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Abstract. We present an adaptive numerical technique for solving steady-state diffusion and
convection-diffusion-reaction equations in 3-D using finite volume approximations. Computational re-
sults of various model simulations of fluid flow and transport of passive chemicals in non-homogeneous
aquifers are presented and discussed.
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1. Introduction. We aim to develop, implement, and test a computational tech-
nique for simulation of fluid flow and transport of passive chemicals in porous media.
We consider the pressure equation describing fully saturated single phase flow in 3-
dimensional bounded aquifers with variable permeability. Further, we consired the
case when chemicals are transported by the flow and absorbed by the media. In this
paper we discuss the steady-state solutions of these two problems. The corresponding
mathematical models for both problems, flow and transport, are elliptic equations of
second order (diffusion and convection-diffusion-reaction equations) subject to various
boundary conditions.

The solutions of these problems exhibit local behavior due to discontinuity in
the boundary data and the coefficients of the differential equations, from extrac-
tion/injection wells, and/or other local phenomena. Here we describe a computational
technique that utilizes both finite volume and finite element approximations of the
differential equations and a posteriori error estimators and indicators that will lead
to adaptive local grid refinement. This technique is implemented (with appropriate
tools for grid generation, partitioning and parallelization) in a multilevel fashion and
tested on various boundary value problems for diffusion, convection-diffusion, and
reaction-diffusion equations that exhibit local or singular behavior. We also present
a number of numerical simulations of flows in inhomogeneous aquifers and transport
dispersion and absorbtion of benzene that has been dissolved in the water.

The paper is organized in the following manner. In Section 2 we formulate various
boundary value problems for the diffusion equation for the pressure and the advection-
diffusion equation for the concentration of the chemicals. Further, we introduce some
notations and give the weak formulations of the problems. In Section 3 we present
the finite element and the finite volume element methods. Further, in Section 4 we
discuss residual type of error estimators for the finite volume element method that will
lead to adaptive local grid refinement. In Section 5 we describe the object-oriented
structures for the computer implementation of our strategy. Finally, in Section 6 we
demonstrate the performance of the developed adaptive grid refinement method on
various model second-order problems.
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2. Problem formulation. The mathematical model of steady state ground-
water flows and transport in porous media yields two basic equations. These are
the Darcy equation for the pressure, discussed in Subsection 2.1, and the advection-
dispersion (transport) equation, discussed in Subsection 2.2. The transport equation
describes the steady-state distribution of a passive substance dissolved in the water,
transported by the flow, and absorbed by the soil. Further, this method can be
extended to the case of transport of multiple chemicals that react. Since many clean-
up, remediation, and exploration strategies in aquifers and petroleum reservoirs are
based on treatment/injection/production through wells we also briefly discuss various
well models.

2.1. Diffusion (pressure) equation. The fluid flow is due to the velocity v
defined by the Darcy’s law: v = −D∇p, where p is the pressure, D is the permeability
of the porous media. The pressure p satisfies the following equation subject to various
boundary conditions:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇ · v ≡ −∇ · D∇p = f, in Ω,

p = pD, on ΓD,

−D∇p · n − γp = pN , on ΓN ,

p = pw, on Γw.

(2.1)

Here Ω is a bounded polyhedral domain in R3 with boundary ∂Ω ≡ Γ = ΓD∪ΓN ∪Γw,
D is symmetric, bounded and uniformly positive definite matrix in Ω, n is the outer
unit vector normal to the boundary of Ω, pD, pN , and γ ≥ 0 are given functions, pw

is a given constant (called well-bore pressure), and f is the given source term. The
last three equations prescribe Dirichlet, Neumann, and well boundary conditions,
correspondingly. The last one models injection/extraction of fluid through a well,
which is assumed to be a cylinder with radius rw. Since the well radius rw is very
small compared to the reservoir size the wells can be classified as small features of
the media and well boundary conditions will lead to solutions with almost singular
behavior. For discussion of well boundary conditions, including nonlinear ones, we
refer to [14].

Another boundary condition that models injection/extraction of fluid from the
reservoir is well condition with a prescribed production rate Q, but with unknown
pressure pw on the well surface:

p = pw, on Γw, pw unknown constant and
∫

Γw

D∇p · nds = Q.(2.2)

And finally, on Γw we can prescribe the same type of boundary condition as on
ΓN . Namely, we have the boundary condition

−D∇p · n = γp + Q̃ on Γw(2.3)

with Q̃ a given constant. Note that here Q̃ is the pointwise flux, while Q in (2.2) is
the total debit of the well. For γ = 0 they are related by Q = Q̃Sw, where Sw is the
area of the lateral surface of the well. Our computations involving well model were
done for condition (2.3) with γ = 0.
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2.2. Convection-diffusion-reaction (transport) equation. The second ba-
sic equation gives the concentration of a passive chemical dissolved and distributed in
the water due to the processes of advection, diffusion, and absorption. The equation
describes the conservation of mass of the chemical. The steady-state distribution of
the concentration c is described by the following general boundary value problem for
convection-diffusion-reaction equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · K∇c + ∇ · (bc) + ac = f, in Ω,

c = cD, on ΓD,

(−K∇c + bc) · n = cN , on Γin
N ,

−K∇c · n = 0, on Γout
N ,

c = cw, on Γw.

