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Abstract. Stair matrices and their generalizations are introduced. Some properties of the
matrices are presented. Like triangular matrices this class of matrices provides bases of matrix
splittings for iterative methods. A remarkable feature of iterative methods based on the new class
of matrices is that the methods are easily implemented for parallel computation. In particular, a
generalization of the SOR method is introduced. The SOR theory on determination of the optimum
parameter is extended to the generalized method to include a wide class of matrices. The asymptotic
rate of convergence of the new method is derived for Hermitian positive definite matrices using bounds
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corroborate the obtained results.
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1. Introduction. Let A be a nonsingular matrix and split A = M − N with a
nonsingular matrix M . A basic iterative method to solve the linear system Ax = b
is given by

x(k+1) = M−1(Nx(k) + b).(1.1)

The matrix M−1N is called an iteration matrix. It is well known that the iterative
method (1.1) converges if and only if the spectral radius ρ(M−1N) < 1. Different
matrix splittings yield different iterative methods. Split A = D − L − U , where and
throughout the paper D is the (block) diagonal of A, −L and −U are the strictly
(block) lower and the strictly (block) upper triangular matrices of A, respectively,
and assume D is nonsingular. We have

• the Jacobi method if M = D,
• the Gauss-Seidel method if M = D − L and
• the SOR method if M = D

ω − L, where ω is a real parameter.
Detail discussions of basic iterative methods are found in [7], [18] and [22].

The Jacobi method is easily implemented on parallel computing platforms, but it
is neither robust nor as fast as the Gauss-Seidel method and the SOR method in se-
quential case. With a proper over-relaxation parameter the SOR method substantially
improves the Jacobi method and the Gauss-Seidel method in term of order improve-
ment when applied to elliptic equations [7], [18] and [22]. However, the SOR method
and the Gauss-Seidel method are not easily implemented for parallel computation
because we have to solve triangular systems at each iteration.

The aim of the present paper is to search new matrix splittings to construct new
iterative methods to have all advantages of the Jacobi method and the SOR method.
The paper is organized as follows. Firstly, stair matrices and their generalizations are
introduced. Some properties of the matrices are presented. Like triangular matrices
this class of matrices provides bases of matrix splittings for iterative methods. An
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iterative method based on the new class of matrices is easily implemented for parallel
computation. Secondly, a generalization of the SOR method is introduced. The SOR
theory on determination of the optimum parameter is extended to the new method to
include a wide class of matrices. Thirdly, the asymptotic rate of convergence of the
new method is estimated for Hermitian positive definite matrices using bounds of the
eigenvalues of Jacobi matrices and numerical radius. Finally, numerical examples are
presented to corroborate the analysis.

2. Stair matrices and their generalizations. In this section we first intro-
duce stair matrices and then generalize stair matrices for application to iterative
methods. Some properties of the matrices are also presented.

We denote A = (aij)n×n an n × n matrix. The entries aij can be ni × nj blocks.
In the case aij are blocks we still treat them as basic entries. If we emphasize that
entries of a matrix are blocks, notation Aij is used to represent the (i, j)th entry
instead of aij . det(A) denotes the determinant of A. For a tridiagonal matrix

A =

⎛⎜⎜⎜⎜⎜⎝
a11 a12
a21 a22 a23

. . .
. . .

. . .
an−1,n−2 an−1,n−1 an−1,n

an,n−1 ann

⎞⎟⎟⎟⎟⎟⎠ ,(2.1)

we briefly denote A = tridiag(ai,i−1, aii, ai,i+1). A stair matrix is a special tridiagonal
matrix defined as follows.

Definition 2.1. A tridiagonal matrix A = tridiag(ai,i−1, aii, ai,i+1) is called a
stair matrix if one of the following conditions is satisfied

I. ai,i−1 = 0, ai,i+1 = 0, i = 1, 3, . . . , 2�n−1
2 � + 1;

II. ai,i−1 = 0, ai,i+1 = 0, i = 2, 4, . . . , 2�n
2 �.

A stair matrix is of the type I if the condition I is satisfied and is of the type II if the
condition II holds.

For example, a 6 × 6 stair matrix is of the form

A =

⎛⎜⎜⎜⎜⎜⎜⎝
×
× × ×

×
× × ×

×
× ×

⎞⎟⎟⎟⎟⎟⎟⎠ or A =

⎛⎜⎜⎜⎜⎜⎜⎝
× ×

×
× × ×

×
× × ×

×

⎞⎟⎟⎟⎟⎟⎟⎠ .

