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1 Introduction

Since the introduction of the mortar method as a coupling technique between
the spectral and finite element methods (see, e.g. [5, 7, 8]), it has become the
most important technique in domain decomposition methods for non-matching
grids. The active research by the scientific computation community in this field
is motivated by its flexibility and great potential for large scale parallel compu-
tation (see, e.g. [3]). A good description of the mortar element method can be
found in [2, 6, 7, 12]. The nonconforming finite element mortar method has been
studied in [7], where optimal order convergence in H'-norm was demonstrated.
Three-dimensional mortar finite element analysis has been given in [5]. Non-
mortar mixed finite element approximations for second order elliptic problems
have been discussed in [1].

The above mentioned mortar elements are defined on non-matching grids
with non-overlapping subdomains. Recently, the overlapping mortar linear fi-
nite element method was studied in [9], where several additive Schwarz precon-
ditioners have been proposed and analyzed and extensive numerical examples
to support the theoretical results have been reported.

To the authors’ best knowledge, there has not been a study for the mortar
finite volume element method. In the past 10 years the finite (control) volume
method has drawn serious attension both form mathematicians, engineers, and
physicists as an attractive solution technique for various applied problems (see,
e.g. [4]). Following the notations and the approach of Ben Belgacem [2], we
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extend the mortar technique to the finite volume element methods in two ways:
(1) following the traditional mortar approach we propose mortar finite volume
elements only on the subdomains with finite elements on the interfaces for La-
grange multipliers; (2) we propose numerical schemes by using finite volume
elements on both the subdomains and the interfaces. It has been shown by nu-
merical examples that the latter schemes converge much faster (5-6 times) than
the former schemes. In this respect we have found evidence from our numerical
experiments and we believe that in the finite volume element methods if r-th
order piecewise polynomials are used on the subdomains, then (r — 1)—th order
polynomials should be used on the interface for the Lagrange multipliers. For
both types of schemes, we have obtained in [13] optimal order H!-norm error
estimates under the regularity assumption that u € HHT’“(Qk) for0 <7 <1
where Q = UQy.

2 Notations and Mortar Finite Element Approx-
imation

We shall use the notations from [2]. We break up the initial domain Q into K
non-overlapping subdomains {Q}1<k<x, which are assumed to be polygonally
shaped and arranged in such a way that the intersection of two subdomains
Q; N Qy as well as the intersection 90 N 99y, is either empty or reduced to a
vertex or to a common edge. If two subdomains Qj, and €; are adjacent, Ty is
the common interface, and ny; is the unit normal from Q, to Q;. Let k denote
the set of all indices so that k[ is meaningful. For any k, let H!(Q}) denote the
space H'(f) if the measure of 9 N QN is zero; otherwise it coincides with
the subspace of H!(f);) involving all functions whose trace is zero over the set
o N ON:

Hi(ﬂk) = {Uk S Hl(Qk) : Uk|89kﬁ89 =0, if meas(aﬂk N 69) # 0} .

Set the space

K
X={vel’): v =vlo, €H(W}=]]H (%)
k=1

/2
equipped with the norm: ||u||x = (Zszl ||Uk||%11(9k)) . Let

Hy(div, Q) = {g € H(div,Q) : q-n|oq =0},

where H (div,Q) is the space of all vector-functions in (L?(Q2))? whose weak
divergence is in L?(Q2). The trace of these function on the boundary 99 is
understood in the appropriate weak sense. The characterization of HJ () can
be made:

K
H;(Q) = {v €X: 2:(q-n,v)ag,c =0, q€ Ho(div,Q)} .
k=1



Now we define the space M of those ) = (¢1,---,%K) with components ¥, €

H*_I/Q(an) such that there weak traces on the boundaries represent a weak
trace of a function in Hy(div, ), i.e.

M = {4 : there exists q € Hy(div,Q) s.t. for k=1,---, K, ¢, =q-ni}.

The space M is provided with the norm
lollar = inf {llall v g : @ € Ho(div, ), a-ng =y, Vk},

where H:1/2(6Qk) is the dual space of Hi/Q(an) with < -,- >, aq, pairing,
HY?(00) = HY/2(0Qy) if 09, N 0Q = 0 and HY?(09) = HY* (00 \ 09) if
00, NON # (). Basically speaking the constraints on the distributions ¢ € M
imply that the jumps across the interfaces I'y; vanish.

We now define the bilinear form: B : X x M — R by

K
Bv,¢) = > < Uk, k >x,0005

k=1
so that it follows from Hahn-Banach Theorem that
H&(Q) ={veX, B¢ =0, oeM}.
Similarly, the bilinear form A : X x X — R is defined by

K
A(u,v) = Z Vuy, - Vopde.

k=1 2
We consider the following model problem: find u € Hg(2) such that
A(u,v) = (f,v), ve€ H Q). (1)

Its primal hybrid formulation is therefore defined by: find (u,) € X x M such
that
Aw,) +B,y) = (f),  veX, 2
B(u, 9) - 0, b€ M.

