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Abstract

In this paper we propose a new a�posteriori error estimator for a weakly

singular integral equation concerned with a direct boundary element ap�

proach for a Dirichlet problem with a second order elliptic partial di�er�

ential operator� The method is based on an approximate solution of a

second kind Fredholm integral equation by a Neumann series to estimate

the error of a previous computed solution of an arbitrary boundary ele�

ment method� for example a Galerkin method� collocation or qualocation�

Due to the solution of this error equation the proposed estimator provides

a high accuracy� Since our method is based on standard techniques which

are available in every boundary element code� it is easy to implement�

Subject classi�cations� AMS �MOS� ��N��� ��R��� ��D��� 	�L
�
Key words� error estimation� adaptivity� boundary element methods

� Introduction

In this paper we describe and analyse a new a�posteriori error estimator for an
approximate solution th of the weakly singular boundary integral equation

V t � ��I K�g � �
�
�

which results from a direct boundary integral approach for a second order partial
di�erential equation with given Dirichlet boundary conditions�
After applying a boundary element method to compute an approximate solu�
tion th of �
�
�� e�g� by a Galerkin or a collocation scheme� one is interested to
estimate the error eh �� t� th in a suitable norm jjehjj� This information� com�
bined with certain localization techniques� can be used afterwards to decrease
the error by using an adaptive mesh re�nement�
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work of the �rst author was supported by the German Research Foundation �DFG� under
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As in �nite element methods most existing error estimators for boundary ele�
ment methods are based on variants of the error equation for �
�
��

V eh � rh �� ��I K�g � V th � �
���

Provided the continuity of V � H������� � H������ and of the inverse V ��

there immediately follows the global error inclusion

c� � jjrhjjH������ � jjehjjH������� � c� � jjrhjjH������ � �
���

that means� � �� jjrhjjH������ de�nes an error estimator� see ��� �� �� 
�� 
�� ���
���� After proving an estimate of the kind �
��� two problems occur� First� in
the practical application one is interested in the value of jjehjjH�������� so one
needs information about the constants c� and c�� The second problem is the
localization� To drive an adaption process it is necessary to have some local
information about the error distribution� There are two ways to construct local
error estimators� The �rst one is to localize the residual itself� this was done in
�
� �� �� �� ���� The second possibility is to prove localized versions of �
���� see
�
�� 
�� ��� ����

A very simple way to obtain an error estimator is to solve the error equation
�
��� approximately with higher accuracy than the original method itself� e�g�
by using trial functions of higher polynomial degree or an a re�ned mesh� Then�
to prove an inclusion as �
���� one needs the so�called saturation assumption�
see ����

Another type of estimators are based on averaging or recovery methods� For
that kind of error estimation some superconvergence results of the computed
solution in certain points or a post�processed superconvergence solution are
necessary� see ���� ��� for the �nite element method� and �
�� 
�� ��� for the
boundary element method� If a superconvergent solution �th is available� one
can de�ne � �� jj�th� thjjH�������� If it is possible to prove superconvergence� in
the most cases the constants c� and c� are near by 
� Moreover� if one can prove
pointwise superconvergence the localization of the error estimator is inherent�

Here we present a new approach to approximate the error t� th with high ac�
curacy� Our method is based on the solution of an appropriate error equation�
which is simpler to solve than the original boundary integral equation �
�
�
or the corresponding error equation �
���� Since our alternative error equa�
tion is a second kind Fredholm integral equation involving the adjoint double
layer potential we can apply a Neumann series for the solution process� To
get an accurate approximation of the error� only a few Neumann iterates are
necessary to compute� i�e�� it will be shown that even without applying the
Neumann iteration we can compute an approximate error yielding an almost
optimal error estimator� Since the proposed error estimator is based on stan�
dard components of boundary element methods� in particular the discretization
of standard boundary integral operators as the adjoint double layer potential�
it is easy to implement�

The paper is organized as follows� In Section � we will recall a Galerkin bound�
ary element method for the solution of �
�
� and give some basic de�nitions of

�



error estimators� Section � is devoted to the formulation of an equivalent er�
ror equation and global error estimators based on a Neumann series are given�
In Section 	 we describe a numerical implementation scheme and prove cor�
responding error estimates� A numerical example in Section � con�rms the
theoretical results�

Throughout the paper� by c we will denote a general constant which may have
di�erent values at di�erence occurrences�

� Preliminaries

��� Boundary element methods

For a bounded domain � � R
n �n � �� �� with a Lipschitz continuous boundary

� and an elliptic second order partial di�erential operator L we consider the
homogeneous Dirichlet boundary value problem

Lu�x� � � for x � � �

u�x� � g�x� for x � � �

�
���
�

Note that we may consider inhomogeneous partial di�erential equations in ���
�
as well� but for simplicity in the presentation we consider the homogeneous
case only� Since in this paper we are interested in the construction of an error
estimator for the weakly singular integral equation �
�
�� the consideration of
Dirichlet boundary conditions in ���
� is su�cient�
If a fundamental solution U��x� y� of L is known� the solution of the boundary
value problem ���
� is given by the representation formula

u�x� �

Z
�

U��x� y�t�y�dsy �

Z
�

g�y�T ��x� y�dsy for x � � � �����

where T ��x� y� � TyU
��x� y� using the conormal derivative operator Ty for

y � �� In the representation formula ����� the density t�y� � Tyu�y� is unknown�
hence we have to solve the boundary integral equation

�V t��x� � ���x�I K�g�x� �� f�x� for x � � �����

with

��x� �

���

 for x � ��

��x���� for x � ��

� for x � R
nn�

and ��x� denotes the interior angle in x � �� In ����� we used the standard
notations for the single layer potential V and the double layer potential K�

�V t��x� �

Z
�

U��x� y�t�y�dsy � �Ku��x� �

Z
�

u�y�T ��x� y�dsy � ���	�

It is well known �see ���� that the boundary integral operators

V � H�����s���� H����s���� K � H����s���� H����s���

�



are continuous for s � ���
� �

�
� �� Moreover� V satis�es a G�ardings inequality� i�e��

there exist a compact operator C � H�������� H������ such that

Re
�
h�V  C�t� tiL����

�
� c � jjtjj�

H�������
�����

holds for all t � H������� with some positive constant c� Hence� V is invertible
and bijective� see ��
��
Throughout the paper we assume that the Dirichlet boundary value problem
���
� has a unique solution u � H���� with some � � �

� � Hence� the boundary
integral equation ����� will have a unique solution t � H���� for some � � ��
To solve the boundary integral equation ����� numerically� we consider a family
of regular triangulations �h of � into boundary elements �k with local mesh size
hk and a global mesh size h �� max

k
hk� With respect to �h we then introduce

a family of trial spaces

Zh �� spanf	�kg
N
k�� � H������� �����

of discontinuous splines of polynomial order 
� for example of piecewise constant
trial functions �
 � ��� Note that there hold the approximation property in Zh
�
��� i�e��

inf
�h�Zh

jj� � �hjjH������� � c � hs�
�

� � jj� jjHs��� �����

for all � � Hs��� with ��
� � s � 
  
�

The Galerkin variational formulation of ����� is to �nd th � Zh such that

hV th� �hiL���� � hf� �hiL���� for all �h � Zh � �����

For the stability of the Galerkin scheme ����� and the convergence see for ex�
ample �
�� �
� ���� in particular we get the quasi�optimal error estimate

jjt� thjjH������� � c � inf
�h�Zh

jjt� �hjjH������� �����

and� combining this with the approximation property ����� there follows con�
vergence�

jjt� thjjH������� � c � hs�
�

� � jjtjjHs��� with s � minf�� 
  
g � ���
��

��� Error estimators

The error of the Galerkin solution th of ����� is de�ned as

eh�x� �� �t� th��x� for x � � � ���

�

The aim is now to de�ne an estimator � of a suitable error norm jjehjj and
to localize �� An estimator � is called error estimator if there exist positive
constants c� and c� independent of approximation parameters �as the mesh
size h� such that an inclusion

c� � � � jjehjj � c� � � ���
��

	



is ful�lled� The error estimator is called asymptotically exact if there holds

lim
h��

jjehjj

�
� 
 � ���
��

Local error estimators with respect to a boundary element �k will be denoted by
�k� After computing �� for all boundary elements �� we will re�ne all elements
�k where

