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ABSTRACT. Numerical simulation of fluid flow in a hydrocarbon reservoir has to ac-
count for the presence of wells. The pressure of a grid cell containing a well is different
from the average pressure in that cell and different from the bottomhole pressure for
the well (Peaceman, [18]). This paper presents a study of grid pressures obtained from
the simulation of single phase flow through an isotropic porous medium using different
numerical methods. Well equations are proposed for Darcy flow with Galerkin finite
elements and mixed finite elements. Furthermore, high velocity (non-Darcy) flow well
equations are developed for cell-centered finite difference, Galerkin finite element and
mixed finite element techniques.

1. INTRODUCTION

The difficulty in modeling wells in a field scale numerical simulation of a reservoir is
that the region where pressure gradients are largest (O(1-10ft)) is closest to the well
and is typically much smaller than the spatial scale of the associated computational
grid cell (O(10-1000ft)). Using local grid refinement around the well can alleviate this
problem but can severely restrict the timestep size of the simulation. Futhermore, the
pressure calculated by numerical methods in the well block (or blocks sharing the well
as a corner point) is substantially different from the flowing bottom-hole pressure of the
modeled well. Therefore, a fundamental task in modeling reservoir wells is to accurately
model flow into the wellbore using larger grid sizes for full field simulations, where larger
timestep sizes are preferable, and to develop an accurate well equation, which allows
the calculation of bottom-hole well pressure, P,, when the rate, (), of production or
injection is known, or the calculation of () when P, is known.

The first comprehensive study of this problem for cell-centered finite difference ap-
proximations on square grids was done by Peaceman in [18] for single phase Darcy flow
in two dimensions. Peaceman’s study presented a proper interpretation of the well-
block pressure, and showed how it relates to the flowing bottom-hole pressure. The
importance of this study is that the computed cell pressure has been associated with
the steady-state pressure for the actual well at an equivalent radius, r.r;. Contrary to
previous studies, which had related the computed cell pressure to the average pressure
of the radial flow over the grid cell, Peaceman derived that r.r; ~ 0.2h (here h is the
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cell-size) using three different methods: (a) numerically, by solving the pressure equa-
tion on a sequence of grids and producing r.;; = 0.2h; (b) analytically, by assuming
that the pressure at the adjacent block is computed exactly by the radial flow model
and getting resr = 0.208h; (c) by solving exactly the system of difference equations and
using the equation for the pressure drop between the injection and production wells in
a repeated five-spot pattern given by Muskat [12] and getting s = 0.1987h.

Peaceman’s study was extended in various directions (including off center and mul-
tiple wells within a well-block, non-square grids, anisotropic permeability, horizon-
tal wells, etc) by a number of numerical analysts and petroleum engineers (see, e.g.
[1, 5, 13, 16, 19]). Peaceman himself has extended his study to more general situations
including non-square grids and anisotropic permeability [19] and more general geome-
tries [20]. For arbitrary location of the well we refer to [1] and for a comparative study
of numerical simulation of horizontal wells we refer to [13]. To our knowledge, all ex-
isting studies have been done for cell-centered finite difference approximations of the
pressure equation. On the other hand, finite element approximations have already been
successfully used for groundwater flow simulation (see, e.g. [7, 8, 9]). It is apparent
that, in order to use finite elements in the presence of wells, it is necessary to derive
accurate well models for this important and widely used class of numerical methods.

In this paper we derive well equations for isotropic reservoirs in two different di-
rections: (1) single phase Darcy flow with mixed finite element approximations on
triangular grids and Galerkin approximations for bilinear finite elements on squares;
(2) single phase high velocity (non-Darcy) flow with cell-centered finite differences on
square grids, mixed finite element approximations on triangular grids and Galerkin ap-
proximations for bilinear finite elements on squares. The governing equation used to
describe the non-Darcy flow is Forchheimer’s correlation between the pressure gradient
and the flow velocity.

High velocity fluid flow through a porous media deviates from Darcy’s law, which
linearly correlates pressure drop and velocity ([10, 4]). Forchheimer’s quadratic relation
can be applied in such cases. However, in most simulations of flow through porous
media, the non-Darcy effect is incorporated through a skin coefficient (see [21]) defined
only in the computational cell confining the wellbore. This coefficient is calculated from
well test data [15]. The skin coefficient approach is not accurate, especially in cases of
gas flow, where the fluid velocity can be sufficiently high for the non-linear behavior to
appear in an extended region around the well [17].

