
STAIR MATRICES AND THEIR GENERALIZATIONS WITH
APPLICATIONS TO ITERATIVE METHODS II: ITERATION

ARITHMETIC AND PRECONDITIONINGS ∗

HAO LU †

Abstract. Iteration arithmetic is formally introduced based on iteration multiplication and α-
addition which is a special multisplitting. This part focuses on construction of convergent splittings
and approximate inverses for Hermitian positive definite matrices by applying stair matrices, their
generalizations and iteration arithmetic. Analysis of the splittings and the approximate inverses is
also presented. Application of some of the results extends the classical convergence result of the
SSOR method. In particular, multiplication symmetrization and addition symmetrization are in-
troduced, which produce Hermitian positive definite approximations for the inverse of an Hermitian
positive definite matrix. Furthermore, preconditioning average is introduced to improve some pre-
conditioning methods. Numerical results show a significant improvement of preconditioning average
to the approximate inverse preconditionings if an anisotropic elliptic equation is solved.

Key words. stair matrices and their generalization, iteration method, convergence rate, iter-
ation arithmetic, multiplication symmetrization, addition symmetrization, preconditioning average,
parallel computation, anisotropic elliptic equation

AMS subject classifications. 65F10, 65F15, 65F50

1. Introduction. Stair matrices and their generalizations are introduced in the
first part [7]. This class of matrices provides bases of matrix splittings. Iterative
methods based on the matrices are easily performed on a parallel computing platform.
By applying stair matrices and their generalizations, a generalization of the SOR
method is also introduced in [7]. The SOR theory on determination of the optimal
parameter is extended to the generalization. The asymptotic rate of convergence of
the new method is derived for Hermitian positive definite matrices. These extend
some elegant results of the SOR method in Varga [9], [10] and Young [11], [12].

This paper continues the study of application of stair matrices and their gener-
alizations to iterative methods focusing on construction of convergent splittings and
preconditionings for Hermitian positive definite matrices. First, some basic tech-
niques of iterative methods are summarized, including multiplication and α-addition
which is a special multisplitting [8]. Then based on these two basic operators, it-
eration arithmetic is introduced. Let A be a Hermitian positive definite matrix. It
is shown that iteration arithmetic indeed provides efficient ways in construction of
convergent splittings of A and approximation of the inverse of A. In particular, mul-
tiplication symmetrization and addition symmetrization are formally introduced. The
trace of multiplication symmetrization is easily found in the literature. For example,
the SSOR method is the multiplication symmetrization of the SOR method [10] and
[12]. Symmetrization techniques result Hermitian positive definite approximations of
the inverse of A, thus yielding efficient preconditionings for preconditioned conjugate
gradient methods. Analysis of the splittings and the approximate inverses by using
iteration arithmetic and symmetrization is also presented. A result on convergence of
the SOR method and the generalization of the SOR method [7] is presented in term
of A-norm, which generalizes some results of the SOR method in [12]. Applying this
result and a result on iteration arithmetic, we immediately extend the fundamental

∗Version October 12, 1999
†Institute for Scientific Computation, Texas A&M University, College Station, Texas 77843-3404,

USA (na.hlu@na-net.ornl.gov)

1

result on convergence of the SSOR method due to Habetler and Wachspress [5], and
Ehrlich [3], and Young [12]. Furthermore, preconditioning average is introduced to
improve the approximate inverse preconditionings. However, the issue is addressed in
a general framework, which can be applied to improve any preconditioning method
under certain conditions. Finally, numerical examples are presented to illustrate the
preconditioning techniques. If an anisotropic elliptic equation is solved, precondi-
tioning average significantly improves the performance of the approximate inverse
preconditionings presented in the paper, showing independence of anisotropy some-
how.

2. Preliminaries. In this section we briefly mention stair matrices, their gener-
alizations and some preliminary techniques in iterative methods including multiplica-
tion and a special multisplitting, called α-addition in the present paper. We denote
by A = (aij)n×n an n × n matrix. The entries aij can be ni × nj blocks. In the case
aij are blocks we still treat them as basic entries. If we emphasize that entries of a
matrix are blocks, Aij is adopted to represent the (i, j)th entry instead of aij .

2.1. Stair matrices and their generalizations. We now recall stair matrices
and their generalizations introduced in the first part [7]. All notation is the same as
that in [7].

Definition 2.1. A tridiagonal matrix A = tridiag(ai,i−1, aii, ai,i+1) is called a
stair matrix if one of the following conditions is satisfied

I. ai,i−1 = 0, ai,i+1 = 0, i = 1, 3, . . . , 2�n−1
2 � + 1;

II. ai,i−1 = 0, ai,i+1 = 0, i = 2, 4, . . . , 2�n
2 �.

A stair matrix is of type I if condition I is satisfied and is of type II if condition II
holds.

A stair matrix is denoted by A = stair(ai,i−1, aii, ai,i+1). In particular, A =
stair1(ai,i−1, aii, ai,i+1) and A = stair2(ai,i−1, aii, ai,i+1) represent a stair matrix of
type I and a stair matrix of type II, respectively.

Lemma 2.2. An n × n stair matrix A = stair(ai,i−1, aii, ai,i+1) is nonsingular if
and only if aii, i = 1, 2, . . . , n are nonsingular. Furthermore, if A is nonsingular then

A−1 = D−1(2D − A)D−1,(2.1)

where D = diag(a11, a22, . . . , ann).
A stair linear system Ax = b is solved by the following algorithm.
Algorithm I. This algorithm solves the stair linear system Ax = b. The solution

overwrites b. In the algorithm bi = 0 if i < 1 or i > n.
if (A is of type I)

for i = 1 : 2 : 2�n−1
2 � + 1

bi = a−1
ii bi

endfor i
for i = 2 : 2 : 2�n

2 �
bi = a−1

ii (bi − ai,i−1bi−1 − ai,i+1bi+1)
endfor i

endif
if (A is of type II)

for i = 2 : 2 : 2�n
2 �

bi = a−1
ii bi

endfor i
for i = 1 : 2 : 2�n−1

2 � + 1
2

bi = a−1
ii (bi − ai,i−1bi−1 − ai,i+1bi+1)

endfor i
endif.
The generalizations of stair matrices are recursively defined by
• L1

n = {A : A is an n × n matrix and A = stair(ai,i−1, aii, ai,i+1)},
• Lk

n = {A : A is an n×n matrix and A = stair(Ai,i−1, Aii, Ai,i+1), where each
diagonal block Aii is an ni × ni matrix and Aii ∈ Lr

ni
with r < k}.

