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Abstract. The purpose of this paper is to develop and analyze least-squares approximations
for elasticity problems. The major advantage of the least-square formulation is that it does
not require that the classical Ladyzhenskaya-Babǔska-Brezzi (LBB) condition be satisfied. By
employing least-squares functionals which involve a discrete inner product which is related to
the inner product in H−1(Ω) (the Sobolev space of order minus one on Ω) we develop a finite
element method which is unconditionally stable for problems with traction type of boundary
conditions and for almost and incompressible elastic media. The use of such inner products
(applied to second order problems) was proposed in an earlier paper by Bramble, Lazarov
and Pasciak [7].

1. Introduction

There are many papers written on the subject of approximation schemes for Stokes equa-
tions and the equations of linear elasticity (see, [14], [16], [17], [18], [26], [39] and the included
references). Mixed finite element methods involving a pair of approximation spaces are com-
monly used to handle the Stokes equations and avoid locking in linear elasticity problems.
These spaces cannot be chosen independently of one another and, for stability, need to satisfy
the so-called Ladyzhenskaya-Babuška-Brezzi (LBB) condition ([1], [15], [35]). To compute
the resulting discrete approximation one must solve saddle point problems. Although much
progress has been made in the development of efficient iterative procedures for solving such
problems [9], [38], they still pose some difficulties.

To avoid restrictions on the pairs of approximation spaces used in the mixed formulations
various stabilization techniques have been proposed and studied (see, e.g. [22], [25], [30], [31]).
These stabilization techniques either add some new terms to the functional in order to make
the corresponding finite element stiffness matrix uniformly stable (in the step-size h) stable,
or introduce new variables (in general, these are the stresses) and again stabilize the corre-
sponding bilinear forms. A common problem with these techniques is that the stabilization
terms contain some parameters which have to be chosen in a proper way in order to have a
stable scheme.

Another stabilization technique is based on the least-squares method. There are many
papers dealing with the application of least-squares methods to Stokes equations and linear
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elasticity (see, e.g. [3], [11], [17], [30], [31]). For a review of finite element methods of least-
squares type, we refer to the recent review paper of Bochev and Gunzburger [4].

In this paper, we consider a least-squares method motivated by a regularity result (Theorem
1) for the equations of linear elasticity. This result is the most natural stability estimate for
the system and is given in terms of the dual norm of the data, i.e., a negative norm. Any dis-
crete method motivated by the stability estimate requires replacement of the negative norm in
the computational algorithm. In fact, the convergence and stability properties of the resulting
algorithm critically depend on proper replacement. In this paper, we develop such a replace-
ment for a pressure/displacement formulation of the equations of linear elasticity that leads to
a stable and convergent computational algorithm. Moreover, the discrete formulation is such
that the approximation subspaces need only satisfy the usual essential boundary conditions
for the mixed pressure/displacement formulation even when different types of boundary con-
ditions are imposed on different parts of the boundary. Since the natural boundary conditions
need not be imposed on the subspaces, the method is valid for problems with internal material
interfaces such as those which result when different elastic materials are glued together. The
approach is related to that given in [11]. Below we discuss some works related to the approach
of our paper.

In [17], Cai, Manteffel, and McCormick discuss four different least-squares functionals for
the Dirichlet boundary value problem for the Lamé equations of the linear elasticity, including
the limiting case of an incompressible medium. Their formulation introduces the gradients
of the velocity vector as new unknown functions and adds d2 new unknowns, d = 2, 3 is the
dimension of the space. One of the least-squares functionals introduced there is defined in
terms of an H−1-norm. The discrete replacement for the H−1-norm alluded to in that paper
imposes additional restrictions on the approximation spaces used for the new variables. A
similar approach has been applied in [18] and [34] to the equations of the linear elasticity
with pure traction boundary conditions. In contrast to the method of this paper, the above
techniques do not extend to the case of mixed traction and Dirichlet boundary conditions or
to the case of internal material interfaces.

The least-squares approach of this paper is based on a discrete negative norm, a technique
developed in [8] and [11]. We note, that the first computable H−1-norm was used by R. Falk
in [24] to treat weakly the incompressibility condition ∇ · u = 0 for Stokes problems. We
use the physical variables, the velocity/displacements and the pressure. By working with the
original variables we have been able also to avoid the difficulties often arising in L2-norm least-
squares methods when imposing the boundary conditions. Our functional is properly scaled
with respect to the parameter related to the compressibility of the medium and all estimates
are independent of this parameter. Finally, the corresponding algebraic systems can be easily
preconditioned by using preconditioners for standard second order problems, a task which is
well understood (see, e.g., [2], [5], [10], [12], [13], [40]).

The outline of the remainder of the paper is as follows. In Section 2 we present the equations
of linear elasticity and derive stability estimates which are used for the least-squares formula-
tion. Section 3 describes and analyzes the least-squares method. By construction this method
uses preconditioning and gives rise to an algebraic system for which assembly of the matrix
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is not feasible (a feature quite characteristic for all preconditioned systems). Nevertheless, we
show that we can solve this system efficiently by an iterative method. In Section 4 we discuss
an implementation of the proposed least-squares method and its computational complexity.

2. The equations of linear elasticity with mixed boundary conditions

In this section, we introduce the equations of the linear elasticity. Here, we define the
necessary function spaces and provide an a priori inequality which is important for the stability
and convergence of the least-squares methods studied in this paper.