(2.4)

Again, Ω is a bounded polyhedral domain in R3 with boundary ∂Ω, that is split into
Dirichlet, Neumann, and well parts, namely ∂Ω ≡ Γ = ΓD ∪ ΓN ∪ Γw. Further, the
Neumann boundary is divided into two parts: ΓN = Γin

N ∪ Γout
N , where Γin

N = {x ∈
ΓN : n(x) · b(x) < 0} and Γout

N = {x ∈ ΓN : n(x) · b(x) ≥ 0}. We assume that the
diffusion-dispersion tensor K is symmetric, bounded and uniformly positive definite
matrix in Ω, b is the given convection vector field, n as before is the outer unit vector
normal to ∂Ω, a ≥ 0, f , cD, cN and γ ≥ 0 are given functions. The boundary
condition on Γw models the case of a given concentration on the well surface, which
corresponds to the case of injection well.

In our computations we take the advection vector-field b = v, where the Darcy
velocity v is obtained after solving the problem (2.1). Then the diffusion-dispersion
tensor is given by K = kdiffI + ktv

T v/|v| + kl(|v|2I − vT v)/|v|, where kdiff , kt, and
kl are constants characterizing correspondingly the diffusion, transverse dispersion,
and longitudal dispersion.

In the case of production well we have to impose boundary conditions that model
appropriately the extraction of the dissolved substance by the well activity. In the
case when the flow is determined by the solution of problem (2.1) with well boundary
condition (2.3) we get the following boundary condition for the concentration:

K∇c · n = 0 on Γw.(2.5)

2.3. Notations. We denote the solution to both problems formulated above
by u, i.e. u = p or u = c. For simplicity we consider only homogeneous Dirichlet
boundary conditions on ΓD and assume that ΓD is nonempty. We further introduce
the space H1

D(Ω) = {v ∈ H1(Ω) : v|ΓD = 0}. In this space we shall use the standard
L2 and H1-norms: ||u|| = (u, u)1/2, ||u||1,Ω ≡ ||u||1 = {(u, u) + (∇u,∇u)}1/2, where
(·, ·) is the inner product in L2 and ∇u is the gradient of u.

In order to simplify our notation we shall present the weak formulation for the
problem (2.4) with boundary condition (2.5) on Γw. Next, we introduce the bilinear
from a(·, ·) defined on H1

D(Ω) × H1
D(Ω):

a(u, v) ≡ (K∇u − bu,∇v) + (au, v) +
∫

Γout
N

b · n u vds +
∫

Γw

Q̃ u v ds.

Here, Q̃ is the constant in the boundary condition (2.3).
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Further, we assume that the coefficients of problem (2.4) with boundary condi-
tions (2.5) ensure the following conditions: (a) the form is coercive in H1

D(Ω), i.e. there
is a constant c0 > 0 s.t. a(u, u) ≥ c0||u||21, ∀u ∈ H1

D(Ω); and (b) the form is bounded
in H1

D(Ω), i.e. there is a constant c1 > 0 s.t. a(u, v) ≤ c1||u||1||v||1, ∀u, v ∈ H1
D(Ω).

A sufficient condition for the coercivity is a(x) + 0.5∇ · b ≥ 0 for all x ∈ Ω.
Then we rewrite (2.4) in the following weak form for the case of homogeneous

Dirichlet boundary conditions on ΓD and boundary condition (2.5) in the presence of
injection/production wells: Find u ∈ H1

D(Ω) such that

a(u, v) = (F, v) ≡ (f, v) −
∫

Γin
N

cNvds for all v ∈ H1
D(Ω).(2.6)

3. Approximation method. Here we use finite element and finite volume el-
ement as approximation methods. Both methods use partition of the domain Ω into
tetrahedra, called finite elements and denoted by T . The partition is denoted by Th.
The space Vh is a finite dimensional subspace of H1

D(Ω) of continuous piece-wise linear
functions over the partition Th. The finite element solution uh is computed by the
Galerkin method. Namely, we introduce an approximation ah(·, ·) of the form a(·, ·)
in Vh and find uh ∈ Vh such that

ah(uh, v) = F (v) ≡ (f, v) −
∫

Γin
N

cN vds for all v ∈ Vh.

