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Abstract

In this paper we propose a new a—posteriori error estimator for a weakly
singular integral equation concerned with a direct boundary element ap-
proach for a Dirichlet problem with a second order elliptic partial differ-
ential operator. The method is based on an approximate solution of a
second kind Fredholm integral equation by a Neumann series to estimate
the error of a previous computed solution of an arbitrary boundary ele-
ment method, for example a Galerkin method, collocation or qualocation.
Due to the solution of this error equation the proposed estimator provides
a high accuracy. Since our method is based on standard techniques which
are available in every boundary element code, it is easy to implement.
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1 Introduction

In this paper we describe and analyse a new a—posteriori error estimator for an
approximate solution t;, of the weakly singular boundary integral equation

Vt = (oI + K)g, (1.1)

which results from a direct boundary integral approach for a second order partial
differential equation with given Dirichlet boundary conditions.

After applying a boundary element method to compute an approximate solu-
tion ¢5, of (1.1), e.g. by a Galerkin or a collocation scheme, one is interested to
estimate the error e := ¢t — t}, in a suitable norm ||ep||. This information, com-
bined with certain localization techniques, can be used afterwards to decrease
the error by using an adaptive mesh refinement.
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As in finite element methods most existing error estimators for boundary ele-
ment methods are based on variants of the error equation for (1.1),

Vep =1y == (6l + K)g—Viy. (1.2)

Provided the continuity of V : H-1/2(I') — H'Y2(I') and of the inverse V!
there immediately follows the global error inclusion

e lrall ey < llenllg-1oy < c2 - llrnll ey » (1.3)

that means, n := ||Th||H1/2(F) defines an error estimator, see [5, 6, 8, 16, 17, 26,
27]. After proving an estimate of the kind (1.3) two problems occur. First, in
the practical application one is interested in the value of ||es| ;-1/2(r), so one
needs information about the constants ¢; and c3. The second problem is the
localization: To drive an adaption process it is necessary to have some local
information about the error distribution. There are two ways to construct local
error estimators. The first one is to localize the residual itself, this was done in
[1, 5, 6, 8, 26]. The second possibility is to prove localized versions of (1.3), see
(16, 17, 23, 27].

A very simple way to obtain an error estimator is to solve the error equation
(1.2) approximately with higher accuracy than the original method itself, e.g.
by using trial functions of higher polynomial degree or an a refined mesh. Then,
to prove an inclusion as (1.3), one needs the so—called saturation assumption,
see [2].

Another type of estimators are based on averaging or recovery methods. For
that kind of error estimation some superconvergence results of the computed
solution in certain points or a post—processed superconvergence solution are
necessary, see [28, 30] for the finite element method, and [18, 19, 22] for the
boundary element method. If a superconvergent solution #j is available, one
can define 1 := ||t} — th”H—l/?(F)- If it is possible to prove superconvergence, in
the most cases the constants ¢; and ¢y are near by 1. Moreover, if one can prove
pointwise superconvergence the localization of the error estimator is inherent.

Here we present a new approach to approximate the error ¢ — ¢;, with high ac-
curacy. Our method is based on the solution of an appropriate error equation,
which is simpler to solve than the original boundary integral equation (1.1)
or the corresponding error equation (1.2). Since our alternative error equa-
tion is a second kind Fredholm integral equation involving the adjoint double
layer potential we can apply a Neumann series for the solution process. To
get an accurate approximation of the error, only a few Neumann iterates are
necessary to compute, i.e., it will be shown that even without applying the
Neumann iteration we can compute an approximate error yielding an almost
optimal error estimator. Since the proposed error estimator is based on stan-
dard components of boundary element methods, in particular the discretization
of standard boundary integral operators as the adjoint double layer potential,
it is easy to implement.

The paper is organized as follows. In Section 2 we will recall a Galerkin bound-
ary element method for the solution of (1.1) and give some basic definitions of



error estimators. Section 3 is devoted to the formulation of an equivalent er-
ror equation and global error estimators based on a Neumann series are given.
In Section 4 we describe a numerical implementation scheme and prove cor-
responding error estimates. A numerical example in Section 5 confirms the
theoretical results.

Throughout the paper, by ¢ we will denote a general constant which may have
different values at difference occurrences.