�k � � �max
�

�� ���
	�

holds with some appropriate chosen re�nement parameter ��

� A new a�posteriori error estimator

As mentioned in the introduction� one way to obtain an error estimator is to
solve the error equation �
��� with higher accuracy than the original method
itself� but this is very expansive in general� One possible way out is to derive
another equation for the error with known right hand side� but with an operator
on the left hand side which is easier to invert as the original operator V itself�
Since we will not use the properties of the Galerkin formulation ����� itself� our
technique can be applied directly to any other discretization technique� such as
collocation or qualocation� Hence we assume in the following that th is some
boundary element solution of the boundary integral equation ������ for example
the Galerkin solution of ������
According to ����� we de�ne the approximate solution of the boundary value
problem ���
� as

uh�x� �

Z
�

U��x� y�th�y�dsy �

Z
�

g�y�T ��x� y�dsy for x � � ���
�

possessing the Cauchy data

�g�x� �� uh�x�� �t�x� �� �Txuh��x� for x � � � �����

Due to its de�nition� uh is a solution of the Dirichlet boundary value problem

Luh�x� � � for x � � � uh�x� � �g�x� for x � � �

From this we conclude that �t is a solution of the boundary integral equation

�V �t��x� � ���x�I K��g�x� for x � � � �����

Now we can prove a relation between the error t � th and the computable
function �t � th� For this we de�ne the adjoint double layer potential operator
to be

�K �t��x� �

Z
�

T �x �x� y�t�y�dsy for x � � � ���	�

From ��� it is known that

K � � H�����s���� H�����s��� �����

is continuous for all s � ���
� �

�
� ��

�



Lemma ��� The error t� th of the boundary element solution th is a solution
of the boundary integral equation

��
 � ��x��I �K ���t� th��x� � ��t� th��x� for x � � � �����

Proof� Using the jump relation of the double layer potential for x � �
we get from the continuous representation formula �����

g�x� � �V t��x�  ��
� ��x��I �K�g�x� for x � �

and from the approximate representation formula ���
�

�g�x� � �V th��x�  ��
� ��x��I �K�g�x� for x � � �

Hence we have

�V �t� th���x� � �g � �g��x� for x � � � �����

Thus� using ������ ������ ����� and KV � V K � �
	� we get

V ��t� th��x� � V ��t� t��x�  V �t� th��x�

� ���x�I K���g � g��x�  �g � �g��x�

� ��
� ��x��I �K��g � �g��x�

� ��
� ��x��I �K�V �t� th��x�

� V ��
 � ��x��I �K ���t� th��x�

for x � �� From the bijectivity of the single layer potential V the assertion
follows�

To compute the error t � th from ����� we need to have the invertibility of
�
� ��I �K �� To prove this� we de�ne the hypersingular integral operator

�Du��x� � �Tx

Z
�

TyU
��x� y�u�y�dsy for x � � �����

with D � H����s���� H�����s��� for s � ���
� �

�
� �� see ����

Lemma ��� The operator �
 � ��I �K � � H������� � H������� is bijective�
The inverse is given by the Neumann series

��
� ��I �K ���� �

�X
���

��I K ��� � �����

where the spectral radius of the operator �I K � is bounded by

���I K �� � cK  
 ���
��

with some positive constant cK which depends on � only�

�



Proof� Due to V K � K �V �
	� the eigenvalues of K coincide with those of
K �� Hence it is su�cient to consider K only� Let us denote the eigenvalues of
�I K by �k and the eigenfunctions by vk�

��I K�vk � �kvk � ��
� ��I �K�vk � �
� �k�vk � ���

�

It is well known that all eigenvalues �k of the operator V D are real and non�
negative� Using the relation

V D � ��
� ��I �K���I K� � H������� H������

and ���

� we obtain that the eigenvalues of V D can be written in the form �k �
�k�
� �k�� From �k � R

� there follows that all eigenvalues �k of the operator
�I  K are real and they are in the interval ��� 
�� All possible eigenvalues
�k� � � belong to all eigenfunctions vk� of the homogeneous Neumann boundary
value problem

�Lvk���x� � � in � � �Txvk���x� � � on � � ���
��

Hence we obtain either �k� � � or �k� � 
� Since the solutions vk� of ���
��
satisfy

