MORTAR FINITE VOLUME ELEMENT APPROXIMATIONS OF SECOND
ORDER ELLIPTIC PROBLEMS

RICHARD EWING, RAYTCHO LAZAROV, TAO LIN, AND YANPING LIN

ABSTRACT. Application of domain decomposition methods for solvingcomplex problems on par-
allel computers may lead to a situation when the subdomains are meshed independently and the
obtained grids do not match at the subdomain interfaces. In this article we consider mortar finite
volume element approximations of second order elliptic equations on nonmatching grids. This
means that the discretization of the problem is based on Petrov-Galerkin method with a solution
space of continuous over each subdomain piece-wise linear functions and a test space of piece-
wise constant functions. We construct and study several mortar spaces that are used in imposing
the weak continuity of the discrete solution along the grid interfaces and prove an optimal order
convegence in energy norm.

1. INTRODUCTION

With rapidly growing computational capabilities, the finite element analysis has been
used in increasingly complicated domains and for solving interacting processes. Often such
analysis is accomplished by interaction of several research teams, each coming with its own
computer environment and numerical technology. Thus, several aspects of such interaction
become crucial for the success of the computations: (1) different processes described by
different mathematical problems are interact through the interface coupling conditions;
(2) different discretization methods are used in different parts of the domain; (3) each
subdomain is gridded independedently of the rest of the domain. For example, one may
study fluid/solid stucture interaction or may want to combine finite elements and spectral
methods, finite elements and boundary elements, or finite collocation methods with finite
differences.

This paper discusses numerical technique which can fall into the third category. Namely,
we discuss a numerical method when the domain is split initially into subdomains and
then each domain is meshed independently of the others. In general, the meshes do not
match at the interfaces and the finite volume element method will lead to nonconforming
approximations. The interdomain continuity is enforced only in a weak sense, namely with
the help of auxiliary spaces existing at the interfaces. There is a large variety of approaches
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of how to impose this weak continuity. In the mortar finite element method, the jumps
between the solutions u; and u; defined in the subdomains €2; and €2;, respectively, at the
interface I';; = €; N €); is made orthogonal to the mortar space of piecewise polynomials.
This so-called two-field method (the field of the solution and the field of the mortars) has a
variety of settings and can be found in [6, 8, 10, 17, 27] and the references therein. Another
formulation, the so-called three-field method, is based on the attempt to make the jumps
u;j —u and u; — u orthogonal to two separate Lagrange multiplier spaces, with the trace
of u introduced as a separate field. This method has even greater flexibility and has been
proposed in [2, 12].

Since the introduction of the mortar method as a coupling technique between the spectral
and finite element methods (see, e.g. [9, 10, 11]), it has become the most important tech-
nique in domain decomposition methods for non-matching grids. The active research in this
field is motivated by its flexibility and great potential for large-scale parallel computation
(see, e.g. [1, 7,9, 10]). The non-conforming finite element mortar method has been studied
in [10], where optimal order convergence in H'-norm was demonstrated. Three-dimensional
mortar finite element analysis has been given in [8] and the h — p version is studied in [28].
Non-mortar mixed finite element approximations for second-order elliptic problems have
been discussed in [4].

In recent years, there has been growing interest in the finite volume method (called also
control-volume method or box-schemes). This interest is mostly due to the desire to have
discretizations which are locally conservative. This is a discrete variant of the property
of the continuous model which expresses conservation of a certain quantity (mass, heat,
momentum, etc). In the early stages, such methods were based on finite differences on
rectangular meshes with quite complicated treatment of the coefficients and the right-hand
side (see, for example the classic book [24] and the references therein). Recently, the
finite volume approach has been combined with the technique of the finite element method
in a new development which is capable of producing accurate approximations on general
triangular and quadrilateral grids (see, e.g. [15, 16, 20, 21, 22]). The main advantages
of the method are compactness of the discretization stencil, good accuracy, and discrete
local mass conservation, which for many applications is the most desirable feature of the
approximation.

To the authors’ best knowledge, there has not been a study for the mortar finite volume
element method. For the reasons outlined above, the mortar finite volume element method
is a very attractive solution technique in porous media flow simulations because it combines
the flexibility of the finite elment method with the local conservation properties of the finite
difference method. This can be considered as an alternative of the mixed method which is
very popular in the flow calculations. However, the finite volume element method generates
definite problems, while the mixed method produces indefinite algebraic systems.

In this paper, we extend the mortar technique to the finite volume method in two ways.
First, following the traditional mortar approach, we use finite volume element approxima-
tions only on the subdomains and finite element on the interfaces for Lagrange multipliers.
Second, we propose numerical schemes using finite volume element on both the subdo-
mains and on the interfaces. It has been shown on various numerical examples that the
latter scheme converges much faster (5-8 times) than the former. For both schemes we
obtain an optimal H'-error estimate assuming that the solution u is H'*™ (Qy)-regular for
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each Q; with 0 < 7, < 1, where € is partitioned into K non-overlapping subdomains €2,
k=1,...,K.