In the case when there is no convection or small convection ah(·, ·) is defined as a
straightforward evaluation of a(·, ·) over Vh. For convection-dominated problems this
approximation gives oscillating numerical results which we would like to avoid. For
such problems we are interested in approximation methods that produce solutions
satisfying the maximum principle (for diagonal K) and are locally conservative. Such
schemes are also known as monotone schemes. A well-known sufficient condition for
a scheme to be monotone is that the corresponding stiffness matrix is an M–matrix.
Good choices of monotone schemes are: Tabata’s upwind scheme [15], the stream-line
upwind Galerkin method (SUPG scheme) of Franca, Frey, and Hughes [10] and the
scheme of Xu and Zikatanov [19], which constructs a finite element discretization by
an appropriate averaging of the differential equation coefficients on the element edges.
For construction, analysis, and use of methods for convection-diffusion problems we
refer to the monograph of H.-O. Ross, M. Stynes, and L. Tobiska [13].

For deriving the finite volume approximation we shall need the so-called dual par-
tition of Ω into finite volumes. This partition is described below. First, we introduce
the set Nh = {p : p is a vertex of element T ∈ Th} and the set N0

h ⊂ Nh of the
vertices except those on ΓD. For a given vertex xi we denote by Π(i) the index set of
all neighbors of xi in Nh, i.e. all vertices that are connected to xi by an edge.

For a given finite element partition Th we construct a dual mesh T ∗
h (based upon

Th), whose elements are called control volumes. In the finite volume methods there
are various ways to introduce the control volumes. Almost all approaches can be
described in the following general scheme. In each tetrahedron T ∈ Th a point q is
selected. On each of the four faces xixjxk of T a point xijk is selected and on each of
the six edges xixj a point xij is selected. Then q is connected to the points xijk , and
in the corresponding faces the points xijk are connected to the points xij by straight
lines (see Figure 3.1). Control volumes are associated to each vertex xi ∈ Nh. Control
volume associated with vertex xi is denoted by Vi and defined as the union of the
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“quarter” elements T ∈ Th, which have xi as a vertex (see Figure 3.1). The interface
between two control volumes, Vi and Vj , is denoted by γij .

In our implementation q is the medicenter of the tetrahedron, xijk is the medi-
center of the face defined by the vertices xi, xj , and xk, and xij is the midpoint of
the edge connecting the vertices xi and xj (as on Figure 3.1).
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Fig. 3.1. Left: Finite element and finite volume partitions in 2-D; Right: Contribution from
one element to control volume Vi in 3-D; Point q is the element’s medicenter and internal points
for the faces are the medicenters of the faces.

Now Vh = span{φi(x) : xi ∈ N0
h} is the finite element space and V ∗

h = span{χi(x) :
xi ∈ N0

h} is its dual finite volume space. Here φi is the standard continuous hat func-
tion associated with the node xi and χi is the characteristic function of the volume
Vi.

The discrete finite volume element approximation uh of (2.4) is the solution to
the problem: Find uh ∈ Vh such that

ah(uh, v∗) ≡ A(uh, v∗) + C(uh, v∗) = F (v∗), for all v∗ ∈ V ∗
h .(3.1)

The bilinear form A(uh, v∗) and the linear from F (v∗) are defined by

A(uh, v∗) =
∑

xi∈N0
h

v∗i

⎧⎪⎨
⎪⎩−

∫
∂Vi\(ΓN∪Γw)

K∇uh · nds +
∫
Vi

auhdx +
∫

Γw∩Vi

Q̃uhds

⎫⎪⎬
⎪⎭ ,(3.2)

F (v∗) =
∑

xi∈N0
h

v∗i

⎧⎪⎨
⎪⎩
∫
Vi

fdx −
∫

∂Vi∩Γin
N

cNds

⎫⎪⎬
⎪⎭ ,(3.3)

for uh ∈ Vh and v∗ ∈ V ∗
h . Here and further we use the notation v∗i = v∗(xi).

We use two different approximations for computing C(uh, v∗). The first one is a
straightforward evaluation of C(uh, v∗):

C(uh, v∗) =
∑

xi∈N0
h

v∗i

∫
∂Vi\Γin

N

b · nuhds, uh ∈ Vh, v∗ ∈ V ∗
h .(3.4)

However, this approximation is not monotone for large convection and up-winding
or other stabilization is required. In such cases we define the convection form in a



6 R.D. LAZAROV AND S.Z. TOMOV

different way. We split the integral over ∂Vi on integrals over γij = ∂Vi ∩ ∂Vj , (see
Figure 3.1) and introduce outflow and inflow parts of the boundary of the volume Vi.
This splitting can be characterized by the quantities (b · ni)+ = max(0, b · ni) and
(b · ni)− = min(0, b · ni), where ni is the outer unit vector normal to ∂Vi. Then the
convection form C(uh, v∗) is defined as

C(uh, v∗) =
∑

xi∈N0
h

v∗i
∑

j∈Π(i)

∫
γij

[(b · ni)+uh(xi) + (b · ni)−uh(xj)] ds.(3.5)

This is an upwind approximation of the convection term and is closely related to the
discontinuous Galerkin approximation.

