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Abstract

Let X7, Xo,... be independent identically distributed s-dimensional random vec-
tors, whose distribution belongs to the domain of attraction of a stable law. Let’s
Xjn,J = 1,2,--- ,n denote the order statistics built by increase of norms of random
vectors X1, Xo, -, Xp, ie. | X1, < |Xop| <+ <|Xy |- We investigate the asymp-
totic properties of random vectors Ty = (X1p + - + Xp—pn) /| Xn—k+1,0l-

1 Introduction

Let X, Xo, ..., Xy, ... be independent identically distributed (i.i.d.) s-dimensional random
vectors having common absolute continuous distribution function. Let

Sn) = Xy + Xo+ ... + X, F(z) = P(|X1| > 1),

and p(z) be density of distribution of vector X;.

s-dimensional distribution is called to be stable if to every pair of vectors A; and A; and
positive numbers B; and By there always correspond a vector A and a positive number B such
that for the three independent random vectors X, X; and Xy possessing this distribution,
the random vector B~!(X — A) is the sum of vectors B; '(X; — A;) and B, '(X, — Ay).

E. Feldheim and P. Levi [1] have presented that s-dimensional distribution G, is stable
in the above - maintained sense if and only if the logarithm of the characteristic function
can be expressed in the form

—p%(c1(P) + ica(P)) +i(t,y), a#1l, 0<a<2

fa,u(t) = . .
—p(e1(9) +ich(¢, p)) +i(t,7), a=1



where p = |t|, ¢ is a unit vector of direction in the space R*, v = (71,72, ..., 7s) is a constant

vector,

ci(o) =c cu) | p(du),
@ =c [ Nl uia)
e (@) = —c/| . sgn(tu) [(t/p,u)|” tglar/2) p(du), a#1, 0 <a <2,
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Here ¢ >0 is a constant, and pu(-) is a fixed measure on the unit sphere.
If for suitable chosen constants numbers B,, and real vectors A,, the distribution functions

of the normalized sums

==,
B,
converge to G(x), we say that the distribution of vector X; belongs to the domain of
attraction of G(z) . It should be noted that only stable laws possess domain of attraction
and that the domain of attraction of every stable law is nonempty, since it contains at least
the given law.
It is known ([2]) that the distribution of vector X belongs to the domain of attraction

of a nondegenerate s-dimensional stable law G, , if and only if

_ P(X|>kp)
| — L=k 1.1
2PN > p) (-

for arbitrary £ > 0, 0 < a <2, and

CP(X|> pde M) u(h)
M (X p.oe M) () (12

for arbitrary Borel sets M7, M, on the unit sphere, for which pu(M3) # 0.
Many authors have considered the relationship between S,, and the extreme order
statistics. We refer to LePage, Woodroofe and Zinn [5], Kesten and Maller [6], Pruitt [7]

and Hahn, Mason and Weiner [8] for more discussions and references to relevant literature.

It is well known that if distribution of random vector X belongs to the domain of attraction
of stable unnormal law, then the maximum term has a non-negligible contribution to the
sum S,. Here we will analyze the total contribution of the first £ maximal modulus of
summands to S,,. Theorems of the given paper, generalize some results of Darling [3], Arov
and Bobrov [4] and Kalinauskaite [9]. We will also find the limit characteristic function of
Tk Obtained results generalize to multivariate case a main result of Teugels [10] and some
results of Darling [3].



2 Results

In the multidimensional case it is reasonable to order vectors by increase of norms. Let’s
Xjn,j = 1,2,---,n denote the members of variation series built by increase of norms of
random vectors Xy, Xo, -+, X, le. | Xy <[ Xopn <o <|Xpnl

Here the main object under consideration is the following random vector

Xin+Xon+ ..+ Xppp—aln—k)
Tnk -

)

(2.1)

|Xn—k+1,n

where
EFX, for 1<a<?2

0 for 0<a<l1

=]
Il

It is established by classic theory that with a definite character of behaviour of ”tails”,
the maximum distributions of S,, exist and form a class of stable laws. The limitations
on the behaviour of ”tails” of distributions, roughly speaking, are equivalent to the fact
that no ’tail’ should diminish at infinity more slowly than a power function. The case when
"tails” of a distribution diminish more slowly than any power function is different in the
peculiarity that for it any linear normalization by constants of sequence of sums S, leads
to a degenerate limiting laws or their absences. This fact was pointed out by Levy. It turns
out ([3], [9]) that the limiting approximations of distribution of sums can be found inthis
case by using a non-linear setting. The following theorem shows that the same situation for
the sequence of sums of the members of our variation series holds.