This paper is organized as follows. In Subsection 2.1 we state the model problem of
second-order elliptic equations and give all necessary notations. The discretization uses
triangulations of each subdomain independently of the others. To make the presentation
more transparent, in Subsection 2.2 we introduce the mortar finite element approximation
of the problem on triangular meshes which are conforming on each subdomain, but are
non-confroming across the interdomain boundaries. Next, in Subsection 2.3 we introduce
the mortar finite volume element approximation and discuss the properties of the method.

Section 3 contains the main theoretical results of the paper, an optimal H '-error estimate
for the solution u. The proof essentially follows the main ideas and tools in the analysis of
the mortar finite elmenent approximations from [6, 8, 9, 10]).

In Section 4 we give sevaral extensions of the mortar finite volume element method. The
most interesting one, given in Subsection 4.1, is the method with piecewise constant mortar
spaces. This approximation is locally conservative in the whole domain including the finite
volumes near the subdomain interfaces. Our computational experiments show that this
method is even more accurate than the one proposed in Section 2. Next, in Subsection 4.2
we present extensions of the method to combine finite element and finite volume element
approximations and to approximations on triangular and recrangular grids.

A substantial and important part of our paper describes the numerical experiments pre-
sented in Section 5. The aim of the experiments is to (1) study the accuracy of the proposed
schemes on series of test problems and (2) to study the efficiency of the iterative methods
for solving the corresponding system of linear equations.

The preliminary results of this paper were announced in [19].

2. MORTAR FINITE VOLUME ELEMENTS WITH NON-OVERLAPPING DOMAINS

2.1. Problem formulation and notations. In this paper we consider the following model
second-order elliptic boundary value problem: find u = u(z) € H}(Q) such that

(2.1) / AVu - Vudr = / fodz = (f,v), forallv € H}(Q),
Q Q

where § is a bounded convex polygon in R? with a boundary 9, A = {a; ;(z)} isa 2 x 2
symmetric and uniformly in €2 positive definite matrix, and f = f(z) is a known function in
L%(£2). We assume that the coefficients a; j(z) are piecewise smooth functions having finite
jumps at certain lines, so that problem (2.1) has a unique solution in a certain Sobolev
space.

Remark 2.1. One may consider also Neumann and Robin boundary conditions on the
whole or on a part of the boundary 02. The construction of the finite volume approximation
and its analysis can be carried out with no additional difficulties. In fact, the finite volume
element method was introduced by Baliga and Patankar in [5] as an attempt to approzimate
the fluz boundary conditions by finite differences in a consistent and systematic way.

In order to introduce the mortar approximation, we shall present some standard notation
in the domain decomposition method (see, e.g. [6, 7, 8, 9]). We partition the initial domain
2 into K non-overlapping subdomains {€}1<x<k, which are assumed to be polygons and
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arranged in such way that the intersection of two subdomains €; N Q) as well as the inter-
section 0€2 N 0€)y, is either empty, reduced to a vertex or reduced to a common edge. If two
subdomains 2 and €2; are adjacent, I'y; is the common interface and ny; is the unit normal
from Qj to €; and we set njz = —ny;. The index kI has no meaning if (2} and €2; have no
common edge. For any k, let H!(Qj) denote the spaces H' () if meas(9Q;, N 0N) = 0,
otherwise it coincides with the subspace of H'(€);) involving all functions whose trace on
the set 0Q N O is zero, i.e.

Hi(Qk) = {Uk € Hl(Qk) and ’Uk|aﬂkﬂag =0, if meas(9Q; N ON) # 0} .

Next, we introduce the space
K
X={vel’Q): v =vlg, € H(U%)} =[] H (%)
k=1

equipped with the semi-norm and norm:

K

K
ol} =D lolho,), [IolE = o3 + D llvellZeq,),
k=1 k=1

where |vg|f1(q,) denotes the semi-norm in H'(,). We shall also use the notation
Hy(div,Q) = {q € H(div,Q) : q-nlsg =0},

where H(div,) is the space of all vector-functions in (L2(€))? whose divergence is in
L?(Q), n is the unit outward normal vector to dQ and q - n denotes the inner product in
R2. The normal component q - n is understood as an element from the space H~/2(6Q)
and H (div, Q) is equipped with the norm

lallydiv = (lallzz oy + lIdival 2 o)) 2

Next, we define the trace spaces Hi/ 2(8Qk) as the range of the trace operator acting
on H} (). This translates into H,}/2(8Qk) being either H'/?(9%;), if the one-dimensional
measure of 0€; N 0N} is zero, or HSéZ(aﬁk \ 09), if the measure of 9Q; N O is not zero.