As shown in [7] Lk
n ⊂ Lk+1

n , k = 1, 2, . . . and Lk
n = Ln

n if k ≥ n. We denote Ln ≡ Ln
n.

The matrices in Ln have much in common with triangular matrices. If S ∈ Ln,
the linear system Sx = b is easily solved by recursively performing Algorithm I. In
particular, the solution process is easily parallelized for sparse matrices [7].

2.2. Multiplication and α-addition. Split a nonsingular matrix A = M − N
with a nonsingular matrix M . A basic iterative method for the linear system Ax = b
is given by

O : xn = M−1(Nxn−1 + b),(2.2)

which is, in particular, a linear operator from Cn to Cn. We call O an iterator
corresponding to the splitting A = M − N and M−1N the iteration matrix of O.
One of basic requirements to a splitting A = M − N is that the linear system with
the coefficient matrix M must be easily solved. The traditional way is to choose a
triangular matrix M [10], [12]. Matrices in Ln provide us a lot of new choices. An
iterator O is convergent if and only if the spectral radius ρ(M−1N) < 1. Since (2.2)
is equivalent to

xn = xn−1 + M−1(b − Axn−1),(2.3)

knowing how to solve the linear system with the coefficient matrix M suffices to fulfill
(2.3). Sometime we even don’t need to know M and N explicitly.

Based on some splittings, the most common way to construct a new convergent
splitting without explicitly knowing M and N is multiplication of iterators. For
example, the SSOR and the ADI methods are typically the results of iteration multi-
plication. Another way is multisplitting. See [8] for details.

Let A = M1 − N1 and A = M2 − N2 be two splittings with nonsingular matrices
M1 and M2. They yield two basic iterative methods

O1 : xn = M−1
1 (N1xn−1 + b),(2.4)

O2 : xn = M−1
2 (N2xn−1 + b).(2.5)

Performing O1 first and then performing O2 yield the following new iteration:

xn−1/2 = M−1
1 (N1xn−1 + b),

xn = M−1
2 (N2xn−1/2 + b).

This defines the multiplication of O1 and O2 by

O : xn = M−1
1 N1M

−1
2 N2xn−1 + (M−1

2 N2M
−1
1 + M−1

2)b.(2.6)

We denote O = O2O1. If M−1
2 N2M

−1
1 +M−1

1 is nonsingular, which is satisfied if O2 is
convergent, the multiplication of O1 and O2 is actually a basic iteration corresponding
to the splitting A = M − N , where M is the matrix whose inverse is given by

M−1 = M−1
2 N2M

−1
1 + M−1

2 = M−1
1 + M−1

2 − M−1
2 AM−1

1 .(2.7)
3

The iteration matrix is given by

M−1N = M−1
1 N1M

−1
2 N2.(2.8)

Based on (2.7) the linear system M−1c is solved in two steps. First we solve d = M−1
1 c

and then compute

M−1c = d + M−1
2 (c − Ad).

Let α be a nonnegative constant satisfying 0 ≤ α ≤ 1. The α-addition of O1 and
O2, denoted by O = O1(α+)O2, is a weighted average of O1 and O2 defined by

xn = (αM−1
1 N1 + (1 − α)M−1

2 N2)xn−1 + (αM−1 + (1 − α)M−1
2)b,(2.9)

which is a special multisplitting [8]. If αM2 + (1 − α)M1 is nonsingular, so is
αM−1

1 +(1−α)M−1
2 because (αM−1

1 +(1−α)M−1
2) = M−1

1 (αM2 +(1−α)M1)M−1
2 .

Furthermore, if αM−1
1 + (1 − α)M−1

2 is nonsingular, then the α-addition of O1 and
O2 is a basic iteration corresponding to the splitting A = M − N with

M−1 = αM−1
1 + (1 − α)M−1

2(2.10)

and the iteration matrix is given by

M−1N = αM−1
1 N1 + (1 − α)M−1

2 N2.(2.11)

By iteration arithmetic we mean the restriction of arithmetic of iterators that
involves only multiplication and addition. The addition refers to α-addition. By
an arithmetic iterator we mean an operator of iteration arithmetic. Given iterators
O1, . . . , Ok, notation p(O1, . . . , Ok) represents an arithmetic iterator of O1, . . . , Ok.
For convenience, for k numbers r1, . . . , rk we also use p(r1, . . . , rk) to represent the
same arithmetic operator on r1, . . . , rk. For example, if p(O1, O2) is the multiplication
of O1 and O2, then p(r1, r2) = r1r2 is the product of r1 and r2.

3. Convergent splittings and approximate inverses. In this section we
show how to construct convergent splittings and approximate inverses for Hermitian
positive definite matrices based on iteration arithmetic. Throughout the section A
stands for a Hermitian positive definite matrix unless specialized.

For a matrix B denote by B∗ the conjugate transpose of B and define A-norm
by ‖B‖A = ‖A1/2BA−1/2‖2. We now show the following basic result. The first part
is essentially the same as the result in [12] (Theorem 5.3, page 79).