Let Ω be a Lipschitz domain with a polygonal or polyhedral boundary in d dimensional
Euclidean space for d = 2 or d = 3 with boundary Γ = ΓD ∪ ΓN . The deformations of the
elastic medium, Ω, due to given body forces F and external (boundary) forces f are described
by the displacement vector u = u(x) = (u1, . . . , ud). In the linear theory of elasticity the
symmetric strain tensor is defined as

εij = εij(u) ≡ 1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, i, j = 1, . . . , d.

Following [16], we introduce the Lagrange multiplier p by γp + ∇ · u = 0. Then the relation
between the strains, εij , p, and the stresses, σij is given by the linear Hooke’s law

σij(u, p) = 2µεij(u) − pδij, i, j = 1, · · · , d.

Here µ = µ(x) > 0 and λ = λ(x) > 0 are the Lamé coefficients, γ = (1 − 2σ)/(2µσ) = 1/λ, σ
is Poisson’s ratio and δij is the Kronecker delta.

Remark 1. Alternatively, we could define p to be the hydrostatic pressure. This results from
using εD = ε − d−1tr(ε)I and defining p so that

σij = 2µεD
ij − pδij .(2.1)

The hydrostatic pressure is thus given by

p = −(λ + 2µ/d)∇u.(2.2)

The algorithms and analysis of this paper can be extended to this case and would be valid even
when λ < 0 provided that λ + 2µ/d > 0. However, unless λ is large, there is no particular
reason to introduce the pressure since the standard finite element approximation is perfectly
well behaved. We use the original definition of p for convenience.

The classical problem describing linear steady state elastic deformations of the medium Ω
is: Find u and p satisfying

L(u, p) = F in Ω,(2.3)

γp + ∇ · u = 0 in Ω,(2.4)

u = 0 on ΓD,(2.5)

σν = f on ΓN .(2.6)
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Here

L(u, p) = (L1(u, p), . . . , Ld(u, p)) with Li(u, p) = −
d∑

j=1

∂σij

∂xj
,

for i = 1, . . . , d, and

σν =

( d∑
j=1

σ1jνj, . . . ,
d∑

j=1

σdjνj

)
,

where ν = (ν1, . . . , νd) is the outward unit normal vector to ΓN .

Remark 2. The equations of elastic deformation can be written in various equivalent forms.
The one given above is very convenient when the elastic medium is nonhomogeneous, i.e.
σ = σ(x) and µ = µ(x). In particular, for materials with piecewise constant coefficients the
following continuity conditions are satisfied on the surface Γ0 of the coefficient discontinuity:

[u] = 0 and [σν ] = 0 on Γ0.

Here [·] denotes the difference between the limits from the two sides of Γ0, σν is as above,
and ν is the normal to Γ0.

Remark 3. Poisson’s ratio satisfies 0 < σ ≤ 1/2. If σ is close to 1/2 the elastic material is
almost incompressible. When σ = 1/2 then (2.4) becomes the incompressibility condition and
the equations coincide with the Stokes equations. In this paper we consider both incompressible
and compressible elastic materials. This means that 0 < σ ≤ 1/2 and 0 < λ ≤ ∞. In all cases
we assume that the coefficient µ(x) satisfies

0 < µ0 ≤ µ(x) ≤ C0µ0 in Ω

with positive constants C0 and µ0.

Remark 4. If ΓD = ∅ then a necessary condition for existence of a steady state deformation
is equilibrium of the forces acting on the elastic body. This can be expressed in the following
way: Introduce the set of all rigid body motions, for d = 2,

R = {v : v(x) = A + b(−x2, x1) for all A, x ∈ R2 b ∈ R1};
and, for d = 3,

R = {v : v(x) = a + b × x for all a, b, x ∈ R3}.
Then the steady-state elastic deformations are possible only if∫

Ω

Fv dx +

∫
Γ

fv ds = 0 for all v ∈ R.

The solution u is unique provided that∫
Ω

uv dx = 0 for all v ∈ R.

Remark 5. If ΓN = ∅ and γ = 0 then p is determined only up to an additive constant. Thus,
it is unique if we require that

∫
Ω

p dx = 0.



LEAST-SQUARES FOR LINEAR ELASTICITY 5

The existence, stability, and regularity properties of solutions of the above problem are most
naturally described in terms of Sobolev spaces (see, e.g. [36], [37]). Let (·, ·) denote the L2(Ω)
inner product and || · || denote the corresponding norm. We will use the same inner product
and norm notation for vector valued functions in the product space (L2(Ω))d. For positive
values of s, let Hs(Ω) denote the Sobolev space of order s and || · ||s denote the corresponding
norm (cf. [29], [37]). We denote by H1(Ω) the space (H1(Ω))d. Let H1

D(Ω) be the set of
functions in H1(Ω) with vanishing trace on ΓD. In the case that ΓD is all of the boundary, we
denote this space as H1

0 (Ω). Its dual will be called H−1(Ω) with norm ‖ · ‖−1. The Dirichlet
form on Ω is defined by

D(v, w) ≡
∫

Ω

∇v · ∇w dx, for all v, w ∈ H1(Ω).

For simplicity, we assume that ΓD has positive measure. Since functions in H1
D(Ω) vanish

on ΓD, the Poincaré inequality implies that

||v||1 = D(v, v)1/2 for all v ∈ H1
D(Ω),

is a norm equivalent to the usual Sobolev norm. Let H1
D(Ω) denote the product space

(H1
D(Ω))d. Its norm is induced by the form

D(w, v) ≡
d∑

j=1

D(wj, vj).(2.7)

Without ambiguity, we will use || · ||1 to denote the norms in both H1
D(Ω) and H1

D(Ω). We
will also use Sobolev spaces with negative indices. In particular, the space H−1

D (Ω) is defined
to be those linear functionals on H1

D(Ω) for which the norm

||v||−1,D = sup
w∈H1

D(Ω)

[v, w]

||w||1

is finite. Here [v, w] denotes the value of the functional v at w. For v ∈ (L2(Ω))d the
functional [v, ·] = (v, ·) is identified with v.