2 Preliminaries

2.1 Boundary element methods

For a bounded domain Q C R” (n = 2,3) with a Lipschitz continuous boundary
I' and an elliptic second order partial differential operator L we consider the
homogeneous Dirichlet boundary value problem

Lu(z) = 0 forxz € Q, } 2.1)

u(z) = g(z) forxel.

Note that we may consider inhomogeneous partial differential equations in (2.1)
as well, but for simplicity in the presentation we consider the homogeneous
case only. Since in this paper we are interested in the construction of an error
estimator for the weakly singular integral equation (1.1), the consideration of
Dirichlet boundary conditions in (2.1) is sufficient.

If a fundamental solution U*(z,y) of L is known, the solution of the boundary
value problem (2.1) is given by the representation formula

u(z) = /U*(m,y)t(y)dsy —/g(y)T*(x,y)dsy forz € Q, (2.2)
r r
where T*(z,y) = T,U*(z,y) using the conormal derivative operator T} for

y € I'. In the representation formula (2.2) the density ¢(y) = T,u(y) is unknown,
hence we have to solve the boundary integral equation

(Vt)(z) = (o(x)] + K)g(z) =: f(x) forzel (2.3)
with
1 for x € Q,
o(x) = ¢ alz)/2n forzel,
0 for z € R"\Q

and a(z) denotes the interior angle in z € I'. In (2.3) we used the standard
notations for the single layer potential V' and the double layer potential K,

(Vi) (z) = /U*(ﬂﬂ,y)t(y)dsy, (Ku)(z) = /u(y)T*(fE,y)dSy- (2.4)

r r

It is well known (see [7]) that the boundary integral operators

V- H71/2+s(1'1) N H1/2+S(F), K - H1/2+S(F) N H1/2+5(F)



are continuous for s € [—%, %] Moreover, V satisfies a Gardings inequality, i.e.,

there exist a compact operator C' : H~'/2(I') — H'/?(T") such that

Re (((V + C)tat>L2(F)) > c: ||t||§{—1/2(r) (2.5)

holds for all t € H~/2(I") with some positive constant ¢. Hence, V' is invertible
and bijective, see [21].

Throughout the paper we assume that the Dirichlet boundary value problem
(2.1) has a unique solution u € H?(Q2) with some p > 2. Hence, the boundary
integral equation (2.3) will have a unique solution ¢ € H?(T") for some o > 0.
To solve the boundary integral equation (2.3) numerically, we consider a family
of regular triangulations I'j, of I' into boundary elements 'y, with local mesh size
hi and a global mesh size h := m]?x hi. With respect to I';, we then introduce

a family of trial spaces
Zn = span{gl 3, € HTV2(D) (2.6)

of discontinuous splines of polynomial order v, for example of piecewise constant
trial functions (v = 0). Note that there hold the approximation property in Zj
[15], i.e.,

: st 1
ThlgthT_ThHH—l/?(F) < ¢ B2 |7l sy (2.7)

for all 7 € H*(T) with — < s <wv+1.
The Galerkin variational formulation of (2.3) is to find ¢, € Zj such that

(Vth, Th)LZ(F) = <f, Th)LZ(F) for all T € 4} . (2.8)

For the stability of the Galerkin scheme (2.8) and the convergence see for ex-
ample [10, 21, 25], in particular we get the quasi-optimal error estimate

[t =thllg-12qry < e Thiggh 1t = 7all 172 (2.9)

and, combining this with the approximation property (2.7) there follows con-
vergence,

It = thllg-1/20ry < € hots . |[t]]rsry  with s = min{o,v + 1} . (2.10)

2.2 FError estimators

The error of the Galerkin solution ¢;, of (2.8) is defined as
ep(z) == (t —tp)(z) forzel. (2.11)

The aim is now to define an estimator n of a suitable error norm ||e|| and
to localize n. An estimator n is called error estimator if there exist positive
constants ¢; and ¢ independent of approximation parameters (as the mesh
size h) such that an inclusion

cr-n<llen|| < ez (2.12)



is fulfilled. The error estimator is called asymptotically exact if there holds

o lenll

L. 2.13
h—0 n ( )

Local error estimators with respect to a boundary element I'; will be denoted by
Nk After computing ny for all boundary elements I'y we will refine all elements
I’y where

ne > 0 max 1 (2.14)

holds with some appropriate chosen refinement parameter 6.