And finally, we define H;1/2(8Qk) to be the dual space of H,}/Z(BQ;C) with < -, >, 50,
being the duality pairing. Often (see, e.g. [6, 7]), H} () is characterized as

K
(2.2) H)(Q) = {v €EX: Y <q-nu>,00,=0, q€ Hy(div, Q)} :
k=1
Now we define the space M of those functions ¢ = (¢1,--- , k) with components ¢ €

H*_I/Q(aﬁk) for k =1,--- , K representing traces on 9€; of a function from Hy(div, ), i.e.
M ={¢p: Q) : iff there is q € Hy(div, ) such that for k=1,--- | K, ¢ =q-ng}.

The space M is provided with the norm

||¢||M :lnf{HqHH(dlv,Q) 1 qeE HO(diVaQ)’ q-ng = ¢ka k= 1? aK}
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We now define the bilinear form: B : X x M — R by
K

B(va¢) = Z < Uk}7¢k >*,3Qk.7

k=1
so that the characterization (2.2) of the space H{(f2) can be written in the form:
(2.3) Hy(Q) ={veX, B(v,¢)=0, p€M}.
Further, we introduce the bilinear form A : X x X — R associated with the problem (2.1):

K
A(u,v) = Z ; A(z)Vuy - Vogdz.
k= k

Thus the primal hybrid formulation is of the problem (2.1) is: find (u,%) € X x M such
that

A(u,v) + B(v,¢) = (f,v), veZX,
B(u7¢) :07 ¢€M

We have the following equivalent result:

(2.4)

Lemma 2.1. (see, e.g. [6]) Problem (2.}) has a unique solution (u,1) € X x M, and the
first component u € H(Q) is also the solution of problem (2.1). Moreover

Tpk:AV’U/k'nk, k:1a23"'aKa

and
ull gy + l1Pllm < Cllfllez@)-

2.2. Finite element approximation. Now we shall introduce the finite element approx-
imation of the problem (2.4) studied, for example, in [6, 8, 9, 10]. We need this formulation
in order to explain better the essence of the finite volume element method and to make
it more transparent. Besides, in the analysis we use the theoretical tools from the above-
mentioned papers or modify them according to the needs of the finite volume analysis.
Each subdomain Q, k = 1,--- , K is partitioned into set T; of closed triangles T' so that
Q) = Urer, T. We assume that the partition Ty, is regular (or quasi-uniform) and that any
two neighboring triangles T € T; may have at most a whole common edge or a vertex.
Finally, we assume that the partition is aligned with the jumps of the coefficient matrix
A(z). This means that over each element 7" € Ty, the elements of the matrix A(x) are
adequately smooth functions.

We shall also need notations for the global triangulation 75 of the domain Q,where the
size of each finite element is denoted by A7, and the the maximal grid size in each subdomain
hy of Q) defined as

K
= h - d h = h 6: h [ h .
Ts kl;[l’fk = sup (z,9), hi max hr, (hi,- - hi)

The finite element spaces Xjj are subspaces of H](Q) of piecewise linear (over the
triangulation 7) functions:

Xsp = {UJ,k eC(Q)N Hi(Qk) : v5,k|T € Pl(T)}
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and the global finite element space is X5 = H,le Xs ., where § = (hy,- - -, hi). Note that
since the grids T; do not match at the subdomain interfaces I'y;, the functions in Xj are,
in general, discontinuous across the interfaces. In order to ensure that the jumps in the
solution u across the interfaces vanish in a weak sense, we need the space of the Lagrange
multipliers. This space is the same as those introduced in the mortar finite element method
(see, e.g. [6, 9, 10]). In the definition given below we use the notations from [6].

For a given integer 1 < k < K we introduce two sets k and k. The latter denotes the set
of integer [ such that I'y; is the boundary of ) with its neighboring subdomain €2;, while
k is a subset of k of indices [ such that [ > k. These two sets will be used to introduce the
space of the Lagrange multipliers. Notice that the trace of the triangulation 7 over Iy,
1 <k <K, € Ek results in a regular partition of I'y; denoted by 5. We shall denote the
end point of this partition by vy 3 and vy (these are the points a; and a,, on Figure 1).
In general, #;;, differs from tx; as they are induces by different triangulations 73 and 7T; of
the subdomains €2}, and €2; which share the edge I'y;. The trace space W 4 of the functions
in X5 is given by

Wei = {pski € C(Try) : t € tyr, ¢sple is a linear function} .

The finite element space of the Lagrange multipliers on a particular interface 'y, [ > k
(shown on Figure 1) is defined as a subspace of W j;, namely:

Mg = {bs 1 €EWsi: t Etp, or  ¢sple is constant if vy gy or vo gy € 1} .

hk [ hk -1

1—‘kl 1—‘kl

Figure 1: Function from My (T'k;); left: piecewise linear Lagrange multipliers; right: piecewise constant
Lagrange multipliers.

