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Abstract� A modi�ed �nite di�erence approximation for interface problems in Rn� n � �� �� � is
presented� The essence of the modi�cation falls in the simultaneous discretization of any two normal
components of the �ux at the opposite faces of the �nite volume� In this way� the continuous normal
component of the �ux through an interface� is approximated by �nite di�erences with second	order
consistency� The derived scheme has a minimal 
�n � ��	point stencil for problems in Rn� Second	
order convergence with respect to the discrete H�	norm is proved for a class of interface problems�
Second	order point	wise convergence is observed in a series of numerical experiments with �	D� �	D
and �	D interface problems� The numerical experiments presented demonstrate advantages of the
new scheme compared with the known schemes which use arithmetic and harmonic averaging of the
discontinuous di�usion coecient�
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�� Introduction� Elliptic problems with discontinuous coe�cients �often called
interface problems� arise naturally in mathematical modeling processes in heat and
mass transfer� di�usion in composite media� �ows in porous media� etc� These pro�
cesses are described by the model di�usion equation

�r�Kru� � f�x� for x � 	��
�
�

subject to various boundary conditions� Here 	 � Rn is a bounded polyhedra� K�x�
is a symmetric and uniformly positive de�nite matrix in 	 which may have a jump dis�
continuity across a given surface �� Due to the nature of the processes� often the �uxes
across �� de�ned as �Kru � n� where n is the normal unit vector to �� are smooth�
although the coe�cients and the derivatives of the solution are discontinuous� Often
the surfaces of discontinuity of the coe�cient matrix K�x� are called interfaces� The
assumption that the solution and the normal component of the �ux are continuous
through the interface� is physical and is often used to close the mathematical problem�
In this paper we derive a new class of �nite di�erence schemes for second�order el�
liptic equations with diagonal coe�cient matrix K�x� � diag�k��x�� � � � � kn�x��� The
derived schemes are based on �nite volume techniques and use two main assumptions
�
� both the right hand side f�x� and the normal components of the �ux across the in�
terface are smooth enough ��� the interfaces � �i�e� the surfaces where the coe�cients
ki�x� have jumps� are parallel to the grid planes �lines��
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In the one�dimensional case� the �rst assumption reduces just to the smoothness
of the right hand side f�x�� In the multidimensional case� these two assumptions
are much more complicated and restrictive� First� the interfaces have to be planes
parallel to the coordinate planes� Second� the smoothness properties of the solution
will depend on the smoothness of the boundary of the domain� the smoothness of
the interface �� and on the ratio of the coe�cient jumps in a pretty complicated
manner� Some particular results in this direction can be found in the fundamental
work of Kondratiev �
��� In general� when the normal component of the �ux is smooth
it makes sense to use schemes with better approximation properties away from the
corners and the points of intersection of the interface � with itself or with the boundary
�	�

Finite di�erence schemes obtained from discretization of the balance equation over
a �nite number of control volumes have been widely used in computational practice
for di�erential equations� In the early stages� these were �nite di�erence schemes
on rectangular meshes with quite complicated treatment of the coe�cients and the
right hand side �see� for example the classical books� �
�� 
��� and references therein��
In ���� ��� Tikhonov and Samarskii derived an O�h�m����accurate �nite di�erence
scheme� where m � � is an arbitrary integer� for two�point boundary value problems�
The coe�cients of the scheme are certain� in general� nonlinear functionals of the
di�erential equation coe�cients� which were assumed to be piece�wise smooth�

Further� in ���� Shashkov has extended the balance equation approximation idea
to a large class of di�erential operators �including divergence� gradient� and curl�
on quite general quadrilateral grids �see� also ����� This new approach has produced
discrete operators which approximate the corresponding di�erential operators and
have the same properties as the continuous ones� For example� the discrete gradient
is adjoint in a special inner product to the discrete divergence�

In recent years� the �nite volume approach has been combined with �nite element
method techniques in a new development which is capable of producing accurate
approximations on general triangular and quadrilateral grids �see� e�g� ��� �� �� 

�

�� 
���� The main advantages of the method are compactness of the discretization
stencil� good accuracy� and local discrete conservation� In all of these discretization
methods� it is assumed that the possible jumps of the di�usion coe�cient are aligned
with the �nite element partitioning� This means� that inside each �nite element the
di�usion coe�cient is su�ciently smooth and the jumps may occur only at the �nite
element boundaries�

A straightforward application of the �nite volume method to a generic interface
problem results in a scheme which uses harmonic averaging of the coe�cient� This
is particularly important in the case of discontinuous coe�cients �see� for example�
�
���� Inspecting these schemes� one easily sees that the normal component of the �ux
at the interface is discretized with a local truncation error O�h�� In this paper we
present a modi�cation of the classical �nite volume method so the normal component
of the �ux in the new scheme has O�h���local truncation for interface problems with
smooth normal �ux� Note� that we do not suppose that the interfaces are aligned with
�nite volume surfaces� However� we assume that the interfaces are orthogonal to the
coordinate axes� Our approach can be viewed as a defect correction of the standard
scheme with harmonic averaging of the coe�cient� since it takes into account the next
term in the Taylor expansion of the �ux� This correction does preserve the standard
��n � 
��point overall stencil and uses data only from the neighboring �n cells� We
were able to increase the order of the local truncation error and at the same time to
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preserve the standard stencil� by discretizing the normal components of the �ux at
the opposite sides of the �nite volume as a couple�

Recently� Il�in �
�� and LeVeque and Li �
�� have derived second�order �nite dif�
ference approximations of the ��D interface problem using similar assumptions about
the normal �ux through the interface� However� in order to get a second�order scheme�
Il�in uses a larger stencil than the compact ��n�
��point stencils for problems in Rn�
while LeVeque and Li �
�� use Taylor expansions for the solution around the interface�
The latter paper does not consider the discretization of the �uxes� and this can be
viewed as a disadvantage when the problem requires their accurate reconstruction�
for example velocities in porous media or the heat �uxes in thermal problems� Below
we propose a homogeneous di�erence scheme for a class of 
�D� ��D� and ��D elliptic
problems with variable discontinuous coe�cients with arbitrarily located interfaces�
The coe�cients of the scheme are obtained from the coe�cients of the di�erential
equation by a simple formula� The approach of LeVeque and Li from �
�� requires
solving small systems of linear equations for determining these coe�cients at each
point near the interface� Moreover� our scheme is easily extendible to �ne�scale inho�
mogeneities of the coe�cients ��ner than the grid size�� However� our approach deals
only with interfaces orthogonal to the coordinate axes� while the approach from �
��
can treat arbitrarily located interfaces�

Below we summarize advantages and disadvantages of the new scheme in compar�
ison with known ones for grids not aligned with the di�usion coe�cient jump� On the
positive side are the following features of the new scheme� �
� the scheme has O�h���
local truncation error for the normal component of the �ux recall that the standard
schemes with arithmetic and harmonic averaging of the coe�cient at the interface
have in general local truncation error O�
� and O�h�� respectively ��� the proposed
scheme is algebraically equivalent to a scheme which is second�order consistent to
the interface di�erential problem ��� the numerical experiments for problems with
large jumps of the di�usion coe�cient demonstrate that the new scheme is orders of
magnitude more accurate than the scheme which uses harmonic averaging�

On the negative side are the following two main disadvantages� �
� in general� the
scheme is only asymptotically �for h� �� locally conservative ��� the corresponding
matrix is a non�symmetricM �matrix this will add some costs to the solution method
for the algebraic problem� However� the numerical experiments on a wide class of
problems with discontinuous coe�cients show that the scheme is so accurate that
these two disadvantages cannot diminish the value of the method�

We have run several numerical experiments in order to validate the new scheme�
and to compare it with the known schemes� These experiments include solving 
�D� ��
D� and ��D interface problems with known analytical solutions� as well as solving a ��D
problem with a singular solution� Also� we considered problems where the interfaces
are aligned with the �nite volume surfaces� as well as problems with arbitrarily located
interfaces� orthogonal to the coordinate axes� Point�wise second�order convergence
is observed in numerical experiments� Note� that the accuracy of the new scheme
observed in our experiments is almost uniform with respect to the jump of coe�cients�
and it is comparable with the accuracy of the solution of the Poisson equation with
constant di�usion coe�cient� What is even more interesting is that this conclusion
is valid not only for the case of interfaces aligned with the �nite volume boundaries�
but also for the non�aligned case� Meanwhile� for problems with large jumps of the
coe�cients� the accuracy of the scheme with harmonic averaging is very sensitive to
the jump size and its accuracy is orders of magnitude less than the accuracy of the new
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scheme� Numerical experiments for the so called thin lenses problem are especially
interesting� In this case our scheme provides very accurate results even on very coarse
grids� quite in contrast with the other known schemes�

The paper is organized as follows� Section � is devoted to the derivation and
study of modi�ed �nite volume schemes for one�dimensional problems� Section � con�
tains the formulation of the new �nite volume scheme for multidimensional interface
problems� Finally� Section � summarizes and discusses the results of the numerical
experiments of a series on interface problems in Rn� n � 
� �� ��

�� Modi�ed �nite volume discretization for ��D problems� In order to
illustrate our approach we shall �rst consider the one�dimensional case and rewrite
the equation �
�
� into its mixed form� �nd u�x� such that

�W

�x
� f�x�� W � �k�x�

�u

�x
� � � x � 
� u��� � �� u�
� � �����
�

Here k � k�x� � k� is a known di�usion coe�cient� W �x� is the �ux dependent
variable� and f�x� is the given source term� Conditions for continuity of the function
and of the �ux through interface points � are added�

�u� � �W � � �� for x � �������

Here �u� denotes the di�erence of the right and left limits of u at the point of disconti�
nuity� The main assumptions for this problem are �
� the coe�cient k�x� has a �nite
number of jump discontinuities and in the closed intervals between the jumps k�x� is
twice continuously di�erntiable ��� the right hand side f�x� is continuous and has
continuous �rst derivative on the closed interval ��� 
��

We introduce a standard uniform cell�centered grid x� � �� x� � h��� xi � xi���
h� i � �� � � � � N� xN�� � 
� where h � 
�N � Note� that the endpoints x � � and x � 

are part of the grid� but they are at h�� distance from their neighboring grid points�
This type of shifted grid is slightly inconvenient for Dirichlet boundary conditions�
but it is natural and very convenient for computations when the boundary condition
involve the �ux W � The internal grid points can be considered as centered around
the volumes Vi � �xi� �

�
� xi��

�
� where xi��

�
� xi �

�
�h� xi� �

�
� xi �

�
�h� The values

of a function f de�ned at the grid points xi are denoted by fi� Non�uniform grids
can be treated in a similar way� A reason to work with cell�centred grids is that they
are widely used� say� in the computational �uid dynamics� Considering� for example�
non�isothermal �uid�structure interaction problems� one has to solve problems close
to the one considered here� However� our approach is de�ned locally� at a particular
�nite volume level� and it can work with standard vertex�based grids� as well�

The �nite volume method exploits the idea of writing the balance equation over
the �nite volume Vi� i�e� integrating the equation ���
� over each volume Vi�

Wi��
�
�Wi� �

�
� h �i� �i �




h

Z x
i��

�

x
i� �

�

f�x�dx� i � 
� �� ���� N������

Next� we rewrite the �ux equation in the form

�
�u

�x
�
W �x�

k�x�
�



and integrate this expression over the interval �xi� xi����

��ui�� � ui� � �

Z xi��

xi

�u

�x
dx �

Z xi��

xi

W �x�

k�x�
dx������

We assume that �ux W �x� is two times continuously di�erentiable on the interface�
so it can be expanded around the point xi��

�
in Taylor series

W �x� �Wi��
�
� �x� xi� �

�
�
�Wi��

�

�x
�

�x� xi��
�
��

�

��W ���

�x�
� � � �xi� xi���������

After replacing the �rst derivative of the �ux at xi��
�
by a two�point backward di�er�

ence we get the following approximation of ������

��ui�� � ui� �Wi��
�

Z xi��

xi

dx

k�x�
�����

�
Wi��

�
�Wi� �

�

h

Z xi��

xi

�x� xi� �
�
�

k�x�
dx�O�h���

Finally� we rewrite this equation in the following basic form�

�kH
i��

�

ui�� � ui
h

�Wi� �
�
� ai��

�
�Wi� �

�
�Wi� �

�
� � 	i������

where

kH
i��

�

�

�



h

Z xi��

xi

dx

k�x�

���
������

ai��
�
� kH

i��
�




h�

Z xi��

xi

x� xi��
�

k�x�
dx� 	i � O�h���

Here kH
i��

�

is the well known harmonic averaging of the coe�cient k�x� over the cell

�xi� xi���� which has played a fundamental role in deriving accurate schemes for dis�
continuous coe�cients �see� e�g� �
�� 
���� This presentation of the �ux W �x� is a
starting point for our discretization� Since we have assumed that the �ux is smooth�
then the consecutive terms in the right hand side in ����� are O�
�� O�h� and O�h���
respectively� Truncation of this sum after the �rst term produces the well known
scheme of Samarskii �
�� with harmonic averaging of the coe�cient� This scheme is
O�h��consistent at the interface points and second�order accurate in the discrete H��
norm� Further in the text we call this scheme harmonic averaging or HA scheme� The
scheme we shall derive takes the two terms of the presentation ������ and disregards
the 	i�term� Let Fi��

�
and Fi� �

�
denote the approximation to the exact �uxes Wi� �

�

andWi� �
�
� respectively� and let yi denote the approximate values of the exact solution

u�xi�� Thus� we get the following relations�

�kH
i��

�

yi�� � yi
h

� Fi��
�
� ai��

�
�Fi��

�
� Fi� �

�
�������

�kH
i� �

�

yi � yi��
h

� Fi� �
�
� ai� �

�
�Fi��

�
� Fi� �

�
�����
��
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The above two relations allow us to derive the �nal expression for Fi��
�
� Fi� �

�
�

which is needed in the balance equation ������ subtract ���
�� from ����� to get

�
 � ai��
�
� ai� �

�
��Fi� �

�
� Fi� �

�
� � �kH

i��
�

yi�� � yi
h

� kH
i� �

�

yi � yi��
h

����

�

Since the grid points x� and xN�� are shifted by h�� from their neighbors� the �nite
di�erence equations at x� and xN have to be modi�ed� Combining ���

� with �����
we get the following �nite di�erence approximation of the di�erential problem ���
��

Lhyi � �i for i � 
� � � � � N����
��

where

Lhyi �

��������
�������

�
�

�




h

�
kH�
�

y� � y�
h

� kH�
�

�y�
h

�
� for i � 
��

�
�

 � ai��

�
� ai� �

�

��� 

h

�
kH
i��

�

yi�� � yi
h

� kH
i� �

�

yi � yi��
h

�
� i �� 
� N�

�
�

�




h

�
�kHN� �

�

�yN
h

� kHN� �
�

yN � yN��
h

�
� for i � N��

���
��
Here in the �rst and last di�erence equations� we have explicitly imposed the homo�
geneous boundary conditions y� � � and yN�� � �� Further in the text we refer to
this approximation as a scheme using improved harmonic averaging or IHA scheme�

Remark ���� For ai��
�
� ai� �

�
� �� the operator Lh is the well known �nite

di�erence operator corresponding to harmonic averaging of the di�usion coe�cient�
which is second�order accurate in the discrete H��norm �see� e�g� ��	
��

Remark ���� Near the boundary the discretization ����� has a special form
due to the use of a cell�centered grid� The well known discretization for such grids
uses the factor 
 instead of �

� � Although the di�erence scheme with the factor 
 is
not consistent with the di�erential problem at the points x�� xN � it is proven �see� for
example� ���
� that this does not in�uence the order of convergence of the scheme�
We prefer the factor �

� because the �uxes at x � � and x � 
 are O�h���accurate
in this case� Moreover� the numerical experiments of numerous test problems with
continuous and discontinuous coe�cients showed that the constant in the convergence
was smaller when the discretization ������������ was used�

Remark ���� Alternative ways for deriving �point approximations of one�
dimensional problems in the framework of the �nite element method are discussed�
for example� in ��
 and ���
� In the latter work the �nite element spaces involve the
local solutions of the problem ������ while in the former work the schemes are derived
by the dual mixed hybrid formulation�

In our computations for comparison of the performance of the new scheme� we also
use the scheme ���
�� in which ai��

�
� ai� �

�
� � and kH

i��
�

is replaced by ����ki�ki����

This scheme is referred to as the arithmetic averaging �AA� scheme�
Accurate computations of the �uxes are needed in many applications� The fol�

lowing expression approximates the continuous �ux with second�order accuracy �even
at the interface��

Fi��
�
�
�kH

i��
�

yi���yi
h

�

� ai� �

�

�
� kH

i� �
�

yi�yi��
h

�
ai��

�

�
�

 � ai��

�

��

� ai� �

�

�
� ai��

�
ai� �

�

���
��

�Wi��
�
�O�h���

�



The new scheme approximates the �uxes to second�order accuracy� independent
of the positions of the discontinuity of the coe�cient k�x�� The price we paid is the
necessity to evaluate the expressions kH

i��
�

and ai��
�
�ai� �

�
with an error no larger than

O�h��� We shall assume that any point � where the coe�cient k�x� is discontinuous
is known and can be presented in the form � � xi � 
h for some i and � � 
 � 
�

Obviously� if 
 � � or 
 � 
 �i�e�� when the interfaces are aligned with grid
nodes�� then ai��

�
� ai� �

�
� O�h��� Thus� disregarding this term and taking into

account that kH
i��

�

� k�xi��
�
� �O�h�� we end up with a scheme which is the same as

those obtained from �nite di�erence or linear �nite element approximations� Further�
if the di�usion coe�cient k�x� has jump discontinuities and � � 
 � 
� but the
�ux is still smooth� the second term in the right hand side in ����� will be essential
to derive a better approximation� Note� that accounting for this second term is the
main di�erence between our approach and the standard �nite volume discretization
of interface problems� In short� this term does not a�ect the order of convergence�
but allows us to improve the constant of convergence in the case of discontinuous
coe�cients and to derive more accurate di�erence schemes�

Now we consider particular realizations of this scheme� If the point of discon�
tinuity � is in the subinterval �xi� xi���� � � xi � 
h� where � � 
 � 
� then the
approximation of the integral in kH

i��
�

is done by splitting it into integrals over �xi� ��

and ��� xi��� and then applying the trapezoidal or midpoint rule for each integral�
This approach will produce accurate enough evaluation of kH

i��
�

� The following for�

mula will be only O�h��accurate�

kH
i��

�

	

�



ki
�


� 


ki��

���
�

Note that in the case of piece�wise constant coe�cients� this formula is exact� How�
ever� it is based on the use of left and right rectangular quadrature formulae� and
might not be accurate enough in the general case� Second�order accurate evaluation
of the integrals is given by

kH
i��

�

	

�



�

�



ki
�




k���

�
�


� 


�

�



ki��
�




k���

�	��
����
��

Note� that k���� k��� are known from the second interface condition ������
Further� we continue with the second integral in ������ Our aim is to obtain a

second�order approximation for the �ux W �x�� We again split the integral into two
integrals and apply the trapezoidal rule for each of the two integrals�




h�

Z xi��

xi

�x� xi���

k�x�
dx �




h�

Z �

xi

�x � xi��
�
�

k�x�
dx �




h�

Z xi��

�

�x� xi��
�
�

k�x�
dx �

�



�

�

 � ���

k���
�

���

ki

�
�


� 


�

�
���

ki��
�

 � ���

k���

�
�O�h������
��

The case of piece�wise constant coe�cient k�x� is very important for the applications�
In this case the formulas presented above are exact and reduce to

kH
i��

�

�

�



ki
�


� 


ki��

���
and ai��

�
�




�


�
� 
��ki � ki���

�
� 
�ki � 
ki��
����
��

�



Obviously� if the point of discontinuity � is a midpoint of the grid� i�e� � � xi��
�
� then