Our analysis is based on the fundamental assumption that the flow is radial in the
neighborhood of the well. Pressure dependence of the fluid physical properties and use
of the quadratic Forchheimer equation introduce nonlinearities; however, the radial flow
assumption can be verified for isotropic porous media (see, e.g. [2] and for more general
flows [6]). Thus, our analysis can be used for quite general flow models and various
numerical methods and techniques.



NUMERICAL WELL MODEL FOR NON-DARCY FLOW THROUGH ISOTROPIC POROUS MEDIA3

2. ANALYTICAL SOLUTION IN THE NEIGHBORHOOD OF THE WELL

The problem of modeling flow from a well with a radius which is substantially smaller
than the discretization parameter or mesh size requires the use of analytical formulas.
These formulas are only known in the case of simplified flow situations and thus con-
stitute practical limitations in their application. We present analytical formulas for the
Forchheimer flow in this section.

We consider the steady-state flow in porous media. The equation expressing the mass
conservation is:

(2.1) V.= Q.

Here 4 is the mass flux, ¢ is point d-function representing a well placed at the origin,
and (@ is the mass production/injection rate of this well. The pressure P satisfies the
Forchheimer relation (see, e.g. [2, 22]),

(2.2) —VP = p (K + Bl

where K is the permeability tensor, which has units of [length?], u is the viscosity, p is
the density, and 3 is a parameter with units of [length~!], which is called Forchheimer’s
coefficient and is a porous medium property that can be measured experimentally.
Generally, one may consider the following nonlinear seepage law [14]:

~VP = p (K '+ Blaf")d,

where n is a positive parameter. Obviously, this includes the linear Darcy’s law 3 = 0
and Forchheimer’s law n =1, 5 # 0.

The basic assumption is that the flow is radial and that coefficients are constant (at
least near the well). Specifically, we assume that

1. The flow is two dimensional in z and y (no gravity term);
2. K is a constant K times the identity matrix, i.e. K = KT;
3. (B is a constant;

4. 1 and p are constant in the neighborhood of the well;

5. The flow is radial in the neighborhood of the well.

We use the mass flux (or velocity) in order to have the production/injection rate, @,
in terms of mass instead of volume. For fluids with constant density this is equivalent to
a renormalization of the equation and leads to a formulation which will directly produce
the mass. We will discuss possible generalizations at the end of this manuscript.

Of the above assumptions, perhaps the most interesting is the last. It implies that
the well should be circular or its size so small that the variations in its geometry can
be neglected. The decay properties of the Green’s function then imply that the flow
becomes radial in the limit as one approaches the well (or singularity).

We derive the analytical model as follows. Assume that the well is at the origin and
introduce a polar coordinate system (r, #). If the flow is radial then the velocity @ must
be of the form

i = w(r)(cosf,sinb).
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TABLE 1. Darcy flow simulation conditions for verification of the methodology

Injection rate 0.05 mmscf /day
Production rate 4 x 0.05 mmscf /day
Reservoir dimensions 200 ft x 200 ft x 1 ft
Initial pressure 5000 psia
Initial temperature 300°F
Fluid density p=178 x 10"t gr/cm?
Fluid viscosity =256 x10"2cP
Reservoir permeability K =10mD

Using (2.1),

w' +r~'w =0, for r > 0,
i.e., w = Cr~'. The constant C is proportional to ). Since () represents the mass
injection/production rate of the well, @ is in fact the mass flux through any small circle
B, centered at the origin, i.e.

Q:—/ -1 ds=2rC, or C’:—Q.
: 27
Here 71 is the outward normal on the circle.
The pressure, p, satisfies Forchheimer’s relation (2.2) and will tend to infinity as

r — 0 in the case of an idealized point source well. Substituting

U= —i(cos 0,sin )
2mr

n (2.2), dotting with the vector 7 = (1,0) and integrating from (rg,0) to (r,0) gives

(2.3) P(r)— P(ry) = F(r) — F(ro)
where
F(r) = K%’;Q log(r) — Zgg.

Equation (2.3) is the analytical flow model for flow near the well.

We ran several tests to verify our codes and the above model. Results are presented
here from the triangular mixed finite element code runs. The conditions for the simu-
lations are given in Table 1. The reservoir is square with four injection wells, each one
located at a corner cell. One producing well is located at the center of the reservoir,
which produces with a rate four times larger than each injecting well. We took advan-
tage of symmetry and ran the code on a 100ftx100ft region with one production and
one injection well with equal rates.

