

a norm equivalent to H(T") restricted to the traces of the finite element space V.
. From the definition of o1, one has,

(o131, 1) < (Satbe, ¥2) + bu(¥, ¢),  for all ¢s.

Choose now, ¥, = Q41 where Q¥ is the L* projection onto V5. In order to define
Qh)y we assume that 1); has been harmonically extended in €y, which means that

1
the H'(Qy)-norm of the extension is bounded by the HZ (T')-norm of 1;. Then the
boundary term is estimated as follows, using inequality (3.7), the L*-approximation
and H'-boundedness properties of Q%, and the fact that |e| ~ ha,

b, ) =257 [0~ Qb)un]” do

< Clel (I = @)nllg o, + 1T — Q3)¥nl 0]
< Clllli g, < CH%H;F < O(S1r, ).
The rest is also straightforward. One has,
(Satha, 12) < ax(Qhyr, Q) < CllQ5U|3 o,
< Clnlli, o, < Clltnlls 1 < C(S1¢n, ).

O

Remark 4.1. In order to compute the actions of o1 one has to solve the variational
problem (4.2). This is equivalent to solve the following sub-domain problem, for a
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gwen @1 on I,

az(p2, ¥2) + Z 1(77)/@2% do = Z % /9011/)2 do, for all s € Va.
e ec& .

eel

Obviously, the condition number of the resulting matriz depends on the size of |e],
e € £. It is clear that if £ was based on Ty, then the condition number of above
system would have been independent of hy. The actions of o1 can be computed
using the preconditioned CG method exploiting (a variant of ) the preconditioner for
interior penalty bilinear form studied in [15].

5. NUMERICAL RESULTS

The performance of the proposed penalty method is described in the following
six subsections. In Subsection 5.1 we give results for non-matching and matching
grids. In Subsection 5.2, we have incorporated a weight § > 0 in the penalty term,
and studied its effect on the accuracy and on the condition number of the resulting
matrices. Subsection 5.3 deals with locally refined meshes obtained as a result of
a posteriori error analysis in order to improve on the accuracy of the method. In
Subsection 5.4 the same numerical results as in Subsection 5.1 are given, now for
varying coefficients a;. Finally, in Subsection 5.5, condition number estimates for the
original problem (2.4), as well as for the reduced problems (4.1) and (4.3). The same
is done for the preconditioned reduced problem (4.3), by the described in Section 4
interface domain decomposition type preconditioner S;.

Our finite element implementation handles arbitrary triangulations of the domain
and linear finite elements. The embedded into the code refinement techniques yield a
sequence of nested triangulations which are used to define multilevel preconditioners
for the subdomain problems.

In all tables we present the computational results for various test problems with
smooth solutions. The domain is split into two subdomains that are triangulated
independently so that the meshes do not match along the interface I'. In Tables 1, 2,
5, and 6 we present the number of nodes for each level of grid refinement, the error
in maximum (L*°), L? and H'-norm, and the condition number of the algebraic
system for the penalty approximation. The results are given for each subdomain
separately, in each box the first line is for the bigger domain and the second line is
for the smaller one.

5.1. Uniform refinement results on non-matching grids. In the first test we
use the mesh shown in Figure 1. The grids are non-matching along the interface
between the sub-domains ; (upper left part of Figure 1) and 25 (lower right corner).
The exact solution is u(z, y) = x?—y?, and the coefficients are a; = ay = I. Dirichlet
boundary conditions are imposed on the lines z = 0, y = 0, and Neumann boundary
conditions on the lines z = 1, y = 1. The symmetric and positive definite discrete
problem is solved using the C'G' method.

In Figure 1, in addition to the mesh, we have given the approximate solution and
the error on refinement level 2. Table 1 summarizes the numerical results. The last
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0

FIGURE 1. Mesh on level 2 (left), the approximate solution on level
2 (middle) and the error on level 2 (right)

column gives the condition number of the discrete problem. The error on the finest

Uniformly refined grid

level | # nodes | L®-error | L2-error | H'-error | condition #

1 65 | 0.027682 | 0.009983 | 0.095231 149
311 0.038660 | 0.009136 | 0.069610

2 2251 0.015073 | 0.005105 | 0.049991 019
102 | 0.022372 | 0.004702 | 0.038111

3 833 | 0.008204 | 0.002527 | 0.025563 2278
367 | 0.011481 | 0.002291 | 0.019864

4 3201 | 0.004255 | 0.001263 | 0.013130 9781
1389 | 0.005830 | 0.001131 | 0.010353

5 12545 | 0.002176 | 0.000632 | 0.006796 40083
5401 | 0.002940 | 0.000566 | 0.005512

order 2 ~ 1 ~ 1 ~ 1 2

TABLE 1. Numerical results for uniform refinement; non-matching grids.