The finite element space for the Lagrange multipliers on all interfaces is

K
Ms =T [T Mo
k=1 ek
Remark 2.2. The construction given above chooses the traces of finite element functions
on Ty from the subdomain Qp as a basis for the mortar space. This is just one possible
choice of the mortar space. Other possible choice is the space of the traces of functions in the
finite element space on €. One can always come up with o finite dimensional space which is
not related to the partitions ti; and t;,.. However, in this case the mortar space should not be
too big or too small, since this may influence critically the accuracy of the discrete problem
or the solvability of the discrete system. Namely, it should satisfy the inf-sup condition of
Ladyzhenskaia, Babuska, Brezzi.
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We now define a bilinear form B : X5 x M5 — R by

B(vs, $5) = Z<U6ka¢6k>*8ﬂk ZZ/ Po,k1 (Vs — V51)ds.

k=1 g 7 TH

Then the mortar finite element approzimation of (2.4) is (see, e.g. [6, 8, 9, 10]): find
ug € X5 and 5 € My such that

(2.5) A(us,vs) + Blvs,s) = (f,vs), vs € &,
' B(us, ¢5) =0, b5 € M.

By introducing the space Vs

={vs € X5 B(vs,¢5) =0, ¢5 € Ms},
the above problem can be reformulated as: find us € Vs such that

(2.6) A(us,vs) = (f,vs5), vs € Vs.

The problems (2.5) and (2.6) are equivalent and yield stable and optimally convergent
approximations of the original problem (2.1) provided that the spaces X5 and Mg are prop-
erly aligned. This approximation represents a new direction in the domain decomposition
technique and has been subject to numerous studies (see, e.g. [1, 6, 8, 9, 10]).

2.3. Finite volume element approximation. To introduce the finite volume element
method, in addition to the finite element partition 75 we shall also need the so-called finite
volume (control volume or co-volume) partition 7;* = HkK:1 Ty where T,* is finite volume
partition of the subdomain €2;. This partition is described below.

First, for each k we denote by Nj the set of all vertices in the triangulation Tg:

Ny, = {p: pis a vertex of element T € T; and p € Q}.

In order to approximate the Dirichlet boundary conditions on 92,we shall also need the set
of the internal to 2 vertices, denoted by N,?, ie. N,? = N N§L For a given vertex x;; by
II;(7) we denote the subset of NN}, containing the indices of all neighboring vertices of z;
(neighbor means a vertex connected with x; ;, by an edge of a triangle in 7).

The dual mesh 7,7, on which elements are called finite (control) volumes, is based upon
Tr and can be introduced in many ways. Almost all approaches fall into the following
general scheme: in each triangle T' € T; a point ¢ is selected; similarly on each edge with
end points z; ; and z; a point x;; is chosen; then ¢ is connected with the points x;;; by
straight lines splitting the element T into four quadrilateral With each vertex x;, € Ni, we
associate the control volume V;; € T,*, which consists of the union of the parts of 7', which
have z; ;. as a vertex. Also let 7;;x denote the interface of two adjacent control volumes V;
and Vj i vije = Vjg N Vig, j € () (see Figure 2 and 3). If the vertex is on the interface
[k, then “half” control volume (shaded regions, see Figure 4) is used. We shall assume
that the partition 7,* is quasi-uniform (or regular).

In this paper we shall use two practical ways of choosing the points ¢ and z;;, and thus
determining the finite volume partition 7*. In both case z;; is the midpoint of the edge
with vertices z; j, and x;.

In the first (and most popular) control volume partition the point ¢ is chosen to be the
medicenter (the center of gravity or centroid) of the finite element K (see Figure 2). This
type of control volumes can be introduced for any finite element partition 7; and lead to
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Figure 2: Control volumes with medicenters as internal point and interface v;; of V; and V;. The index k is
omitted.

Vi

Yij

Figure 3: Control volumes with circumcenters as internal points (Voronoi meshes) and interface 7;; of V;
and V;.The index k is omitted.

relatively simple calculations. Besides, if the finite element partition 7 is regular then the
finite volume partition 75" is also regular.

The second widely used finite volume partition is when the point ¢ is chosen as the ortho-
center of the finite element T. Then the edges of the finite volumes are the corresponding
perpendicular bisectors of the edges of the finite elements (see Figure 3). This type of vol-
ume partition is called a Voronoi grid and has some very attractive computational features.
Obviously, such co-volume partitions can be formed and will be quasi-uniform if all finite
elements are acute triangles.

We define the dual space X3 = H,le X5y, where

X5 ={ux € L*(Q) : wg|v is constant over each V € T;* and vklaanao, = 0}.
Obviously,
X({k = span{yx; : where x; is the characteristic functions of V;; € 7'}

Let I : C(Q) — A5y be the standard finite element interpolation operator and I} :
C(%) — Xf, and P} : L?(Q%) — Xj, be the piecewise constant interpolation and L?-
projection operators, respectively:

Tiu=> usr(zip)xik(®), Pru= Y Usk(wir)xir(z),
tEN 1€ Ny,
where

_ 1
wik = u(z;y) and Usg(z;r) = m/ udr.
2 Vik
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Vi |

Iy

Figure 4: Interfaces I'y; and 'y, with vy x; and vs g as two endpoints, Triangulation 7 and 7;, and the
volumes in £, and ;. The triangulation t; and ¢;; are different on the interface due to non-matching grids.