4. Local error estimators. The behavior of the physical process is greatly af-
fected by local smoothness properties of the coefficients, the source term, and the
boundary data as well as the singularities due to corners, boundary layers, wells or
nonlinear behavior. For such cases it is essential that the numerical method has capa-
bilities to resolve the local behavior of the solution. In the context of the finite element
method there are two main techniques for the error reduction. The first approach, the
so called h–refinement, uses polynomials of the same degree, but adaptively refines
the grid by decreasing the mesh size h (see, e.g. [3], [4], [9]). The second approach,
the so called p–refinement, increases the order of the algebraic polynomials used in
the approximation process (see, e.g. [1], [18]).

For the finite element method we have implemented and tested (for both 2-D
and 3-D problems) three error indicators based on the h-version, namely: (1) residual
based refinement (see, e.g. [1], [3], [4], [7], [18]); (2) Zienkiewicz-Zhu technique (see,
e.g. [20]), and (3) hierarchical refinement (see, e.g. [6]).

For the finite volume element method we have developed analogues of the residual
and Zienkiewicz-Zhu techniques. We explain the residual method first in the case of
small convection and then we give the modifications needed for the case of dominant
convection. The method expresses the error in terms of the residual of the approx-
imate solution. This residual is a sum of the residuals of the differential equation
evaluated for the approximate solution over each element and the jumps of the conor-
mal defivative along the element faces. The main idea is illustrated on the model
problem (2.4).

We first demonstrate the method in the case when no upwinding is used for
the approximation of the convection term and on the entire boundary Γ we have
homogeneous Dirichlet boundary conditions, namely we consider the problem: Find
uh ∈ Vh such that

a(uh, v∗) ≡
∑

xi∈N0
h

v∗i

⎧⎨
⎩
∫

∂Vi

(−K∇uh + buh) · nds +
∫
Vi

auhdxdx

⎫⎬
⎭ =

∑
xi∈N0

h

v∗i

∫
Vi

fdx,

for all v∗ ∈ V ∗
h . We give a posteriori estimate for the error e = u − uh, where u

is the solution of the weak problem (2.6). Using the divergence theorem over the
volumes and regrouping the sum over the volumes as sum over the tetrahedra give us
the following:

a(e, v∗) =
∑

xi∈N0
h

v∗i

⎧⎪⎨
⎪⎩
∫
Vi

(f + ∇ · (K∇uh − buh) − auh) dx −
∑

j∈Π(i)

∫
γij

[K∇uh] · nds

⎫⎪⎬
⎪⎭
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=
∑

T∈Th

⎧⎨
⎩
∫
T

(f + ∇ · K∇uh −∇ · (buh) − auh)v∗dx − 1
2

∫
∂T

[K∇uh] · nv∗ds

⎫⎬
⎭

≡
∑

T∈Th

{(RT , v∗)T + (R∂T , v∗)∂T } for all v∗ ∈ V ∗
h .

Here [K∇ch] denotes the jump of K∇ch across the finite element boundary. The last
equality defines RT as the residual over the element T and R∂T is the jump across the
element boundary. Using the weak formulation given by (2.6), integrating by parts,
we get similar expression for e as well:

a(e, v) =
∑

T∈Th

{(RT , v)T + (R∂T , v)∂T } for all v ∈ H1
0 (Ω).

In what follows the second argument of the bilinear form a(·, ·) will determine whether
it is the bilinear form for finite volumes, a(·, v∗), or the bilinear form for finite ele-
ments, a(·, v). Using the Petrov-Galerkin orthogonality for the finite volume method
a(e, v∗) = 0, for all v∗ ∈ V ∗

h , and applying Hölder’s inequality on each element leads
to the following estimate for the error in the energy norm:

c0||e||21 ≤ a(e, e) = a(e, e) − a(e, v∗)

=
∑

T∈Th

{(RT , e − v∗)T + (R∂T , e − v∗)∂T } ≤
∑

T∈Th

ρT ωT
(4.1)

Here the local residuals ρT and the weights ωT are defined by

ρT := hT ||RT ||T + h
1/2
T ||R∂T ||∂T ,

ωT := max
{
h−1

T ||e − v∗||T , h
−1/2
T ||e − v∗||∂T

}
.