3 A new a—posteriori error estimator

As mentioned in the introduction, one way to obtain an error estimator is to
solve the error equation (1.2) with higher accuracy than the original method
itself, but this is very expansive in general. One possible way out is to derive
another equation for the error with known right hand side, but with an operator
on the left hand side which is easier to invert as the original operator V itself.
Since we will not use the properties of the Galerkin formulation (2.8) itself, our
technique can be applied directly to any other discretization technique, such as
collocation or qualocation. Hence we assume in the following that £ is some
boundary element solution of the boundary integral equation (2.3), for example
the Galerkin solution of (2.8).

According to (2.2) we define the approximate solution of the boundary value
problem (2.1) as

up(z) = /U*(w,y)th(y)dsy—/g(y)T*(:Jc,y)dsy forz € Q (3.1)
r r

possessing the Cauchy data
§(x) = up(z), t(z) := (Tyup)(x) forz el. (3.2)
Due to its definition, uy is a solution of the Dirichlet boundary value problem
Lup(z) =0 forz e, up(z) = g(z) forx el.

From this we conclude that ¢ is a solution of the boundary integral equation

(V) (z) = (o(z)] + K)j(z) forzel. (3.3)
Now we can prove a relation between the error ¢ — ¢; and the computable
function t — ¢;,. For this we define the adjoint double layer potential operator
to be
(K't)(z) = /T;(:L“,y)t(y)dsy forxel. (3.4)
r
From [7] it is known that

K': H='/?Fs(0) = H='/2%3(D) (3.5)

is continuous for all s € [—3, 1].



Lemma 3.1 The errort —ty of the boundary element solution ty is a solution
of the boundary integral equation

(1 —o(x) — K')(t —ty)(z) = (t—ty)(z) forzel. (3.6)

Proof. Using the jump relation of the double layer potential for x — T°
we get from the continuous representation formula (2.2)

g(z) = (Vi)(z) + (1 —o(z))] — K)g(z) forzel
and from the approximate representation formula (3.1)
9(x) = (Vip)(z) + (L —o(z))I — K)g(z) forzel.
Hence we have
(V(E—tn)(z) = (g —g)(x) forzel. (3.7)
Thus, using (2.3), (3.3), (3.7) and KV = VK’ [14] we get
VE-t)(@) = VE-8)@) +V(E—t)a)
= (o) +K)(g—9g)(z) + (9 — 9)(z)
= (I—o(@)I - K)(g—9)(z)

= (M=o(@) = K)V(t —t)(z)
= V(1 —o(@)I = K')(t - tn) (=)

for x € I'. From the bijectivity of the single layer potential V' the assertion
follows. ]

To compute the error ¢ — ¢, from (3.6) we need to have the invertibility of
(1 —0)I — K'. To prove this, we define the hypersingular integral operator

(Du)(x) = —TI/TyU*(w,y)u(y)dsy forz el (3.8)
r

with D : HY/2+5(T') — H=Y/2+5(D) for s € [—1, 1], see [7].

Lemma 3.2 The operator (1 — o)l — K' : H-'/2(T') — H-Y2(T") is bijective.
The inverse is given by the Neumann series
o0
(L=0)—K)"' =) (oI +K")", (3.9)
=0
where the spectral radius of the operator ol + K' is bounded by

p(cl +K') < cx < 1 (3.10)

with some positive constant cx which depends on I' only.



Proof.  Due to VK = K'V [14] the eigenvalues of K coincide with those of
K'. Hence it is sufficient to consider K only. Let us denote the eigenvalues of
ol + K by A; and the eigenfunctions by vg:

(cl + K)oy =X ey = (1—o0) — K)vg = (1 — \g)vg - (3.11)

It is well known that all eigenvalues oy, of the operator VD are real and non—
negative. Using the relation

VD = (1—o0) —K)(ol + K) : H'/*') - H'/*(I")

and (3.11) we obtain that the eigenvalues of V' D can be written in the form ay, =
At (1= Ag). From oy € RT there follows that all eigenvalues \j, of the operator
ol + K are real and they are in the interval [0,1]. All possible eigenvalues
ay, = 0 belong to all eigenfunctions vy, of the homogeneous Neumann boundary
value problem