Theorem 3.1. Let A be a Hermitian positive definite matrix and A = M − N .
Then

a) M is nonsingular and ‖M−1N‖A < 1 if and only if M + M∗ > A, and
b) any eigenvalue of M−1N satisfies |λ(M−1N)| ≥ 1 if M is nonsingular and

M + M∗ ≤ A.
Proof. Note that if a matrix Q satisfies Q + Q∗ ≥ A, then Q is nonsingular.
Denote C = A1/2M−1NA−1/2 = I − A1/2M−1A1/2. We find that

CC∗ = (I − A1/2M−1A1/2)(I − A1/2(M∗)−1A1/2)(3.1)
= I − A1/2M−1A1/2 − A1/2(M∗)−1A1/2 + A1/2M−1A(M∗)−1A1/2

= I − A1/2M−1(M + M∗ − A)(M∗)−1A1/2,

which implies the conclusion of a).
4

If M + M∗ ≤ A, then (−N) + (−N)∗ = 2A − (M + M∗) ≥ A, which implies
that N is nonsingular. Applying a) to the splitting A = (−N) − (−M) shows that
‖N−1M‖A ≤ 1. Therefore, any eigenvalue of N−1M satisfies |λ(N−1M)| ≤ 1, show-
ing the conclusion of b).

For a Hermitian positive definite matrix A denote

SA = {O : O is an iterator corresponding to
a splitting A = M − N satisfying M + M∗ > A}.

Theorem 3.1 shows that O is convergent if O ∈ SA. Let O be an iterator corresponding
to a splitting A = M − N with a nonsingular matrix M . Define ‖O‖A = ‖M−1N‖A

and ρ(O) = ρ(M−1N). We show the following result on iteration arithmetic.
Theorem 3.2. Let A be a Hermitian positive definite matrix and Oi ∈ SA,

i = 1, . . . , k. Then any arithmetic iterator O = p(O1, . . . , Ok) belongs to SA and
‖O‖A ≤ p(‖O1‖A, . . . , ‖Ok‖A).

Proof. Let O1, O2 ∈ SA be two iterators corresponding to splittings A = M1−N1

and A = M2 − N2, respectively. Then the multiplication of O1 and O2 is a basic
iteration corresponding to the splitting A = M − N . The inverse of M is given by
(2.7). It follows from (2.8) and a) of Theorem 3.1 that

‖M−1N‖A ≤ ‖M−1
1 N1‖A‖M−1

2 N2‖A < 1.

Applying a) of Theorem 3.1 again shows that the multiplication of O1 and O2 belongs
to SA. Similarly, the α-addition of O1 and O2 belongs to SA. Hence, O ∈ SA

follows immediately from induction. Following (2.8) and (2.11) we find that ‖O‖A ≤
p(‖O1‖A, ‖O2‖A) if O is the multiplication or the α-addition of O1 and O2. The
inequality ‖O‖A ≤ p(‖O1‖A, . . . , ‖Ok‖A) follows from induction too.

Assume that we know a number of iterators O1, . . . , Ok ∈ SA. According to The-
orem 3.2 any arithmetic iterator of O1, . . . , Ok is a convergent iterator. For example,
let O ∈ SA be an iterator corresponding to a splitting A = M −N . Define the power
of O by O2 = OO and Ok = Ok−1O for k > 2. Theorem 3.2 shows that Ok ∈ SA

corresponding to the splitting A = Pk − Qk. Applying (2.7) and (2.8) shows that

P−1
k = M−1

k−1∑
i=0

(NM−1)i(3.2)

and the iteration matrix P−1
k Qk = (M−1N)k.

For any O ∈ SA corresponding to a splitting A = M − N , we have

‖M−1A − I‖A = ‖M−1N‖A < 1.(3.3)

Therefore, M−1 is a fair approximate inverse of A. This approximation can be im-
proved by iteration arithmetic. The kth power of O yields an approximate inverse
M−1

k given by (3.2), which is the truncation of Neumann series and was first studied
as preconditioning in [2]. However, M is usually not Hermitian. This brings some dif-
ficulty when M is applied as a preconditioner for a Hermitian positive definite matrix,
in particular, if a preconditioned conjugate gradient method is involved. By using it-
eration arithmetic the difficulty can be overcome by multiplication symmetrization or
addition symmetrization defined as follows.

Definition 3.3. Let A be a Hermitian matrix and O be an iterator corresponding
to a splitting A = M − N . Denote by O∗ the iterator corresponding to the splitting

5

A = M∗ − N∗. The multiplication symmetrization of O is defined by m(O) = OO∗
and the addition symmetrization of O is defined by a(O) = 1

2 (O + O∗).
If O ∈ SA then O∗ ∈ SA because M +M∗ > A. Theorem 3.2 shows m(O), a(O) ∈

SA. The trace of multiplication symmetrization is easily found in the literature. The
SSOR is the multiplication symmetrization of the SOR method. Let A = Mm − Nm

and A = Ma − Na be splittings of m(O) and a(O), respectively. Then Mm and Ma

are Hermitian positive definite matrices due to the following lemma.
Lemma 3.4. Let A be a Hermitian positive definite matrix and O ∈ SA be an

iterator corresponding to a splitting A = M−N . If M is Hermitian then M is positive
definite, ρ(M−1N) = ‖M−1N‖A and

κ(M−1A) ≤ 1 + ρ(M−1N)
1 − ρ(M−1N)

.(3.4)

Proof. A straightforward computation shows that

ρ(M−1N) = ρ(A1/2M−1NA−1/2) = ρ(I − A1/2M−1A1/2)(3.5)
= ‖I − A1/2M−1A1/2‖2 = ‖M−1N‖A,

which also implies that

1 − ρ(M−1N) ≤ λ(M−1A) ≤ 1 + ρ(M−1N).

Therefore, M is positive definite because λ(A1/2M−1A1/2) = λ(M−1A) > 0 and (3.4)
follows immediately.

Corollary 3.5. Let A be a Hermitian positive definite matrix and O, J ∈ SA.
Then (OJ)∗ = J∗O∗ and (O(α+)J)∗ = O∗(α+)J∗.