For convience, A stair matrix is denoted by A = stair(ai,i−1, aii, ai,i+1). In particular,
A = stair1(ai,i−1, aii, ai,i+1) and A = stair2(ai,i−1, aii, ai,i+1) represent a stair matrix
of the type I and a stair matrix of the type II, repectively.

Lemma 2.2. An n × n stair matrix A = stair(ai,i−1, aii, ai,i+1) is nonsingular if
and only if aii, i = 1, 2, . . . , n are nonsingular. Furthermore, if A is nonsigular then

A−1 = D−1(2D − A)D−1,(2.2)

where D = diag(a11, a22, . . . , ann).
Proof. It is straightforward to show that

det(A) =
n∏

i=1

det(aii),(2.3)
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which implies the first part of the lemma. The second part follows from a matrix
multiplication.

Applying Lemma 2.2 we immediately obtain the solution of a stair linear system

Ax = b(2.4)

by computing A−1b, where A is a stair matrix. To further reduce computational cost,
however, we solve (2.4) based on the structure of A as follows.

Algorithm I. This algorithm solves the stair linear system (2.4). The solution
overwrites b.

if (A is of the type I)
for i = 1 : 2 : 2�n−1

2 � + 1
bi = a−1

ii bi

endfor i

for i = 2 : 2 : 2�n
2 �

bi = a−1
ii (bi − ai,i−1bi−1 − ai,i+1bi+1)

endfor i

endif
if (A is of the type II)

for i = 2 : 2 : 2�n
2 �

bi = a−1
ii bi

endfor i

for i = 1 : 2 : 2�n−1
2 � + 1

bi = a−1
ii (bi − ai,i−1bi−1 − ai,i+1bi+1)

endfor i

endif,
where bi = 0 if i < 1 or i > n. It is readily seen that in the scale case the algorithm
needs at most 3n arithmetic operations, i.e., n additions, n multiplications and n
divisions. In block case, the algorithm needs n matrix-vector products of the form
aijbj j = i − 1, i + 1, n vector additions to compute bi − (ai,i−1bi−1) − (ai,i+1bi+1)
and solving n linear systems of the form a−1

ii d. A remarkable feature of the algorithm
is its high parallelism. For example, if A is a stair matrix of the type I, first, for all
odd i the computations of a−1

ii bi can be fulfilled by different processors at same time.
Then bi = a−1

ii (bi − ai,i−1bi−1 − ai,i+1bi+1) are easily computed in parallel for even i.
The high parallelism of algorithm I is achieved if aij are complex numbers or

small blocks. To obtain a good matrix splitting such that the iterative method (1.1)
is almost fully parallelized at each iteration for a wide class of matrices we now
generalize stair matrices by defining

• L1
n = {A : A is an n × n matrix and A = stair(ai,i−1, aii, ai,i+1)},

• Lk
n = {A : A is an n×n matrix and A = stair(Ai,i−1, Aii, Ai,i+1), where each

diagonal block Aii is an ni × ni matrix and Aii ∈ Lr
ni

with r < k}.
Lemma 2.3. L1

n ⊂ L2
n ⊂ · · · ⊂ Ln

n ⊂ · · · and Lk
n = Ln

n if k ≥ n.
Proof. The first part of the lemma follows straightforwardly from the definition

of Lk
n. If n = 1 the equation Lk

n = Ln
n is trivial for k ≥ n. Assume that the conclusion

of the second part is true for n ≤ m − 1. Following the definition of Lk
n we find that

it is true for n = m too.
Because of Lemma 2.3 we introduce the following notation.
Definition 2.4. Ln ≡ Ln

n.
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According to the definition of Ln we find that all n × n triangular matrices are
elements of Ln and all n × n matrices of the form

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

×
× × × × × × · · ·
× ×
× × × × × · · ·
× × ×
× × × × · · ·
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
or A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × × × × × · · ·
×
× × × × × · · ·
× ×
× × × × · · ·
× × ×
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
belong to Ln too. We call the latter zebra matrices.

Theorem 2.5. Let A = (aij)n×n ∈ Ln. Then A∗ ∈ Ln, where A∗ is the conjugate
transpose of A, and

det(A) =
n∏

i=1

det(aii).(2.5)

If A is nonsingular then A−1 ∈ Ln.
Proof. Assume A = stair(Ai,i−1, Aii, Ai,i+1). Then A∗ ∈ Ln follows immediately

from induction. Let m be the number of the diagonal blocks of A and denote D =
blockdiag(A11, A22, . . . , Amm). We find

det(A) =
m∏

i=1

det(Aii).