The local approximation properties of the finite volume elements ensure that there
is a v∗ ∈ V ∗

h such that ωT ≤ CI,T ||∇e||T , where maxCI,T = CI ≈ 1 is an interpolation
constant (see [8]). Using this fact and Schwartz inequality we finally get

||e||1 < CCI

(∑
T∈Th

ρ2
T

)1/2

,

where C = 1/c0 with c0 being the coercivity constant for the bilinear form a(·, ·). An
estimate for the error in L2-norm can be obtained through duality argument.

The mesh generation aims to equilibrate the local residuals ρK , i.e. for a given tol-
erance δ, the elements T ∈ Th are refined according to the criteria ρT ≈ δ/(CCI

√
N),

where N is the number of tetrahedrons in Th.
For the case of convection dominated problems we use the approximation (3.1),

where ah(·, ·) is defined by (3.1) and the convection part is determined by (3.5). The
up-winding will bring additional error term and we modify the above argument in the
following way. From ah(uh, v∗) = F (v∗) and a(u, v∗) = F (v∗) for v∗ ∈ V ∗

h we get the
orthogonality condition:

a(u, v∗) − ah(uh, v∗) = 0.
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Following (4.1), the estimate for the error in the energy norm now becomes

c0||e||21 ≤ a(e, e) = a(e, e) − a(u, v∗) + ah(uh, v∗)
= {a(e, e) − a(e, v∗)} + {ah(uh, v∗) − a(uh, v∗)} .

For the first term, a(e, e) − a(e, v∗), we use the already derived estimate. For the
second term, ah(uh, v∗) − a(uh, v∗), we get

ah(uh, v∗) − a(uh, v∗) =
∑

xi∈N0
h

v∗i

∫
∂Vi

[(b · ni)+uh(xi) + (b · ni)−uh(xj) − b · niuh] ds

=
∑

T∈Th

∑
γij⊂T

(v∗i − v∗j )
∫

γij

b · n(uh(xi) − uh)ds.

In the last equality n is taken to be the normal to γij such that b · n ≥ 0 and the
indices (ij) are such that (xi − xj) · n ≤ 0. We denote by [v∗] the jump of v∗ across
γij and by Rγij the expression b · n(uh(xi) − uh)|γij . Then, by Schwartz inequality,
we get the bounds

ah(uh, v∗) − a(uh, v∗) ≤
∑

T∈Th

∑
γij⊂T

||[e − v∗]||γij ||Rγij ||γij ≤
∑

T∈Th

wγ
T h

1/2
T ||RγT ||.

In the last inequality we have used the notations

wγ
T = h

−1/2
T

⎛
⎝ ∑

γij⊂T

||[e − v∗]||2γij

⎞
⎠

1/2

, ||RγT || =

⎛
⎝ ∑

γij⊂T

||Rγij ||2γij

⎞
⎠

1/2

,

where ||·||γij denotes the L2-norm on γij . Again, by the local approximation properties
of the finite volume elements we have wγ

T ≤ CI,T ||∇e||T , where CI,T ≈ 1 is an
interpolation constant (see [8]). This means that we have to add to the local residuals
ρT additional term h

1/2
T ||RγT ||, i.e.

ρT := hT ||RT ||T + h
1/2
T ||R∂T ||∂T + h

1/2
T ||RγT ||,

and proceed for the equilibration of the local residuals ρT as in the previous case.

5. Data structure and implementation. Here we describe our computational
strategy and the developed set of object-oriented structures useful in solving the
class of problems given in Section 2. First, in Subsection 5.1 we introduce the mesh
generator NETGEN. The overall code structure is given in Subsection 5.2. Finally, in
Subsection 5.3 we give a short description of the solvers that have been implemented
in the code.

5.1. Adaptive mesh generation. Finding a “good” computational mesh is one
of the key elements in the development of any efficient computational methodology
based on finite element or finite volume method. Both methods require partitioning a
given domain into a set of elements (coarse mesh), which have certain regularity prop-
erties. Additionally, in order to produce an approximation within a given tolerance,
adaptive mesh refinement, based on a posteriori error analysis, has to be used.

We have used NETGEN for generating coarse meshes. This is a 3-D stand-
alone mesh generator based on advancing front method. The input is 3-D domain
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described by boolean operations (or, and, not) on primitives, such as planes, cylinders,
spheres, cones and tubes. The splitting is into tetrahedra. NETGEN is developed
by Joachim Schöberl, Johannes Kepler University, Linz, Austria. More information
about NETGEN can be found on Joachim Schöberl’s homepage 1. The software is
free for non-commercial applications and is available for Unix/Linux and Windows
98/NT platforms.