Proof. The proof is trivial.
Theorem 3.2 shows how to construct convergent splittings and approximate in-

verses based on iteration arithmetic. To do this, we need to know some basic iterators
in SA. This is easily fulfilled by applying Theorem 3.1. Split A = D−E −E∗, where
D is a Hermitian positive definite matrix. It follows from Lemma 5.6 in [7] that the
eigenvalues of the Jocabi matrix D−1(E +E∗) are real and strictly less than one. Let
M = D1 − E and N = −D2 + E∗, where D = D1 + D2. Applying Theorem 3.1
shows that ‖M−1N‖A < 1 if and only if D1 > D2, which provides a lot of convergent
splittings for A. For example, if D is the diagonal or the block diagonal of A and
E ∈ Ln, we have plenty of choices of diagonal or block diagonal matrices for D1 and
D2 such that D1 > D2. A special case is the SOR splitting with D1 = D/ω and
D2 = (1 − 1/ω)D. In the following theorem a bound of ‖M−1N‖A is presented for
the SOR method and the generalization of the SOR method [7] with 0 < ω < 2.

Theorem 3.6. Let A be a Hermitian positive definite matrix and split A = M−N
with M = D/ω−E and N = (1/ω−1)D+E∗, where D is a Hermitian positive definite
matrix and ω is a real parameter. Then ‖M−1N‖A < 1 if and only if 0 < ω < 2, and
if 0 < ω < 2 then

‖M−1N‖A ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
1 − ω(2 − ω)(1 − β)

1 − βω + r2ω2
if r2ω2 ≥ ω − 1,√

1 − ω(2 − ω)(1 − α)
1 − αω + r2ω2

if r2ω2 < ω − 1,

(3.6)

6

where r ≥ ‖D−1/2ED−1/2‖2, α and β < 1 are a lower bound and an upper bound of
the Jacobi matrix D−1(E + E∗), respectively. Furthermore,

min
0<ω<2

‖M−1N‖A ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
4r2 − β2√

1 − 2(β − 2r2) + 1 − β
if 4r2 > β,

2r

1 +
√

1 − 4r2
if α ≤ 4r2 ≤ β,

√
4r2 − α2√

1 − 2(α − 2r2) + 1 − α
if 4r2 < α.

(3.7)

Proof. Since A = D − E − E∗ and M + M∗ = 2D/ω − E − E∗, we find that
M + M∗ > A if and only if 0 < ω < 2. Applying Theorem 3.1 shows the first part of
the theorem.

If 0 < ω < 2, it follows from (3.1) that

‖M−1N‖2
A = λmax(I − 2 − ω

ω
A1/2M−1D(M∗)−1A1/2))

= λmax(I − 2 − ω

ω
D1/2(M∗)−1AM−1D1/2))

= 1 − ω(2 − ω) min
y∈Cn

y∗(I − D−1/2(E + E∗)D−1/2)y
y∗(I − D−1/2E∗D−1/2)(I − D−1/2E∗D−1/2)y

≤ 1 − ω(2 − ω) min
y∈Cn

1 − y∗(D−1/2(E + E∗)D−1/2)y/y∗y
1 − y∗(D−1/2(E + E∗)D−1/2)y/y∗y + ω2r2

≤ 1 − ω(2 − ω)
1 − x

1 − ωx + ω2r2
,

where x = y∗(D−1/2(E + E∗)D−1/2y. The rest of the proof is essentially the same
as that of Theorem 5.7 in [7].

Note that if D is the diagonal of A, then the diagonal of E + E∗ is zero, which
implies that D−1/2(E + E∗)D−1/2 is neither positive definite nor negative definite.
Thus, α ≤ 0 and 4r2 < α never occurs. This is the case for the SOR method and the
generalization of the SOR method in [7].

By comparison of Theorem 3.6 with Theorem 5.7 in [7], the bounds given by (3.6)
and (3.7) are very similar to the bounds of ρ(M−1N) given by Theorem 5.7 in [7].
The slight difference is the requirements of r in two results, say, r ≥ ‖D−1/2ED−1/2‖2

in Theorem 3.6 while r ≥ r(D−1/2ED−1/2) in the other one, where r(D−1/2ED−1/2)
is the numerical radius of D−1/2ED−1/2. However, they are two independent results
because ρ(M−1N) ≤ ‖M−1N‖A and r(D−1/2ED−1/2) ≤ ‖D−1/2ED−1/2‖2 [4].

Let O be an iterator corresponding to a splitting A = M−N , where M satisfies the
conditions of Theorem 3.6 with 0 < ω < 2. By applying Theorem 3.2 and Theorem 3.6,
it is straightforward to obtain bounds of ‖m(O)‖A, ‖a(O)‖A, ‖Ok‖A and so on. For
example, assume that the diagonal of E + E∗ is zero and let σ = ‖D−1/2ED−1/2‖2.
Applying Theorem 3.2 and Theorem 3.6 shows that if 4σ2 > β, then

‖m(O)‖A ≤ ‖M−1N‖2
A ≤ 4σ2 − β2

((1 − 2β + 4σ2)1/2 + 1 − β)2
(3.8)

=
(
1 − 1 − β

(1 − 2β + 4σ2)1/2

)/(
1 +

1 − β

(1 − 2β + 4σ2)1/2

)
7

with ω0 = 2
1+(1−2β+4σ2)1/2 and if 4σ2 ≤ β, then

‖m(O)‖A ≤ ‖M−1N‖2
A =

4σ2

(1 + (1 − 4σ2)1/2)2
≤ 1 − (1 − 4σ2)1/2

1 + (1 − 4σ2)1/2
(3.9)

with ω0 = 2
1+(1−4σ2)1/2 . Let γ = max(σ2, 1/4). Then 4γ ≥ 1 > β because β < 1.

Applying (3.8) shows

‖m(O)‖A ≤
(
1 − 1 − β

(1 − 2β + 4γ)1/2

)/(
1 +

1 − β

(1 − 2β + 4γ)1/2

)
(3.10)

with ω0 = 2
1+(1−2β+4γ)1/2 . In particular, if σ2 ≤ 1/4 then 4γ = 1, inequality (3.10)

becomes

‖m(O)‖A ≤
(
1 −

(1 − β

2

)1/2)/(
1 +

(1 − β

2

)1/2)
.(3.11)

with ω0 = 2
1+(2(1−β))1/2 . Applying (3.10) and (3.11) to the SSOR method we im-

mediately obtain the fundamental result on convergence of the SSOR method due to
Habetler and Wachspress [5], and Ehrlich [3], and Young [12] summarized in Young’s
book [12] (Theorem 3.1, page 464). However, straightforwardly applying (3.8) and
(3.9) further improves the fundamental result on the SSOR method.