The absolute magnitude of the pressure cannot be determined from the analytical
model since the model is only valid in the neighborhood of the well. However, we were
able to fit the model to the output by aligning both curves at one point. We did this
by choosing some value of ry (typically, 1o & 20ft) and normalized both the computed
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FIGURE 1. The computed and analytical normalized pressure for § =
1.71 x 101 f¢=1.

and analytical value to be zero there. The pressure field close to the well was then
predicted with good accuracy, using the analytical model. Results from the triangular
mixed finite element code near an injection well for 5 = 1.71 x 10 f¢~! are given in
Figure 1 and Figure 2. The value of the Forchheimer coefficient used in this case is at
the high end of the range of the experimental data [3] in order to highlight the nonlinear
effects. Since the difference between the analytical and numerical solution is difficult
to see in the first figure, we include an expanded view in the second. We used a mesh
size of h = 100/60 ft. The model and computed values agree to within 2% throughout
the reported range of r (excluding r = 0.8). The results for the production well were
identical except for a change in sign.

For comparison, Figure 3 presents the case of § = 0. Even though the differences in
pressure on the computation mesh is moderate, the Forchheimer effect is much more
prominent if one uses the analytical model to predict the pressure at an injection well.
For example, a well with radius of 0.35ft would have a wellbore pressure of 5263psi for
=0 and 7560psi when = 1.71 x 10"'ft . The strong 3 dependence near the well is
even more evident if a larger 3 is used.

3. A WELL MODEL FOR CELL-CENTERED FINITE DIFFERENCES AND FORCHHEIMER
FLOW

In this section, we derive a well model for cell-centered finite differences. The model
accounts for the behavior that results from Forchheimer’s term. The pressure in the cell
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F1GURE 4. Block 0 containing a well and its four neighboring blocks

adjacent to the well-block is assumed to be accurately approximated. This is analogous
to the first approach of Peaceman, described in the introduction and it reduces to
Peaceman’s results when 3 = 0.

The model of [18] is extended to include the Forchheimer effects. We consider the
problem described by (2.1), (2.2) in the case when the well is located in the center
of the center square of a square grid (see, Fig. 4). The cells are numbered by giving
the well cell index 0 and the cell to its right index 1. Using summation by parts, the
discrete equations, which result from cell-centered finite difference approximations, can
be written as

(3.1) A(P, ¢) = —Qdo.

Here P and ¢ are vectors with dimension equal to the number of cells. The quadratic
form A(-,-) is given by

Ao, w) =Y p(K ™+ Bli(v)i) ™ (v — vg) (w; — wy),

where &;; is the edge between cells ¢ and j. The quantity @(v);; is the normal component
of the mass flux associated with the pressure vector v at the edge &;; and satisfies
Forchheimer’s relation

(3-2) p UK+ Bli(o)y)) av) = —

Taking
1 ifi=0,
(3.3 =1

otherwise,

Ui—Uj

h
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in (3.1) and using the symmetry of the solution P (i.e. P, = P, = P; = P}) gives
(3.4) p(K ™ A+ Blion|)™ (P — Pr) = —Q/4.

Here |ty | is the mass flux throught edge & into the well cell and therefore

|U01| = E
Substituting this back into (3.4) and simplifying gives
Kfl
4p 16hp

The analytical well model should be a relatively good approximation in cell 1. This
means that if we are given a bottom-hole pressure P, and a well radius r,,,

(3.6) Py =P, + F(r1) — F(ry).
Adding (3.5) and (3.6) gives
QK 'p QRIS

4p 16hp
The above relation suggests that the pressure behavior near the well is significantly
more complicated in the case of Forchheimer flow. In particular, the well model depends
nonlinearly on @, p, # and the mesh size h.

The above model reproduces Peaceman’s result in the case of Darcy flow. Indeed if
(=0 then (3.7) becomes

(3.7) Py =Py, + F(r1) — F(ry) —

K
Py, = P, — (10g—+—)

2mp h 2
QK ', 1y
= P, — 1
2mp ©8 arh
where a; = e™™/2 = 0.20788 .... This is the exact value obtained by Peaceman in [18]

under the assumption that P; is already a very good approximation to the analytical
solution.
Introducing a new parameter, as, such that

1 1 1 1 1 1 n 1
42\ ry, ash)  Ax?\r, © 16h ’

gives ap = 4/(4 + 72). Thus, the well model (3.7) can be rewritten as

QK_llllog e QRS 1
27p arth  472p \axh 1,/

(3.8) Py=P,—

To get a better understanding of the numerical solution at the cell-block containing
the well, we have introduced a well model (3.8) using two parameters a; and as. In
order to show the influence of the Forchheimer term and to compare the results with
the case of Darcy flows and Peaceman’s formula where 7.7y ~ 0.2, we shall derive a
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formula with one parameter a = r.rr/h. The physical meaning of « is that it shows
the distance from the center of the well at which the numerically calculated pressure
for the wellblock is equal to the analytical pressure. We first introduce the Forchheimer
number

_ BKi(a)]
)]

The Forchheimer number defined above varies pointwise and becomes very large at the
wellbore. For our purpose, we consider this quantity only at the boundary of the well
cell, i.e.