We will use < ·, · >ΓN
to denote the inner product in L2(ΓN). For γ 	= 0 we define the space

Π to be L2(Ω) except if γ = 0 and ΓN = ∅ in which case Π is the set of functions in L2(Ω)
with zero mean value on Ω.

We introduce the bilinear form A0(u, v) by

A0(u, v) = 2

∫
Ω

µ

d∑
i,j=1

εij(u)εij(v) dx

and the bilinear form A(u, p; v)

A(u, p; v) =

∫
Ω

d∑
i,j=1

σij(u, p)εij(v) dx.
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Clearly,
A(u, p; v) = A0(u, v) − (p,∇ · v).

The quadratic form A(u, p; u) represents the potential energy of elastic deformations.
The following lemma may be found in, for example, [26], Theorem 2.2. It is proved in [37].

We will show, for convenience of the reader, how this inequality implies Korn’s inequality and
another inequality important to our work in this paper.

Lemma 1. Let Ω be a bounded domain with a Lipschitz boundary. There exists a constant
C > 0, depending only on Ω, such that

||p|| ≤ C

(
||p||−1 + sup

w∈H1

0(Ω)

(p,∇ · w)

||w||1

)
, for all p ∈ L2(Ω).(2.8)

¿From this lemma we may deduce the following version of Korn’s inequality.

Proposition 1. Assume that meas(ΓD) 	= 0. Then there is a constant C > 0 such that

Cµ0||u||21 ≤ A0(u, u), for all u ∈ H1
D(Ω).(2.9)

Proof: Since µ(x) ≥ µ0 > 0 it is enough to show this inequality for µ ≡ 1. To see this we
first prove that

C||u||21 ≤ ||u||2 + A0(u, u), for all u ∈ H1(Ω).(2.10)

This follows by noting that, for i, j fixed and any k,

∂2ui

∂xj∂xk

=
∂εik

∂xj

+
∂εij

∂xk

− ∂εjk

∂xi

and applying the lemma to p = ∂ui

∂xj
. Inequality (2.9) follows from a standard contradiction

argument, using the compact embedding of H1(Ω) in (L2(Ω))d and the fact that A0(u, u) = 0,
with u ∈ H1

D(Ω) implies u = 0. That is, if (2.9) is not true, there exists a sequence {un},
with un ∈ H1

D(Ω), such that ‖un‖1 = 1 and A0(un, un) → 0. By compactness there is a
subsequence, call it again {un}, such that un → u in (L2(Ω))d. Inequality (2.10) implies that
un → u in H1

D(Ω). Thus A0(u, u) = 0 which can hold only if u = 0. This is a contradiction
since the assumption that ‖un‖1 = 1 implies that ‖u‖1 = 1. Thus (2.9) is proved.

We may also deduce from the Lemma 1 another inequality which is crucial to this paper.

Proposition 2. Assume that meas(ΓD) 	= 0. Then there is a constant C > 0 such that

||p|| ≤ C sup
w∈H1

D(Ω)

(p,∇ · w)

||w||1
, for all p ∈ Π.(2.11)

Proof: To see this we note that by Lemma 1,

||p|| ≤ C

(
||p||−1 + sup

w∈H1

D(Ω)

(p,∇ · w)

||w||1

)
, for all p ∈ L2(Ω).
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Inequality (2.11) follows from a contradiction argument similar to that used in the previous
proposition. We use the compact embedding of L2(Ω) in H−1(Ω) and the fact that if p ∈ Π
and

sup
w∈H1

D(Ω)

(p,∇ · w)

||w||1
= 0

then p = 0.

The weak solution (u, p) in H1
D(Ω) × Π of the problem (2.3)-(2.6) satisfies

A(u, p; v) + (∇ · u + γp, q) = (F , v)+ < f , v >ΓN
,(2.12)

for all v ∈ H1
D(Ω), and q ∈ Π.

It follows from the above two propositions that problem (2.3)–(2.6) has unique solution in
H1

D(Ω) × Π for any F ∈ (L2(Ω))d and f ∈ (L2(ΓN))d. Indeed, (F , v)+ < f , v >ΓN
, can be

replaced by [F̃ , v] where F̃ is any functional in H−1
D (Ω).

We define the operator L(v, p) : H1
D(Ω) × Π �→ H−1

D (Ω) by

[L(v, p), w] = A(v, p; w), for all w ∈ H1
D(Ω).

Clearly

||L(v, p)||−1,D = sup
w∈H1

D(Ω)

A(v, p; w)

||w||1
≤ C(µ0||v||1 + ||p||).

The following theorem plays a leading role in motivating the least-squares method developed
in the following section. This result follows directly from applying Proposition 2 and Theorem
1.2 of [16]. We include a proof since the technique is similar to that used in our subsequent
analysis and gives some indication as to the behavior of the constants.

Theorem 1. There exists a constant C > 0 independent of v ∈ H1
D(Ω) and p ∈ Π such that

C(µ0||v||1 + ||p||) ≤ ||L(v, p)||−1,D + µ0||∇ · v + γp||,(2.13)

for all v ∈ H1
D(Ω), p ∈ Π.