Now we proceed to estimate ρ(m(O)) and ρ(a(O)) for O ∈ SA. Let B be an n×n
matrix and λ1, . . . , λn be the eigenvalues of B. We denote

τ(B) = max
1≤i≤n

|Re(λi)|(3.12)

and define τ(O) = τ(M−1N).
Theorem 3.7. Let A be a Hermitian positive definite matrix and O ∈ SA. Then

ρ(m(O)) = ‖O‖2
A ≥ ρ(O)2 and τ(O) ≤ ρ(a(O)) ≤ ‖O‖A.

Proof. Let O be an iterator corresponding to a splitting A = M − N and denote
C = A1/2M−1NA−1/2 = I − A1/2M−1A1/2. We find

C∗ = I − A1/2(M∗)−1A1/2 = A1/2(M∗)−1N∗A−1/2,

which implies that ρ(O∗) = ρ(O) and ‖O∗‖A = ‖O‖A. A straightforward calculation
shows that

ρ(m(O)) = ρ(M−1N(M∗)−1N∗) = ρ(A1/2M−1NA−1/2A1/2(M∗)−1N∗A−1/2)
= ρ(CC∗) = ‖C‖2

2 = ‖M−1N‖2
A ≥ ρ(O)2.

Let λ be an arbitrary eigenvalue of M−1N . Then λ is an eigenvalue of C. Assume
that x is the corresponding eigenvector, i.e., Cx = λx. Computing ρ(a(O)) we find
that

ρ(a(O)) =
1
2
ρ(M−1N + (M∗)−1N∗)

=
1
2
ρ(A1/2(M−1N + (M∗)−1N∗)A−1/2)

=
1
2
ρ(C + C∗) =

1
2
‖C + C∗‖

=
1
2

max
y∈Cn

,y �=0

|y∗(C + C∗)y|
y∗y

≥ |x∗(C + C∗)x|
x∗x

= |Re(λ)|,
8

which implies that ρ(a(O)) ≥ τ(O). The inequality ρ(a(O)) = ‖a(O)‖A ≤ ‖O‖A

follows from Theorem 3.2.
As basic methods m(O) and O2 need same computational cost at each iteration.

However, m(O) cannot be faster than O2 because

ρ(m(O)) = ‖O‖2
A ≥ ‖O2‖A ≥ ρ(O2).

The advantage of m(O) is that it produces a Hermitian positive definite precondi-
tioner. Since

A1/2M−1
m A1/2 = A1/2M−1

m AA−1/2 = I − A1/2M−1
m NmA1/2

= I − A1/2M−1NA−1/2A1/2(M∗)−1N∗A−1/2 = I − CC∗,

where C = I − A1/2M−1A1/2 = A1/2M−1NA−1/2, applying Theorem 3.7 shows

λmax(M−1
m A) = 1 − λmin(CC∗),

λmin(M−1
m A) = 1 − λmax(CC∗) = 1 − ‖O‖2

A.

Therefore, the condition number of M−1
m A is given by

κ(M−1
m A) =

1 − λmin(CC∗)
1 − ‖O‖2

A

.(3.13)

Addition symmetrization also yields a Hermitian positive definite preconditioner.
Applying Lemma 3.4 and Theorem 3.7 shows

κ(M−1
a A) ≤ 1 + ‖O‖A

1 − ‖O‖A
=

(1 + ‖O‖A)2

1 − λmin(CC∗)
κ(M−1

m A).(3.14)

In practice, λmin(CC∗) is very close to zero and κ(M−1
a A) � 4κ(M−1

m A). Hence, if
multiplication symmetrization yields a good preconditioner, addition symmetrization
can yield a reasonably good preconditioner too. For example, consider the matrix
arising from the Dirichlet problem on the unit square discretized by a central difference
scheme

A = blocktridiag(Ai,i−1, Aii, Ai,i+1),

where Ai,i−1 = Ai,i+1 = −I and Aii = tridiag(−1, 4,−1). Split A = D − L − LT ,
where D is the diagonal of A and L is the strictly lower triangular part of A. Let O
be the iterator corresponding to the SOR splitting A = M − N with M = D/ω − L,
where 0 < ω < 2. It is well known that ρ(D−1(L+LT)) = cosπh and is easily checked
that ‖D−1/2LD−1/2‖2 ≤ 1/2. With ω = 2/(1 + (2(1 − β))1/2) it follows from (3.6)
that

‖O‖A ≤ 1 − sin(πh/2)
1 + sin(πh/2)

≈ 1 − πh.

Therefore, applying (3.13) and (3.14) shows

κ(M−1
m A) ≤ 1

1 − ‖O‖2
A

≈ 1
2π

h−1,

κ(M−1
a A) ≤ 2

1 − ‖O‖A
≈ 2

π
h−1.

9

An obvious advantage of addition symmetrization preconditioning over multipli-
cation symmetrization preconditioning is that the first one is more easily performed
on a parallel computing platform. Since m(O) cannot be faster than O2, the approx-
imate inverse generated by m(Ok) with a proper positive integer k is recommended if
multiplication symmetrization is applied for preconditioning.

4. Preconditioning average. Let A be a Hermitian positive definite matrix.
Straightforward application of approximate inverses and symmetrization provides pre-
conditioners to solve the linear system Ax = b as shown in §3. In this section, we
improve those approximate inverse preconditionings by introducing preconditioning
average. However, the issue is addressed in a general framework, which can be used
to improve any preconditioning method.