Using this equation and induction with the equation (2.3) we easily show (2.5).
If A is nonsingular it follows from (2.2) that

A−1 = D−1(2D − A)D−1 = stair(Bi,i−1, Bii, Bi,i+1),

where the blocks Bij are given by

Bij =
{

−A−1
ii AijA

−1
jj , if j = i − 1, i + 1

A−1
ii , if j = i.

Again using induction we find A−1 ∈ Ln.
If A = stair(Ai,i−1, Aii, Ai,i+1) ∈ Ln we can repeatedly apply Algorithm I to solve

the linear system Ax = b. Assume A = (aij)n×n with complex entries aij and Aii

are ni × ni blocks. Let C(n) denote the number of arithmetic operations for solving
the linear system Ax = b. Because a matrix-vector product Aikbk (k = i − 1, i + 1)
needs at most nink multiplications and (ni − 1)nk additions, the computation of
bi −Ai,i−1bi−1 −Ai,i+1bi+1 needs at most 2(nini−1 +nini+1) arithmetic operations.
We have the following bound of C(n):

C(n) ≤
m∑

i=1

C(ni) + 2
m−1∑
i=1

nini+1.(2.6)

Based on this inequality and induction we obtain C(n) ≤ n2. Therefore, solving a
linear system Ax = b with A ∈ Ln is at most as expensive as solving a triangular
linear system. However, the system Ax = b is easily solved in parallel by repeatedly
performing Algorithm I.
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3. A generalization of the SOR method. As we have seen in the previous
section the iterative method (1.1) is easily implemented for parallel computation if
M ∈ Ln. In this section, we generalize the SOR method based on a splitting A =
M − N , where M ∈ Ln.

Let A be an n×n matrix with a nonsingular diagonal D. We denote B = I−D−1A
the Jacobi matrix of A throughout the paper. Split A = D−P −Q such that P ∈ Ln,
where the diagonals of P and Q are zero. A generalization of the SOR method for
the linear system Ax = b is defined by

x(k+1) = Sωx(k) − (D − ωP )−1ωb,(3.1)

where and throughout the paper Sω stands for

Sω = (D − ωP )−1((1 − ω)D + ωQ)(3.2)

with a real parameter ω.
Applying the results on matrices in Ln in the previous section, we have the

following result similarly to Kahan’s result [10] on the SOR method.
Theorem 3.1. Let A = D − P − Q such that P,Q ∈ Ln. If ρ(Sω) < 1, then

0 < ω < 2.
Proof. Represent Sω = (I −ωD−1P )−1((1−ω)I +ωD−1Q). Under the condition

of the theorem we find ωD−1P, ωD−1Q ∈ Ln with zero diagonals. It follows from
Theorem 2.5 that

det((I − ωD−1P )−1) = 1, det((1 − ω)I + ωD−1Q) = (1 − ω)n.(3.3)

Let λi, i = 1, . . . , n be the eigenvalues of Sω. Then the determinant of Sω is given by

det(Sω) =
n∏

k=1

λk = (1 − w)n.(3.4)

Therefore,

ρ(Sω) = max
i

|λi| ≥ |det(Sω)|1/n ≥ |w − 1|,(3.5)

which implies the conclusion of the theorem.
A real square matrix A = (aij)n×n is a Z-matrix if aii > 0 for i = 1, . . . n and

aij ≤ 0 for i �= j, i, j = 1, . . . , n. In particular, a nonsingular Z-matrix is also called
an M-matrix. We now show that the important result on the SOR method for Z-
matrices given by Young [22] (Theorem 5.1, pages 120–122), which is an extension of
the result of Stein and Rosenberg [15] on the Gauss-Seidel method, is still true for
the new method (3.1).

Theorem 3.2. Let A be a Z-matrix with nonsingular diagonal D. Split A =
D − P − Q such that P ∈ Ln and P,Q are nonnegative matrices. If Sω is defined by
(3.2) with 0 < ω ≤ 1, then

(a) ρ(B) < 1 if and only if ρ(Sω) < 1;
(b) ρ(B) < 1 if and only if A is an M-matrix;
(c) if ρ(B) < 1 then ρ(Sω) ≤ 1 − ω + ωρ(B);
(d) if ρ(B) ≥ 1 then ρ(Sω) ≥ 1 − ω + ωρ(B).
Proof. Under the conditions of the theorem D−1P is nonnegative and D−1P ∈ Ln.