���x�I K�vk��x� � � for x � ��

we conclude that �k� � � when �k� � � and therefore j�kj  
 for all k and

���I K �� � ���I K� � cK  


with a constant cK which depends on � only� see also ��� 
�� �	��
The eigenvalues of �
 � ��I � K � are given by �k � 
 � �k with 
 � �k �

 � cK � �� Therefore� the operator �
 � ��I �K � � H������� � H������� is
invertible and its inverse is given by the Neumann series ������

From ���
�� it follows that there holds

jj��I K ��vjjH������� � cK � jjvjjH������� for all v � H������� � ���
��

Applying Lemma ��
 and Lemma ��� one can represent error of the boundary
element solution th by

eh �� t� th �

�X
���

��I K �����t� th� � ���
	�

Using the properties of �
 � ��I �K � we get already equivalence inequalities
between the error ���
	� and the computable function �t� th�

Theorem ��� There hold the equivalence inequalities

jj�t� thjjH������� � jjehjjH������� �




� cK
� jj�t� thjjH������� ���
��

with a positive constant cK  
 as given in Lemma ����

�



Proof� From the boundedness of �
���I �K � and using �max � 
 we get

jj�t� thjjH������� � jj��
 � ��I �K ���t� th�jjH�������

� jjt� thjjH������� � jjehjjH������� �

Using ���
	� and ���
�� we get

jjt� thjjH������� �
�X
���

c�K � jj�t� thjjH������� �




� cK
� jj�t� thjjH��������

which completes the proof�

Hence we can de�ne a global error estimator for the boundary element solution
th as

���� �� jj�t� thjjH������� � ���
��

Note that ���
�� already de�nes an almost optimal error estimator which can
be controlled by determining the constant cK � To improve the equivalence
inequalities ���
��� we can apply some iterations of the Neumann series ����� to
compute

e
�q�
h �x� ��

qX
���

��I K �����t� th��x� for q � � � ���
��

Theorem ��� There hold the equivalence inequalities





  cq��K

� jje
�q�
h jjH������� � jjehjjH������� �





� cq��K

� jje
�q�
h jjH������� � ���
��

Proof� Using ���
	�� ���
�� and ���
�� we get

jjeh � e
�q�
h jjH������� � jj

�X
��q��

��I K �����t� th�jjH�������

� jj��I K ��q��ehjjH������� � cq��K � jjehjjH������� �

Hence the assertion follows by applying the triangle inequality twice�

Applying Theorem ��� we are able to de�ne the global error estimator

��q� �� jje
�q�
h jjH������� � jj

qX
���

��I K �����t� th�jjH������� ���
��

satisfying the equivalence inequalities ���
�� with constants as given in Theorem
���� Moreover� since cK  
 we get

lim
q��

jjehjjL����

��q�
� lim

q��





� cq��K

� 
 �

i�e�� the error estimator ���
�� is asymptotically exact for q ���

�



To compute the Sobolev norm appearing in ���
�� we can use the equivalent
energy norm given by

jjvjjV ��
q
hV v� viL���� 	 jjvjjH������� for all v � H������� � ������

An alternative computation of ���
�� can be done by applying multilevel tech�
niques as described in �	��
Let us denote the boundary elements by �k� k � 
� � � � � N � To obtain local error
indicators� we de�ne

�
�q�
k ��

q
hV e

�q�
h � e

�q�
h iL���k� � k � 
� � � � � N � ����
�

From the continuity and bijectivity of V and from the relation

NX
k��

�
�
�q�
k

��
�

NX
k��

hV e
�q�
h � e

�q�
h iL���k� � hV e

�q�
h � e

�q�
h i �

there immediately follows the estimate

c� �

NX
k��

�
�
�q�
k

��
� jje

�q�
h jj�H������� � c� �

NX
k��

�
�
�q�
k

��
������

with constants c� and c� which depend on V only� Finally estimate ������
implies

c�

�
  cq��K ��
�

NX
k��

�
�
�q�
k

��
� jjehjj

�
H�������

�
c�

�
� cq��K ��
�

NX
k��

�
�
�q�
k

��
������

by Theorem ����

� Practical implementation

For the computation of the estimated error e
���
h � �t�th we �rst have to compute

the Cauchy datum �t of uh as given in ���
�� Applying the conormal derivative
operator Tx to ���
� and taking the limit x� � we get