Our adaptive mesh generation is based on the bisection algorithm (see, e.g. Arnold
et al. [2]). The algorithm features data structure that simplifies both the selection
of refinement edge and the recursive refinement to conformity once some tetrahedra
have been refined. Repeated application of the algorithm leads to only finitely many
tetrahedral shapes, i.e. tetrahedra shape cannot degenerate as the mesh is refined.

5.2. Code structure. The code is written in C++ and has object-oriented
structure. The implementation is done in the framework of multilevel refinement
and the corresponding problems on the composite grid can be solved in a multilevel
fashion. There are three main classes and their dependencies. These are classes Mesh,
Method and Matrix.

Class Mesh keeps the data for the mesh. Our mesh is composed of tetrahedra,
faces, vertices and edges (if needed). All these are objects of the corresponding classes
given below. In Mesh they are given as vectors. The simplest and in many cases the
most efficient STL container class is vector. It supports random access to elements
(fast as array), constant time insertion and removal of elements at the end. The num-
ber of elements in a vector may vary dynamically, memory management is automatic.
We have also the following classes

• tetrahedron – four node and face indices and attribute;
• face – three node indices and two pointers to the neighboring tetrahedra; if

the face is on the boundary the second pointer gives the type of the boundary;
• edge – if the edges are generated they are composed of two node indices;
• vertex – three coordinates and attribute.

The Mesh also maintains information on how the nodes are connected, which is used
in storing the stiffness matrix. Similar information, giving the connectivity between
new nodes, is generated (if needed) for hierarchical bases. Interpolation information,
for example, giving that node k is between i and j, may also be generated. The
latter may be used in multi-grid preconditioner and for derefinement, when nodes are
deleted in order to coarsen the mesh. Using the interpolation information one can
restore the previous mesh and from there to start some other refinement procedure.

The most important Mesh routine is the one for local refinement. Its input is an
array of indices of the elements that have to be refined. The result is a new level of
the mesh, refined to conformity, after the given elements were bisected.

Class Method is used to encapsulate and prepare the data necessary for a finite
element (or finite volume) method solve. The class inherits Mesh and according to its
construction input arguments creates on each level the necessary matrices (stiffness,
interpolation and so on). The created stiffness matrix is an object of class matrix,
described below. It is passed to PCG or GMRES routine, described in Section 5.3.
If the exact solution is available other useful routines are the ones for computing the
approximation error in discrete energy-norm, L2-norm and maximum-norm.

To refine the mesh, class Method has methods for computing Zienkiewicz-Zhu,
Residual based and Hierarchical error estimates. Also, there is option were the local

1http://www.sfb013.uni-linz.ac.at/∼ joachim/
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refinement is governed by user defined function. All implemented error indicators
take as argument some error tolerance and the approximate solution. The output is
a list of tetrahedra, which based on the error estimate and the tolerance, have to be
refined. This list is the input for the local refinement routine.

Class Matrix encapsulates the information about the matrix. We have a sparse
storage format. The vertex connectivity information is generated and stored in Mesh.
Matrix has only pointers to that information. The implemented routines are Matrix-
Vector product, Matrix Transpose-vector product, Matrix-Matrix product, Gauss-
Seidel forward and Gauss-Seidel backward iteration (used as smoother in multi-grid
preconditioner).

5.3. Solvers. To solve the symmetric positive definite system arising in approx-
iamtion of the pressure equation and the non-singular non-symmetric system (arising
from the concentration euquation) we have implemented and used Preconditioned
Conjugate Gradient (PCG) and Generalized Minimum Residual (GMRES) methods,
correspondingly. Both methods are implemented as C++ templates. There is a provi-
sion for using a preconditioner if one is available. The templates rely on matrix, which
provides matrix-vector product, routines for computing Bx, (x, y) and ax+ by, where
x and y are vectors, a and b scalars, B is a preconditioner to the stiffness matrix. The
solvers can estimate the conditioner number using LAPACK library.

For symmetric and positive definite problems we have implemented multi-grid pre-
conditioner with Gauss-Seidel smoother. We have also hierarchical smoother, where
the smoothing is performed only over the new nodes. Regarding the preconditioners
for both symmetric and non-symmetric problems we have developed Domain Decom-
position structure [16] for parallel computations.

6. Computational results. Our computational results demonstrate the perfor-
mance of the adaptive grid refinement strategy on verious problems with singularities
due to discontinuity of the boundary data and also due to corners, edges, and wells.

6.1. Problems with corner and edge singularities. Here we consider the
cases of corner and edge singularities.

Edge singularity. We solve the problem (2.1) with f = 0 and Dirichlet boundary
ΓD = ∂Ω such that the solution is a harmonic function given in cylindrical coordinates
by u(r, θ, z) = r2/3sin 2θ

3 (note that u is not in H5/3(Ω)). Here Ω is the L shaped
domain given on Figure 6.1 (left).