It follows from the proof of Theorem 2.5 and induction we find that (I −ωD−1P )−1 is
a nonnegative matrix. The rest of the proof is essentially the same as that of Theorem
5.1 in [22]. We delete further details.

Most results on the SOR method can be extended to (3.1). In the present paper,
however, we don’t intend to cover all of them.
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4. Determination of the optimum parameter. In this section we extend
some elegant results on determination of the optimum parameter of the SOR method
to the method (3.1). Some examples are presented to illustrate that our generalization
improves the SOR theory to include a wide class of matrices.

4.1. Theoretical results. The proofs of the results in this subsection are essen-
tial the same as those in the SOR case in [18] and [22]. We present some of them for
readers’ convenience. First, we extend the concept of p-consistently ordered matrices.

Definition 4.1. Let A = D − P − Q, where D is the diagonal of A. If there is
a positive constant p such that

det(βD − αP − α−(p−1)Q) = det(βD − P − Q)(4.1)

for any constants α �= 0 and β. Then A is called a p-consistently ordered matrix with
respect to (P,Q).

If A is a p-consistently ordered matrix. The following lemma shows the charac-
teristic polynomial of the Jacobi matrix of A. If A is a p-constantly ordered matrix
with respect to (L,U) the result was first observed by Young [20] for p = 2 and was
extended by Varga [17] for any positive integer p.

Lemma 4.2. Let A be an n × n matrix with a nonsingular diagonal D. If there
exist matrices P and Q such that A is a p-consistently ordered matrix with respect to
(P,Q), then

det(λI − B) = λk
m∏

i=1

(λp − µp
i ),(4.2)

where µi �= 0 for i = 1, . . . ,m, m and k are nonnegative integers.
Proof. Note that the equality (4.1) implies that

det(βI − αD−1P − α−(p−1)D−1Q) = det(βI − B).(4.3)

Let λ be a nonzero eigenvalue of B. We deduce to prove the result provided we can
prove that λe2πir/p are eigenvalues of B for r = 1, . . . , p − 1, where i =

√
−1. With

an application of the equality (4.3) a simple computation shows that

det(λe2πir/pI − B) = e2πirn/pdet(λI − e−2πir/pD−1(P + Q))
= e2πirn/pdet(λI − e−2πir/pD−1P − e2πir(p−1)/pD−1Q)
= e2πirn/pdet(λI − B) = 0,

which shows the desired result.
Applying Lemma 4.2 we now proceed to show the relation between the eigenvalues

of Sω and the eigenvalues of the Jacobi matrix.
Theorem 4.3. Let A = D − P − Q be a p-consistently ordered matrix with

respect to (P,Q), where D is diagonal and nonsingular, and P ∈ Ln. Assume that
the parameters λ �= 0 and µ satisfy the following relation

(λ + ω − 1)p = λp−1ωpµp,(4.4)

where ω �= 0. If λ is an eigenvalue of Sω then µ is an eigenvalue of B. Conversely,
if µ is an eigenvalue of B then λ is an eigenvalue of Sω.
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Proof. It is readily seen that I − ωD−1P ∈ Ln. According to Theorem 2.5 we
find det(I − ωD−1P ) = 1, which implies that det(I − ωD−1P )−1 = 1. Therefore,

det(λI − Sω) = det(I − ωD−1P )−1det((λ + ω − 1)I − λωD−1P − ωD−1Q)
= det((λ + ω − 1)I − λωD−1P − ωD−1Q)
= det((λ + ω − 1)I − λ1−1/pω(λ1/pD−1P + (λ1/p)−(p−1)D−1Q)

= λ(1−1/p)nωndet
(λ + ω − 1

λ1−1/pω
I − (λ1/pD−1P + (λ1/p)−(p−1)D−1Q)

)
= λ(1−1/p)nωndet(

λ + ω − 1
λ1−1/pω

I − B).