(Lvgy)(z) =0 inQ, (Tpvg)(z) =0 onT, (3.12)

Hence we obtain either \g, = 0 or A\g, = 1. Since the solutions vy, of (3.12)

satisfy
(o(x)] + K)vg,(z) =0 forzel,

we conclude that Ay, = 0 when oy, = 0 and therefore |A\;| < 1 for all k£ and
plcl + K') = p(cl +K) < cx < 1

with a constant cx which depends on I" only, see also [9, 12, 24].

The eigenvalues of (1 — )] — K" are given by pur = 1 — Ag with 1 > py >
1 — ckx > 0. Therefore, the operator (1 — o)l — K’ : H-Y2(I') - H /2T is
invertible and its inverse is given by the Neumann series (3.9). ]

From (3.10) it follows that there holds
10T + Kol g-1/20y < i - ollgvpqy  forallo e H V(). (3.13)

Applying Lemma 3.1 and Lemma 3.2 one can represent error of the boundary
element solution %; by

oo

eni=t—ty =Y (oI +K)'(E—1t). (3.14)
£=0

Using the properties of (1 — 0)I — K' we get already equivalence inequalities
between the error (3.14) and the computable function # — t5:

Theorem 3.1 There hold the equivalence inequalities

- 1 -
1t = tallg-120) < llenllg-1720) < 1 —en 1€ = tall 1720y (3.15)

with a positive constant cx < 1 as given in Lemma 5.2.



Proof. From the boundedness of (1 — o)l — K’ and using pimax = 1 we get
It = tnllg-rr2y = (L =) = K')(t = t)ll 12y
< At =tallg-12@y = llenllg-1r2qry -

Using (3.14) and (3.13) we get

1 .
It = tall 120y < ZCK It = thllg-12y < I_CK'Ht_thHH—l/?(I‘)a

which completes the proof. [ |

Hence we can define a global error estimator for the boundary element solution
tp as
n© = ||t - thll g2y - (3.16)

Note that (3.16) already defines an almost optimal error estimator which can
be controlled by determining the constant cgx. To improve the equivalence
inequalities (3.15), we can apply some iterations of the Neumann series (3.9) to
compute

q
e (@) = Y (oI + K')!'(i —ty)(x)  forg>0. (3.17)
£=0

Theorem 3.2 There hold the equivalence inequalities
1

[ eS| r-1/2qry - (318)

NesPl-12wy < llenllg-r2ry < !
K

1+ Q+1

Proof. Using (3.14), (3.17) and (3.13) we get

o0
len = e Ng-szmy = 1Y (0 + KV E=ta)ll g1y
l=q+1

1
= ||(U[+K’)q+1€h||H_1/2(F) S CL?_ . ||eh||H—1/2(F)'

Hence the assertion follows by applying the triangle inequality twice. ]

Applying Theorem 3.2 we are able to define the global error estimator
@ = ||€h =12y = |l Z (oI + K') ) (=t -1y (3.19)

satisfying the equivalence inequalities (2.12) with constants as given in Theorem
3.2. Moreover, since cx < 1 we get

. llenllr2 i 1

lim 7” Iz O < lm — =1,

q— 00 77(‘I) T gm0 ] — ?’1

i.e., the error estimator (3.19) is asymptotically exact for ¢ — oo.



To compute the Sobolev norm appearing in (3.19) we can use the equivalent
energy norm given by

ollv == \/(Vv,0) 2@y ~ |[ollg-1/2¢r) forallv e H (D). (3.20)

An alternative computation of (3.19) can be done by applying multilevel tech-
niques as described in [4].

Let us denote the boundary elements by I'y,, K = 1,..., N. To obtain local error
indicators, we define

n? = \/<vegq>,egq>>mk), k=1,...,N. (3.21)
From the continuity and bijectivity of V' and from the relation

N N
> (1) = S e e uay = (el eff)
k=1

k=1

there immediately follows the estimate

N
e () <11y ey <

k=1 k=1

Mz

( ) (3.22)

with constants ¢; and ¢ which depend on V only. Finally estimate (3.22)
implies

N N

2 2
(Hiﬁ'z (") < Nenllzrnqry < (l_cﬁ_z CONCED

by Theorem 3.2.