Theorem 1. If random vectors Xy, Xs, ..., X,, have non-negative components and for all

¢ > 0 satisfy the condition

. F(ct)
M T 22
then for y >0
k—1 y]
lim P(nF(|Xin+ Xop 4 . + Xpoprin|) <y) =1—€7 Z il (2.3)

Corollary 1. Under the condition of Theorem 1 we have

lim P(nF(|Sy]) <y) = 1—e?
n—o0

To prove Theorem 1 we will need the following fact which has also an independent interest.
Theorem 2. If random vectors X1, X5, ... X, satisfy the condition (2.2) then for any fixed k

lim E|T*> = 0
n—0o0
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Corollary 2. Under the conditions of Theorem 2 for any fixed &

Sn — ankJrl,n + ...+ Xn,n + Op(l)Xn7k+1,n

where 0,(1) =p 0, as n — oo.
Corollary 3. If random vectors satisfy the conditions of Theorem 2 then limiting distribu-
tion of random vector T, as n — 0o is concentrated in zero.

Until now, recall that we only dealt with fixed k. Let’s now consider a sequence k, such
that k, — oo as n — oo and k, = o(n/Inn) as n — co. For such sequences k,, the following
two theorems hold.

Theorem 3. Assume lim; . % = ¢ ®forc>0, 0<a<1and X; has non-negative

components. Then

2
limE<|Tnk"| _ O‘\/§> — 0

n—00 kn 11—«
Theorem 4. Assume lim;_, % = ¢ %forc>0, 1< a<?2and X; has non-negative

components. Then

2
limE<|M”k"| _ O‘\/§> — 0

n—00 kn a—1

where
Sn - Xl,n - X2,n T e T An—kn T kEXl

|Xn—lc+1,n|

Mnk =

Next two theorems concern the limit distribution (characteristic function) of T.
Theorem 5. Assume (1) and (2) hold where o € (0,1) U (1,2). Then

lim P(Thr < y) = Gi(y), y € R’

n— 00

where

/ 6i(t,y)de(y) - <1 a / (ei(t,u) 1 Gi(t,u))du(w)
ke Jul<1 |ul®

+9aﬁ : /u|:1i(t, u)u(du))_k

and 6 = min(1, [o]).
Remark. As it follows from Theorem 5 that 7, converges in distribution to a random

vector which is a sum of £ i.i.d. random vectors with characteristic function

(1 — /U|§1 (e — 1 — it u))dﬁ(ﬁ) + eaf - /u|:1 it, u)u(du)>_1
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An intermediate case corresponding to o = 1 can also be studied by these methods:
Theorem 6. Assume (1) and (2) hold where @ = 1 and f\u|:1(t’ u)p(du) = 0 for all t. Then

as n — oo

E(exp i(t, Toy)) — (1_/u|<1 (el — )dﬂ(U/WI))

|ul

3 Proofs

Lemma. We have

E exp (i(t. To)) = n(Z:D /R | < /| |S26i(t:|g§)p(x)dx>n_k( /| N p(x)dx>k_1p(z)dz

Proof. Let’s consider the set A, ;1 of points z = (z1, 23, ..., 2,) such that
12i| < |zp—gs1] for 1<j<n—k+1

and
|ZJ|Z|Zn7k+1| for n—k+2<j5<n.

Then the joint density g(z1,...,2,), z; € R® of the random vectors X, X, ..., X,, under

the condition of the realization of the event A, ;. is

n (;_;) p(z1) -+ p(z,), in the domain A, i

(21, ey 2n) = _ o
0, in the remaining cases
Thus
Ben(i(t ) = [ . [ xp((T oty )g Nderde
s s n—k+1

n

n—1 / ( b R R oA k >
=n exp|i(t, ———— p(z)dz...dz,
(k B 1> Ap— k41 ( |Zn k+1| g ! -
1 n—k
n— . <1
=n expl| i(t, ——— >p(zl)dzl
<k - 1> /s </|;1<|Zn_k+1 < ( |ZTL*]C+1|)

k—1
X </ p(21)d21> P(Zn—k41)d%n k41
|21]>]2n— k41l

which yields lemma.