 � 
�� and

kH
i��

�

� �

�



ki
�




ki��

���
and ai��

�
�




�

�
ki � ki��
ki � ki��

�
�

It is reasonable to assume that the step size h is so small� that if there is a jump in
the coe�cient k�x� in the interval �xi� xi���� then k�x� is smooth at the neighboring
two intervals �xi��� xi� and �xi��� xi���� Thus�


 � ai��
�
� ai� �

�
� 
 �


�
� 
�

�

�
ki � ki��

�
� 
�ki � 
ki��

�
�O�h�� � 
���

Similarly� we also have an estimate from above� 
 � ai��
�
� ai� �

�
� ���� These two

estimates will guarantee that the �nite di�erence scheme is well conditioned�
The following result is valid�
Proposition �� Assume that the coe�cient k�x� is a piecewise C��function and

has a �nite number of jump discontinuities� the grid is such that the discontinuities
are at the points xi��

�
� and the source term f�x� is a C��function on ��� 
�� Then the

�nite di�erence scheme ������� ������ ������� ������ is second�order accurate in the
discrete H��norm� i�e� the error ei � u�xi�� yi satis�es the estimate

jjejjH� � jjy � ujjH� �



NX
i��

kHi�����ei � ei���
��h

����

�M h��

The second�order of accuracy in H� follows from the second�order of discretization
for the �uxes by using the classical technique for deriving a priori estimates for the
solution of the �nite di�erence scheme �see� e�g� �
�� 
����

Remark ���� Note that if f�x� � 
 then W ���x� � � and the local truncation
error is identically zero� This means that the IHA scheme is exact �i�e�� it reproduces
exactly the solution at the grid points� for problems with piecewise constant di�usion
coe�cient and constant right hand side� while the HA scheme is exact only for ho�
mogeneous problems� Thus� HA scheme reproduces exactly piecewise linear solutions�
while the IHA scheme reproduces exactly piecewise quadratic solutions�

�� Modi�ed �nite volume discretization for ��D problems� In this sec�
tion we shall introduce the �nite di�erence scheme for the equation �
�
� in R� with
homogeneous Dirichlet boundary conditions on a rectangular domain 	� Now we in�
troduce the �ux W � �K�x�ru� If the di�usion coe�cient is discontinuous on a
certain surface �so�called interface denoted by ��� then two conditions for continuity
of the solution and the normal component of the �ux through the interface are added�

�u� � �� �W � n� � �� x � �����
�

where �g� denotes the di�erence of the limit values of the function g from both sides
of � and n is the unit vector normal to ��

In this paper we consider multidimensional problems that can be discretized in
a coordinate�wise way� This means that the interfaces are parallel to the faces of
the �nite volumes and the di�usion coe�cient matrix K�x� is a diagonal� Thus� the
discretization of a ��D problem is obtained as a tensor product discretization of three

�D problems �like one investigated in the preceding section��

�



The �nite volume approach is used for discretizing the above equation on cell�
centered grids which are tensor products of grids in each direction� The grid sizes and
the number of the nodes in the xi�direction is hi andNi� for i � 
� �� �� The grid points
are denoted by �x��i� x��j � x��k�� where � � i � N�� � � j � N�� � � k � N�� The
values of the unknown function are related to the volumes� centers� The discretization
at the internal points is based on the local �ux balance for the �nite volume around
the point� For the �nite volume VP corresponding to node P this balance is�Z

�VP

W � nds � h�h�h��P � �P �



h�h�h�

Z
VP

f�x�dx������

Here n is the unit outward normal to the volume boundary �VP � Next� we approxi�
mate the integrals over the volume faces by the midpoint rule to get

h�h� �We �Ww��h�h� �Wn �Ws�

�h�h� �Wt �Wb� � h�h�h��P �O�h��������

Subscripts with capital lettersW�E� S�N�B� T are used to denote the values at the
west� east� south� north� bottom and top neighboring grid points and the subscript P
is used for the center of the stencil� while w� e� s� n� b� t stand for the respective values in
the center points of the control volume faces� For example�We � �k�

�u
�x�

jxe is the �ux
through a face perpendicular to the axis x� at the point xe � �x��i� �

�
� x��j � x��k�� the

grid point P is denoted by xP � �x��i� x��j � x��k�� The grid point east of P is denoted
by xE � �x��i��� x��j � x��k�� while that north of P is xN � �x��i� x��j��� x��k�� etc�
Further� we approximate the di�erences We �Ww� Wn �Ws� and Wt �Wb as one�
dimensional �uxes in the directions x�� x�� and x�� correspondingly� using formula
���

� in each direction�

In the particular case when the di�usion coe�cient is a constant within any �nite
volume and the interfaces are aligned with �nite volume surfaces �i�e� 
 � ����� the
�nite volume scheme� approximating the ��D problem and preserving second�order
of discretization for the normal components of the �uxes through interfaces� can be
written as

h�h��
��
�

�
kHe

yE � yP
h�

� kHw
yP � yW

h�

	
� h�h��

��
�

�
kHn

yN � yP
h�

� kHs
yP � yS

h�

	
�

� h�h��
��
�

�
kHu

yT � yP
h�

� kHd
yP � yB

h�

	
� h�h�h��P ������

where

�� �

�

 �




�

�
k��P � k��E
k��P � k��E

�
k��P � k��W
k��P � k��W

�	
�

�� �

�

 �




�

�
k��P � k��N
k��P � k��N

�
k��P � k��S
k��P � k��S

�	
�

�� �

�

 �




�

�
k��P � k��T
k��P � k��T

�
k��P � k��B
k��P � k��B

�	
�

Here kHe stands for harmonic averaging of k��x� in direction east from P � i�e� over
the interval �x��i� x��i���� k��P is its value at the point P � etc� These �nite di�erence

�



equations are written for all internal points except those for which the ��n�
��stencil
includes points at the boundary� For these points essentially one has to add the
modi�cation of the approximation at the direction of the neighboring boundary point�
Such modi�cation has been introduced for one�dimensional problems in Section � �see
formulas ���
�� � ���
���� To close the system to this set of �nite di�erence equations
we add the equations accounting for the Dirichlet boundary conditions�

Note� that in the case when the interfaces are not aligned with the �nite volume
surfaces �but are orthogonal to the axes�� the multidimensional 
�HA scheme� as well
as the multidimensional 
�IHA scheme� are derived as tensor products of the respective
one�dimensional schemes�

It is obvious that the �nite di�erence scheme can be written as a linear system
of algebraic equations with a non�symmetric M �matrix� If the coe�cients ki�x��
i � 
� � � � � n are C��functions in the whole domain� then the factors ��� ��� and ��
are all of the order O�h�� and the non�symmetry is negligible� On the other hand�
�i � 
��� i � 
� �� � for grids with jump discontinuities of the coe�cient ki�x� parallel
to the grid faces� regardless of the size and of the jump� Therefore� although the
condition number of the linear system will depend on the size of the jump� this
dependence will be the same as in the case of arithmetic or harmonic averaging� The
�nite di�erence scheme ����� is the IHA scheme that has been used in our numerical
experiments for both two�dimensional and three�dimensional problems� in the case
when the interfaces are aligned with the �nite volume surfaces� The multidimensional

�HA scheme and 
�IHA scheme are used in the non�aligned case�

�� Numerical Experiments� A series of computational experiments were per�
formed in order to experimentally study the accuracy and the convergence rate of the
new scheme and to compare it with known schemes for 
�D� ��D and ��D interface
problems� Two kind of problems were solved in 
�D and ��D cases� The �rst one is
a problem with known analytical solution with the right hand side being calculated
from the known solution� The second one is a problem with right hand side identically
equal to 
� Note that in the 
�D case this problem also has an analytical solution�
Only problems with known analytical solutions are solved in the ��D case�

Relative discrete maximum norm �denoted as C�norm� of the solution error �i�e� of
the di�erence between the exact and the computed solution� is calculated as max ju�
yj�max juj� Also� the relative discrete L��norm of the solution error is computed as�P

V meas�V ��u� y��
 �
� �max juj� Here the operations max and the summation are

considered over all grid nodes� The relative C� and L��norms of the error are reported
in the tables below for cases when the analytical solution is known� In all tables we
have used the following shorthand notations� B stands for the problem when k�x� � 
�
i�e� we solve the Poisson equation� AA � for schemes with arithmetic averaging� HA
� for schemes with harmonic averaging� and �nally� IHA is used for a heading the
results obtained by the new scheme which uses improved harmonic averaging�

���� Numerical experiments for ��D problems� Results from the problem
computation with exact solution uex � �

k sin
�
�x
�

 �
x� �

�

 �

 � x�


and di�usion co�

e�cient equal to 
 for � � x � ��� and equal to 
��� for ��� � x � 
 are presented in
Tables ��
 and ��� below�

Results from solving the Dirichlet problem with right hand side identically equal
to 
 are presented in Tables ��� and ���� Di�usion coe�cient in this case is 
 for
� � x � ���� 
��� for ��� � x � ���� and 
� for ��� � x � 
� Note� that this problem
has a piecewise quadratic solution�

��



Table ���

��D problem with uex � �

k
sin
�
�x
�

 �
x� �

�

�
� � x�


� k � f�� ����g in � subregions� respec�

tively� the relative C�norms of the error and their ratios

k � f�� ���� g
Nodes case AA case HA case IHA
�� ���	d
� � ����d
� � 	���d
� �

�� ����d
� ���� ����d
� ���� ����d
� ����

�� ����d
� ���� ����d
� ���� 	���d
	 ����

�� 	���d
� ���� ����d
	 ���	 ����d
	 ��
�

��� ���d
� ���� ����d
	 ���� ���d
� ��	�

Table ���

��D problem with uex � �

k
sin
�
�x
�

 �
x� �

�

�
� � x�


� k � f�� ����g in � subregions� respec�

tively� the relative L��norms of the error and their ratios

k � f�� ���� g
Nodes case AA case HA case IHA
�� ���	d
� � ����d
� � ��	�d
� �

�� ����d
� ���� ����d
� ��	� ��	�d
	 ����

�� ���d
� ���� ��	�d
� ���� ����d
	 ���


�� ����d
� ���
 ����d
	 ���� ����d
� ��
�

��� ����d
� ���� ����d
	 ���� ����d
� ��	�

The results from numerical experiments in 
�D case demonstrate that the new
scheme has a much smaller constant of convergence than the scheme based on har�
monic averaging� Both schemes asymptotically converge with second�order� as pre�
dicted by the theory� The Tables ��� and ��� con�rm the theory that IHA scheme is
exact for interface problems with piecewise quadratic solution�

���� Numerical experiments for ��D problems� Here we consider an isotropic
case� i�e� ki�x� � k�x�� i � 
� � � � � n� First of all� a two�dimensional interface prob�
lem with di�erent coe�cient in � subregions and with a known analytical solution is
solved� We compute the solution using schemes obtained from harmonic �HA�� and
improved harmonic �IHA� averaging of the di�usion coe�cient� Notations HA and
IHA are preserved for the case when 
 � �

� � while notations 
�HA and 
�IHA are
used for other values of 
� Two sets of values for the di�usion coe�cient in the �
subregions� are used in order to demonstrate the in�uence of the size of the jump
discontinuity on the accuracy of the schemes� Results from these computations are
presented in Tables ��� and ��� for the �rst set� and in Tables ��� and ��� for the
second set�

Let us discuss the results presented in Tables ��� � ���� The scheme with harmonic
averaging of k�x� is O�h���accurate� The new scheme also converges with second�
order� but the constant in front of the convergence factor is two orders of magnitude
smaller for the example with large jumps of the coe�cients� This means that in
practical computations the new scheme allows computations on signi�cantly coarser
grids in comparison with known schemes� The accuracy of the new scheme is almost
uniform with respect to the size of the jump discontinuity� as one can observe from
the Tables� and it is comparable with the accuracy of computing the Poisson equation
with a constant coe�cient �denoted as case B in the Tables�� An interesting fact is
that the IHA scheme preserves this behavior even in the case when interfaces are not
aligned with the �nite volume boundaries� At the same time the accuracy of the HA
scheme depends on the jump discontinuity� Note� that the larger the jump of the
coe�cient� the better the advantages of the IHA scheme are seen�

The results in the non�aligned case need special discussion� It was observed in

��



Table ���

��D problem �
ku��� � �� u
�� � �� u
�� � �� k � f�� ����� ��g in � subregions� respectively�

the relative C�norms of the error and their ratios

k � f�� ����� �� g
Nodes case AA case HA case IHA
�� 	���d
� � ����d
� � ���d
�	 exact

�� ����d
� ���	 ���d
� ���� ���d
�	 exact

�� ��		d
� ���� ����d
� ���� 	��d
�	 exact

�� ���d
� ���
 ���	d
� ���� 	��d
�	 exact

��� ����d
� ���	 ����d
� ���� ���d
�� exact

exact � the di�erence scheme is exact for this problem�

Table ���

��D problem �
ku��� � �� u
�� � �� u
�� � �� k � f�� ����� ��g in � subregions� respectively�

the relative L��norms of the error and their ratios

k � f�� ����� �� g
Nodes case AA case HA case IHA
�� ����d
� � 	��d
� � ���d
�	 exact

�� ����d
� ���	 ����d
� ���� ���d
�	 exact

�� ����d
� ���� ����d
� ���	 ���d
�	 exact

�� ����d
� ���� ����d
� ���� ���d
�	 exact

��� ����d
� ���	 ����d
� ���� ��d
�	 exact

exact�the di�erence scheme is exact for this problem�
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C�norms of the error and their ratios
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Fig� ���� Graph of ��D thin lenses computations with the AA scheme� left� grid ��� ��� right�
grid ���� ���

the experiments� that the 
�schemes converge uniformly �with respect to re�nement
of the grid� with second�order� only if the grid is re�ned in a such a way� that 

remains constant� In our experiments 
 varies from one grid to the next� and this
is the reason for the non�monotone values obtained for the ratios of the norms of
the error on consecutive grids� A possible explanation of such a behavior is that the
reminder term is di�erent for the cases � � 
 � ��� and ��� � 
 � 
� This phenomena
needs further detailed investigations�

As a second ��D example� an interface problem with right hand side identically
equal to one is considered� Dirichlet boundary conditions on the east and west sides
and zero Neumann boundary conditions on the north and south sides are prescribed�
The computed problem is also known as a thin lenses problem� the di�usion coe�cient
is very small within two thin lenses� and is equal to 
 elsewhere� In our computations
the lenses are f��� � x� � ��� ��� � x� � ����g and f��� � x� � ��� ��� � x� �
����g� The di�usion coe�cient of the lenses has value 
���� The analytical solution
of the problem is not known� The solution of the problem has singularities around
corners of the lenses� and u � W ���

� � where � 
 �
� for our examples �for details see

��
��� The computed solutions are presented in Figure ��� for the AA scheme� in
Figure ��� for the HA scheme� and in Figure ��� for the IHA scheme� The left plot on
any �gure presents the solution on a coarse ��� �� grid� while the right plot presents
the solution on a �ne 
��� 
�� grid� Note� that only one layer of grid cells in the x�
direction is laying inside a lense on the coarse grid�
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Fig� ���� Graph of ��D thin lenses computations with the IHA scheme� left� grid ������ right�
grid ���� ���

The maximum values of the computed numerical solutions are presented in Table
���� In this case we re�ne the grid by tripling the number of nodes in any direction
so we have nested grids� and we can monitor the value of the numerical solution at a
�xed grid point on the plane�

Solutions� computed by IHA scheme are very close to the exact solution even
when coarse grids are used �the �rst � digits of the maximum value of the solution
are correct even on the coarsest grid�� This fact is con�rmed by the plots on Figure
���� as well as by the data in Table ���� At the same time� HA scheme produces
rough approximation to the solution on the coarse grid� The AA scheme is practically
unusable for coarse grids� and produces an inaccurate solution even on a very �ne
grid�

It should be noted� that in addition to the thin lenses problem� we have also
computed the above example in the cases when the di�usion coe�cient takes value

��



Table ��	

��D thin lenses problem� the maximum value of the numerical solution

Grid AA HA IHA
��� �� ������ ����� ������
��� �� ������ ������ ����	�
���� ��� ����� ����	� ������
	��� 	�� ���� ������ �����	

Table ���


��D problem with � subregions� the relative C�norm of the error

Grid B AA HA IHA

��� ��	d
	 ���	d
� ����d
� ����d
	
��� ��	�d
	 ����d
� ����d
� ����d
	
��� ����d
� 	���d
� ��	�d
� ���d
�


��� in larger domains �say� in an internal square which cover several grid nodes in
each direction� etc��� In all cases IHA scheme produces much better results than HA
scheme� However� IHA seems to be especially e�cient for thin lenses problems� A
possible explanation for this phenomenon is that in the case of thin lenses problems
the solution behaves in some subregions as a function of one variable therefore� the
scheme reduces to a scheme for one�dimensional problem� As we know� for f�x� � 
�
this scheme is exact�

���� Numerical experiments for ��D problems� We solved a ��D problem
�suggested in ���� with non�homogeneous Dirichlet boundary conditions and known
solution uex � �

k �x� � �����x� � �����x� � ���� sin��x�� � �
 � x�� � x�� � x���� where
k is a constant over each of the eight corners of this cube� More precisely� k �
f
��� 
��� 
�� 
��� 
���� 
���� 
��� 
��g in the eight corners� counting from the left to
the right� and from the bottom to the top� Interfaces are aligned with the �nite
volume surfaces in this case� i�e� 
 � ���� The results from the numerical experiments
are presented in Tables ��
� and ��

� In all cases we use the discretization of the
boundary conditions reported in ���� Table ��
� and ��

 show that the numerical
solution of the interface problem� obtained with the new scheme ������ is at least
two orders more accurate than the numerical solutions� computed with the other
two schemes� Table ��
� shows that the AA scheme does not provide a satisfactory
accuracy� especially in the maximum norm� The HA scheme is much better� and
the new IHA scheme produces the best results� We note that the solution computed
with the new scheme on the coarsest grid with 
�� points is more accurate than the
solution computed by the HA scheme on the �nest grid� The same observation can
be made when comparing the arithmetic and harmonic averaging schemes� The HA
scheme will need approximately 
��� nodes to produce the solution with the accuracy
achieved by the new scheme on a 
���node grid� It can be also observed from Tables
��
� and ��

 that the constant of convergence of the new scheme does not depend on
the jump of discontinuity in this example� and it is practically equal to the constant
of convergence rate of the scheme for Poisson�s equation�

�� Conclusions� A family of new di�erence schemes for self�adjoint second�order
elliptic equations with discontinuous coe�cients is derived via a �nite volumes ap�
proach� A new scheme� based on improved harmonic averaging of the coe�cient� has
second�order accuracy under the following assumptions� �
� the di�usion coe�cient
matrix K�x� is diagonal ��� the interfaces are planes perpendicular to the coordinate
axes ��� the normal �to the boundaries of a given �nite volume� component of the

��



Table ����

��D problem with � subregions� the relative L��norm of the error

Grid B AA HA IHA

��� ����d
� ����d
� ���d
� ����d
�
��� ����d
� ��	�d
� ����d
� ����d
�
��� 	���d
 ����d
� ���d
	 ����d


�ux is continuously di�erentiable at the �nite volume boundaries� Second�order con�
vergence of the new scheme in the maximum�norm is observed in various numerical
experiments for problems in Rn� n � 
� �� �� The numerical experiments also demon�
strate that the new scheme is much more accurate than the known schemes in solving
interface problems� especially in the cases of large jumps of the coe�cient� The ad�
vantages of the new scheme are better seen in solving multidimensional problems with
many interfaces and thin lenses problems�
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