(5th) level is 0.22%, 0.20% and 0.47% correspondingly in the discrete maximum, L?
and H!'-norms.

To make an assessment of the performance of the penalty method we solved the
same problem on matching grids uniformly refined to level 5. The results of these
computations are presented in Table 2. Comparing Table 1 and Table 2 one can see
that the condition numbers and the accuracy are very close. The error on the finest
(5th) level is 0.35%, 0.34% and 0.57% correspondingly in the discrete maximum-
norm, L?-norm and H'-norm.

5.2. Variable penalty weight. Here we test the effect on the accuracy and con-
dition number of the resulting discrete problems, of varying the penalty weight &
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Uniformly refined grid

level | # nodes | L®-error | L?-error | H'-error | condition #

1 65 | 0.039405 | 0.016707 | 0.106070 143
25{ 0.054990 | 0.016297 | 0.084409

2 225 | 0.022533 | 0.008476 | 0.056189 498
81 ] 0.027814 | 0.008517 | 0.046363

3 833 | 0.012380 | 0.004281 | 0.029705 1829
289 | 0.014366 | 0.004374 | 0.025188

4 3201 | 0.006617 | 0.002154 | 0.015650 6982
1089 | 0.007399 | 0.002221 | 0.013546

5 12545 | 0.003456 | 0.001081 | 0.008212 27247
42251 0.003770 | 0.001120 | 0.007223

order 2 ~ 1 ~ 1 ~ 1 2

TABLE 2. Numerical results for uniform refinement; matching grids.

incorporated in front of the interior penalty boundary form,

ot ) +53 5D [l do= (7. o)+ [

gnpdo, for all p € V.

N

On I'p we take u, equal to the piece-wise linear interpolant of the boundary data
9p-

The domain is as in the previous subsections and Dirichlet boundary conditions
are applied on the whole boundary 0. In Table 3 we give the results for varying o
on non—matching grids, and in Table 4 are the results for the case of matching grids.
The meshes are kept fixed. The non-matching grid has 833 nodes in subdomain
; and 231 nodes in €y, corresponding to h = 0.04 (h_% = 5). The matching grid
has 833 nodes in 2; and 289 nodes in {25. The computations for both, matching
and non—matching grids, show that increasing 0 puts more weight on the penalty
term and leads to decreasing the errors in all norms. However, for § larger than
h~1/2 there is no significant improvement in the accuracy. This is in agreement with
the presented above theory. Moreover, for non—matching grids very large 6 causes
deterioration of the error in maximum and H'-norm and, as expected, increases the
condition number.

5.3. Local refinement results. We here consider the problem from Subsection
5.1. There is a wide range of well-established a posteriori local error estimators that
are used to generate locally refined meshes that guarantee accurate discretizations,
e.g., Residual based refinement [4], 6], [16], Zienkiewicz-Zhu error estimator [18],
Hierarchical refinement [5], and Second derivative refinement [10].

In our context we had to adapt the estimators near I' due to the interior penalty
form. The grids obtained as a result of applying the above four error estimators
differ slightly, but in all cases of smooth solutions the estimators lead to meshes
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0 | L>®-error | L?-error | H'-error | condition #

0.1 0.255030 | 0.141213 | 0.497448 420
0.605293 | 0.227123 | 0.642739

11 0.049788 | 0.019099 | 0.135558 420
0.088299 | 0.029629 | 0.132201

h=Y2=51 0.013678 | 0.004131 | 0.092995 1190
0.020614 | 0.006253 | 0.074047

10 | 0.007464 | 0.002485 | 0.089832 2273
0.011123 | 0.003379 | 0.069903

1000 | 0.013250 | 0.002558 | 0.093995 88288
0.011979 | 0.002308 | 0.075255

TABLE 3. Numerical results for varying J; non-matching fixed grids.

0 | L®-error | L2-error | H'-error | condition #

0.1 ] 0.080767 | 0.024755 | 0.159351 440
0.184311 | 0.039591 | 0.203872

11 0.012907 | 0.003594 | 0.036052 440
0.022984 | 0.005555 | 0.035535

=172 =51 0.003310 | 0.000759 | 0.023133 615
0.004671 | 0.001158 | 0.014892

10 | 0.001778 | 0.000417 | 0.022384 1162
0.002340 | 0.000590 | 0.013363

1000 | 0.000019 | 0.000173 | 0.022098 42261
0.000024 | 0.000100 | 0.012758

TABLE 4. Numerical results for varying ¢; matching fixed grids.

that are refined in the areas around the interior boundary. Here we present the
results from the Residual based refinement estimator only. The method is based on
equilibrating certain residuals over the elements. The residual over one element is
decomposed into two parts. The first part contains the contribution of the interior
of the finite element and the second part consists of the contribution from jumps of
the normal flux across the finite element boundary.