Proof of Theorem 2.
Let’s denote |z| = 3. We differentiate the characteristic function of random vector T

from Lemma 1 with respect to ¢; two times:

0?FEexp(i(t, Tnr))

oo () [ (o)

><< / _elite x/ﬁ))p(x)dx)nk2< /| ~ ea:p(i(t,x/ﬁ))ixjﬁ_lp(x)dx)2p(z)dz

+n(n— k) <Z:1> /R S ( /| |Zﬁp(x)dx>k_l< / » exp(i(t,x/ﬁ))p(x)dx)n_k_l

><< / el x/ﬁ))i%?ﬁZp(x)dx) p(2)dz

Summing the last equations for 1 < j < s and then substituting ¢ = 0 we obtain

n—1

E|Twl? = n(n — k)(n—k — 1) (k ) 1) /R FF1(B)(1L - F(8))*

x Z < » B_Ixjp(x)dx> 2p(z)dz (3.1)

J=1

+ / R F(B))”’”( /M e ix?m)dﬂf)p(z)dz

i=1

Using the elementary inequality 3%, z; < /||, from (3.1) we have

n—1

0 < Bitul <ntn =k~ k=07 1) [P0 - Fer

« ( » 3_1|x|p(x)dx> (o) 4 n(n— B (Z B i) ; (3.2)

« [ ra - rer(

Let’s consider

5—2|x|2p<x>da:)p<z>dz

lz|<B

p1(B) = B Hzlp(z)dz  and  @y(B) = B *|x*p(x)dz

lz| <8 lz|<B



By the substitution x = p;u we have

B
o1(8) = / R
0 ul=1

Substituting here p; = p we obtain

1
w1(P) :/0 " B~ pBp(pBu)p* B° Bdpdu

1 1
:/ / pp(pBu)p® ' Bidpdu = / pdP(|X:1] < pB)
0 Jju=1 0

Here integration is taken on unit sphere, and the last equality follows from the relation

_ d
/ P 'p(pu)du = —=P(|X1| < p)
lu]=1 P

Farther, the integration by parts gives

P1(8) = —F(6)+/01F(p5)dp — F(B) /01 <F(P5) _1>dp _

o [ ()

In the same way we have

B 1
_ —21 1 12 / /\s—1 / _ 2 s—1 s
p2(B) —/0 leﬁ |p'ul*p(p'u)(p)* "dp'du = /0 /|u:1p p(pBu)p™ " B*dpdu

=—F()+2 [ pF(o8)dp = 2P(0) [ (];((pf)) —1)dp — 2F(B)A(B)

We first show that limg_,., A(3) = 0. Note that function Q(p) = mazo<.<, ¢(2) where

q(z) = 2°F(z), is a function of regular growth since owing to the condition of Theorem 2

the function ¢ is regularly varying. Now from a Theorem of Karamata (c...) it follows that

limwzl

p=o0 q(p)

This implies that
MaTo<p<i P F(pB)

F(p)

—1 B — o0



Since the expression on the left is bounded for S < oo we obtain

mazo<,<1 P F(pB) F(pB) e
B S Fp 7

for all 3, and the constant ¢ depending only on ¢ .

0<p<1,

Taking into account the fact that

ggélcng—omazo §>0

we conclude that A(S) — 0, 8 — o
Now we get from (3.2) that

n—1

BTl <aln =0 —k-1)(} 7))o [ PRE0- PG

n—1

raun =0 (171 )s [ PO PO AGG: 33)

By Lemma 2 we choose ¢ > 0 arbitrary, and choose [y such that A(fy) < ¢ for 8 < f.

Father choose ngy such that

n—1

sy {ntn = 00— 6= 1) ()7 1) PO - FO)2a0)

n—1

a0} 7 )sP 00— A | <

From this and from (3.3) we obtain

E|Tnk* < 26/ F(B)p(2)dz

|z|<Bo

et == k=0 T} )set [P0 Pl

r2aln =1 (17 )se [T PO - PO pe

0

-1 1
<2 +nn—-k)n—-k—1)s (Z 1)52/ (1 — w) oy 2dy
- 0

n—1 !
+2n(n — k) < )ss/ (1 — w)fu"*tdu
k - ]_ 0



= 2 + k(k + 1)se® + 2kse

Since ¢ was arbitrary this concludes the proof of Theorem 2.
Proof of Theorem 3. Similar to the proof of Theorem 2 it can be obtained that