Fo(x)

K d
Fo= PRt | |u01|.
o
Note that the total flow @ into the well cell satisfies |Q| = 4h|ip;| so
SK|Q)|
3.9 Fo=——"—".
(3.9) °= Thn

In order to develop a single parameter representation of (3.7) we look for an « such
that

QK 'u QlQIs
4p 16hp

P() = Pw+F(T1)—F(Tw)
(3.10) = P, + F(ah) — F(ry).

Simple manipulations give

Py = Pw—%Klog(W/hHg)+F0<%(1_%)+g>]
1Q { 2Fo,1 h ]

YK p
This leads to the following nonlinear equation for the parameter a:

(3.11) g (1+ Fo) =1In <1> +2Fo (l - 1) :

« ™ (0%

log(ry/ah) + T(& — a) )

In the case of Darcy flow, when 8 = 0, the Forchheimer number is identically zero and
this equation reduces to Peaceman’s result 7/2 = In(1/«a) or @« = ay. In addition, as
Fo tends to infinity, o tends to ag = 4/(4 + 7%). Clearly, the one and two parameter
models are mathematically identical and only differ in the representation of the constant
of integration.

In order to check the validity of the well model we have performed additional numeri-
cal simulations of the five-spot reservoir discussed earlier. A stationary state is achieved
after very few time steps. Figure 5 was produced using our finite difference code applied
to the 3 = 0 case. This code has been developed internally with Mobil Strategic Re-
search Center and uses Numerical Analysis Objects (see [11]). It reproduces the results
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F1GURE 5. Numerical solution for pressure in a 5-spot well reservoir in
the case of Darcy flow.

of Peaceman. Note that the Peaceman constant o = resr/h & .2h is given by the y = 0
intercept.

In Figure 6 we report the corresponding results for the case of Forchheimer flow. The
physical problem is the same as the one solved for Darcy flow and described in Table 1.
In order to clearly see the effects of the nonlinearities, the Forchheimer coefficient (3
was chosen to be 3 = 1.71 x 10" ft~!. The difference between the results shown on
Figures 5 and 6 leads to the obvious conclusion that the use of Darcy flow equivalent
radius in the case of non-Darcy flow may lead to significant errors. Instead, one should
use one of the equivalent equations (3.7), (3.8), (3.10).

Figure 8 gives a plot of the solution of (3.11). At high Fo, when the non-Darcy
effects are important, r.ss essentially does not change at r.;y = ash ~ 0.288h. For
0 < Fo < 5, there is almost a linear increase in 7.5¢. It appears that use of Peaceman’s
approximation of r.¢s >~ 0.2h in simulations where Forchheimer flow is important leads
to significant overestimation of P, (for producing wells).

Empirically, the well equation model proposed here can be tested with the results of
the simulation. The radial flow equation for Forchheimer flow (eqn. 3.7) can be written
for the pressure drop between the well-cell and its neighboring cells as

)220 - 25)

2

==
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FIGURE 6. Numerical solution for pressure in a 5-spot well reservoir in
the case of Forchheimer flow.
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which means that (P, — P,) should vary linearly with In () — % (1). Figure 7 shows
pressure differences between the wellblock and the neighboring cells obtained by nu-
merical simulation for Forchheimer flow. The simulation data are plotted with the
appropriate abscissa, as defined above, for different cases. The linear relationship is
confirmed in this figure. The slope of each line does not depend on (3 or the dis-
cretization, as predicted by equation (3.12). The intercept with the x-axis for each run
presented in Figure 7 can be used to obtain an empirical value for the ratio o = r.7/h.
This empirical value for each simulation is compared in figure 8 with the theoretically
obtained value of o (which can be calculated from the known Forchheimer number and
equation (3.11)). The agreement is very reasonable (two significant figures) considering
the crudeness of the graphical method.