Remark 6. The above theorem holds for the hydrostatic pressure formulation, i.e., (2.1)-
(2.2), provided that λ + 2µ/d > 0. The proof is somewhat more complicated and involves two
cases. Although the restriction λ > 0 in our theorem makes it less general, it is not important
from a practical point of view. Indeed, the introduction of a pressure in the system is only of
interest in the case of large λ. Otherwise, one should eliminate the pressure and approximate
the resulting elliptic system by a standard Galerkin method.
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Proof: By Korn’s inequality (2.9),

Cµ0||v||21 ≤ A0(v, v) = A(v, p; v) + (p,∇ · v)(2.14)

≤ ||v||1 sup
w∈H1

D(Ω)

A(v, p; w)

||w||1
+ (p,∇ · v + γp) − (γp, p)

≤ ||L(v, p)||−1,D||v||1 + ||p|| ||∇ · v + γp||.
By Proposition 2,

||p|| ≤ C sup
w∈H1

D(Ω)

(p,∇ · w)

||w||1

≤ C sup
w∈H1

D(Ω)

|(p,∇ · w) − A0(v, w)| + |A0(v, w)|
||w||1

≤ C sup
w∈H1

D(Ω)

A(v, p; w)

||w||1
+ C sup

w∈H1

D(Ω)

A0(v, w)

||w||1

≤ C(||L(v, p)||−1,D + µ0||v||1).
Combining (2.14) and (2) we obtain

Cµ0||v||21 ≤ ||L(v, p)||−1,D||v||1(2.15)

+ C||∇ · v + γp||(||L(v, p)||−1,D + µ0||v||1),
which easily leads to the required inequality (2.13).

We can now give a least-squares reformulation of (2.3)–(2.6) or (2.12) as follows: Find
u ∈ H1

D(Ω) and p ∈ Π satisfying

(L(u, p),L(v, q))−1 + (∇ · u + γp,∇ · v + γq)

= (F̃ ,L(v, q))−1 for all v ∈ H1
D(Ω), q ∈ Π.

(2.16)

Here (·, ·)−1 denotes the inner product in H−1
D (Ω) and F̃ is the functional given by

[F̃ , v] = (F , v)+ < f , v >ΓN
.

Theorem 1 shows that the above bilinear form is coercive. It is straightforward to check that
it is bounded and hence the solution pair exists, is unique, and satisfies

µ0‖u‖1 + ‖p‖ ≤ C‖F̃ ‖−1,D.

3. The finite element spaces and their properties

To approximately solve (2.3)–(2.6), we introduce a pair of subspaces Vh ⊂ H1
D(Ω) and

Πh ⊂ Π indexed by h in the interval 0 < h < 1. We do this by partitioning the region
Ω = ∪iτ̄i into triangles or tetrahedra and denote by T = {τ}, the set of all finite elements.
We further assume that ΓD aligns with the mesh. This means that ΓD consists of a union of
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edges of T in the two dimensional case and a union of faces of T in the three dimensional
case. We let ε be an edge (face) of a τ ∈ T and E be the set of all interior edges (faces). Let
hτ denote the diameter of the triangle τ . The mesh parameter h is defined to be

h = max
τ∈T

hτ .

As usual, the boundaries of two triangles or tetrahedra will intersect at either a vertex, an
entire edge or an entire face. We assume that the triangulations are locally quasi-uniform.
By this we mean that there is a constant 0 < c < 1 such that each triangle contains a ball
of radius chτ . With some abuse of semantics, we shall refer to τ as a triangle in both the
two and three dimensional case. Spaces defined with respect to rectangular or parallelepiped
partitioning of Ω pose no added difficulty.

For some integer r ≥ 2, let Vh ⊂ H1
D(Ω) denote the functions which are piecewise polyno-

mials of degree less than r with respect to the triangles, continuous on Ω and vanish on ΓD.
An obvious choice for Vh is (Vh)

d. Let Πh denote a space of functions which are piecewise
polynomial with respect to the triangles defining the mesh. We only assume that Πh provides
r−1’st order approximation. Note that the functions in Πh can be discontinuous but need not
be. There is a nodal basis associated with these spaces (see, e.g. [19]) and a corresponding
nodal interpolation operator. In the case of ΓN = ∅ and γ = 0, we set Πh to be the subset of
the functions defined above with zero mean value.

There exists a constant C1 not depending on h such that for any v ∈ H1
D(Ω), there exists

V ∈ Vh satisfying ∑
τ∈T

{h−2
τ ‖V − v‖2

τ + ‖V − v‖2
1,τ} ≤ C1‖v‖2

1.(3.1)

To develop the least-squares method, we shall need some operators and additional norms
and inner products on the discrete spaces just defined. We define a weighted L2-inner product
and corresponding norm,

(V , W )h =
∑
τ∈T

h2
τ

∫
τ

V (x) · W (x) dx, ||V ||h = (V , V )
1/2
h .

We will often apply this norm to derivatives of piecewise smooth functions. In such cases, the
derivative will be evaluated locally (not in the distributional sense).

We will also need edge norms and inner products. We introduce the bilinear form

< u, v >h,I=
∑
ε∈E

hτ(ε)

∫
ε

uv ds.(3.2)

Here τ(ε) denotes any triangle (tetrahedron) which has ε as an edge (face). Similarly,

< u, v >h,ΓN
=

∑
ε⊂ΓN

hτ(ε)

∫
ε

uv ds.(3.3)
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The corresponding seminorms are denoted by

‖v‖h,I =< u, v >
1/2
h,I and ‖v‖h,ΓN

=< u, v >
1/2
h,ΓN

.(3.4)

Finally, for v ∈ H−1
D (Ω), we define the discrete semi-norm

||v||−1,h = sup
W ∈Vh

[v, W ]

||W ||1
.(3.5)

This is a norm when restricted to the space V h.
We define the operator Lh(v, q) : H1

D(Ω) × Π �→ V h by the identity:

(Lh(v, q), W ) = A(v, q; W ) for all W ∈ V h.(3.6)

Now we formulate the main a priori estimate for the least-squares finite element method.