n—1

BlTak| > 0ot -k () [P - ey

X B! Z wp(z)dr p(z)dz

From ( 3.1 ) and (3.4) we conclude that

E(SIJ 1 fa>2 - E(%U = a)E(|TZ:"|> 0 i)?
M= k) S_,;n - 1(p) / Pht (81— P82

n

x 2 < » lejp(x)dx> 2p(z)d,z

j=

n(n

J=1

2am(n — k) ([

J=1

—— kk) ) / SF'“"I(B)(l—F(B))”’““( / Sﬂﬂ?ixgp(@dx)p(z)dz

(3.4)

(3.5)

e a)sk]:_l) / FEL(8)(1 — F(B))"he! ( /|$|<ﬁ 5! i:$jp(x)dl‘>p(2)dz

062

(0%
——=Ji.t+ o+ S35+ ——
+(1_a)2 n T Jon + J3 +(1_a)2

It can be easily seen that under the condition of Theorem 3

A(ﬁ):/[]l(%— )dt:lf‘a+o(1) 8= oo

Let’s estimate Jy,,. We have

n(n —kp)(n —k, — 1)(n —1)! P
Jin < (kn — (0 — k) k2 /F (8)

n

(1 F(B))”’“”( 51|x|p(x>dx) p(2)dz

|z|<p

9



+(

n!

= o~ Dl — by 22 /R FRR B = FR)™ AN (O)p(e)d

(ko - 1)!(nri kn = 2)!k3 </|z|<60 ! /zzm))

For arbitrarily small € > 0 and a sufficiently large 3, we obtain

nl(1 — F(Bo))" "2

<
T S G n = by — )R

N a? e n! /1 uRn =2 (1 )kt gy
(1— a)? (kn — D0 — ky — 2)'K2 J,

L nl(1 = F(By))rhe % oy + 1
= o — D)1 — ky — 1)1R2 ((1 et 6) ko

For estimation .J,, we use the inequalities

o < G gt [, P 0 O et
=T 1)!(n27i! b — DIKZ /R F&(B)(1 = F(8))" ™~ A(B)p(2)d2

g e VIR

2n!(1 — F(By))™ *n 2nl(a/(1 —a) +¢)

(k= Dl = k)T (R = Dl — Ky — DI /0 (1= w)fru™ " du

2nl(1 = F(Bo)" * +2<

« 1
= o — Dl — k)2 1—a+6>k_n

Similarly

2am!

JSn S

(07

11—«

10

=)o) (n— oy = 1)1 [ /| R P )

(3.7)

- ) ( / TP (B)(1— F(8) Rl dF(5) - / " F @) - F(ﬁ))”-kn-ldmm)]



- e <1 o 6) ( - / w1 - “)n_kn_ld“> o

where

2amn!

_ kn— 1 o n—kn—1
|A”‘(1—axk)n—k-—1‘[K%F J(1=F(B))

<laore - (12 -2 ) r]are (33)

l—«

< 2an!(1 — F(By))" ke
(1= a)(n—ky) (ko) (n — ky — 1)!

By the conditions of Theorem 3 it can easily be shown that

n!
(n—k, — 1)!(
and from (3.6)-(3.8), consequently,

a? k, +1
< -
Jin = <<1—a>2“> .

k

« 1

< _
J2n_2<1—a+6>k‘n

2x o
Sy < — —
"= 1—a<1—a 6)

From this and from (3.5) we finally obtain that

1 —F(B))" " =0 n — 00

and

7 L B R I o (P (R
=\ sk, 1-a) S0-a2  TThR\0-a2 T 1-a"°

20/ N 20 N o - 200 - 1 a? N 200 3
(1-a)? 1l-a (1-a)? -« ko \(1—a)? 1—«

But since k, — oo as n — oo and € > 0 was arbitrary we get from this the proof of
Theorem 3.
Here we omit proof of Theorem 4 as it is quite analogous to the proof of Theorem 3.