4. A WELL MODEL FOR GALERKIN APPROXIMATIONS USING BILINEAR FINITE
ELEMENTS

In a finite element setting using bilinear finite elements on a square grid, we consider
an ensemble of four finite elements sharing a common vertex with index 0 (see Figure
9). We assume that the well is placed at the vertex 0 and the flow is radial in its vicinity.
We assume that bilinear finite elements have been used and the flow is radial around
the well which is located at the point with index 0. For computing the finite element
stiffness matrices we employ one-point quadrature (the quadrature uses the center of
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FIGURE 9. Four finite elements sharing a common vertex as a well

the finite element; in the case of element with nodal vertices 0, 1, 2, and 3 shown on
Fig. 9 this is the point A).

The row in the stiffness matrix corresponding to the unknown P, is compiled from
the integral

(4.1) Z/p(Klu—l—ﬂWD_l VP -Voodr = —Q,

where the summation is over the four finite elements sharing the vertex 0. The nodal
basis function, ¢g, on vertex 0 has the value of one, since P and ¢q are piecewise bilinear
functions. We take # to be the constant ., on the cells containing the well.

Taking into account the radial symmetry of the solution P, which result in taking
P, = P;=P;=P;and P, = P, = P; = P;, we get the following finite element equation
corresponding to the unknown F.

(4.2) gp (K '+ ﬁ|a‘e|)‘1 (2P, — P, — P) = —Q.

The element (cell) velocity . satisfies the Forchheimer’s law (instead of Darcy’s law),
which relates the velocity to the pressure gradient. In the case of radial symmetry, one
can proceed as follows: first note that approximately we have

Py — P,
Vb
In order to utilize equation (4.2) we need an approximate relation of the form
Py - P,
vh

(43) o~ (K="t Bl ] ~

(44) o~ (K="t Bl ] ~
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TABLE 2. v as a function of h and 3.

h B=0  B=2855x100 B=1.71x 10"
5.00 1.33 1.36 1.36
2.50 1.33 1.36 1.37
1.25 1.33 1.37 1.37

Obviously, this approximation is not valid for v = 1 since this will give the z-derivative
of the pressure at the point on a distance 0.5h from the well instead of distance \/§h/ 2
where the cell-velocity |i,| is computed. To find v we performed a series of numerical
experiments and fit the parameter. We use the same problem as described in Section 2.
If the relationships (4.3) and (4.4) were true then the ratio (Py — P;)/(Py — P») should

have a constant value approximately equal to v/v/2.

From Table 2, we conclude that v = 1.35 is a reasonable approximation for this
parameter. Therefore, a reasonable approximation for the Forchheimer’s relation (2.2)
for bilinear elements is given by

(4.5) p (K7 4 Blie]) || (v + V2)h = [2Py — Py = Py
We rewrite (4.2) and (4.5) in the form

3 _ Lo —1
i p (K 'u+Bli])” 2P — P — Py),
luel (v +V2)h = p(K '+ pBli.|) " [2Py — Py — Py.
Thus, we obtain

Q  _0257Q
(7 +V2)h h

3
4.6 i =2

It follows that

3
2P — P — Py = ——Q(K_1u+ﬁ|Q|4

3
4p (v +V2)h
Assuming that the well model accurately predicts the values at P; and P, gives

1 3Q . 3
Py=P,+ - (F(r) + F(re)) — F(ry) — — (K p+ —
b= Bt 5(F(r) + () = Fra) = 20 BRI
A straightforward manipulation gives that (3.8) holds for the bilinear finite element
approximation if we take

).

).

8(v+v?2)
(v +V2)(1 +1/v2) + 972

a; = 2Y exp(—31/2) ay = ,
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5. MIXED FINITE ELEMENT APPROXIMATION ON TRIANGULAR GRIDS

In this section, we develop a well model for a mixed finite element approximation
based on lowest order Raviart-Thomas on triangles. This model is motivated by con-
sidering first the case of Darcy’s law. It is then extended to the case of nonzero (3 by
making some additional assumptions. This model is similar to that developed in the
case of cell centered approximations (3.8). We first consider the case of quarter-plane
symmetry where the well is placed at the corner of the cell. Subsequently, we consider
the case of a well which is placed at the barycenter of an interior triangle.

The mixed finite element approximation involves two approximation subspaces, V},
for velocity and Il for pressure. In the case of lowest order Raviart-Thomas spaces,
V), consists of piecewise linear vector functions which have continuous constant normal
components. The pressure space consists of discontinuous constants. The mixed finite
element approximation to (2.1, 2.2) is the pair (u, P) € V}, x II, satisfying

(YK '+ Blu)u, ) — (P,V-) = 0  forally €V,
(5.1) (V-u,&) = (Q,¢) for all £ € IT,,.

