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Abstract

In this paper we introduce and study a least�squares �nite element approximation for singu�
larly perturbed convection�di�usion equations of second order� By introducing the �ux �di�usive
plus convective� as a new unknow the problem is written in a mixed form as a �rst order system�
Further� the �ux is augmented by adding the lower order terms with a small parameter� The
new �rst order system is approximated by the least�squares �nite element method using the
minus one norm approach of Bramble� Lazarov� and Pasciak �	
� Further� we estimate the error
of the method and discuss its implementation and the numerical solution of some test problems�

� Introduction

Mathematical models in physics and engineering often lead to di�erential equations with coe�cients
that may di�er by several orders of magnitude� Such problems can be found when modeling processes
in chemical kinetics� transport of heat and mass� plate bending etc� Important characteristic of such
problems is that the solution are highly localized by exhibiting boundary and internal layers� point
and line singularities etc� The aim of a numerical technique for solving such problems is to �nd a mesh
which resolves these localized phenomena� This in turn is related to the question how accurately �and
inexpensively� one can obtain information about the solution� A reasonable approach should include
both a priori analysis of the problem and its solution and a posteriori analysis of the computational
results in order to verify their accuracy and subsequently improve the results by re�ning the mesh�

The a priori analysis can be used to a priori construct the mesh� For the state�of�the�art research
in this direction we refer to the monographs of Miller� O�Riordan� and Shishkin 	
��� H��O� Ross�
M� Stynes� and L� Tobiska 	
�� The a posteriori analysis is used to construct the �best� mesh for
the solution of a particular problem within given tolerance for the error� Practically� this means that
starting with a very coarse initial mesh� further in the solution process� the mesh is re�ned in a fully
adaptive way� namely new grid points are added in the areas where the a posteriori error estimators
and indicators suggest� For studies in this direction we refer to the monographs of I� Babu�ska�
O� C� Zienkiewicz 	
� and R� Verf�urth 	
���

The aim of the present paper is to derive and study unconditionally stable approximations of
singularly perturbed problems of second order based on least�squares �nite element method� Using
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a minus one inner product we derive stable approximations of the problem in mixed form� Further�
we derive a priori error estimates under minimal smoothness of the solution�

We consider the following singularly perturbed problem� �nd w � H�
� ���� such that

Lw � �r � ��rw � bw� � c�w � f in �� and w � � on ��� �
�

We assume that � is bounded domain in Rd� d � �� � with Lipschitz boundary �� and c��x� and
b�x� �a vector column� satisfy the following condition�

c��x� � 


�
r � b�x� � �� � const � � for all x � �� ���

Without loss of generality� we can take �� � 
� This condition guarantees that the bilinear form
de�ned on H�

� ��� by

A�w� v� � ��rw�rv� � �bw�rv� � �c�w� v�� ���

de�ned on H�
� ��� is coercive�

The weak form of �
� will be� �nd w � H�
� ���� such that

A�w� v� � �f� v� for all v � H�
� ���� ���

By Lax�Milgram theorem� this problem has a unique solutions in H�
� ��� for any f � L����� and the

solution satis�es the a priori estimate �krwk� � kwk� � kfk��
We assume that � is a positive� but small parameter� i�e� � � � � jbj� Our goal is to develop

a numerical method� based on the least�squares approximation� which is unconditionally stable and
convergent under minimal regularity of the solution u�

There are several known discretization methods for convection�dominated di�usion problems�
Our approach is based on the one of the most powerful techniques for such problems� the streamline
di�usion �nite element method originating in the paper of Hughes and Brooks 	��� This methods has
the advantage over the more classical Galerkin method and the arti�cial di�usion methods in the
fact that it allows to obtain convergence in a norm that contains and additional term ����kb � ruk�
Then taking � � h we get a suboptimal convergence rate of O�h���� for su�ciently smooth solution
u� For the analysis of the streamline di�usion �nite element method we refer to 	

� and for various
extensions to incompressible Euler equations and Navier�Stokes equations to 	
�� 
���

Another approach is based on the mixed formulation� In many applications� the �ux �di�usive
plus convective� plays an essential role� Introducing the physical �ux as a new unknown the problem
�
� is written in the mixed form