Assume that there are a matrix B and a unitary matrix U satisfying

A = U∗BU.(4.1)

Let C1 be a preconditioner of A and C2 be a preconditioner of B. Then U∗C2U
is another preconditioner of A and (U∗C2U)−1 = U∗C−1

2 U . Following the idea of
α-addition of iterators , we define a preconditioner C of A whose inverse is given by

C−1 = αC−1
1 + βU∗C−1

2 U,(4.2)

where α and β are nonnegative number satisfying α + β > 0. This approach is called
preconditioning average. In practice, U is often a permutation matrix. Usually, we
assume that C1 and C2 are Hermitian positive definite matrices. Therefore, C is a
Hermitian positive definite matrix. Since

C−1d = αC−1
1 d + βU∗C−1

2 Ud

for a vector d, solving the linear system Cz = d is straightforward.
To understand the behavior of the preconditioner defined by (4.2) we first state

some results on convergence of a preconditioned conjugate gradient method. Let D
be an n × n matrix with positive eigenvalues λ1, . . . , λn and denote

µ(D) =
(1

n

n∑
i=1

λi

)n/ n∏
i=1

λn.(4.3)

It is readily seen that µ(D) =
(

1
n tr(D)

)n
/det(D), where tr(D) is the trace of D and

det(D) is the determinant of D. Following Kaporin [6] we illustrate the following
results. The results are also found in [1].

a) Let A and B be Hermitian positive matrices then

µ(αA + βB) ≤ max(µ(A), µ(B)),

where α and β are nonnegative constants.
b) Let A be a Hermitian positive definite matrix and C be a Hermitian positive

definite preconditioner of the linear system Ax = b. Then the smaller the
value of µ(C−1A) the faster the convergence of the preconditioned conjugate
gradient method.

Note that in [6] and [1] the results are stated for symmetric positive definite matrices.
Following their proofs we find that the results are true for Hermitian positive definite
matrices.

10

Let C be the preconditioner defined by (4.2). Because

µ(C−1A) = µ(A1/2C−1A1/2) = µ(αA1/2C−1
1 A1/2 + βA1/2U∗C−1

2 UA1/2)

= µ(αA1/2C−1
1 A1/2 + βU∗B1/2C2B

1/2U),

applying a) shows that

µ(C−1A) ≤ max(µ(C−1
1 A), µ(C−1

2 B))(4.4)

For condition number we show a similar inequality. Note that the assumption
A = U∗BU implies A1/2 = U∗B1/2U . A straightforward computation shows that

λmin(C−1A) = λmin(A1/2C−1A1/2)
= λmin(αA1/2C−1

1 A1/2 + βA1/2U∗C−1
2 UA1/2)

= λmin(αA1/2C−1
1 A1/2 + βU∗UA1/2U∗C−1

2 UA1/2U∗U))

= λmin(αA1/2C−1
1 A1/2 + βU∗B1/2C−1

2 B1/2U)

≥ αλmin(A1/2C−1
1 A1/2) + βλmin(B1/2C−1

2 B1/2)
= αλmin(C−1

1 A) + βλmin(C−1
2 B).

Similarly, we find that

λmax(C−1A) ≤ αλmax(C−1
1 A) + βλmax(C−1

2 B).

Therefore, the condition number of C−1A is bounded by

κ(C−1A) ≤ αλmax(C−1
1 A) + βλmax(C−1

2 B)
αλmin(C−1

1 A) + βλmin(C−1
2 B)

≤ max(κ(C−1
1 A), κ(C−1

2 B)).(4.5)

In particular, if B = A and C2 = C1, (4.4) and (4.5) show

κ(C−1A) ≤ κ(C−1
1 A), µ(C−1A) ≤ µ(C−1

1 A)(4.6)

Inequalities (4.4), (4.5) and (4.6) are only rough estimates. We proceed to pro-
vide a concrete example to show that preconditioning average indeed improves some
preconditioning methods.

Lemma 4.1. Let A and B be Hermitian positive definite matrices. If A − B is
Hermitian positive semidefinite and A − B �= 0, then det(A) > det(B).

Proof. Denote D = A − B. Then A−1/2BA−1/2 = I − A−1/2DA−1/2. Let
λ1, . . . , λn be the eigenvalues of A−1/2BA−1/2 and x1, . . . ,xn be the corresponding
eigenvectors. Since D �= 0 is Hermitian positive semidefinite, there is at least one xk,
1 ≤ k ≤ n such that x∗

kA−1/2DA−1/2xk > 0. On the other hand,

λi =
x∗

i A
−1/2BA−1/2xi

x∗
i xi

= 1 − x∗
i A

−1/2DA−1/2xi

x∗
i xi

.

This shows λi ≤ 1 for i = 1, . . . , n and λk < 1. Finally, computing the rate of
det(B)/det(A) we find that

det(B)
det(A)

= det(A−1)det(B) = det(A−1/2BA−1/2) =
n∏

i=1

λi < 1,

11

which concludes the proof of the lemma.
Assume that B = A and U is a permutation matrix such that U2 = I. The

conditions are satisfied for some problems in practice. For example, matrices arising
from an elliptic equation

− ∂

∂x

(
a1

∂

∂x
u

)
− ∂

∂y

(
a2

∂

∂y
u

)
= f on Ω = (0, 1) × (0, 1),(4.7)

u|∂Ω = g

discretized by a central difference scheme or certain finite element methods satisfy
our assumptions if a1(x, y) = a2(x, y). Details will be given in the following section.
Let C1 be a preconditioner of A. Choosing C2 = C1 and α = β = 1, we now show
that the second inequality in (4.6) is strict.

Due to U2 = I, an eigenvalue of U is either 1 or −1. Since U is a permutation
matrix, thus an orthogonal matrix, we find U∗ = U , i.e., U is a symmetric matrix.
Equation (4.1) implies AU = UA. Because A and U are Hermitian matrices, it follows
from the well-known result that there exist a unitary matrix P such that

P ∗AP = diag(λ1, . . . , λn), P ∗UP =
(

Im 0
0 −Ik

)
,(4.8)

where λ1, . . . , λn are the eigenvalues of A, and m and k are the numbers of the
eigenvalues 1 and −1 of U , respectively. Let A1/2 = Pdiag(

√
λ1, . . . ,

√
λn)P ∗ and

partition

G1 ≡ P ∗A1/2C−1
1 A1/2P =

(
A11 A12

A22 A22

)
,(4.9)

where A11 is an m × m matrix, and A22 is a k × k matrix, and A∗
21 = A12. Applying

(4.8) we find that A1/2UC−1
1 UA1/2 = UA1/2C−1

1 A1/2U and

G2 ≡ P ∗UA1/2C−1
1 A1/2UP(4.10)

= P ∗UPP ∗A1/2C−1
1 A1/2PP ∗UP

=
(

Im 0
0 −Ik

) (
A11 A12

A21 A22

) (
Im 0
0 −Ik

)

=
(

A11 −A12

−A21 A22

)
.