4 Practical implementation

For the computation of the estimated error 6510) = t—t;, we first have to compute
the Cauchy datum ¢ of uy, as given in (3.1). Applying the conormal derivative
operator T, to (3.1) and taking the limit z — " we get

i) = o@tn(e)+Ts / U* (2, 9)tn (y)ds, — T / o) T (2, y)ds,
N N
= (o(z)I + K')ty(z) + (Dg)(z) forz el (4.1)

using the jump relation of the adjoint double layer potential and definition
(3.8) of the hypersingular integral operator. Note that £ € L?(T') due to the
assumption t € H(I'),o > 0, the regularity of ¢;, and the mapping properties
of K'. Using (4.1) we now can compute the initial error function

V(@) = (F—t)(2) = (0(2)] + K')tn(x) + (Dg)(z) — tn(z).  (42)



Due to Theorem 3.1 we can use 620) to compute the global error estimator (3.16).

To get the improved equivalence inequalities as in Theorem 3.2 we have to apply
the Neumann series (3.17). From a practical point of view we have to introduce
some finite dimensional approximation to evaluate (3.17). For this reason we
define as in (2.6) a trial space Z; of discontinuous splines of polynomial order
v with respect to a refined triangulation I'; with h < h sufficiently small. Note
that one may also define Z; over the triangulation I';, by using polynomial
trial functions of higher degree. Now we define the L?-Galerkin projection
Gju = u; € Z; for a given u € L*(T') such that

(uh, Uﬁ)LQ(I‘) = (u, Uﬁ>L2(F) for all vy, € Zfz . (43)
From (4.3) it is obvious that G, is bounded,
IGRulleey < llullz2r) (4.4)
and that there holds
(I — Gplullp2ry < |Jullp2qry  for allu € LA(T). (4.5)
Moreover, applying the Aubin—Nitsche trick [11, 13], we get the error estimate
(I = Giullg-ryairy < B2 - lullaqry - (4.6)

If we write (3.17) for £=1,...,q as

eg) = egfl) + z,(f), z,(f) = (UI+K')Z}(:Z71) (4.7)
with z,(lo) = ego), we can define, using (4.3) and égo) = Gﬁego), the computable
sequence

g = &40 50— G e+ KT (4.8)
for £=1,...,q and with 2,(:)) = é;to).

Hence we can define a computable error estimator as
7D = |8\l 12y for some g > 0. (4.9)

To show the equivalence inequalities (2.12) for the error estimator (4.9) we will

(@ (9

use Theorem 3.2. Therefore we have to estimate the difference ¢, —e,;”, which

is obviously based on the difference 2,(1']) — z,(f).

Lemma 4.1 For each £ =1,...,q there holds the error estimate
(0 [ ~(0 0 = 0
125" = 2 -2y < el 118 = e Mgy + e B2 - llef oy - (4.10)
Proof. Let us first define

g2 = (I +K)ZETY fore=1,....4.

10



Then there follows

~(f ¢ ~(¢
||z£>—z§ﬂ||gﬂ/2(p) < 12 = 2N g 12 = 200 vy

0—1)
=157 = 212wy + T+ EDETY = A7)y ey

- K 1
< 20 = 2PN ey + e AT = 257 ooy
The first term can be estimated by (4.6)
~(¢ ~(£
127 = 2 ey = G = DT+ K2 g o
< e B2 (0T + KAV

- _(e-1)
< coen Bl
and by the continuity of oI + K'. Now, using (4.4), we get

1E 2y = G0 + K2 oy < 1ol + KDY Ve

IN

~(7—1 1 ~(0 1 ~0
e 12 Ve < e 11BN @ = e 11802

IN

0
che  11es L2y
forall j =1,...,q. Hence we have
~(¢ l é 1 /—1 7 0
129 — 2 ooy < er BT = 2 sy + ¢ Y2 - e - 1€y

and, using this estimate recursively,

l
~(l YA ~(0 0 7 ] 0
12 — A oy < e NlE) — el gmrmmy + e B2 e Nlel ey
j=1

4
1—cy

~(0 0 7 0
< e 118 = M-y + e B2 -exc - 3K il g

Lemma 4.2 For the estimated error function € eh defined recursively by (4.8)
there holds the error estimate