Fig. 6.1. L-shaped domain in 3-D with solution given in cylindrical coordinates by u(r, θ, z) =
r2/3sin 2θ

3
; the 3-D Mesh on level 6 (left) with 28,768 nodes, the mesh (middle) and the error (right)

for z = 0.

We have singularity along the edge determined by the points (0, 0,−1) and (0, 0, 1).
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As expected, the mesh shown on Figure 6.1 is repeatedly refined near this edge. On
Figure 6.1 we show the 3-D mesh (left) on the sixth refinement level (see also Table
6.1), the mesh for z = 1 (middle) and the error (right) at z = 0 (again on level
six). Table 6.1 gives the results for the mesh and the error for the different levels of

Table 6.1

Local Refinement

level # nodes ||e||max ||e||L2 ||e||1
1 509 0.050494 0.028660 0.123884
2 2,420 0.034936 0.010644 0.078138
3 8,813 0.022735 0.004112 0.049559
4 17,312 0.014491 0.001757 0.033087
5 22,448 0.009164 0.001048 0.024555
6 28,768 0.005807 0.000850 0.020348

Table 6.2

Uniform Refinement

level # nodes ||e||max ||e||L2 ||e||1
1 509 0.050494 0.028660 0.123884
2 3,333 0.034952 0.010643 0.077947
3 23,817 0.022750 0.004073 0.048743
4 179,729 0.014511 0.001586 0.030489
5 1,395,745 0.009186 0.000625 0.019107

refinement obtained using Zienkiewicz-Zhu error estimator. Error tolerance of 2% in
the energy norm was imposed and obtained on level 6. Indeed, the energy norm of
the exact solution is approximately

√
π/8 ≈ 0.627, i.e. on the last level we have ap-

proximately 3% error in the energy norm. The errors on the last level in the discrete
L2 and maximum norms are correspondingly 0.06% and 0.46%.

In order to compare these results with the results when no local refinement is
applied in Table 6.2 we have included computations with uniform refinement. Here
by uniform we mean that every tetrahedron has been split into 8 tetrahedra. The
accuracy of the solution obtained on a mesh with 1, 395, 745 nodes (after 5 levels of
refinement) is comparable to the accuracy of the locally refined grid with 28, 768 nodes
on level 6. Note, that the locally refined grid has about 40 times less grid points than
the uniform grid.

The other error indicators give similar results with small differences in the ob-
tained meshes. In all cases, the meshes are refined in the area where the solution has
some type of singularity or very steep gradient and quantitatively they have almost
the same number of nodes.

Corner singularity in 3-D. Now we shall demonstrate the local refinement
performance for problems where the singularity is located at a corner. We consider
two problems and show on Figure 6.2 the obtained computational meshes after few
levels of refinement.

The first test is again for the homogeneous Poisson equation with f = 1. We
consider an L-shaped domain Ω shown on Figure 6.2 (left). Here the singularity is
due to the non-convex corner at the origin. The second test is for the Poisson in the
unit cube shown on Figure 6.2 (right) with Dirichlet boundary condition on x = 0,
y = 0, z = 0 and Neumann boundary conditions on the rest of the boundary. The
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Fig. 6.2. Computational meshes obtained by local refinement due to L-shaped corner singularity
(left) and delta function source term (right). Both meshes are for level six with correspondingly
12, 350 and 11, 770 nodes.

singularity is due to the source term, which is taken to be δ-function concentrated
at the corner (1, 1, 1). In both cases, as expected, the meshes are refined around the
corners where the singularities are located.

6.2. Simulation results for fluid flow in porous media. In this section we
show the results from applying the developed computational technology to fluid flow
problems in porous media. The problems that we consider are based on real data
and the setting is described in below. The mathematical model is based on problems
(2.1) and (2.4) and includes the well model described in Section 2. The singularities,
coming from jumps in the input data, the wells, domain non-homogeneity and so on,
make the application of local grid refinement essential.

A steady state flow, with Darcy velocity v (measured in ft/yr), has been estab-
lished in a parallelepiped shaped reservoir of size 1000×1000×500. The problem set-
ting (see below) gives us symmetry with respect to the plane x2 = 0, so the equations
are solved only in half of the domain, the parallelepiped (0, 1000)× (0, 500)× (0, 500).
The transport of a contaminant, in our case benzene, dissolved in the water is de-
scribed by the convection-diffusion-reaction equation (2.4), where c is the benzene
concentration, b is the Darcy velocity v, K is the dispersion-diffusion tensor, and a
is the biodegradation rate. We assume that the Darcy velocity v is obtained by solv-
ing the pressure equation (2.1) for fully saturated porous media under appropriate
boundary conditions. We consider two cases: (1) homogeneous reservoir; and (2)
non-homogeneous reservoir.