Then the global interpolation and projection operators are defined as Iy = H,le I, Iy =
[/, I}, and P} =[]/, ;.
The mortar finite volume element method is : find (ug,1s) € X5 x Mj such that

27 A(us, Ifvs) + B(vs, ¢5) = (f, I5v5), vs € A,
. B(vs, ¢5) =0, b5 € Ms,
where
K
A(ug, I§vs) = —Z Z v(s,k(xj,k)/ A(z)Vus i, - ngds,
k=1jeN? OV e\ OS2,
K
(filzvs) = > > Ua,k(fﬁj,k)/ f(z)dz.
k=1 jeN? Vik

This problem is equivalent to the following one: find us € Vs such that
(2.8) Alug, I5v5) = (f,15v5), vs € Vs.

Remark 2.3. This construction leads in general to mon-conforming finite element spaces
Vs, i.e. Vs is not a subspace of H}(QY). However, this does not degrade the overall rate of
convergence of the method.

Note, that in contrast to the standard mortar Galerkin finite element method (2.5) the
bilinear form of the finite volume element method A(us,Ijvs) is in general non-symmetric
since it is defined on two different spaces A5 x X;. This will lead to nonsymmetric algebraic
problems since the global stiffness matrix is assembled from the local matrices which, in
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general, are nonsymmetric. However, if the coefficient matrix A(x) is constant over each
finite element T', then the mortar finite volume element methodintroduced above coincides
with the the standard mortar Galerkin finite element method with piecewise linear elements
studied, for example, in [6, 9, 10]. This is due to the fact, established in [20] (see, also
[15, 22, 23]):

Lemma 2.2. Assume that the matriz A(z) is constant on each T € Ty, for k =1,--- K.
Then

(2.9) Alus,vs) = A(us, I§vs), Vus, vs € Xs.

Therefore, for piecewise constant coefficients, the mortar finite element and finite volume
approximations produce the same element stiffness matrices. The difference in the stiffness
matrix occurs where the coefficients vary in the finite elements. This method will prduce a
different mass matrix and right-hand side, but for smooth coefficients they are only O(h?)
perturbations of the finite element conterparts. Later we discuss various other possible
mortar finite volume approximations (see Remark 2.4 below and Section 4).

Obviously, the weak interface continuity in the mortar finite volume element method is
imposed in the same way as in the finite element method since they both use piecewise
linear test functions for the Lagrange multipliers. Thus, the weak compatibility condition
of the spaces X5 and M is satisfied automatically:

(2.10) {ds: B(vs,¢5) =0, Vvs € X5} ={0}.

However, continuous linear test functions for the interface condition will not preserve the
basic feature of finite volume element method — its local mass conservation property. More
precisely, this formulation leads to locally conservative approximations only for the volumes
that are internal with respect to the subdomains 2;. For volumes centered at points on the
interface boundaries 'y, this formulation is not locally conservative.

Remark 2.4. One can also write a mortar approximation, which is locally conservative for
all volumes: find (vs,1ps) € X5 x My such that

A(us, I§vs) + B(I5vs,b5) = (f, Ivs), vs € Ay,
B(Igu(ia(ﬁ(s) :Oa ¢5EM(5-

This simple approach will also preserve the symmetry in treating the interface conditions.
Other approzimations will be discussed in Section 4.

(2.11)

3. OPTIMAL ORDER H!'-ERROR ESTIMATES

In this section we establish the main theoretical result of the paper: existence and unique-
ness of the solution of the mortar finite volume element method (2.7) and establish optimal
order error estimate for the solution ugs. Our analysis uses the mathematical technique
developed in [6, 9, 10] with the necessary modifications for the finite volume.

Note, that ||us||x; is a semi-norm in X5 and a norm in V;. Now we prove the following
lemma:

Lemma 3.1. There exists C1 > 0, independent of 0, such that

(3.1) |A(us, I5vs)| < Cilug|x|vs|ly, us,vs € Xs.
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Besides, if § is sufficiently small (which translates in smallness of hy, k = 1,--- K ) then
there is a constant Cy > 0, independent of §, such that

(3.2) A(ug, Ijug)| > Colus|3, us € Xp.