5 7 0
& — e ey < e q- B2 (1Ol oy (4.11)

Proof. For any £ =1,...,q we have

~(£ 0 ~ 0
e — e i1y < Nl = e lare@y + 12 = 212y -
: 0 0) ~(0) _ (0
from which follows, note that z,(1 ) = 651 ), z,(1 ) = 651 ),
0 0

||eh, _eh ||H 1/2 Zth -2 ||H—1/2(F).

/=0

11



Applying Lemma 4.1 gives

189 — e y12 ey

q
~(0 0 7 0
< (Z%) les” = i -2y + ¢ B2 g [lef | paqry
=0
1 ~(0 0 = 0
< o 18 = el + e B2 gl Nl
Now (4.11) follows from (4.6). |

Using the previous results now we can prove final equivalence inequalities (2.12)
for the error estimator (4.9).

Theorem 4.1 Let égq) be defined recursively via (4.8). Then there hold the
equivalence inequalities
1
1+l

ANE vz — € a- B2 1l g2y

< ||eh||H*1/2(F) <

a8 ey 00 BV |

Therefore, Zfil < h is sufficiently small, ﬁ(Q) as defined in (4.9) is a global error
estimator satisfying (2.12).
Proof. Using Theorem 3.2, the triangle inequality and Lemma 4.2, we get

1
lenllg-raey < 1= - {1EP H-v2qey + 160 = el g1z}
K

1 ~ i 0
< 1 {18 oy + oo a- B2 e ey § -
K
The lower inequality follows by applying the same arguments. ]

The local error estimators are now defined by

79 = e, 80 ) (4.12)

and, similar to (3.22), it can be shown that there holds the estimate

¢l Z (N(q) ) < ey Z ( ) : (4.13)

where ¢; and ¢y are the same constants as in (3.22).

At the end of this section we will give some remarks concerning the compu-
tational costs of the proposed error estimator as well as we want to comment
some variants of our technique applicable in some special cases.

12



Remark 4.1 The application of the error estimator (4.9) requires basically
the computation of t with respect to a refined triangulation ['; by using the
representation formula (4.1). An alternative approach to compute t with the
same numerical effort, namely O(N) per degree of freedom in Z;, would be
to use finite differences to approximate the conormal derivative operator T by
evaluating the representation formula (3.1).

Remark 4.2 As stated in Theorem 4.1 we can use ﬁ(o) to be the global error
estimator, i.e., without applying the Neumann series (4.8). If one is able to
estimate the constant cx in Lemma 8.2, e.g. by a power method to find the
maximal eigenvalue of ol + K, one can define a modified error estimator as

1
50) .— .77(0)
o= = 7 (4.14)

satisfying (2.12) with a lower constant ¢; = 1.

Remark 4.3 If the adjoint double layer potential operator K' is more regular
as stated in (3.5), e.g. in the case of a (piecewise) C*° boundary I’ or a polygonal
boundary T, the error estimate (4.6) changes to be

!
(I = Gpullg-1/2py < e RT3 - |ullgs(ry (4.15)

with v € H3(T') for some s > 0. Note that for n = 3 one has to use at least

piecewise linear trial functions to ensure e%o) € H*(T'),s > 0. Moreover, one
can use the simpler computable L?> norm to define all global and local error
estimates.

Remark 4.4 The numerical amount of work of the proposed error estimator is
comparable to residual based methods, where the residual has to be computed in
certain quadrature points, see [6]. As it will be seen from the numerical example
we are able to approxzimate the Galerkin error very accurate by applying some
few Neumann iterations only. Moreover, the implementation of the proposed
error estimator in direct boundary element methods can be done easily, since
it 1s based on standard components which are already available in boundary
element codes.