Homogeneous reservoir. The pressures at the the faces x1 = 0 and x1 = 1000
are constants, correspondingly 1000 and 0 and the permeability tensor is D = 32I,
I is the identity matrix. On the rest of the boundary a homogeneous Neumann
condition is specified. This setting creates a uniform Darcy velocity v = (32, 0, 0)
ft/yr. A steady state leakage on boundary strip x1 = 0, x3 = 50..350 of 30 mg/l has
been established. The dispersion/convection process causes the dissolved benzene to
disperse in the reservoir. The dispersion tensor has the form K = kdiffI+ktv

T v/|v|+
kl(|v|2I − vT v)/|v|, where kdiff = 0.0001, kt = 21 and kl = 2.1. The biodegradation
is transforming the pollutant into a solid substance which is absorbed by the soil.
This leads to a decrease in the benzene. Its concentration level curves are shown on
Figure 6.3 for the case of low biodegradation rate a = 0.1 mg/yr and on Figure 6.4 for
medium biodegradation rate a = 0.2 mg/yr. We have started with an initial coarse
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Fig. 6.3. Homogeneous reservoir; the 3-D mesh on refinement level 6 (left) with 54,129 nodes;
the concentration level curves (right) in the plane x2 = 0 for the case of low biodegradation rate

Fig. 6.4. Homogeneous reservoir; the mesh in plane x2 = 0 on refinement level 5 (globally with
36,427 nodes); the concentration level curves in plane x2 = 0 for the case of medium biodegradation
rate

mesh with 52 nodes.

Fig. 6.5. Pressure computations for a non-homogeneous reservoir; (left) the locally refined 3-D
Mesh on level 2 with 4,053 nodes; (right) Contour curves of the pressure for level 2

Non-homogeneous reservoir. Here the problem setting is as above but a layer
is added (see Figures 6.5, 6.6, and 6.7). In the layer strip we take the permeability
Dlayer to be twice smaller than in the rest of the domain, i.e. Dlayer = 16I. Now the
Darcy velocity is not constant and the error estimators force the grid to be refined
around the layer. The obtained grid is shown on Figure 6.5. After the pressure is
found with prescribed accuracy we solve the corresponding problem for the concen-
tration. Figure 6.6 shows the obtained mesh and the isolines for the concentration
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Fig. 6.6. Concentration computations for a non-homogeneous reservoir; (left) the 3-D mesh on
refinement level 4 with 39,445 nodes; (right) contour curves of the concentration for the cross-section
x2 = 0; the permeability in the layer is two time smaller than the rest of the domain

Fig. 6.7. Concentration computations for a non-homogeneous reservoir; contour curves of the
concentration for permeabilities in the layer 5 times (left) and 10 times (right) smaller than the
permeability in the rest of the domain

in the reservior cross-section x2 = 0 on grid refinement level 4. Two more experi-
ments varying the permeability tensor are shown on Figure 6.7. The first one shows
the concentration isoline in the reservior cross-section x2 = 0 when the permeability
in the layer is 5-times and 10-times smaller than the permeability in the rest of the
reservior. The initial coarse mesh in both cases has 235 nodes.

Non-homogeneous reservoir with a well. Finally, we consider a problem with
one well using the well model described in Section 2 and the approximation given in
Section 3. The well has an axis along the segment x1 = 250, x2 = 0, x3 = 0..400
and its production rate is Q = 200, 000 l/yr. On Figure 6.8 we show the adapted
mesh and the level curves for the pressure in the reservior cross-section x2 = 0. On
Figure 6.9 we show the obtained computational mesh and the level curves for the
concentration in the reservior cross-section x2 = 0 on grid refinement level 5.

7. Conclusions. We have presented a computational methodology for adap-
tively solving second order elliptic problems (diffision and convection-diffusion). We
begin the solution process with an initial coarse mesh which describes adequately the
given problem (domain, coefficients, boundary conditions, and right hand side). Dur-
ing the solution process the grid is refined (based on a criteria formulated from one
of the three error estimators) until maximum refinement level is reached or the local
error is found below a given threshold δ. The grids obtained from all error estimators
differ slightly, but in all cases they are refined in the same areas and produce compa-
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Fig. 6.8. Pressure computations for a non-homogeneous reservoir with a well; (left) the 3-D
Mesh on level 3 with 34,236 nodes; (right) contour curves of the pressure on level 3

Fig. 6.9. Concentration computations for a non-homogeneous reservoir with a well; (left) the
3-D mesh with 67,509 nodes in half of the domain obtained after 5 levels of refinement; (right)
contour curves of the concentration in the plane x2 = 0

rable results. The proposed methodology is part of our tool-box for adaptive parallel
simulation of flow and transport in porous media (see for details [12]).
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