Proof: Since

K
Alug, Ivs) = =YY va,k(xj,k)/ A(z)Vug . - nds,

k=1 jeNO V1 \O,

= __ZZ > / 2)Vus, - nds(vs g (i k) — vsk(T)k))-

k= IJGNO ZGHk Yij,k

Since the squared norm of Vu;j over each element is equivalent to the sum of the squared
differences of the values of usy at the vertices of the element, the inequality (3.1) follows
immediately. To show (3.2), we first define the mean values of the matrix A(z) over each
finite volume

1

. A = i <k<K.
(3.3) Alz) measT/A(y)dy, it zeT, TeT, 1<k<K

Using Lemma 2.2 we easily get the following equality:

A(ug, I[fus) = —Z Z s e (T e / (A(z) — A(z))Vugs - ngds

k=1jeN? OV; 1 \0Q,
K pR—

+> ) / (A(z) — A(z))Vusy - Vugpda
k=1TeT, ’ T
K

+Z Z / A(z)Vusy, - Vug pde.
k=1TeT, T

A(z) is smooth over each element K and, therefore. |A(z) — A(z)| < Chy for z € € for
k=1,---, K. Since the last term is positive definite, we get

K
A(us, Tjus) > C Y (|U5,k|fql(gk) - Chk|“6,k|%{1(9k))

from which (3.2) follows for sufficiently small Ay, k =1,--- | K.

Lemma 3.2. Assume that the solution u of the problem (2.1) belong to the space H'*™ ()
with 7, > 0 for k=1,--- K. Then the following estimate holds true:

K
faU —AU,U T
(3.4 sup L0 Z A o oS )1

0#vsEVs ||’U§||X k=1

Proof: See [6, 7].
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Theorem 3.1. The problem (2.7) has unique solution (us,s) in Xs x Ms. (2.7). More-
over, if u € H(Qy) for some 7, >0, k= 1,--- , K, then us coincides with the solution
of (2.8) and satisfies the following error estimate:

K
(3.5) = uslle < O (Al oy + bull 1220

k=1
with a constant C' > 0 independent of § = (hy,--- , K).

Proof: The existence and uniqueness follows from the inequality (3.2) of Lemma 3.1 and
compatibility condition (2.10). Also, we know that the solution us is stable with respect to
the right hand side, so it satisfies the a priori estimate: ||us||x;, < C||f]]-

As for the error estimates, we rewrite the first equation of (2.7) in the form: argument
above:

(3.6) A(ug,vs) + B(vs,p5) = (f,vs) +15(vs) + Rs(us, vs),
where
(3.7) rs(vs) = (f, I5vs — vs),

K

Rs(us,vs) = = Y vsp(zjn) / (A(z) — A(z))Vugy, - ngds

k=1 jeN}? OV .\

K pR—
(3.8) +> N / (A(z) — A(z))Vusy - Vospdz.

k=1Te7;,’ T
Thus second Strang’s Lemma implies that (see, e.g. [6, 26]):

. rs(vs) + Rs(us,v
(3.9) lu—us|lx < C| inf |[u—wvs||lx + sup 3(vs) + By (us, vs)
vsEVs 0#vsEVs |U5|X
+ inf  sup —B(Ué’d) ), )
Vs EMs 0£us€Vs lvs|a
Clearly,
K
rs(vs) + Rs(us,vs) < C Y hu(1f1z2(p) [voklm o) + [uaklmop) [vsklm @)
k=1
K
< Closly > b ([1Fllz2gon) + Nl ) -
k=1

Also, for vs € Vs and ¢5 € Mg, we have
B(vs, % — ¢s) = Blvs, 1))
= (fav5) —A(U,U5),

thus, by from Lemma 3.2 we get

K
|B(vs, ) — ¢s)| < C (Z h;c—k||u||H1+"k(Qk)> |05

k=1
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Hence (3.5) follows.

4. EXTENSIONS AND GENERALIZATIONS

4.1. Piecewise constant approximations on interfaces. Here we shall use a modi-
fication M3 of the mortar finite element space Mg so the new space better reflects the
conservation properties of the finite volume element method while it preserves the order
of approximation of the unknown solution. Namely, the Lagrange multipliers ¢ on I'y; are
approximated by piecewise constant functions over a finite volume partition of I'y;. X({k.

This new space is defined as M} = Hszl [1;cx M 41> where the spaces M, for | € k are
constructed in the following way. Let tx; be the partition of interface ['y; induced by the
triangulation 7 and vy 1 and vy be the end points of I'y;. Then Mg,kl consists of the
modified traces of functions from Xj,,. The modification is done only for the two volumes
corresponding to the endpoints vy and vg 4, where a constant value is prescribed equal
to the value at the adjacent internal nodal points (see Figure 1).

Now we can introduce two additional mortar finite element approximations of the original
problem (2.1): find a pair (us,1)5) € X5 x M5 such that

(41) A(U(Salgvﬁ) +B(1’6ﬂ/)§) = (falgvé)a vs € X(g,
B(u57¢§) = 07 ¢§€M§7

or

(42) A(U(SaIgUé)"‘B(IgUéa@/};) = (fvlgv(ﬁ)a vg € A,
B(I{us. ;) = 0, b} € M;.