Let G = G1 + G2. Then µ(C−1
1 A) = µ(G1), µ(C−1A) = µ(G) and

G =
(

A11 0
0 A22

)
.

It is obvious that tr(G1) = tr(A11) + tr(A22) = tr(G). The decomposition of

G1 =
(

Im 0
A21A

−1
11 Ik

) (
A11 A12

0 A22 − A21A
−1
11 A12

)

shows that det(G1) = det(A11)det(A22 − A21A
−1
11 A12). If A12 is a non-zero matrix,

which is often the case if C1 is generated by a block preconditioning, Lemma 4.1 shows
12

that det(A22 − A21A
−1
11 A12) < det(A22). Therefore

µ(C−1
1 A) = µ(G1) =

(1
n

tr(G1)
)n

/det(G1)

=
(1
n

tr(G)
)n

/
(
det(A11)det(A22 − A21A

−1
11 A12)

)
> (

1
n

tr(G))n/(det(A11)det(A22)) = µ(G)

= µ(C−1A).

Although we only show that the preconditioner given by (4.2) provides faster conver-
gence when applied to a preconditioned conjugate gradient method for the isotropic
case a1(x, y) = a2(x, y), as we will see in the numerical section of the paper precon-
ditioning average significantly improves the performance of the approximate inverse
preconditionings proposed in the previous section.

5. Numerical examples. In this section we present some numerical examples
using the approximate inverse preconditionings discussed in §3 and preconditioning
average to solve (4.7).

The discretization of (4.7) by a central difference scheme with a uniform meshsize
h and the lexicographic order of the mesh points yields the following linear system

Ax = b,(5.1)

where A is a block tridiagonal matrix given by

A = blocktridiag(−Ai,i−1, Aii,−Ai,i+1)

with tridiagonal matrices Aii and diagonal matrices Ai,i−1 and Ai,i+1.
Let B be the difference matrix of (4.7) discretized with the uniform meshsize h

and the columnwise order of the mesh points. It is readily verified that A = UBU
and U2 = I, where U is the permutation matrix corresponding to the permutation(

1 2 · · · m m + 1 · · · 2m · · ·m2

1 n + 1 · · · (m − 1)m + 1 2 · · · (m − 1)m + 2 · · ·m2

)
.

In particular, if a1(x, y) = a2(x, y), then A = B.
Let D = blockdiag(A11, . . . , Amm) and

P = stair1(Ai,i−1, 0, Ai,i+1), Q = stair2(Ai,i−1, 0, Ai,i+1).

We split A = M − N by defining

M = D/ω − P, N = (1/ω − 1)D − Q,

where 0 < ω < 2 is a parameter. The matrix B is of the same form as A. We split
B = M1 − N1 in the same way.

Let O ∈ SA be the iterator corresponding to the splitting A = M − N and
O1 ∈ SB be the iterator corresponding to the splitting B = M1 − N1. Linear system
(5.1) is solved by preconditioned conjugate gradient methods. The right-hand side
of the linear system is chosen such that the function u(x, y) = x(1 − x)y(1 − y)exy

generates the solution on the grid. Let k be a positive integer. The preconditioners
adopted are

13

• Ak, the approximation of A−1 generated by a(Ok);
• Mk, the approximation of A−1 generated by m(Ok);
• Ca = Ak+UÃkU , where Ãk is the approximation of B−1 generated by a(Ok

1);
• Cm = Mk + UM̃kU , where M̃k is the approximation of B−1 generated by

m(Ok
1).

We consider six examples. The meshsize is chosen to be h = 1/128 for every one. The
stopping criterion is

‖ri‖2/‖r0‖2 < 10−7,(5.2)

where ri = b − Ax(i) is the ith residual and the initial guess is x(0) = (1, 1, . . . , 1)T .
We run with two parameters used frequently in practice. One is the optimal parameter
ω = 1.9329 of the block SOR method for the model problem a1(x, y) = a2(x, y) = 1.
The other one is ω = 1. The results are presented by iteration numbers of the
preconditioned conjugate gradient methods with different preconditioners mentioned
above. Notation Nc represents the iteration number of the conjugate gradient method.

Example 1: The model problem a1(x, y) = a2(x, y) = 1.
Example 2: A discontinuous coefficients given by

a1(x, y) = a2(x, y) =
{

104 if (x − 0.5)2 + (y − 0.5)2 ≤ 0.125,
1 otherwise.

Example 3: Anisotropic and discontinuous coefficients given by a2(x, y) = 1 and

a1(x, y) =
{

103 if (x, y) ∈ [0.25, 0.75]× [0.25, 0.75],
10−3 otherwise.

Example 4: Again anisotropic and discontinuous coefficients given by a1(x, y) = 1
and

a2(x, y) =
{

103 if (x, y) ∈ [0.25, 0.75]× [0.25, 0.75],
10−3 otherwise.

This example is used to test the different ordering of mesh points to the methods.
Linear system (5.1) is the same as that of Example 3 if equation (4.7) of Example 3
is discretized with the columnwise ordering of the mesh points.

Example 5: Anisotropic coefficients in some parts of the domain given by

a1(x, y) =
{

10−5 if (x, y) ∈ [0, 0.7]× [0, 0.7],
1 otherwise.

a2(x, y) =
{

10−5 if (x, y) ∈ [0.3, 1]× [0.3, 1],
1 otherwise.

Example 6: Again anisotropic coefficients in some parts of the domain given by

a1(x, y) =
{

106 if (x, y) ∈ [0.2, 0.3]× [0.2, 0.3],
1 otherwise.

a2(x, y) =
{

106 if (x, y) ∈ [0.7, 0.8]× [0.7, 0.8],
1 otherwise.