�� � ��rw � bw� r � �� � c�w � f� ���

Here �� �n has a meaning of the amount of heat transferred through a unit surface area with a unit
normal �vector to the surface� n�

One can numerically approach the problem �
� by the Galerkin method� either applied to the
original equation �
� or to its mixed form ���� In both cases the analysis of the method when �
is very small �or � � �� is not well understood� It is well known that the Galerkin method for
the equation �
� is not stable �unless the mesh step�size h is su�ciently small� and stabilization or
special treatment of the convective term is necessary�

There are two competing techniques for approximation of the mixed system ���� �a� mixed �nite
element method based on its weak formulation �see� for example� 	���� �b� least�squares �nite element
method based on the least�squares formulation of ��� �see� for example� 	�� �� � �� 
�� 
���� Both
approaches produce symmetric algebraic systems� but while the former produces inde�nite system
the latter leads to a positive de�nite one�

�



We here derive a stable least�squares �nite element approximation of the problem �
� based on
a modi�cation of the system ���� Namely� following 	
�� we introduce a corrected �ux by adding
a weighted steam�line derivative with a small parameter � and thus modify the mixed system� In
general� this approach leads to stable Galerkin schemes with relatively good approximation properties
�see� e�g� 	�� 
�� 

� 
���� Following 	��� we introduce a least�squares method which uses the sum of
the weighted L��norm of the equation for the new �ux and the discrete H���norm of the di�erential
equation� For a computable H���norm for the singularly perturbed problem we use the algebraically
stabilized version of the hierarchical basis method �see� e�g� 	
���� The new moment of the paper
is that we modify this method to suit to a singularly perturbed problem and track the dependence
of the coercivity constant on the small parameter �� The use of the discrete H���norm allows us
to obtain quasi�optimal error estimates for H�� and H��regular solutions� The method of 	
�� has
the same convergence rate for H��regular solutions� but does not provide an estimate when the
solution is only H��regular� This de�ciency is common for some of the least�squares methods �see�
e�g� 	� 
����

Finally� in the last section we provide computational results that illustrate the asymptotic con�
vergence rates of the method on a model problem with a smooth solution�

� Streamline�di�usion approximation of the mixed system

First attempt is to correct the �ux �� in such a way that adds more from the streamline derivative�
Namely� we add to the �ux the term bLu weighted by small parameters � � � to get a new �ux
denoted by �

� � ��rw � bw � �bLw� ��

If we take divergence of the equation ��� add c�u to the left hand side� and take into account that
r � �bLw� � r � �bf�� we get the following equation for � and w�

r � �� c�w � f � �r � �bf� � f�� ���

The equations �� and ��� were obtained from the original equation �
� and therefore the solution
���w� of �� and ��� will satisfy �
��

Unfortunately� ��� is not an equation of second order �since Lw contains term ���w� and it
does not �t into our approximation framework� In order to avoid this inconvenience� we make a
modi�cation of the equation� Namely� instead of the �ux � de�ned by ��� we introduce the truncated
�ux 	 by replacing the operator Lw in �� by its truncated version

 w � �r � �bw� � c�w�

i�e� instead of the �ux de�ned by �� we consider the following �truncated �ux�

	 � ��ru� bu� �b u i�e� 	 � ��ru� bu� �b
��r � �bu� � c�u

�
but keep the right hand side of equation ��� the same� f��x�� Therefore� instead of the problem �
��
we consider the following mixed system� �nd 	 � H�div� �� and u � H�

� ��� such that

	 � �ru� bu� �b u � � in ��

r � 	 � c�u � f � �r � �bf� � f� in ��
���

Obviously� the solution ���w� of the problem ��� ��� is not equal to the solution �	� u� of the
problem ���� One can easily estimate the di�erence U � u� w� Indeed� ��� can be reduced to

r � ���ru� bu� �b u� � c�u � f� in � ���

�



while �� and ��� will lead to

r � ���rw � bw � �bLw� � c�w � f� in �� �
��

By subtracting �
�� from ���� we get the following problem for U � u� w�

r � ���rU � bU � �b U� � c�U � ��r � �b�w� in �� U � � on ���

We multiply this equation by U and integrate over �� Taking into account the boundary condition
we get the following inequality for U