The proofs of corollaries 1-3 are evident.
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Proof of Theorem 1. Choose ¢ > 0 and § > 0 arbitrary and then ng such that n > ny
implies P(|Tyx| > €) < 0. This is possible owing to the Chebyshev’s inequality and Theorem
3. We have

PF ([ Xn-ki1nl) <y) < PF(]S, 411l) <)

= P(F(|Sh_11l) <y, [Tak| > €) + P(F (15, 1)) <y, [Tur| <€) (3.9)

<0+ P(F([S g ]) <y [Tur| < )

where

|S:Lfk+1| - |X1n +-- +Xn—k+1,n| S |X1n +--- +Xn—k,n| + |Xn—k+1,n| — |Xn—k+1,n| (|Tnk| + 1)

Now we can write

PF(S,—pnl) <y, [Tur] <€) S PF(|X0 k110l(e+1)) <)

Consider the difference

P(nF (| Xn-ki1,0|(1+)) <y) = P(nF (| Xnrs1,0]) <)

= P(F (| X kr10|(1 +2)) <y < nF(|Xn p410])

< P(nF ([ Xn—kr1nl(1 +2)) < nF([Xnps10]))

(Pl o) )
F(|ank+1,n|)
Under the condition of Theorem 1 the last probability tends to zero as n — oo and ¢ in

(3.9) can be chosen as a arbitrary small. That’s why we can write

lim P(nF(|S;_j1]) <) = lim P(nF (| Xn—kt1,n]) <)
n—0o0

n—0o00
provided the second limit exists.
Now from the well-known formula for P(|X,,_x+1,| < y) passing to the limit for n — oo

we have the required fact.

12



Proof of Theorem 5. In view of Lemma 2.1 proved for the case 0 < o < 1 one can show
that for 1 < a < 2

Eleap i(t, Tus)) :n<Z:i> /R S ( / y ei(t’wﬁa)p(x)dx)n_ka1(6)p(z)dz (3.10)

(i) 0 < a < 1. Let ¢(8) = f\w\<ﬂ "8 p(z)dz. Then

$(8) = /| (e i) = Dp(up)aus) +1 - F(9) (3.11)

However using (1) and (2) for large 5 we can write

p(up)d(uf) = (1 + o(1)) F(B)d

where o(1) depends on 3. Let

. p(nn
O =d(t) = / <€Z(t’“) — 1) d—(| a)
lul<1 |ul

Apply the Lemma we formally have

n—o0

" nF(8)
i £ 7)) = i a7 1) [T -0 @0 F@) PO G Dt

By the substitution nF(f) =v we obtain

lim E(i(t, Tpy)) =

n—0o0

lim n(Z: 1) /0 o 21— @) v o1 )" ot (/) / )

= (Ecn—_l;!)(!;l—_kq))!lr)t;l /” e =" (u(1 = @y))" d(v(1 - @) (3.12)

0

Since EZ:;;: "' as n— oo and [[Te 't*7'dt = (k — 1)! from (3.12) we obtain the

result. To justify the passage to the limit it is sufficient to note that | ()| < 1 for any

B <oo and [, , " *(B)F" 1 (B)p(2)dz is negligible for any bounded A . Integral on
the set |z| > nF () tends also to zero.

(ii) 1 < a < 2. In this case we use the Lemma in form (3.10). Let

13



n() = /| il S pla)de = eap i(t,~5)b(5)

Now we use the estimation for (/5) from [9] :

i(t,a) «

P(B) =1+ 5 F(B)(1 = (1)) —

F(p) i(t, u)p(du) + o(F(5))

a—1 ul<1

where

o= (69 = 1t )aul ()

From this and since 372 = o(F(3)) we find

1= P (1- 0%+ 2 [ Wn(dn)) + o(F )

Now, in the same way as (i) we can write

-1
lim E(expi(t, Tnr) = Tim n " / / (1-— 1 — ®y(t)+

«

</|( Hdu)) <F<ﬁ>>) F*Y(B)dF (8) ()

a—1

- Jg{’l‘jn@:i) /0" (1 . %(1 — Dy(t) + Oﬁ : /u|:1i(t, w)p(du))

tvo(l /n))nkvk_ln_kdv /|u1 ()

i n(z ) /0" exp< —v(1— ®s(t) + af - /u|1 i(t, u),u(du)))vkldv

n—oo nk

Finally, we have

—k
lim E(exp i(t,Tpr)) = (1 — Dy(t) + = a / i(t,u)u(du)) , l<a<?2
n—00 — Ju|=1

Theorem 5 is proved.

14



The proof of Theorem 6 is similar and is omitted.
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