Theorem 2. There is a constant C > 0 independent of h such that

C(µ0||U ||1 + ||P ||) ≤ ||Lh(U , P )||−1,h + µ0||∇ · U + γP ||
+ ||σν ||h,ΓN

+ ||[σν ]||h,I + ||L(U , P )||h(3.7)

for all P ∈ Πh and U ∈ V h. Here σν is defined in terms of σij = σij(U , P ) and [σν ] denotes
the jump of σν across the interelement boundaries.

Proof: Here and in the remainder of this paper, C with or without subscript will denote a
generic positive constant independent of h, µ0 and γ. These constants may represent different
values in different occurrences.

We start by deriving an estimate for ||U ||1. First, by using the same argument as that for
(2.14), we get

µ0||U ||21 ≤ C

(
||Lh(U , P )||−1,h||U ||1 + ||P || ||∇ · U + γP ||

)
.(3.8)

Next, we derive an estimate for P ∈ Πh. By Proposition 2,

||P || ≤ C sup
v∈H1

D(Ω)

(P,∇ · v)

||v||1

≤ C sup
v∈H1

D(Ω)

|(P,∇ · V )| + |(P,∇ · (v − V ))|
||v||1

(3.9)

where V satisfies (3.1). Now we estimate two terms in the right side of this inequality
separately. For the first, we essentially repeat the proof of (2) and use the definition (3.6) of
the operator Lh to obtain

|(P,∇ · V )| ≤ C

(
||Lh(U , P )||−1,h + µ0||U ||1

)
||v||1.
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The second term of (3.9) is handled in the following manner. Adding and subtracting
A0(U , v − V ) gives

|(P,∇ · (v − V ))| ≤ |A(U , P ; v − V )| + |A0(U , v − V )|.

Next, by (3.1)

|A0(U , v − V )| ≤ µ0||U ||1||v − V ||1 ≤ Cµ0||U ||1||v||1.
The remaining term is split into integrals over all finite elements. Integrating by parts over
each element yields

|A(U , P ; v − V )|

= |
∑
τ∈T

(
−

∫
τ

L(U , P ) · (v − V )dx +

∫
∂τ

σν · (v − V )ds
)
|

≤
∑
τ∈T

|
∫

τ

L(U , P ) · (v − V )dx|

+
∑
ε∈E

∫
ε

|[σν ] · (v − V )|ds + |
∫

ΓN

σν · (v − V )ds|.

Here [σν ] is the jump of σν across the inter-element boundary. Note, that σν is computed
using (U , P ), i.e from σij = 2µεij(U) − Pδij. Using the well known inequality∫

∂τ

|θ|2 ds ≤ C(h−1
τ ||θ||2L2(τ) + hτ ||θ||2H1(τ)),(3.10)

it follows from (3.1) that

|(P,∇ · v)|
||v||1

≤ C

(
||Lh(U , P )||−1,h + µ0||U ||1

+ ||σν ||h,ΓN
+ ||[σν ]||h,I + ||L(U , P )||h

)
,(3.11)

that is,

C||P || ≤ ||Lh(U , P )||−1,h + µ0||U ||1 + ||σν ||h,ΓN

+ ||[σν ]||h,I + ||L(U , P )||h.
(3.12)

Combining (3.12) with (3.8) yields (3.7). This completes the proof of the theorem.

Remark 7. It is easy to show that for (U , P ) ∈ V h×Πh, the right-hand side of the inequality
(3.7) is bounded from above by C(µ0||U ||1 + ||P ||). Therefore, the right-hand side of (3.7)
gives an equivalent norm on V h × Πh.
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4. The least-squares method

In this section, we introduce a least-squares finite element method for the equations of linear
elasticity which involves direct approximations of the original variables u and q.

Let us denote by (·, ·)−1,h the inner product corresponding to the norm || · ||−1,h. It is not
difficult to show that

(v, w)−1,h = [w,Thv](4.1)

where Th : H−1
D (Ω) �→ Vh is the solution operator defined by

D(Thv, X) = [v, X] for all X ∈ Vh.(4.2)

For V ∈ Vh, since V ∈ L2(Ω), (ThV , V ) = [V ,ThV ] = (V , V )−1,h. Now let Bh :
H−1

D (Ω) �→ Vh be an operator which is symmetric on L2(Ω) and positive semidefinite and
is spectrally equivalent to Th on Vh. This means that there exist constants C0 and C1

independent of h such that

C0(ThV , V ) ≤ (BhV , V ) ≤ C1(ThV , V ), for all V ∈ Vh.(4.3)

Thus, on Vh, (Bh·, ·)1/2 is a norm equivalent to || · ||−1,h.
There is a vast literature concerning techniques for developing preconditioners for symmetric

positive definite problems, especially for discretizations of elliptic boundary value problems
(see, e.g., [5], [20], [21], [27]). The best preconditioners satisfy (4.3) with constants C0 and
C1 independent of the mesh parameter. In addition, a good preconditioner is economical to
evaluate. This means that the cost of computing the action of Bh applied to an arbitrary vector
should be much less than that of applying Th. For our application, low cost preconditioners
are known for which (4.3) holds with C0 and C1 independent of the mesh size and hence the
number of unknowns (see, e.g., [2], [5], [10], [12], [13], [40]).