In the above equations, the pairing (-,-) denotes

(v,w) = / v(x)w(x) dx
Q
when v and w are scalar functions and
(v,w) = / v(x) - w(z)de
Q

when v and w are vector functions.

We start with the quarter plane symmetry case and put the well at the corner opposite
the hypotenuse in a square which is subdivided into two triangles by connecting the
vertices adjacent to the well vertex. The well triangle will be denoted 7; and its neighbor
is 7. The pressure and velocity nodes are labeled as in Figure 10.

We first consider the case of Darcy flow. As usual, the coefficients are assumed
constant in the neighborhood of the well. Let ¢;, i = 1,...,5, be the velocity basis
functions associated with the nodes {x;}. By symmetry, the correct boundary condition
is no flow on the x and y boundary edges. This means that the solution u has zero
velocity nodal components on the nodes z; and x5.

It is straightforward to check that

(¢37¢4) = (¢37'l/)5) =0.
Note that the nodal velocity function 3 is given by

S

2

zy) = ¥E(x,y) for (z,y) € n,
Ya(,y) { (h—z,h —y) for (z,y) € 7.

;-|§;~
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N

FiGURrE 10. Two triangular elements forming a cell with well

This means that in the case of Darcy Flow, the solution pair (u, P) satisfies

p K p(uyhs) — (P, V- h3)
c3p K (s, ) — (P — Pz)\/§h =
2K '

5.2
(5.2) C3 30

h? — (P, — P)V2h = 0.

Here c3 is the coefficient of 13 in the expansion of v and P, and P, are the values of
P on 11 and 7, respectively. The basis function 3 defined above has a constant unit
normal on the edge between 771 and 7. Consequently, the total flux @) is given by

(5.3) Q = —4V2hcs.

Combining the two equations gives

_
12Kp’

To extend this to the case of non-Darcy flow, we need to make some additional
assumptions. As in the bilinear finite element case, we assume that the absolute value
of the velocity is constant in the cell. It is natural to take this value to be |u.| =
lu(h/2,h/2)| = |u-n(h/2,h/2)| = |e3]. Then, equation (5.2) is replaced by

p~ (B A Bluel) (u, ) — (P, V - 4b3) =

—1
032(K /;;L muC')hQ —(PL = P)V2h = 0.

Using the above relations gives

Pl—PQZ

(5.4)
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TABLE 3. The flow through the diagonal over the total flow for a well in
the barycenter of a right isoceles triangle.

h 3=0 B=1.71x 10"
5.000 34 37
2.500 37 39
1.250 38 40
0.625 39 40

Assuming that the well model is valid for P, gives

Q IQI
P =P, + F(ry) — F(ry) — —
Here 75 = 2v/2h/3 is the distance from the well to the barycenter of the triangle 7.
A straightforward manipulation shows that (3.8) holds for the mixed finite element
approximation if we take

2/2 12¢/2

alz—exp( 7T/6) agzm.

We next consider the case when the well is at the barycenter of a right isoceles
triangle. Let the vertices of this triangle be denoted by vy, vy, v3 with v; being the
vertex at the right angle. By symmetry, the ratio of the flow through (vs, v3) divided by
the total flow should be Zvyvyvs /360° = .39758 = (. Here vy denotes the well location
(barycenter). To test the above assumption, we report the results of computational
experiments. We consider the computational example as described in Table 1 with the
following changes. We used no flow boundary conditions on a reservoir of size 100ft
x 100ft and a production and injection well on a diagonal each of which were at the
barycenter of a triangle approximately 25ft from the corner. As can be seen from Table
3, the ratio of the flow through the diagonal to the total flow is approximately ( = .39
on fine meshes. The difference in the case of coarser grids is attributed to the fact
that the boundary conditions cause the solution to deviate from the asymptotic radial
behavior.