Applying Lemma 4.2 we find

det(λI − Sω) = λ(1−1/p)(n−k)ωn−k(λ − ω − 1)k
m∏

i=1

((λ − ω − 1)p

λp−1ωp
− µp

i

)
.(4.5)

If λ is an eigenvalue of Sω then det(λI − Sω) = 0, which implies that either (a)
λ − ω − 1 = 0 with k ≥ 1 or (b)

(λ − ω − 1)p

λp−1ωp
− µp

i = 0(4.6)

for some i. In the case (a) we find µ = 0 is the unique solution of (4.4). Since
k ≥ 1 Lemma 4.2 shows that µ = 0 is an eigenvalue of B. In case (b) it follows
from Lemma 4.2 that any µ satisfying µp = µp

i is an eigenvalue of B. Therefore, the
equation (4.6) implies that any µ satisfying (4.4) is an eigenvalue of B. Conversely,
assume that µ is an eigenvalue of B. If µ = 0 it follows from Lemma 4.2 that k ≥ 1.
The equation (4.4) shows λ = 1 − ω. Applying (4.6) shows that λ = 1 − ω is an
eigenvalue of Sω . If µ �= 0 Lemma 4.2 shows that there is some i such that µp = µp

i .
Again applying (4.6) shows that λ satisfying (4.4) is an eigenvalue of Sω .

Let ωρ is the unique positive real root of the equation

(ρ(B)ωρ)p = pp(p − 1)1−p(ωρ − 1),(4.7)

where ρ(B) is the spectral radius of the associated Jacobi matrix. For p = 2, ωρ can
be expressed equivalently as

ωρ =
2

1 +
√

1 − ρ2(B)
= 1 +

(
ρ(B)

1 +
√

1 − ρ2(B)

)2

.(4.8)

Following Varga’s approach [16], we immediately obtain the following result on the
optimum parameter.

Theorem 4.4. Let A = D−P −Q be a p-consistently ordered matrix with respect
to (P,Q), where D is a nonsingular matrix and P ∈ Ln. If all the pth power of the
Jacobi matrix B are nonnegative and ρ(B) < 1 then with ωρ defined by (4.7)

(a) ρ(Sωρ) = (p − 1)(ωρ − 1);
(b) ρ(Sω) ≥ ρ(Sωρ) for all ω �= ωρ.

Moreover, the iteration (3.1) converges for all ω with 0 < ω < p/(p − 1).
For the case of p = 2 we can also show that Young’s fundamental result on the

SOR method [20] and [21] is valid for the new method, which gives the spectral radius
of Sω for 0 < ω < 2.
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Theorem 4.5. Let A = D − P − Q be a 2-consistently ordered matrices with
respect to (P,Q), where D is a nonsingular matrix and P ∈ Ln. If all the eigenvalues
of the Jacobi matrix B are real then ρ(Sω) < 1 if and only if ρ(B) < 1 and 0 < ω < 2.
Moreover, if ρ(B) < 1 then with ωρ given by (4.8)

(a) ρ(Sωρ) = ωρ − 1;
(b) if ω �= ωρ then ρ(Sω) > ρ(Sωρ);

(c) ρ(Sω) =

⎧⎨⎩
(ωρ(B) + (ω2ρ(B)2 − 4(ω − 1))1/2

2

)2
, if ω < ωρ

w − 1, if ωρ ≤ ω < 2.

4.2. Examples. In this subsection we present some examples to show that the
new method not only is easily parallelized but also yields faster convergence than the
SOR method for a wide class of matrices.

Example 1. Let A = tridiag(ai,i−1, aii, ai,i+1). Then A is a 2-consistently ordered
matrix with repect to (L,U) [18] and [22]. Splitt A = D − P − Q, where

P = −stair1(ai,i−1, 0, ai,i+1), Q = −stair2(ai,i−1, 0, ai,i+1).

Then det(βI − αP − α−1Q) is independent of α for all α �= 0 because

D̃−1(βI − αP − α−1Q)D̃ = (βI − P − Q),

where D̃ = diag(αiIi) and αi is given by

αi =
{

1, if i is odd,
α, if i is even.(4.9)

Therefore, for the linear system Ax = b according to Theorem 4.5 the SOR method

x(k+1) = (D − ωL)−1(((1 − ω)D + ωU)x(k) + ωb)(4.10)

and the method

x(k+1) = (D − ωP )−1(((1 − ω)D + ωQ)x(k) + ωb)(4.11)

share the same optimal asymptotic rate of convergence which is taken for ωρ given by
(4.8), but the method (4.11) is much more easily implemented for parallel computation
as explained in section 2.

In the second example, we show that the conditions on determination of the
optimum parameter of the new method are still satisfied for a wide class of matrices
for which the corresponding conditions required by the SOR method fail.