The least-squares method which we shall consider is based on the form

〈〈(u, p), (v, q)〉〉1 ≡ (Lh(u, p),BhLh(v, q))

+ (L(u, p), L(v, q))h+ < σν(u, p), σν(v, q) >h,ΓN

+ < [σν(u, p)], [σν(v, q)] >h,I +(∇ · u + γp,∇ · v + γq).

(4.4)

The least-squares solution is the pair (U , P ) ∈ Vh × Πh satisfying

〈〈(U , P ), (V , Q)〉〉1 = (F ,BhLh(V , Q))+ < f ,BhLh(V , Q) >ΓN

+ < f , σν(V , Q) >h,ΓN
+(F , L(V , Q))h

(4.5)

for all (V , Q) in Vh × Πh. It is a direct consequence of Theorem 2 and (4.3) that for F ∈
(L2(Ω))d and f ∈ (L2(ΓN))d, the solution (U , P ) of (4.5) exists and is unique. The following
theorem shows that the solution (U , P ) of the approximate problem (4.5) is close to the
solution (u, p) of (2.3)–(2.6). For convenience, we give a proof of the theorem in the case of a
globally quasi-uniform mesh. It is based on the following well know approximation properties
for the subspaces:
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(1) For v ∈ (Hr(Ω) ∩ H1
D(Ω))d,

inf
V ∈Vh

||v − V ||1 ≤ Chr−1||v||r;(4.6)

(2) For q ∈ Hr−1(Ω) ∩ Π,

inf
Q∈Πh

||q − Q|| ≤ Chr−1||q||r−1.(4.7)

The constant C appearing above is independent of the approximation parameter h.

Theorem 3. Let (U , P ) solve (4.5) and (u, p) solve (2.3)–(2.6). Assume that the triangula-
tion is globally quasi-uniform and let Vh and Πh be as described in the previous section and
satisfy the approximation conditions (4.6), (4.7) with r ≥ 2. Assume that F ∈ (L2(Ω))d,
f ∈ (L2(ΓN))d, and that the solution (u, p) is in (Hr(Ω) ∩ H1

D(Ω))d × Hr−1(Ω). Then

||U − u||1 + ||P − p|| ≤ Chr−1
(
||u||r + ||p||r−1

)
.

Proof: By (2.12) and (3.6), since V h ⊂ H1
D(Ω),

(Lh(u, p), V ) = (F , V )+ < f , V >ΓN
for all V ∈ V h.(4.8)

Using (2.3) - (2.6) gives

〈〈(u, p), (V , Q)〉〉1 = (F ,BhLh(V , Q))+ < f ,BhLh(V , Q) >ΓN

+ < f , σν(V , Q) >h,ΓN
+(F , L(V , Q))h

(4.9)

for all (V , Q) in Vh × Πh. By (4.6) and (4.7), there exists P̃ ∈ Πh and Ũ ∈ V h satisfying

||p − P̃ || ≤ Chr−1||p||r−1(4.10)

and

||u − Ũ || + h||u − Ũ ||1 ≤ Chr||u||r.(4.11)

Setting (Ẽ, ẽ) = (Ũ − U , P̃ − P ), Theorem 1, (4.3) and (4.9) give that

||Ẽ||21 + ||ẽ||2 ≤ C〈〈(Ẽ, ẽ), (Ẽ, ẽ)〉〉1 = C〈〈(Ũ − u, P̃ − p), (Ẽ, ẽ)〉〉1.

It immediately follows that

||Ẽ||21 + ||ẽ||2 ≤ C〈〈(Ũ − u, P̃ − p), (Ũ − u, P̃ − p)〉〉1
≤ C

(
||Lh(Ũ − u, P̃ − p)||2−1,h + ||L(Ũ − u, P̃ − p)||2h

+ ||[σν(Ũ − u, P̃ − p)]||2h,I + ||σν(Ũ − u, P̃ − p)||2h,ΓN

+ ||∇ · (Ũ − u) + γ(P̃ − p)||2
)
.

(4.12)

The last inequality above follows from (4.3) and (4.1).
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We now bound the terms on the right-hand side of (4.12). It easily follows from (4.10) and
(4.11) that

||Lh(Ũ − u, P̃ − p)||−1,h ≤ C(||Ũ − u||1 + ||P̃ − p||)
≤ Chr−1

(
||u||r + ||p||r−1

)
.

(4.13)

Let Π̄h denote the set of discontinuous piecewise polynomial functions of degree less than
r−1 with respect to the triangulation defining Πh and let P̄ be the L2(Ω) projection of p into
Π̄h. Then,

||∇(P̃ − p)||h ≤ C(||∇(P̃ − P̄ )||h + ||∇(P̄ − p)||h).
Since the mesh is quasi-uniform, we may apply the inverse inequality for the term ∇(P̃ − P̄ ).

Then using the approximation property for both P̃ and the local projection P̄ , it follows that

||∇(P̃ − p)||h ≤ C||P̃ − P̄ || + Chr−1||p||r−1 ≤ Chr−1||p||r−1.(4.14)

Now we estimate ||L(Ũ − u, P̃ − p)||h. Note, that the i-component of the operator L is
given by

Li(Ũ − u, P̃ − p) = −
d∑

j=1

∂σij(Ũ − u, P̃ − p)

∂xj

= −
d∑

j=1

∂(µεij(Ũ − u) − (P̃ − p)δij)

∂xj
.