The flow across (vq, v3) can be related to the mixed finite element equations in exactly
the same way as was done for flow across the edge with node x5 above. Thus, (5.2)
holds for the velocity basis function c3 associated with the node x3 on the diagonal
opposite the right triangle. However, since only part of the flow comes through (vs, v3),
(5.3) is replaced with

= —ﬂh@,/(

and hence

Pl:Pw+F(7”2)_F(7"w)_%< +ﬁf/|9fl>
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Here 7, = v/2h/3 is the distance from the well to the barycenter of the triangle which
shares the diagonal edge. This is equivalent to (3.8) if we take

3v2

V2
o] = ? eXp(—QC'/T/?)) Qg = m

6. CONCLUSIONS

The accuracy of numerical simulations of flow through porous media in the presense
of wells depend critically on the modeling of these wells. This problem has been stud-
ied extensively for the case of Darcy flow and simulations based on Finite Difference
numerical schemes. However, there has been very limited work for simulations based
on Finite Element methods. For the case of non-Darcy flow there is limited amount
of work even for Finite Difference methods. The well equation used for Darcy flow
and the Peaceman approximation for r,, developed for Darcy flow, are not accurate for
Forchheimer flow.

In this paper, rigorous well models were developed for Darcy flow with Galerkin Fi-
nite Elements on squares and Mixed Finite Elements on triangles. Furthermore, well
equations for high velocity flow described by the Forchheimer equation were developed
for Finite Difference, Galerkin Finite Element and Mixed Finite Element techniques.
These equations can be used for the case of isotropic porous material and fully pene-
trating vertical wells. The methodology used here can be used for non-rectangular grid
geometries and for other Finite Element approximations.

One significant observation from the numerical experiments is that the bottomhole
well pressure is extremely sensitive to the values of the Forchheimer coefficient 3. In
order to accurately predict well performance for non-Darcy flow reservoir simulation,
very accurate experimental and field measurements for the Forchheimer coefficient in
the near wellbore region are required.
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LI1ST OF SYMBOLS

Al ) quadratic form (see equation 3.1)

C constant in the solution of the radial flow equation
3 coefficient of the velocity basis function 15

Eij Edge between cells ¢ and j

F(r) integral of Forchheimer equation (equation 2.3)
Fo Forchheimer number = %2214l

h dimension of numerical cell
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identity matrix

permeability

permeability tensor

outward unit normal vector on a curve
pressure

mass flow rate of fluid

direction of flow in radial flow

equivalent well-block diameter

reference distance from the well

mass flux of fluid

vector with components the pressure solution in all computational cells
vy, Ug, U3 the three vertices of a triangular element

Vi velocity approximation subspace

w general solution of the mass balance equation
x,y flow directions in 2-D flow

SO SIRX -

<
®

~
~

< 233

Greek symbols

a well equation parameter, @ = rqpp/h

Q1 well equation parameter associated with Darcy flow

well equation parameter associated with Forchheimer flow

high velocity flow or “Forchheimer” coefficient

numerically evaluated parameter for Galerkin Finite Element
well equation (see equation 4.4)

point delta function

percentage of flow through the hypotenuse of a triangular element
vectorial angle in polar coordinate system

dynamic viscosity

pressure basis functions for Mixed Finite Elements

pressure approximation subspace

fluid density

triangular element ¢

vector corresponding to delta function, defined in equation (3.3)
velocity basis functions for Mixed Finite Elements

= ®L
(v}

oA HME DY >
=

Superscripts and subscripts

)e quantity on a cell

e quantity on a cell containing the well

quantity at the equivalent distance, r,, from the well center
quantity at distance r from the center of the well

quantity at the well

<

N NN AN
— N N e
S}

g



20 R.E. EWING, R. LAZAROV, S.L. LYONS, D.V. PAPAVASSILIOU, J. PASCIAK, AND G. QIN

REFERENCES

[1] Babu, D.K., Odeh, A.S., Al-Khalifa, A.-J., and R.C. McCann, The relation between wellblock
and well pressure in numerical simulation of horizontal wells - general formulas for arbitrary well
locations in grids, SPE paper 20161 (June 1989).

[2] Bear, J., Dynamics of Fluids in Porous Media, Dover Publications, Inc., New York (1988).

[3] Coles, M.E. and K.J. Hartman, “Non-Darcy measurements in dry core and the effect of immobile
liquid”, SPE 39977, SPE Gas Technology Symposium, Calgary, Canada, (March 1998).

[4] Dake, L.P., Fundamentals of Reservoir Engineering, Elsevier Scientific Publiching Company, New
York (1978).

[5] Ding, Y., and G. Renard, A new representation of wells in numerical reservoir simulation, SPE
Reservoir Eng., (May 1994), 140-144.

[6] Douglas, J., Jr., Paes Leme, P.L., and T. Giorgi, Generalized Forchheimer flow in porous media,
in Boundary Value Problems for Partial Differential Equations and Applications, Research Notes
in Applied Mathematics, (J.-L. Lions and C. Baiocchi, Eds.), v. 29, Masson, Paris, 1993, 99-113.