Example 2. Consider a 2p × 2p matrix of the form

A = tridiag(ai,i−1, aii, ai,i+1) +

⎛⎜⎜⎜⎜⎜⎝
0 0 · · · 0 a1,2p

0 0 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 0 0
a2p,1 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠(4.12)

As it is shown in [18] and [22] A is not a p-constantly ordered matrix with respect
to (L,U). The theory on determination of optimum over-relaxation parameter of the
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SOR method is not applicable to the matrices of the form (4.12). However, define a
2p × 2p zebra matrix P by

(P )ij =

⎧⎨⎩
−aij , j = i − 1, i + 1, i = 2, 4, . . . , 2p − 2,
−aij , j = 1, 2p − 1, i = 2p,
0, otherwise

(4.13)

and split A = D − P − Q. Then det(βI − αP − α−1Q) is independent of α for α �= 0
because

D̃−1(βI − αP − α−1Q)D̃ = (βI − P − Q),

where D̃ = diag(I1, αI2, I3, αI4, . . . , I2p−1, αI2p). Therefore, A is a 2-consistently
ordered matrix with respect to (P,Q). Theorem 4.5 is still applicable for the iteration
(4.11) if the eigenvalues of the Jacobi matrix are real.

For the particular case where a2p,1 = 0 and ai,i+1 = 0 for i = 1, 2, . . . , 2p − 1. It
follows from [18] that A is a 2p-consistently ordered matrix with respect to (L,U).
However, A is still a 2-consistently ordered matrix with respect to (P,Q).

Finally, Example 3 shows that the advantages of high parallelism at each itera-
tion and fast convergence rate of the new method are inherited when the method is
applied to matrices arising for discretization of partial differential equations in a high
dimensional space.

Example 3. Define a class of matrices by
• T1 = {A : A = tridiag(ai,i−1, aii, ai,i+1)},
• Tk = {A : A = tridiag(Ai,i−1, Aii, Ai,i+1), where Ai,i−1, Ai,i+1 are diagonal

matrices and Aii ∈ Tk−1}.
A number of matrices arising from discretization of partial differential equations

belong to this class of matrices. For example, the difference matrices of self-adjusted
elliptic equations in k-dimensions are in Tk. Similarly we denote

• T s
1 = {A : A = stair(ai,i−1, aii, ai,i+1)},

• T s
k = {A : A = stair(Ai,i−1, Aii, Ai,i+1), where Ai,i−1, Ai,i+1 are diagonal

matrices and Aii ∈ T s
k−1}.

Let A = tridiag(Ai,i−1, Aii, Ai,i+1) ∈ Tk and D = diag(Di) be the diagonal
of A, where Di is the diagonal of Aii. Now we show that there exist a splitting
A = D − P − Q, where P,Q ∈ T s

k, and a diagonal matrix D̂ such that

D̂−1(βD − αP − α−1Q)D̂ = βD − P − Q(4.14)

for any β and nonzero α. This is true for k = 1 as we have seen in Example 1.
Assume that the equation (4.14) holds for any matrix in Tk−1. In particular, for
each diagonal block Aii, there are Pi, Qi ∈ T s

k−1 and a diagonal matrix D̂i such that
Ai = Di − Pi − Qi and

D̂−1
i (βDi − αPi − α−1Qi)D̂i = βDi − Pi − Qi.(4.15)

for any β and nonzero α. Let

P = stair1(−Ai,i−1, Pi,−Ai,i+1), Q = stair2(−Ai,i−1, Qi,−Ai,i+1).

It is straightforward to show that A = D − P − Q. Define D̂ = diag(αiD̂i), where αi

is defined by (4.9). Applying (4.15) we show (4.14).
The equation (4.14) implies that A is a 2-consistently ordered matrix with respect

to (P,Q). Therefore, the result on determination of optimum parameter is applicable
to matrices in Tk. Another advantage of applying splitting A = D − P − Q in the
iteration (4.11) is the high parallelism of the scheme at each iteration.
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5. Convergence for Hermitian positive definite matrices. Let A and D
be Hermitian positive definite matrices satisfying A = D−E−E∗. Assume D−ωE is
nonsingular for a given parameter ω. In this section we consider the asymptotic rate
of convergence of the iterative scheme (3.1) for Hermitian positive definite matrices.
We address our problem in a more general framework by choosing P = E and Q = E∗.
The iteration matrix Sω becomes