�t�x� � ��x�th�x�  Tx

Z
�

U��x� y�th�y�dsy � Tx

Z
�

g�y�T ��x� y�dsy

� ���x�I K ��th�x�  �Dg��x� for x � � �	�
�

using the jump relation of the adjoint double layer potential and de�nition
����� of the hypersingular integral operator� Note that �t � L���� due to the
assumption t � H����� � � �� the regularity of th and the mapping properties
of K �� Using �	�
� we now can compute the initial error function

e
���
h �x� � ��t� th��x� � ���x�I K ��th�x�  �Dg��x� � th�x� � �	���

�



Due to Theorem ��
 we can use e
���
h to compute the global error estimator ���
���

To get the improved equivalence inequalities as in Theorem ��� we have to apply
the Neumann series ���
��� From a practical point of view we have to introduce
some �nite dimensional approximation to evaluate ���
��� For this reason we
de�ne as in ����� a trial space Z	h of discontinuous splines of polynomial order


 with respect to a re�ned triangulation �	h with
�h  h su�ciently small� Note

that one may also de�ne Z	h over the triangulation �h by using polynomial
trial functions of higher degree� Now we de�ne the L��Galerkin projection
G	hu � u	h � Z	h for a given u � L���� such that

hu	h� v	hiL���� � hu� v	hiL���� for all v	h � Z	h � �	���

From �	��� it is obvious that G	h is bounded�

jjG	hujjL���� � jjujjL���� �	�	�

and that there holds

jj�I �G	h�ujjL���� � jjujjL���� for all u � L���� � �	���

Moreover� applying the Aubin�Nitsche trick �

� 
��� we get the error estimate

jj�I �G	h�ujjH������� � c � �h��� � jjujjL���� � �	���

If we write ���
�� for � � 
� � � � � q as

e
���
h � e

�����
h  z

���
h � z

���
h � ��I K ��z

�����
h �	���

with z
���
h � e

���
h � we can de�ne� using �	��� and �e

���
h � G	he

���
h � the computable

sequence

�e
���
h � �e

�����
h  �z

���
h � �z

���
h � G	h��I K ���z

�����
h �	���

for � � 
� � � � � q and with �z
���
h � �e

���
h �

Hence we can de�ne a computable error estimator as

���q� � jj�e
�q�
h jjH������� for some q � � � �	���

To show the equivalence inequalities ���
�� for the error estimator �	��� we will