The derivatives of (P̃ − p) have been already estimated. Here we need to estimate the norm

of the derivatives of the strains computed for Ũ − u on an element by element basis. We
use a similar argument as that given above for the pressure (which again involves local L2-
projections of u) and the assumption that the coefficient µ is piecewise smooth to get

||
d∑

i,j=1

∂(µεij(Ũ − u))

∂xj
||h ≤ Chr−1||u||r.(4.15)

The third and fourth terms on the right-hand side of (4.12) are dealt with in the same
manner. We first note that the stress tensor σij contains two terms, the strains and the
pressure. For the pressure we again use the projection P̄ as defined above and get

||[(P̃ − p)]||h,I ≤ C(||[P̃ − P̄ ]||h,I + ||[P̄ − p]||h,I).

Since P̄ is defined as a local L2(Ω)-projection on each triangle or tetrahedron τ ∈ T ,

h

∫
∂τ

(P̄ (s) − p(s))2 ds ≤ C

(∫
τ

(P̄ (x) − p(x))2 dx

+ h2

∫
τ

|∇(P̄ (x) − p(x))|2 dx

)
≤ Ch2r−2||p||2Hr−1(τ).
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Summing the above inequalities over all edges (faces) in E gives

||[P̄ − p]||h,I ≤ Chr−1||p||r−1.

In addition, since P̃ − P̄ is a polynomial on τ , standard reference element mapping arguments
imply that

h

∫
∂τ

(P̃ (s) − P̄ (s))2 ds ≤ C

∫
τ

(P̃ (x) − P̄ (x))2 dx

and hence
||[P̃ − P̄ ]||h,I ≤ Chr−1||p||r−1.

Combining the above inequalities shows that

||[P̃ − p]||h,I ≤ Chr−1||p||r−1 and ||P̃ − p||h,ΓN
≤ Chr−1||p||r−1.(4.16)

Similar arguments can also be applied to estimate the part of the error related to the strains εij ,

which are essentially the jumps in the derivatives of Ũ−u across the inter-element boundaries.
For the last term on the right-hand side of (4.12) we apply the estimates (4.10) and (4.11)

to get

||∇ · (Ũ − u) + γ(P̃ − p)|| ≤ Chr−1
(
||u||r + ||p||r−1

)
.(4.17)

Combining (4.12)–(4.17) gives

||Ẽ||1 + ||ẽ|| ≤ Chr−1
(
||u||r + ||p||r−1

)
.

The theorem follows from (4.10), (4.11) and the triangle inequality.

Remark 8. The theorem still holds in the case of locally quasi-uniform meshes. Its proof is
similar to that given but requires replacing the approximation inequalities (4.10) and (4.11)
by inequalities which are valid locally. However, the error estimate is no better.

Remark 9. The regularity of the solution of the 2-D Stokes equations with Dirichlet boundary
conditions has been studied by Kellogg and Osborn in [33]. In particular, for convex domains
with Lipschitz boundaries it is proven there that the solution u ∈ (H2(Ω))d ∩ H1

0(Ω) when
F ∈ (L2(Ω))d and f = 0 and therefore the least-squares method converges with a rate of at
least O(h).

5. Implementation and the iterative solution of the least-squares system

In this section we consider the implementation aspects of the least-squares methods de-
scribed in the preceding two sections. As already noted, the matrices corresponding to the
algebraic systems resulting from the least-squares forms described in the previous section are
full. Nevertheless, we shall see that effective preconditioned iterative schemes can be developed
which converge rapidly and avoid assembly of the full matrix.

Let Πh and Vh consist, respectively, of discontinuous piecewise constant functions and
continuous piecewise linear functions. The implementation of higher order spaces is completely
analogous.
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There are three major aspects involved in setting up the algebraic system and its subsequent
solution by a preconditioned iteration. All of these operations are performed with respect to
a computational basis. Let n1 and n2 respectively denote the dimension of Vh and Πh and
set n = n1 + n2. Let {Θi} and {θi} denote the local nodal bases for Vh and Πh, respectively.
These can be combined into a basis {Ψj} = {(Θi, 0)} ∪ {(0, θi)} = {(Φj, φj)} for Vh × Πh.

Let (U , P ) be the solution of (4.5) and c̃ be the corresponding vector of nodal values, i.e.,
(U , P ) =

∑n
i=1 c̃iΨj. Then,

M̃ c̃ = d̃ where M̃ij = 〈〈Ψi, Ψj〉〉1.(5.1)

The right-hand side of (5.1) is given by

d̃i = (BhF̃ ,Lh(Φi, φi)) + (F , L(Φi, φi))h

+ < f , σν(Φi, φi) >h,ΓN
,

(5.2)

for i = 1, . . . , n.
In previous sections of this paper, we defined Bh as a symmetric positive definite operator

on Vh. In terms of the implementation, the preconditioner can be more naturally thought of
in terms of a n1 ×n1 matrix N . The operator Bh is defined in terms of this matrix as follows.
Fix V ∈ Vh and expand

BhV =
∑

i

GiΘi.

Then,

NG = G̃ where G̃i = (V , Θi).(5.3)

The operator Bh is a good preconditioner for Th provided that the matrix N−1Ñ has small

condition number. Here Ñ is the stiffness matrix for the form D(·, ·), i.e.,

Ñij = D(Θi, Θj).