As it can be checked easily that
(4.3) {¢5 € M5 : B(vs, ¢5) =0, Vus € A5} = {0},
(4.4) {¢5 € M5 B(lyvs,¢5) =0, Vus € X5} ={0}.

These two facts imply that both problems (4.1) and (4.2) have unique solution pairs
(us,1ps5) € X5 x Mj, and the error bounds (3.5) hold for both problems. Namely, the
following result is valid:

Theorem 4.1. The problems (4.1) and (4.2) have unique solutions (us,5) € X5 x M5,
correspondingly, and if u € H' ™ (Qy) for 7, > 0, k = 1,--- | K, then the following error
estimates are valid:

K
(45) la = uslle < €S2 (W1 ull e o) + Il F L2 )
k=1

Proof: See the analysis above.

4.2. Combination of various other approximations. First, we propose an approxima-
tion scheme using combined finite element and finite volume element methods. To simplify
the presentation, we assume that the domain is divided into two subdomains: Q = Q1 U )y
with I'1o = 021 N 99 so that linear finite elements are used in 27 and linear finite volume
elements in .
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Thus, the combined finite element and finite volume element approximations are: find
(ug, 5) = (u(s,l,’v(s,g,l/)(;) € X5 x Mj such that

Aq, (us1, I{vsy) + Blusy,vs) = (f,L{vsi)a,, vs1 € Xspi,
(4.6) Aq,(us2,vs52)  + Bluvse,s) = (fivs2)a,,  vs2 € Xspo,
B(u57¢5) = 07 ¢(5 EM(S-

where A, and (-,-)n, denote the bilinear forms and the inner product on the subdomains
Q;, 1 = 1,2, correspondingly.

\/j — Interior Control Volume riz

,,,,,,,,,,,,,,,,,,,,,,,,,

V" — Interface Control Volume many mixed subdomains partitions

Figure 5: Left: Rectangular and triangular grids on two different subdomains. Right: General rectangular
and triangular partitions on subdomains.

Next, we describe a method that combines the rectangular and triangular girds on dif-
ferent subdomains. For simplicity, we consider only two subdomains (see Figure 5). with
bilinear finite elements in 2; and linear finite elements in 25. The piecewise constant in-
terpolation operator I7 : C(Q2) — X is defined in the standard way so Ifuly, = u(zy)
and Ifuly, = ij udz /meas(V;) for all internal volumes and zero at the boundary control
volumes.

Thus, the finite volume element approximation is: find (ug, ¢5) € X5 X M,y such that
(4.6) is satisfied. Note, that Xj is different from the one used in Section 4.2.

Finally, one can formulate and study approximation schemes by using geometrically non-
conforming subdomain partitions (see Fugure 6).

All suggested schemes are stable and approximate the solution of the original problem
(2.1) so that estimates similar to that of Theorem 3.1 are valid.

5. NUMERICAL EXAMPLES

In this section, we report some numerical results yielded by the mortar finite volume
element method. Two specific boundary value problems are considered. In both problems,
the solution domain  can be separated into two subdomains Q2 = 7 UT'15 U Q9 such that
the solution changes much more dramatically in €1 than in Q5. The data functions for the
first problem are smooth, while the second problem has a discontinuous coefficient. Domain
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Figure 6: Left: Geometrically conforming subdomain division. Right: Geometrically nonconforming subdo-
main partition.

decomposition is therefore employed to separate €21 from Q5 so that the fine grid used in €
has a numerical approximation with enough accuracy to match the accuracy on €2 obtained
on a coarser grid.

We measure the error es = us — u in the discret L®—, L?—, and H'-norms defined by:

llesl| e = max |us(z;, yj) — u(zi, yj)],
Ti,Yj

lleslFre () = Z lleal[Fre(ry> 5 = 0,1,
TeTs
where numerical quadrature formulas are used evaluate the integrals over the element T
Finally, the Uzawa algorithm with conjugate directions is used to solve the corresponding
linear system.
Example 1: We consider the problem (2.1) with © = (0,1)? and A(x) = I and the forcing
term f(z) i chosen in such a way that the exact solution is

u(z,y) = bz (e — e")y(e™ —e%), a =13,b=0.90909 x 10!,

This solution obviously changes substantially in the upper right conner of the domain 2. We
therefore separate €2 into two subdomains ; = (0.5,1)x(0.5,1) and €3 is the remaining part
of Q2. All results presented for this example are obtained using piecewise bilinear functions
over the rectangular partition of 2; and piecewise linear functions over the triangulation of
Q9. Both partitions 77 of {27 and 73 of 9 are uniform and the grid size in 25 is always four
times larger than the grid size in ;. Figure 7 shows a typical grid used in the computation
for this example. The partition used for the Lagrange multipliers space can be the restriction
of either partition 77 or 75 on the interface of {27 and $2s.