More specifically, in our computations for every element T' € 7; we compute and
equilibrate the following quantities:

pr = hel|lf+V - aVusllr + b Y R

ecoT
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FIGURE 2. Mesh on level 2 (left), mesh on level 4 (middle) and the
error on level 4 (right).

where the residuals R, are defined as

0 if e € 0Qp ,
(5.1) R — gy — aVuy, -l if e € 00y ,
. o= '
sll[aVug] - nlfe if e Q\{0QUTY,
sl[aVup) - nlle + |[aVu, -nf|. ifeel.

Asymptotically this error indicator, as the a priori estimate, is of order 1/2 because

of the term ||aVuy, - n||.. Equilibration of pr ensures that the term by [(aVu-n)? dp
r
(see, the error estimates in Theorem 3.1) will be of size Ch?, where h is the quasi-

uniform size of the mesh away from I', i.e. due to the local refinement we should
get close to a first order scheme.

level | # nodes | L>®-error | L?-error | H'-error | condition #

1 225 0.022438 | 0.007905 | 0.052656 521
102 | 0.032274 | 0.007905 | 0.052656

2 833 | 0.012507 | 0.003926 | 0.027194 2328
307 | 0.016949 | 0.003248 | 0.024047

3 1139 | 0.006597 | 0.002000 | 0.022904 5036
589 | 0.008623 | 0.001591 | 0.015972

4 1759 | 0.003334 | 0.001017 | 0.021487 9814
1109 | 0.004390 | 0.000802 | 0.013027

TABLE 5. Numerical results for local refinement; non-matching grids.

The computational results are summarized in Table 5. One notices that for our
interior penalty approximation the numerical experiments show that the local re-
finement reduces the L?-error according to the theory, the error in the maximum
norm is slightly better than one may expect and the error in H'-norm is slightly
worse than expected.
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FIGURE 3. Mesh on level 3 (left), the error (middle) and the approx-
imate solution on the same level (right).

5.4. Results for variable discontinuous coefficient matrix a. In this subsec-
tion we take a; = 1,

1+ 22 4+ 10y?

. 1+ 1022 + 32
2=\ 05+ 22442

0.5+ 22 +y2)

and assume homogeneous Dirichlet boundary conditions on the whole boundary.
The exact solution is u(z,y) = sin?(27x)sin*(2ry). The exact solution and the
interior boundary are chosen such that the flux across the interior boundary is zero,
hence aVu-n = 0 on I'. The domain is shown on Figure 3 (left). On the finest (5th)

Level | # nodes | L>-error | L*-error | H'-error | condition #

1 67 | 0.054202 | 0.052853 | 1.438307 113
341 0.033052 | 0.022632 | 0.732204

2 234 | 0.021709 | 0.014553 | 0.756781 511
113 | 0.010203 | 0.006460 | 0.391482

3 871 | 0.007720 | 0.003771 | 0.384874 2405
409 | 0.003406 | 0.001670 | 0.198680

4 3357 | 0.002486 | 0.000953 | 0.193395 10937
1553 | 0.001223 | 0.000422 | 0.099706

5) 13177 | 0.000756 | 0.000239 | 0.096832 45853
6049 | 0.000409 | 0.000106 | 0.049897

order 2 1.5 2 1 2

TABLE 6. Numerical results for discontinuous coefficient matrix a;
non-matching grids.

refinement level the error is 0.08%, 0.07% and 2.93% respectively in maximum, L?
and H'-norms. For this particular solution the error is second order in L?-norm and
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first order in H'-norm. This should be expected since the main contributor to the
error of our method is the term aVu - n along I', which in the case is zero.

5.5. Estimates for the condition numbers. The given in this section results
are for the problem solved in subsection one. The meshes are non-matching and
uniform refinement is used. Table 7 compares the condition numbers for matrices
corresponding to the original problem (2.4), the reduced problem (4.1), the further
reduced problem (4.3), and the further reduced problem (4.3) preconditioned with
S;! (see Section 4). As one can see in Table 7, the condition numbers behave like:

Condition Numbers

Level | # nodes 1 21 3 4

1 65 1491 13| 4]1.90
31

2 225 519 26| 8|1.93
102

3 833 | 2278 | 54|16 2.15
367

4 3201 | 9781|108 |35 2.46
1389

5 12545 | 40083 | 215 | 70 | 2.57
5401

order 2 2 1] 1 0

TABLE 7. In columns 1, 2, 3 and 4 we give the condition numbers for
the problems (2.4), (4.1), (4.3), and (4.3) preconditioned with S;*,
respectively

O(h™?) for the original problem, O(h~!) for both (non—preconditioned) reduced
problems, and O(1) when the preconditioner from Section 4 is applied, all in good
agreement with the theory.
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