We have the following equivalent result: Problem (2) has a unique solution
(u,10) € X x M, and the first component v € H}(Q) is also the solution of
problem (1). Moreover, we have

o= AV g, k=1 K and [Jullae + 10lla < Cllfllz)-

3 Finite Volume Element Formulation

Let the triangulation 7, of each subdomain Q, 1 < k < K, be such that

Qp =Urer, T, hp= max hr, and hr= sup d(z,y).
k TETh,, z,y,€T



For piecewise linear finite element subspaces of H(Qy) on Ty, , we set
Xogp ={vsr € C(%): wvsilr € A(T), T €Tn,, vskloansq, =0},

and the global finite element spaces

K

X5 = H X(;,k, where § = (hl,hQ,"',hK).
k=1

Notice that the trace of the triangulation T, over Ty, 1 < k < K, | € k, with
vertices vy g and va j; results in a regular triangulation denoted by tx;, where k
is the class of the indices [ € k with [ > k and k is denotes the set of all indices
I so that kl exist. The trace space Wy g of the functions in X 4, is given by (see
Figure 2):

Wski = {500 € C(Tri) : tE€tw, s € Pi(t)},
the approximation of the local Lagrange multiplier is defined as
Mswi = {5 € Wspu: tE€tw, or ¢sm€ Po(t) if vim or wvom €t}

and the global finite element space on the interface is

K
= H H Ms k-

k=11ck

We now define a bilinear form on Xy x Ms by

B(vs, ¢5) = Z<UM,¢M > 4,00, = ZZ Do,k (Vo — vo,1)ds.

k=1 % Trt

Thus, the mortar finite element approximation of the solution of (2) is defined
by (see, e.g. [2, 6, 7]):

A(us,vs) + B(vs,vs) = (f,vs), wvs € Xs, 3)
B(us, ¢5) = 0, ¢s € Ms.

If the space Vs of nonconforming approximations of functions in H}(Q) is
introduced by:

Vs={vs € Xs: B(vs,¢5) =0, ¢s € Ms},
then the problem (3) is equivalent to the problem of finding us € Vj such that
Alus,vs) = (f,vs) vs € Vs. (4)

Now we shall introduce the mortar finite volume element approximation of
the model problem (3). For a given triangulation 7y, , we construct a dual mesh
Ty, based upon Ty, whose elements are called control volumes.



There are various ways of introducing regular control volume grids 7;*. In
the most popular control volume partitions, the medicenter of the finite element
T is connected with the midpoints of the edges of T'. These types of volumes
can be introduced for any finite element partition 7, and leads to relatively
simple calculations. If the vertex is on the interface I'y;, then “half” control
volume (shaded regions in Figure 1) is used.

Vi

I

Figure 1: Interfaces I'y; and I'jx with vy g and va g as two end points, triangulation 7y,
and Tp,, and the volumes in € and ;. The triangulation t;; and ¢;;, are different on the
interface due to non-matching grids.

For the finite element space X5 we can define its dual volume element space
* K *
X5 =Ilj=1 X5, where

X; = {vr € L>(Q) : wi|y is constant over V € T and vg|sn\aq, = 0}-

Obviously, X3, =span{x;r(V): V € T;" }, where x; is the characteristic
function of the volume V; ;. Let I, : C () — X5 be the interpolation oper-

ator and I : C(2x) — Xj, be the piecewise constant interpolation operator,
that is

nu= Y uikxik(x), where u; g = u(w; ).
Ti k€ENpy,

Then we set I5 = Hle I, and I} = Hle I}; . With the above preparation,
we can combine the finite volume approximation (see, e.g. [10, 14, 15, 16]) with



the mortar approach to define our mortar finite volume element method: find
(us,5) € X5 x Ms such that

A(UJ,Igvé)“‘B(UJ:T/JJ) = (f:Ig’U(S)a (%) EXJa (5)
B(us, ¢s) o ¢s € Ms,

where

Alus, I vs) = Z Z Ujk/ x)Vusj, - ngds,

k=1jENp,

Fr =3 T v]k/ I

k=1jENp,
This problem is equivalent to the following problem: find us € V; such that
Alus, I5vs) = (f, I5vs), vs € Vs. (6)

Remark: We keep the same piecewise linear element spaces on the interfaces
and formulate our mortar finite volume approximations only on the subdomains.
This alone in fact is enough to preserve the basic feature of finite volume el-
ement method, that is, both (5) and (6) are locally conservative. The weak
compatibility condition of the spaces Xs and M; are satisfied automatically:

{#s: B(vs,¢5) =0, Vous € X5} ={0}, (7)

which guarantees that there is no spurious modes generated for the normal
derivatives of the solution using this discretization. In other words, our mor-
tar finite volume element formulation has the nice properties of mortar finite
element method.

In [13] we have introduced another formulation of the mortar finite volume
element method with piecewise constant volume element approximation on the
interfaces. The stability, convergence and error estimates for this type of scheme
can be obtained in the framework presented above. Similarly, geometrically
nonconforming subdomain methods or overlapping domain methods (see Figure
3) can be introduced as well (see [13]).

4 FError Estimates

The following error estimate has been proved in [13]:

Theorem 4.1 Assume that T is regular, then the unique solution pair (us,vs) €
Xs X My exists for the finite volume element mortar formulation and satisfies
the error estimates:

K K
= us||x < C hllull(%) + C Y bl fll 2o

k=1 k=1



ki

Figure 2: Left: a function from W; g right: a function from Ms ;.
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Figure 3: R-shaped with overlapping parameter d and L-shaped domains.

A similar estimate is valid for the M -norm of the error in the Lagrange multi-
pliers as well.
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