�krUk� � kUk� � �kb � rUk� � ��c� �r � b�� U�� � ����w�b � rU��

Let max� kc� �r � bk � �� and assume that � � � is su�ciently small so that ��� � 

��
Therefore

�krUk� � 


�
kUk� � �kb � rUk� � ����v�b � rU��

�
kb � rUk� � ���

�
k�uk�

or

��krUk� � kUk� � �kb � rUk� � ���k�wk�� �

�

We now introduce the following norm in H�
� ����

kuk���� � �kruk� � kuk� � �kb � ruk�� �
��

The estimate �

� essentially says that kUk��� � �
p
�k�wk� where w is the solution of the original

problem �
�� We shall approximate the problem ��� by �nite element method on a grid with grid�
size h� In this case one chooses � � h and assumes that the di�usion parameter � � h� which
results in the following estimate for the di�erence between the solutions of the problem �
� and
���� kUk��� � Ch���k�wk� This di�erence is in general smaller than the error of the �nite element
approximation of the problem ���� Further in this paper we shall consider the problem ����

We show that the problem ��� �which is equivalent to ���� has unique solution in H�
� ���� We

�rst introduce the bilinear form

A�u� v� � ��ru�rv� � �bu�rv� � ��b � ru�b � rv� � �
�
�r � b� c��u�b � rv

�
� �c�u� v��

which is obviously bounded in the norm jj�jj���� Next� we prove that for su�ciently small � � � the
form A�u� v� is coercive in the norm jj�jj���� Indeed� for v � u we have

A�u� u� � �kruk� � ��
c� � �

�r � b
�
u� u

�
� �kb � ruk� � ���r � b� c��u� b � ru�

� �kruk� � kuk� � �kb � uk� � ���kuk kb � ruk

� �kruk� � �
�kuk� �

�

� ���

�

�

�
�kb � ruk��

Thus� if ���� � 
� then

�A�u� u� � �kruk� � kuk� � �kb � ruk� � kuk�����

which is the required coercivity� The boundness of the bilinear and linear forms in the same norm
follows easily� Then by Lax�Milgram lemma the problem ��� has unique solution u � H�

� ����

�



� Least�squares form of the streamline�di�usion system

We apply H���norm least�squares method for the system ���� namely� we seek the minimum of the
quadratic functional

J�	� u� � ���k	 � �ru� bu� �b uk� � kr � 	 � c�u� f�k����� �
��

over the space H�div� ��	H�
� ���� Here k � k���� is the dual of the norm �
�� and is de�ned by

kfk���� � sup
v�H�

�

�f� v�

kvk��� for all f � H������

This norm is equivalent to the norm de�ned by jjf jj�
���� � �Tf� f�� Here the operator T � H�� � H�

�

is the solution operator of the problem� �nd u � H�
� such that

D��u� v� �
Z
�

��rurv � uv � �b � ru b � rv� dx �
Z
�

fv for all v � H�
� � �
��

The minimum �	� u� � H�div� �� 	H�
� ��� of the quadratic functional �
�� will satisfy the fol�

lowing integral identity�

K�	� u��� v� � �Tf��r � �� c�v� for all ��� v� � H�div� ��	H�
� ���� �
��

where

K�	� u��� v� � ����	 � �ru� bu� �b u� �� �rv � bv � �b v� � �T �r � 	 � c�u��r � �� c�v��

We show that K��� �� is bounded and coercive in the norm k�k���� It is important to �nd the constants
of equivalence�

Lemma ��� For su�ciently small � the bilinear form K is bounded from below by kvk�����kr��k������
namely

K��� v��� v� � c�
�kvk���� � kr � �k������ �
�

for all � � H�div� �� and v � H�
� ��� with a constant c� � � independent of ��

Proof � We start with the term �kruk��
��rv�rv� � ��� �rv � bv � �b v�rv�� ��� bv � �b v�rv�

� ���k�� �rv � bv � �b vk� � �

�
krvk� � ���rv�

�



�
�r � b� v�� � ��b v�rv�

� ���k�� �rv � bv � �b vk� � �

�
krvk� � �r � �� c�v� v�

�
��

c� � 


�
r � b

�
� v�

�
� �� v�b � rv�

� ���k�� �rv � bv � �b vk� � �

�
krvk� � kvk�

� kr � �� c�vk����kvk��� � �kb � rvk� � ���c� �r � b�� v���

�
��

We now choose � such that �maxx�� jc��x��r � b�x�j � �
� and transfer the terms �krvk�� kvk�

and kb � rvk� to the left hand side to get

kvk���� � ����k�� �rv � bv � �b vk� � �kr � �� c�vk������ �
��

�



Further�

kr � �k���� � sup
��H�

�
���

�r � �� ��
k�j��� � sup

�r � �� c�v� ��

k�k��� � sup
�c�v� ��

k�k���
� kr � �� c�vk���� � ��kvk�

�
��

where �� � max
�
jc��x�j � const � �� The jjvjj�term is bounded by ���� so that ��	� yields

kr � �k�
���� � ��
 � ����kr � �� c�vk����� � �������k�� �rv � bv � �b vk��

This estimate combined with ���� gives the coercivity estimate ��
�� which completes the proof of the
Lemma ����

Remark ��� The constant in coercivity estimate of the bilinear form K depends on the maximum
value of the coe�cient c��x�� If this coe�cient is relatively large �i�e� c��x� � �� �� 
� then one
should scale the zero order term in the norm with the constant ���

Once the coercivity of K has been established� we need to show the boundness of K for v � H�
� ���

and � � H�div� ���

Lemma ��� There is a constant c�� independent of � and such that the bilinear form K satis�es the
following estimate

K��� v��� v� � c�

�
kvk���� � kr � �k����� � ���k�k� � ���kvk� � �����kb � rvk�

�
����

for all � � H�div� �� and v � H�
� ����

Proof � The proof follows immediately from the de�nition of the bilinear form K�
Remark ��� The boundness of the linear functional of the right hand side in the norm kr��k�����
kvk��� is immediate since kr � �� c�vk���� � kr � �k���� � jjc�vk���� � kr � �k���� � ��kvk�

� Finite element method for the least�squares formulation

Let Wh 
 H�
� ��� and Vh 
 H�div� �� be �nite element spaces of piece�wise linear functions over

the quasi�uniform triangulation Th of the domain �� We assume that for some integer s � 
 the
following approximation properties of the spaces Wh and Vh are available�
�H�
� for any  � Hr���d �H�div� �� and 
 � r � s

inf
��Vh

�k � �k� hkr � � � ��k� � Chrkkr���

�H��� for any w � H�
� ��� �H����

inf
v�Wh

�kw � vk� hkr�w � v�k� � Chr��kwkr�����

�H��� there is an orthogonal projection operator Qh � L
���� � Wh� which is bounded with respect

to the norm in H����� i�e�

kQhvk��� � Ckvk��� for all v � H�����

Most of the known �nite element spaces satisfy the above assumptions� In general� the solution u
has low regularity and it makes sense to consider only the case s � 
 and both Wh and Vh consist
of piece�wise linear functions over the triangulation Th�





In order to de�ne the �nite element approximation to the problem �
��� we need a de�nition of a
discrete analog of the norm k � k����� Here we borrow the concept of computable discrete H���norm
from 	�� ��� Similarly to the continuous case� we �rst de�ne the operator Th as a solution operator
of the problem� �nd vh � Wh such that

D��vh� �� � �f� �� for all � �Wh� ��
�

where the bilinear form D��vh� �� is de�ned by �
��� Then the operator Th is de�ned by vh � Thf �
Let Bh be a preconditioner for Th� which is symmetric� positive de�nite and spectrally equivalent

to Th in the L
��inner product� i�e� there are constants � � c� � c� independent of h� such that

c��Bhv�� v� � �Thv� v� � c��Bhv� v� for all v � Wh�

Remark ��� One possibility to construct preconditioner Bh for the operator Th corresponding to the
bilinear form D��u� v� �

�
��I � bb

T �ru� rv�� �u� v�� for u� v �Wh is an algebraically stabilized
version of the hierarchical basis method� which is known to be more robust with respect to various
problem parameters� For more details� cf�� ����

Finally� following 	�� �� we de�ne !Th � h�I �Bh and introduce the �nite element approximation
of the least�squares mixed method� �nd uh �W and 	h � Vh such that

Kh�	h� uh��� v� � � !Thf��r � �� c�v� ����

for all � � Vh and v � Wh� Here

Kh�	h� uh��� v� � � !Th�r � 	h � c�uh��r � �� c�v�

�����	h � �ruh � buh � �b uh� �� �rv � bv � �b v�
����

is the discrete analog of the bilinear form K��� ���
The least�squares method ���� leads to a symmetric and positive de�nite algebraic problem� The

symmetry is by construction and the positive de�niteness follows from the coercivity of the bilinear
form K��� �� in the semi�norm kvk���� � kr � �k������

� Error estimate of the least�squares method

Let �h � 	�	h and eh � u�uh then Kh��h� eh��� v� � � for all � � Vh and v �Wh� The coercivity
of the form Kh then implies�

Kh��h� eh� �h� eh� � inf
��Vh�v�Wh

Kh�	 � �� u� v�	 � �� u� v��

Thus� the task to bound the error kr � �hk���� � kehk��� reduces to best approximation of the
solution from the �nite element space Vh	Wh in the energy norm de�ned from the form K� Hence
it is su�cient the estimate of the error for a suitable chosen function � and v from Vh and Wh close
to 	 and u�

Denote by "h � 	 � � and Uh � u� v� where � � Vh and v � Wh� Then by the de�nition of

the form Kh and the operator !Th we have�

Kh�"h� Uh� "h� Uh� � � !Th�r � "h � c�Uh��r � "h � c�Uh�

�����"h � �rUh � bUh � �b Uh�"h � �rUh � bUh � �b Uh�

� h�kr � "h � c�Uhk� �
�
Bh�r � "h � c�Uh��r � "h � c�Uh

�
����k"hk� � �krUhk� � ���kbUhk� � �����kb Uhk��

�



One easily deducts that�
Bh�r � "h � c�Uh��r � "h � c�Uh

�
� C

�
���k"hk� � kUhk�

�
�

so we get the estimate

Kh�"h� Uh� "h� Uh� � C
�
���k"hk� � ���kUhk� � ������ � ��krUhk� � h�kr �"hk�

�
� ����

Using the boundness of the bilinear form Kh from below we get�

jjr � �hk����� � kehk���� � C
�
���k"hk� � ���kUhk� � ������ � ��krUhk� � h�kr � "hk�

�
� ����

And �nally� using the inequality

���k�hk� � C
�
Kh��h� eh� �h� eh� � kehk� � ��kb � rehk�

�

we get an L��estimate for �h�

k�hk� � C
�
k"hk� � kUhk� � ��� � ���krUhk� � h��kr �"hk�

�
� ���

These estimates are quite similar to the estimates of 	
��� The main di�erence is that the term
kr � "hk from 	
�� is replaced by hkr � "hk in ����� which will result in reducing the regularity
requirement for the convergence of the method�

Now choose � � Vh and v � Wh such that the estimates of the hypothesis �H�
� and �H��� are
satis�ed with r � 
� By ���� and ��� we conclude�

Theorem ��� The �nite element solution uh of the streamline di�usion least�squares method ����

converges in the norm k � k��� at a rate O�h�� �

� � �h��
�

� � h� if u is H��regular� If u is H��regular

the convergence rate is O�h��� �

� � �h��
�

� � h��� In particular� if one chooses � � h� for h � �

the familiar O�h �

� � L��error estimate from the classical streamline di�usion method is recovered�

Similarly� the streamline derivative b � ru is then computed with an O�h �

� � error in L��
For H��regular solution� one can choose h � p�� then the error will be of order O���h� � O�h�

for both 	 and u�

We remark� that in the H�#regular case� one may simply let � � �� and still get the same error
estimates of order O�h �

� �� which is the estimate proved in 	�� for upwind mixed co�volume schemes�
The least squares method in the present case does not exploit any upwinding� instead it requires a
su�ciently small mesh h � ��

The error estimate for u may seem to be quite unsatisfactory since a reasonable convergence
rate can be achieved only for small step�size h � �� which is quite a restrictive assumption� In fact�
one would like to be able to compute with much larger step�sizes �as we did in our computations��
say h � p

�� None of the methods provides good error estimates for the solution u for this case for
H��regular solutions� However� the present method has one strong point� namely direct continuous
approximation of the �ux� Therefore� streamline methods should be used for solutions that are are
expected to be su�ciently regular�

� Implementation and numerical experiments

In this section we present some numerical results that illustrate the error behavior of the studied
streamline di�usion least#squares �nite element method� We consider the same problem as in 	
���

r � ���arw � bw� � c�w � f�x� y� �x� y� � � � ��� 
��� ����

�



The exact solution was chosen w � x�
�x�y�
�y� and Dirichlet boundary conditions were imposed�
The coe�cients of the operator were� a � diag�a�� a��� a� � 
 � 
�x� � y�� a� � 
 � x� � 
�y��
c� � 
 and b � �b�� b�� where b� � cos��
�x cos��� b� � sin��
� y sin��� for angles � � ��

� � ��
�
� �

Obviously� r � b � �
 and the condition ��� is satis�ed� Note that the problem ���� di�ers slightly
from �
�� namely� �I is replaced by �diag�a�� a���

We used for both variables the space of piecewise bilinear functions Wh �zero boundary con�
ditions� and Vh �no boundary conditions� on a square mesh �composing the triangulation Th� of
mesh�size h � hx � hy � ��L for L � �� �� � ��

The least#squares method leads to the following system of linear algebraic equations

��
A BT

B M

�
� 	B�� C��

T
$ 	B�� C��

��
	h
uh

�
�
h
	B�� C��

T
$ r�h�s�

i
� ����

We have used the same notations 	h and uh for the vectors of the coe�cients in the presentation
of 	h and uh in the basis of Vh and Wh� Here� the matrices A� B� C� B� and C� are sparse and
assembled explicitly� More speci�cally� they are computed from the bilinear forms�

� the bilinear form ���
�
a��

�
�� �ar�� b�� � �

�
� � � �ar� � b� � � �

�
de�nes the ma�

trix A �

�
A BT

B M

�
� where � � ���� ��� and � � ���� ���� and �i and �i run over a basis

in the respective components of Vh � �V��h� V��h�� and similarly � and � run over a basis of
Wh� We have chosen as already mentioned bilinear elements for all components �V��h� V��h
and Wh��

� the matrix B� is computed from the bilinear form �div �� ��� where � � ���� ��� runs over the
basis of Vh and � runs over the basis of Wh�

� C� is the mass matrix �c��� �� where � and � run over the basis of Wh�

The operator $ is an algebraically stabilized �AMLI� multilevel preconditioner for the form
D���� ��� Details� on the AMLI methods are found in 	
��� The vector r�h�s has components �f�� ���
where � runs over the basis of Wh� Recall� that f� � f � �r � �bf��

The least#squares system ���� is solved by the preconditioned conjugate gradient method� with an
AMLI preconditioner coming from the explicitly available sparse matrix A�h��	B�� C��

T 	B�� C���
In the tables below we report the following error related quantities� �� � kIhw�uhk� �� � kIhw�

uhk�� �SD � kIhw� uhkSD�h � kb � r�Ihw� uh�k� �� � kIh�� � 	hk� �div � kr � �Ih��� 	h�k�
Here� w and �� � ��arw � bw are the exact solution and the exact continuous �ux� Ih and
Ih stand for nodal interpolation in the �nite element space Wh �for the scalar function u� and
in Vh �for the vector function ���� uh is the �nite element solution we have computed together
with 	h� Note that 	h is the approximate solution corresponding to the modi�ed continuous �ux
	 � �� � �b �r � �bu�� c�u�� where � � h is the streamline#di�usion parameter that we have used
in the test� Hence� we cannot get better than �rst order approximation to the �ux ���

It is clearly seen� that the error behavior for all quantities �except ��� is of approximate �rst
order� For the L�#error� ��� between the interpolant and the �nite element solution one may see a
superconvergent behavior of order higher than second in some tables �see� Tables �� � and ��� For
all tests� ��� is of higher than �rst order�

�
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