Sω = (D − ωE)−1((1 − ω)D + ωE∗)(5.1)

5.1. Notation and preliminaries. Let A be an n × n complex matrix. We
use H(A) = 1

2 (A + A∗) and S(A) = 1
2 (A − A∗) to represent the Hermitian and the

anti-Hermitian parts of A, respectively.
For any two vectors u,v ∈ Cn we denote (u,v) = u∗v the inner product of u

and v. It is well-known that

(u,v) = (v,u), (u, Av) = (A∗u,v).(5.2)

For an n × n complex matrix A the Rayleigh quotient of A for a nonzero vector
x ∈ Cn is q(A,x) = (x, Ax)/(x,x) and the numerical radius of A is defined by

r(A) = sup{|(x, Ax)| : x ∈ Cn, (x,x) = 1}.(5.3)

V (A) = {(x, Ax) : x ∈ Cn, (x,x) = 1} is called the field of values or the numer-
ical range of A. Numerical radius is considered to be an efficient norm to measure
convergence of basic iterative methods. See [2], [4], [11] and [14] for some examples.

For a nonnegative matrix A, in 1975, Goldberg, Tadmor and Zwas [6] showed
that the numerical radius of A is equal to the spectral radius of its symmetric part.

Lemma 5.1. If A is an n × n nonnegative matrix, then r(A) = ρ(H(A)).
In general, we have the following bounds for numerical radius [2], [11].
Lemma 5.2. Let A be an n × n matrix. Then

max(ρ(H(A)), ρ(S(A))) ≤ r(A) ≤
√

ρ2(H(A)) + ρ2(S(A))(5.4)

Lemma 5.3. Let A, R and S be n × n matrices. If R∗R = S∗S and R is
nonsingular then r(RAR∗) = r(SAS∗).

Proof. Under the conditions of the lemma S is nonsingular. For any x �= 0 an
elementary calculation shows

(x, RAR∗x)
(x,x)

=
(y, Ay)

((R∗)−1y, (R∗)−1y)
=

(y, Ay)
((S∗)−1y, (S∗)−1y)

=
(z, SAS∗z)

(z, z)
,

which implies the desired result, where y = R∗x and z = (S∗)−1y.
Other properties of numerical radius can be found in [5], [8], [9] and [13].
A Stieltjes matrix is a symmetric M-matrix. For a Stieltjes matrix we have the

following property on its Cholesky factorization.
Lemma 5.4. Let A be a Stieltjes matrix and A = L̃L̃T be the Cholesky factoriza-

tion of A. Then L̃ is an M-matrix.
Proof. The proof is straightforward.
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5.2. Main results. In this subsection, we derive a bound for the spectral radius
of the iteration matrix Sω for a Hermitian positive definite matrix with 0 < ω < 2.

Let A = D−E−E∗ with a Hermitian positive definite matrix D and assume that
D − ωE is nonsingular for 0 ≤ ω ≤ 2. In 1954, Ostrowski showed that ρ(Sω) < 1 if
and only if A is positive definite and 0 < ω < 2 [12]. In 1973, Varga [19] pointed out
that D−ωE is nonsingular for 0 ≤ ω ≤ 2 if A and D are positive definite. Combining
Varga’s observation with Ostrowski’s Theorem [12] (see also [18]) we immediately
obtain the following result.

Theorem 5.5. Let A = D − E − E∗ be an n × n Hermitian matrix, where D is
Hermitian positive definite. Then D − ωE is nonsingular and ρ(Sω) < 1 if and only
if A is positive definite and 0 < ω < 2.

For a Hermitian positive definite matrix A = D − E − E∗ with a Hermitian
positive definite matrix D the scheme (3.1) converges, i.e., ρ(Sω) < 1, if and only if
0 < ω < 2 according to Theorem 5.5. The following lemma shows an upper bound of
the eigenvalues of the Jacobi matrix.

Lemma 5.6. Let A and D be n × n Hermitian positive definite matrices and
A = D − E − E∗. Then all eigenvalues of the Jacobi matrix D−1(E + E∗) are real
and strictly less than 1.

Proof. λ(D−1(E + E∗)) = λ(D−1/2(E + E∗)D−1/2) shows that all eigenvalues of
D−1(E + E∗) are real. Since A is Hermitian positive definite, for any x �= 0 we find

(x, D−1/2(E + E∗)D−1/2x) = 1 − (x, D−1/2AD−1/2x) < 1,

which implies λ(D−1(E + E∗)) < 1.
The main result on estimate of the spectral radius ρ(Sω) is presented in the

following Theorem. A similar approach can be found in Varga’s work in 1973 [19]
where he split the matrix E into the Hermitian and the anti-Hermitian parts. Here
we treat E globally and use numerical radius.