use Theorem ���� Therefore we have to estimate the di�erence �e
�q�
h �e

�q�
h � which

is obviously based on the di�erence �z
�q�
h � z

�q�
h �

Lemma ��� For each � � 
� � � � � q there holds the error estimate

jj�z
���
h � z

���
h jjH������� � c�K � jj�e

���
h � e

���
h jjH�������  c � �h��� � jje

���
h jjL���� � �	�
��

Proof� Let us �rst de�ne

�z
���
h � ��I K ���z

�����
h for � � 
� � � � � q �


�



Then there follows

jj�z
���
h � z

���
h jjH������� � jj�z

���
h � �z

���
h jjH�������  jj�z

���
h � z

���
h jjH�������

� jj�z
���
h � �z

���
h jjH�������  jj��I K ����z

�����
h � z

�����
h �jjH�������

� jj�z
���
h � �z

���
h jjH�������  cK � jj�z

�����
h � z

�����
h jjH��������

The �rst term can be estimated by �	���

jj�z
���
h � �z

���
h jjH������� � jj�G	h � I���I K ���z

�����
h jjH�������

� c � �h��� � jj��I K ���z
�����
h jjL����

� c � cK � �h��� � jj�z
�����
h jjL����

and by the continuity of �I K �� Now� using �	�	�� we get

jj�z
�j�
h jjL���� � jjG	h��I K ���z

�j���
h jjL���� � jj��I K ���z

�j���
h jjL����

� cK � jj�z
�j���
h jjL���� � cjK � jj�z

���
h jjL���� � cjK � jj�e

���
h jjL����

� cjK � jje
���
h jjL����

for all j � 
� � � � � q� Hence we have

jj�z
���
h � z

���
h jjH������� � cK � jj�z

�����
h � z

�����
h jjH�������  c � �h��� � c�K � jje

���
h jjL����

and� using this estimate recursively�

jj�z
���
h � z

���
h jjH������� � c�K � jj�e

���
h � e

���
h jjH�������  c � �h��� �

�X
j��

cjK � jje
���
h jjL����

� c�K � jj�e
���
h � e

���
h jjH�������  c � �h��� � cK �


� c�K

� cK

� jje
���
h jjL���� �

Lemma ��� For the estimated error function �e
�q�
h de�ned recursively by �����

there holds the error estimate

jj�e
�q�
h � e

�q�
h jjH������� � c � q � �h��� � jje

���
h jjL����� �	�

�

Proof� For any � � 
� � � � � q we have

jj�e
���
h � e

���
h jjH������� � jj�e

�����
h � e

�����
h jjH�������  jj�z

���
h � z

���
h jjH������� �

from which follows� note that z
���
h � e

���
h � �z

���
h � �e

���
h �

jj�e
�q�
h � e

�q�
h jjH������� �

qX
���

jj�z
���
h � z

���
h jjH������� �







Applying Lemma 	�
 gives
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�q�
h � e

�q�
h jjH�������

�

�
qX

���

c�K

	
jj�e

���
h � e

���
h jjH�������  c � �h��� � q � jje

���
h jjL����

�




� cK
� jj�e

���
h � e

���
h jjH�������  c � �h��� � q � jje

���
h jjL���� �

Now �	�

� follows from �	����

Using the previous results now we can prove �nal equivalence inequalities ���
��
for the error estimator �	����

Theorem ��� Let �e
�q�
h be de�ned recursively via ������ Then there hold the

equivalence inequalities





  cqK
�
n
jj�e

�q�
h jjH������� � c � q � �h��� � jje

���
h jjH�������

o
� jjehjjH������� �





� cqK
�
n
jj�e

�q�
h jjH�������  c � q � �h��� � jje

���
h jjH�������

o
�

Therefore� if �h  h is su	ciently small� ���q� as de�ned in ���
� is a global error
estimator satisfying �������

Proof� Using Theorem ���� the triangle inequality and Lemma 	��� we get

jjehjjH������� �




� cqK
�
n
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� cqK
�
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�q�
h jjH�������  c � q � �h��� � jje

���
h jjL����

o
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The lower inequality follows by applying the same arguments�

The local error estimators are now de�ned by

��
�q�
k �

q
hV �e

�q�
h � �e

�q�
h iL���k� � �	�
��

and� similar to ������� it can be shown that there holds the estimate

c�

NX
k��

�e��q�k

��
� e��q� � c�

NX
k��

�e��q�k

��
� �	�
��

where c� and c� are the same constants as in �������

At the end of this section we will give some remarks concerning the compu�
tational costs of the proposed error estimator as well as we want to comment
some variants of our technique applicable in some special cases�


�



Remark ��� The application of the error estimator ���
� requires basically
the computation of �t with respect to a re�ned triangulation �	h by using the
representation formula ������ An alternative approach to compute �t with the
same numerical e�ort� namely O�N� per degree of freedom in Z	h� would be
to use �nite di�erences to approximate the conormal derivative operator T by
evaluating the representation formula ������

Remark ��� As stated in Theorem ��� we can use ����� to be the global error
estimator� i�e�� without applying the Neumann series ������ If one is able to
estimate the constant cK in Lemma ���� e�g� by a power method to �nd the
maximal eigenvalue of �I K� one can de�ne a modi�ed error estimator as

����� ��




� cK
� ����� �	�
	�

satisfying ������ with a lower constant c� � 
�

Remark ��� If the adjoint double layer potential operator K � is more regular
as stated in ����� e�g� in the case of a �piecewise� C� boundary � or a polygonal
boundary �� the error estimate ����� changes to be

jj�I �G	h�ujjH������� � c � �hs�
�

� � jjujjHs��� �	�
��

with u � Hs��� for some s � �� Note that for n � � one has to use at least

piecewise linear trial functions to ensure e
���
h � Hs���� s � �� Moreover� one

can use the simpler computable L� norm to de�ne all global and local error
estimates�

Remark ��� The numerical amount of work of the proposed error estimator is
comparable to residual based methods� where the residual has to be computed in
certain quadrature points� see ���� As it will be seen from the numerical example
we are able to approximate the Galerkin error very accurate by applying some
few Neumann iterations only� Moreover� the implementation of the proposed
error estimator in direct boundary element methods can be done easily� since
it is based on standard components which are already available in boundary
element codes�

� Numerical results

In our numerical example we consider a Dirichlet boundary value problem for
the two�dimensional Laplacian where � is the L shaped domain as sketched in
Figure ��
�


�



���� � ���

����

�

���

Figure ��
� L shaped domain �

Note that � satis�es the condition diam �  
 which is su�cient to get positive
de�niteness of the single layer potential for the two�dimensional Laplacian �
���
The Dirichlet data g are given in such a way that the solution of ���
� is

u�x� � u�r� 	� � r
�

� � sin�
�

�
	� ���
�

when using polar coordinates� This is a standard example for adaptive bound�
ary element methods ��� �� 
��� even in the case� when the corner singularity is
known a priori for using a suitable mesh grading ��� ���� For the solution ���
�
of the Dirichlet boundary value problem ���
� we have u � H���� with �  


�
and hence t � H���� with �  �

� � The Galerkin variational formulation �����
is discretized by using piecewise constant trial functions �
 � �� and analytical
integration formulae� For the solution of the resulting symmetric and positive
de�nite system a preconditioned ���� conjugate gradient scheme is used� In the
case of an uniform re�nement we get from ���
�� the order of convergence to
be �

� � This is con�rmed by the numerical results given in Table ��
� where the
order of convergence at the mesh level � is computed via

order �
log jjeh� jjH������� � log jjeh��� jjH�������

logN��� � logN�
� �����

N jjehjjV order

� ���� ��

� 	��� �� ����
�� ���� �� ����
�	 
��� �� ����

�� 
��� �� ���	
��� ���	 �� ����
�
� 	��� �� ����

��	 ���� �� ����
��	� 
��� �� ����

Table ��
� Uniform re�nement


	



In the case of a regular solution t � H���� one would expect an order of
convergence �

� � This motivates to use an adaptive scheme to improve the order

of convergence� For the de�nition of the error estimator ���q� we de�ned the trial
space Z	h of piecewise constant trial functions with

�h � h��� The representation
formula �	�
� as well as all integrals appearing in the Neumann iteration �	���
are computed again by using analytic formulae� The local error estimators are
de�ned by �	�
��� For the adaptive mesh re�nement we used the criteria ���
	�
with � � ����� In Table ��� we give the results in the case of an adaptive
re�nement based on the proposed error estimator ���q� for q � � and q � ��

N ����� ���
� jjehjjV order

� ���� �� ��	� �� ���� ��

� 
��
 �� ���� �� 	��� �� ����
�� 
��	 �� ��		 �� ���� �� ����
	� ���� �� 
��� �� 
��� �� 
�
�
�� ��
� �� 
��� �� 
��� �� ����
�� ��	� �� ���� �� ���� �� 
�	�

�� ��
� �� 	��� �� 	��� �� 
�
	

�� 
�	� �� ���� �� ���� �� ��	�

�� ��
	 �	 
��� �� 
��� �� 
���
��� ��
	 �	 
��
 �� 
�
� �� 
���
��	 	�
� �	 ��
� �	 ��	� �	 
���
	�	 ���� �	 ��
� �	 	��� �	 
�
�

Table ���� Adaptive re�nement

Note that in both cases the error estimator ���q� de�nes the same adaptive mesh
re�nement while� due to Theorem 	�
� the estimated error ���
� is more accurate
than the estimated error ������ On the other hand� since ����� does not require
any Neumann iteration in general� its application requires much less work than
���
��
Note that the proposed error estimator produces not only an adaptively re�ned
mesh providing an almost optimal convergence of the Galerkin solution th�
moreover� it gives a very accurate estimate of the real Galerkin error�
Figure ��� shows the error in the energy norm for the uniform and the adaptive
mesh with respect to the degree of freedoms and with respect to the computing
time� Note that in the uniform re�nement case we used an extrapolation to get
all values for N � ��	�� In the uniform case the computing time includes the
discretization and solution process at one level only while in the adaptive case
the total computing time includes discretization� solution and error estimation
over all previous mesh levels�
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