[7] Ewing, R.E., Simulation of multi-phase flows in porous media, Transport in Porous Media, 6
(1991), 479-499.

[8] Ewing, R.E., Recent developments in reservoir simulation, North Sea Oil & Gas Reservoirs, 111
(J.0. Aasen, E. Berg, A.T. Buller, O. Hjelmeland, R.M. Holt, J. Kleppe and O. Torsaeter, editors),
Academic Publishers, Netherlands, 233-246 (1994).

[9] Ewing, R.E., Multiphase flow in porous media, Advanced mathematics, Computations & Appli-
cations, (A.S. Alekseev and N.S. Bakhvalov, editors), NCC Publishers, Novisibirsk, Russia, 49-63
(1995)

[10] Forchheimer, P., Wasserbewegung durch Boden, Zeit. Ver. deut. Ing., 45 (1901), 1781-1788.

[11] Henderson. M.E., and S.L. Lyons, Flow in porous media using NAO Finite Difference Classes,
First International Scientific Computing in Object-Oriented Parallel Environments conference,
Marina del Rey, California, December 1997.

[12] Muskat, M., The Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill Book Co.,
Inc. New York (1937).

[13] Nghiem L., et al., Seventh SPE comparative solution project: modeling horizontal wells in reservoir
simulation, SPE Symposium on Reservoir Simulation, Anaheim, CA, Feb. 17-20, 1991.

[14] Norrie, D.H. and G. de Vries, A survey of the finite element applications in fluid mechanics,
(Gallagher et al., eds), Finite elements in fluids, 3 Wiley, London, (1978), 363-395.

[15] Odeh, A.S., Moreland, E.E. and S. Schueler, Characterization of a gas well from one flow test
sequence, JPT, 1500-1504, (December 1975).

[16] Palagi, C.L., and K. Aziz, Handling wells in simulators, Proc. Fourth Intl. Forum on Reservoir
Simulation, Salzburg, Austria (1992).

[17] Papavassiliou, D.V. and S.L. Lyons, Non-darcy flow through porous media: Numerical and physi-
cal issues, Proceedings, Institute for Multifluid Science and Technology, 2nd annual meeting, Santa
Barbara, (February 1998).

[18] Peaceman, D.W., Interpretation of well-block pressure in numerical reservoir simulation, SPE
Paper 6893, Soc. Pet. Eng. J. (June 1978), Trans. AIME, 253, 183-194.

[19] Peaceman, D.W., Interpretation of well-block pressure in numerical reservoir simulation with non-
square grid blocks and anisotropic permeability, Soc. Pet. Eng. J., (June 1983), 531-543.

[20] Peaceman, D.W., Interpretation of well-block pressure in numerical reservoir simulation - Part 3:
Some additional well geometries, SPE Paper 16976 (Sept. 1987).

[21] Ramey, H.J., Non-Darcy flow and wellbore storage effects in pressure build-up and drawdown of
gas wells, JPT, (February 1965), 23-233.



NUMERICAL WELL MODEL FOR NON-DARCY FLOW THROUGH ISOTROPIC POROUS MEDIA21

[22] Thauvin, F.; and K.K. Mohanty, Modeling of Non-Darcy flow through porous media, SPE Paper
38017, Reservoir Simulation Symposium, Dallas, Texas, (June 1997).

INSTITUTE FOR SCIENTIFIC COMPUTATION, TEXAS A & M UNIVERSITY, COLLEGE STATION,
TEXAS 77843
E-mail address: ewing@isc.tamu.edu

DEPARTMENT OF MATHEMATICS, TEXAS A & M UNIVERSITY, COLLEGE STATION, TEXAS 77843-
3368
E-mail address: lazarov@math.tamu.edu

UPSTREAM STRATEGIC RESEARCH CENTER, MOBIL TECHNOLOGY COMPANY, DALLAS, TEXAS
75244
E-mail address: steve_l_lyons@email .mobil.com

UPSTREAM STRATEGIC RESEARCH CENTER, MOBIL TECHNOLOGY COMPANY, DALLAS, TEXAS
75244

E-mail address: dv_papavassiliou@email.mobil.com

DEPARTMENT OF MATHEMATICS, TEXAS A & M UNIVERSITY, COLLEGE STATION, TEXAS 77843-
3368
E-mail address: pasciak@math.tamu.edu

UPSTREAM STRATEGIC RESEARCH CENTER, MOBIL TECHNOLOGY COMPANY, DALLAS, TEXAS
75244

E-mail address: guan_qin@email .mobil.com