5 Numerical results

In our numerical example we consider a Dirichlet boundary value problem for
the two—dimensional Laplacian where €2 is the L shaped domain as sketched in
Figure 5.1:

13
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Figure 5.1: L shaped domain §2

Note that €2 satisfies the condition diam 2 < 1 which is sufficient to get positive
definiteness of the single layer potential for the two—dimensional Laplacian [10].
The Dirichlet data g are given in such a way that the solution of (2.1) is

3 sin(Co) (5.1)

u(w) = ulr,@) = i -sin(

when using polar coordinates. This is a standard example for adaptive bound-
ary element methods [6, 8, 17], even in the case, when the corner singularity is
known a priori for using a suitable mesh grading [3, 29]. For the solution (5.1)
of the Dirichlet boundary value problem (2.1) we have u € H?(Q) with p < g
and hence ¢t € H’(I') with o < §. The Galerkin variational formulation (2.8)
is discretized by using piecewise constant trial functions (v = 0) and analytical
integration formulae. For the solution of the resulting symmetric and positive
definite system a preconditioned [20] conjugate gradient scheme is used. In the
case of an uniform refinement we get from (2.10) the order of convergence to
be % This is confirmed by the numerical results given in Table 5.1, where the
order of convergence at the mesh level ¢ is computed via

order — 10g||€hz||H—1/2(F) - log||ehz+1||H—1/2(F)‘ (5.2)
log N1 — log Ny

N llenllv order

8 6.79 -2

16 | 4.08 -2 0.72
32 | 2.59 -2 0.66
64 | 1.65 -2 0.65
128 | 1.06 -2 0.64
256 | 6.74 -3 0.65
512 | 4.30 -3 0.65
1024 | 2.75 -3 0.65
2048 | 1.75 -3 0.65

Table 5.1: Uniform refinement
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In the case of a regular solution ¢+ € H'(T') one would expect an order of
convergence % This motivates to use an adaptive scheme to improve the order
of convergence. For the definition of the error estimator 7(9) we defined the trial
space Zj, of piecewise constant trial functions with h=h /8. The representation
formula (4.1) as well as all integrals appearing in the Neumann iteration (4.8)
are computed again by using analytic formulae. The local error estimators are
defined by (4.12). For the adaptive mesh refinement we used the criteria (2.14)
with 8 = 0.05. In Table 5.2 we give the results in the case of an adaptive
refinement based on the proposed error estimator ﬁ(q) for ¢ =0 and g = 5.

N 7©) 7i®) llen|lv | order
8 13.26-2)|642-2|6.79 -2
16 | 1.91 -2 | 3.77 -2 | 4.08 2| 0.73
28 | 1.24 21244 -21262-2]| 0.79
42 | 7.95 -3 | 1.b7 2 | 1.66 2 | 1.13
50 | 5.19 -3 | 1.02 -2 | 1.07 -2 | 2.52
68 | 3.40 -3 | 6.69 -3 | 6.92 -3 | 1.42
102 | 2.17 -3 | 4.27 -3 | 437 -3 | 1.14
122 | 1.43 -3 | 2.82 -3 | 2.83 -3 | 2.43
176 | 9.14 -4 | 1.80 -3 | 1.80 -3 | 1.23
220 | 6.14 -4 | 1.21 -3 | 1.16 -3 | 1.97
294 | 4.15 -4 | 8.17 -4 | 7.46 -4 | 1.52
434 | 2.63 -4 | 5.18 -4 | 4.82 -4 | 1.12
Table 5.2: Adaptive refinement

Note that in both cases the error estimator 7(?) defines the same adaptive mesh
refinement while, due to Theorem 4.1, the estimated error ﬁ(5) is more accurate
than the estimated error 7(?). On the other hand, since 7(?) does not require
any Neumann iteration in general, its application requires much less work than
7.

Note that the proposed error estimator produces not only an adaptively refined
mesh providing an almost optimal convergence of the Galerkin solution t,
moreover, it gives a very accurate estimate of the real Galerkin error.

Figure 5.2 shows the error in the energy norm for the uniform and the adaptive
mesh with respect to the degree of freedoms and with respect to the computing
time. Note that in the uniform refinement case we used an extrapolation to get
all values for N > 2048. In the uniform case the computing time includes the
discretization and solution process at one level only while in the adaptive case
the total computing time includes discretization, solution and error estimation
over all previous mesh levels.
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Figure 5.2: Adaptive refinement vs. uniform refinement
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