The matrix N need not explicitly appear in the computation of the action of the precondi-

tioner. Instead, one often has a process or algorithm which acts on the vector G̃ and produces

the vector G, i.e., computes N−1G̃. Thus, the practical application of the preconditioner on
a function in V reduces to a predefined algorithm for computing the action of N−1 and the

evaluation of the vector G̃ defined by (5.3).
The first step in computing the coefficient vector c̃ solving (5.1) is to compute the right-hand

side vector d̃. We shall assume that some method for computing integrals of the form∫
τ

F · η dx and

∫
ε

f · η dx(5.4)

is available when η is a vector valued polynomial. Here τ is a finite element in the mesh and

ε is an edge (face) of a finite element. Thus, we can compute the data [F̃ , Θj ] = (F , Θj)+ <

f , Θj >ΓN
, for j = 1, . . . , n1 from which BhF̃ can be computed as discussed above. With

BhF̃ known, the first term on the right-hand side of (5.2) reduces to A(Φi, φi;BhF̃ ). This
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involves the integration of polynomials over the triangles τ ∈ T . The remaining two terms in
(5.2) reduce to more integrals of the form of (5.4) and the integration of polynomials over the
triangles τ ∈ T and their edges. These actions are local in the sense that the result for each
Φj , Θj and φj only involves the triangles containing the support of respective function. The
number of operations (work) involved is of the order of n.

The next action required for the implementation of the preconditioned iteration is the

application of M̃ to arbitrary vectors c ∈ Rn. The vector c represents the coefficients of a
function pair (V , δ); i.e.,

(V , δ) =

n∑
i=1

ci(Φi, φi).

We are required to evaluate

(M̃c)j = 〈〈(V , δ), (Φj , φj)〉〉1

= (BhLh(V , δ),Lh(Φj, φj)) + (L(V , δ), L(Φj, φj))h

+ < σν(V , δ), σν(Φj , φj) >h,ΓN
+ < [σν(V , δ)], [σν(Φj , φj)] >h,I

+ (∇V + γδ,∇Φj + γφj),

(5.5)

for j = 1, . . . , n. The data for the preconditioner evaluation is

(Lh(V , δ), Θi) = A0(V , Θi) − (δ,∇Θi)

and reduces to integrals of polynomials over τ ∈ T . After application of the preconditioner,
the coefficients for the function BhLh(V , δ) are known. All quantities appearing on the right-
hand side of (5.5) can then be computed by integrals of polynomials over the triangles and
their edges. The work required for computing (MG)j , j = 1, . . . , n is of the order of n plus
the work involved in applying the preconditioning process.

The final step required for a preconditioned iteration is the action of an appropriate precon-
ditioning matrix M . By Remark 7, there exist positive constants C0 and C1, not depending
on h, satisfying

C0(||V ||1 + ||P ||) ≤ 〈〈(V , Q), (V , Q)〉〉1 ≤ C1(||V ||1 + ||P ||).(5.6)

The above inequalities hold for all (V , Q) in the product space Vh × Πh. Consequently the

task of defining a preconditioner for M̃ is the same as finding a preconditioner for the block
diagonal system (

Ñ 0

0 Ñ0

)

where Ñ0 is the Gram matrix

(Ñ0)ij = (φi, φj) for i, j = 1, . . . , n2.
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Define

M =

(
N 0
0 D

)

where D is the diagonal matrix with entries Dii = (φi, φi). It follows from (5.6) that the

condition number of M−1M̃ is independent of h. Thus, the reduction rate per step in, for
example, the preconditioned conjugate gradient iteration can be bounded independently of h.
The application of M−1 involves multiplying the Πh data by D−1 and the application of the
preconditioning process to the Vh data. The work involved in one step of the conjugate gradi-
ent iteration is on the order of n plus twice the cost of the application of the preconditioning
process N−1.

The above discussion is summarized in the following algorithm for computing the solution
of (4.5).

Algorithm: The solution of (4.5) involves the following two steps.

(1): The computation of the right-hand side vector d̃ of (5.1).
(a): Compute {(F , Θj)+ < f , Θj >ΓN

} by assembling the quantities given in (5.4)
(Work ∼ O(n1)).

(b): Solve the preconditioning problem (5.3) with data computed from G̃ = {(F , Θj)+ <

f , Θj >ΓN
}. This gives the coefficients for BhF̃ .

(c): Compute d̃. This involves additional integrals of the form (5.4) and integrals of
polynomials on the triangles and edges (Work ∼ O(n1)).

(2): Compute c̃ solving (5.1) by preconditioned conjugate gradient iteration. The entries of
c̃ are the coefficients for the solution of (4.5). Each iterative step requires the evaluation
of the matrix operator and preconditioner.
(a): Evaluation of the matrix operator on a given vector {ci} corresponding to the

function pair (V , δ) involves the following steps.

(i): Compute the data G̃ = {A0(V , Θi) − (δ,∇Θi)} for the Bh evaluation (Work
∼ O(n)).

(ii): Apply the preconditioning process to obtain the coefficients for BhLh(V , δ).
(iii): Compute the quantities (Mc)j j = 1, . . . , n given in (5.5) (Work ∼ O(n)).

(b): Evaluation of the block preconditioner on a given vector {c̄j , j = 1, . . . , n}. This
involves multiplying the last n2 coefficients by D−1 (Work ∼ O(n2)) and evaluating
the action of the preconditioning process.

Remark 10. As already noted, the appearance of Bh gives rise to a full upper left hand
block in the stiffness matrix for the least-squares operator. Consequently, it is not feasible
to assemble the matrix. However, some efficiency may be gained by assembling parts of the
matrix. For example, it would be feasible to assemble a sparse matrix for all terms in (5.5)
excluding the one involving Bh. Additionally to compute more efficiently the first term of (5.5)
one could assemble the matrices {A0(Θj, Θi)} and {(∇hφj , Θi)}.
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