Tables 1 and 2 contain the numerical results by using linear finite element functions for
the multiplier on a grids induced by the partition in 5 and 1, respectively. The reduction
in the grid size and error indicates that the method seems to converge in the first order in
H'-norm, and in the second order in L?-norm. Table 3 contains similar numerical results
for piecewise constant finite element functions used for the Lagrange multipliers on a grids
induced by the partition in 5. These results also indicate that the convergence of the
method is first order in H'-norm, and second order in L?-norm.

Using the grid induced from the fine partition in §2; will impose more constraints on the
finite element spaces in both 2y and €9, and this can make the method less accurate if the
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h lenll g1 (q) lenll 2 lenll oo (q) | number of iterations
1/10 | 7.2837 x 1071 | 2.8265 x 1072 | 8.2126 x 102 4
1/20 | 3.7258 x 101 | 7.5642 x 103 | 2.5478 x 10?2 11
1/40 [ 1.8700 x 101 [ 1.9242 x 1073 | 6.8271 x 103 29
1/80 | 9.3539 x 1072 | 4.8315 x 10~* | 1.7155 x 1073 50

Table 1: Errors for Example 1. The Lagrange multiplier space consists of piecewise linear finite functions
on a grid induced from the partition in the domain 2>, where a coarse grid with step-size h is used.

h lenll oy lenll 20 lenllo(n) | number of iterations
1/10 [ 7.4240 x 1071 [ 2.8762 x 1072 | 1.2535 x 10! 32
1/20 | 3.7651 x 1071 | 7.6449 x 1073 | 4.0114 x 102 72
1/40 [ 1.8804 x 10~" [ 1.9353 x 1073 | 1.1124 x 102 113
1/80 | 9.3803 x 102 | 4.8457 x 10~ * | 2.8898 x 103 156

Table 2: Errors for Example 1. The Lagrange multiplier space is formed by the linear finite element in a
grid induced from the partition in the domain ;.

ratio of the grid sizes in 25 and €Q; is too large a fact obsereved in the results presented in
Table 4. It seems that the convergence is slower compared with those in the previous tables.
Note that the grid size h listed in all of these tables is for the coarse grid in 5. Also, using
the partition induced from the coarse partition in €2 for the Lagrange multipliers space
requires much less iterations needed to solve the corresponding linear system (see Table 1
and Table 2).

83 04 95 08

[T

Figure 7: Left: a typical grid for Example 1. Right: the numerical solution generated by the mortar finite
volume element method.

Example 2: We consider the problem (2.1) with Q@ = {(z1,22) : 0 < z; <1, =1 < z9 < 1},
the coefficient matrix A(xz) = a(x)I, where

i ={

if xo <0,
if z9 > 0,



MORTAR FINITE VOLUME ELEMENT APPROXIMATIONS

h lenll g1 (q) lenll 2 lenll oo (q) | number of iterations
1/10 | 7.2967 x 1071 | 2.8611 x 1072 | 8.1079 x 102 4
1/20 [ 3.7711 x 10~ [ 7.6871 x 103 | 3.6196 x 102 11
1/40 [ 1.9058 x 10~ [ 1.9761 x 103 | 1.7306 x 102 22
1/80 | 9.5691 x 10=2 | 5.0325 x 10~* | 8.6610 x 1073 31

Table 3: Errors for Example 1. The Lagrange multiplier space is formed by the zero-th degree finite element
in a grid induced from the partition in the domain Q.

h lenll oy lenll 20 lenllpo(qy | number of iterations
1/10 | 8.1802 x 1071 | 3.5424 x 102 | 2.4033 x 101 21
1/20 | 4.5596 x 1071 [ 1.1388 x 102 | 1.3157 x 10! 32
1/40 | 2.6406 x 10~ | 3.9800 x 1073 | 6.8890 x 10~ 44
1/80 [ 1.61960 x 10~ T | 1.5789 x 10~ % | 3.5255 x 102 60

Table 4: Errors for Example 1. The Lagrange multiplier space is formed by the zero-th degree finite element
in a grid induced from the partition in the domain ;.

and the forcing term f(z,y) is chosen such a way that the following function is exact solution
to this problem:

() sin(mzy)(x2 + 1)(x2 + bo) /1, if 22 <0,
e sin(rzy)(zy — 1)(22 + b1)/Ba, if 22 > 0,
by = —2/(1 + %), by = —%bg.

We have run our experiments with 85 = 10067 = 100. The coefficient is discontinuous along
the line 2 = 0 which separates the domain into two subdomains. The exact solution is
rather flat in the top half of the subdomain Q5. Some numerical results are listed in the
Table 5, which are obtained by using bilinear finite element functions in both ©; and o,
but piecewise constant finite element functions for the multiplier on the interface. Figure
8 shows a typical grid for this example. The grid size in (2o is always chosen five times as
large as that used in 2. Again, the reduction in the grid size and error indicates that the
convergence is first order in H'-norm, and second order in L?-norm.
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