14

Table 5.1

Iteration numbers, Example 1, Nc = 294

ω = 1.9329 ω = 1.0
k Ak Mk Ca Cm Ak Mk Ca Cm

1 113 213 106 119 137 112 127 99
2 61 90 58 57 87 65 78 58
3 43 56 40 36 69 50 62 45
4 33 40 32 27 58 42 53 38
5 28 31 27 21 52 37 47 34
6 23 25 23 18 47 34 42 30

Table 5.2

Iteration numbers, Example 2, Nc = 9582

ω = 1.9329 ω = 1.0
k Ap Mk Ca Cm Ak Mk Ca Cm

1 183 342 149 168 221 182 181 139
2 97 146 81 79 140 105 113 83
3 68 81 57 51 110 81 89 65
4 53 64 46 38 94 68 76 55
5 44 70 39 30 83 60 68 49
6 38 40 34 25 76 54 61 44

Table 5.3

Iteration numbers, Example 3, Nc = 13499

ω = 1.9329 ω = 1.0
k Ak Mk Ca Cm Ak Mk Ca Cm

1 259 466 78 104 294 248 77 66
2 140 203 48 52 180 136 53 43
3 95 125 46 38 143 105 44 36
4 71 92 31 31 122 88 39 32
5 58 70 33 27 109 79 36 30
6 49 57 25 23 99 70 34 28

Table 5.4

Iteration numbers, Example 4, Nc = 13931

ω = 1.9329 ω = 1.0
k Ak Mk Ca Cm Ak Mk Ca Cm

1 1145 2023 78 104 1320 1073 77 66
2 606 879 48 52 845 631 53 43
3 411 553 46 38 670 493 44 36
4 312 339 31 31 574 419 39 32
5 254 308 33 27 513 371 36 30
6 214 249 25 23 466 388 34 28

15

Table 5.5

Iteration numbers, Example 5, Nc = 10428

ω = 1.9329 ω = 1.0
k Ak Mk Ca Cm Ak Mk Ca Cm

1 196 374 85 88 238 196 102 73
2 103 159 57 43 150 112 65 44
3 71 99 38 29 119 87 54 35
4 54 71 31 22 101 69 46 30
5 46 54 27 18 84 61 41 27
6 39 44 25 16 77 55 38 24

Table 5.6

The iteration numbers, Example 6, Nc = 2569

ω = 1.9329 ω = 1.0
k Ak Mk Ca Cm Ak Mk Ca Cm

1 853 1544 125 144 1032 823 143 101
2 450 662 68 68 657 488 96 72
3 317 412 46 45 526 382 77 56
4 246 295 35 32 446 321 67 48
5 207 226 30 26 394 282 60 42
6 127 183 27 22 363 260 54 38

As we see from Tables 5.1–5.6, even with k = 1 the approximate inverse pre-
conditioners Ak and Mk substantially reduce the iteration number of the conjugate
gradient method for each example. For isotropic problems the preconditioners Ca

and Cm improve Ak and Mk consistently with our analysis in §4. For anisotropic
problems, Ca and Cm significantly improve Ak and Mk, showing some independence
of anisotropy.

Since Ak, Mk, Ca and Cm are constructed by using block stair matrices, they are
easily performed on a parallel computing platform. Among them Ca is certainly the
best choice for parallel computation.

Based on the splittings A = M−N and B = M1−N1, there are a number of ways
to construct preconditioners for (5.1) by using arithmetic iterators and symmetrization
techniques. We briefly mention a few of them. Since A = UBU , the splitting B =
M1 −N1 yields a splitting of A by A = M̃ − Ñ , where M̃ = UM1U and Ñ = UN1U .
Let Õ be the iterator corresponding to the splitting A = M̃ − Ñ . Due to M̃ + M̃∗ =
U(M1 + M∗

1)U > UBU = A, applying Theorem 3.1 shows Õ ∈ SA. Denote E = OÕ

and J = 0.5(O+Õ). Then for a positive integer k, the approximate inverses generated
by a(Ek), a(Jk), m(Ek) and a(Jk) provides us other four preconditioners.

REFERENCES

[1] O. Axelsson, Iterative Solution Methods, Cambridge University Press, New York, 1994.
[2] P. F. Dubois, A. Greenbaum, and G. H. Rodrigue, Approximating the inverse of a matrix

for use in iterative algorithms on vector processors, Computing, 22 (1979), pp. 257–268.
[3] L. W. Ehrlich, The block symmetric successive overrelaxation method, J. Soc. Indust. Appl.

Math., 12 (1964), pp. 807–826.

16

[4] M. Goldberg and E. Tadmor, On numerical radius and its applications, Linear Algebra
Appl., 42 (1982), pp. 263–284.

[5] G. J. Habetler and E. L. Wachspress, Symmetric successive overrelaxation in solving di-
ifusion difference equations, Math. Comp., 15 (1961), pp. 356–362.

[6] I. E. Kaporin, An alternative approach to estimation of the conjugate gradient iteration num-
ber, in Numerical Methods and Software, Y. A. Kuznetsov, ed., Acad. Sci. USSR., Moscow,
1990, p. (in Russian).

[7] H. Lu, Stair matrices and their generalizations with applications to iterative methods I: A
generalization of the successive overrelaxation method, SIAM J. Numer. Anal., (to appear).

[8] D. P. O’Leary and R. E. White, Multisplittings of matrices and parallel solution of linear
systems, SIAM J. Algebraic Discrete Methods, 6 (1985), pp. 630–640.

[9] R. S. Varga, p-cyclic matrices: a generalization of the Young-Frankel successive overrelax-
ation scheme, Pacific J. Math, 9 (1959), pp. 617–628.

[10] , Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
[11] D. M. Young, Iterative methods for solving partial difference equations of elliptic type, Trans.

Amer. Math. Soc, 76 (1954), pp. 92–111.
[12] , Iterative Solution for Large Systems, Academic Press, New York, 1971.

17