Theorem 5.7. Let A and D be n × n Hermitian positive definite matrices and
A = D − E − E∗. Assume that the eigenvalues of the Jacobi matrix D−1(E + E∗) lie
on [α̃, β̃] with β̃ < 1 and r ≥ r(D−1/2ED−1/2). Then for 0 < ω < 2

ρ(Sω) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

1 − ω(2 − ω)(1 − β)
1 − βω + r2ω2 , if r2ω2 ≥ ω − 1,√

1 − ω(2 − ω)(1 − α)
1 − αω + r2ω2 , if r2ω2 < ω − 1,

(5.5)

where α = max(α̃,−2r) and β = min(β̃, 2r). Furthermore,

min
0<ω<2

ρ(Sω) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
4r2 − β2√

1 − 2(β − 2r2) + 1 − β
, if 4r2 > β,

2r

1 +
√

1 − 4r2
, if α ≤ 4r2 ≤ β,

√
4r2 − α2√

1 − 2(α − 2r2) + 1 − α
, if 4r2 < α.

(5.6)

Proof. It follows from Lemma 5.2 that α ≤ λ(D−1(E + E∗)) ≤ β. Denote
Ẽ = D−1/2ED−1/2. We find Sω = D−1/2S̃ωD1/2, where

S̃ω = (I − ωẼ)−1((1 − ω)I + ωẼ∗).(5.7)
11



Therefore, Sω and S̃ω have same eigenvalues. Let λ be an eigenvalue of S̃ω and x �= 0
be the corresponding eigenvector. Then S̃ωx = λx, i.e.,

λ(I − ωẼ)x = ((1 − ω)I + ωẼ∗)x.(5.8)

Multiplying both sides on left by x∗ we obtain

λ((x,x) − ω(x, Ẽx)) = (1 − ω)(x,x) + ω(x, Ẽ∗x).(5.9)

First we prove that (x,x)−ω(x, Ẽx) �= 0 by reduction to absurdity. Assume that
ω(x, Ẽx) = (x,x). Applying (5.2) shows that

ω(x, Ẽ∗x) = ω(Ẽx,x) = ω(x, Ẽx) = (x,x).(5.10)

Furthermore, it follows from (5.9) that (ω(x, E∗x)+(1−ω)(x,x)) = (2−ω)(x,x) = 0.
Therefore, ω = 2 due to x �= 0, which contradicts to the assumption 0 < ω < 2.

Let (x, Ẽx)/(x,x) = κeiθ, where κ ≥ 0, 0 ≤ θ < 2π and i =
√

−1. Using (5.9)
with a simple computation shows that λ = (1 − ω + ωκe−θi)/(1 − ωκeθi) and

|λ|2 = 1 − ω(2 − ω)(1 − 2κ cos θ)/(1 − 2ωκ cosθ + ω2κ2).(5.11)

Since λ(Ẽ + Ẽ∗) = λ(D−1(E + E∗)) and 2κ cos θ = (x, (Ẽ + Ẽ∗)x)/(x,x), we find
α ≤ 2κ cos θ < β according to Lemma 5.2. Due to 0 < ω < 2 and κ ≤ r applying
(5.11) yields

|λ|2 ≤ f(2κ cos θ) < 1,(5.12)

where f(x) is a function f(x) defined on [α, β] by

f(x) = 1 − ω(2 − ω)(1 − x)/(1 − ωx + ω2r2).(5.13)

The rest of the proof is to compute the maximum value of f(x). By representing

f(x) = w − 1 + (2 − ω)
r2ω2 − ω + 1
1 − ωx + ω2r2 ,

it is clearly seen that if r2ω2 ≥ ω − 1 then f(x) is increase for x and if r2ω2 < ω − 1
then f(x) is decrease for x. Hence,

max
α≤x≤β

f(x) =

⎧⎪⎪⎨⎪⎪⎩
1 − ω(2 − ω)(1 − β)

1 − ωβ + r2ω2 , if r2ω2 ≥ ω − 1,

1 − ω(2 − ω)(1 − α)
1 − ωα + r2ω2 , if r2ω2 < ω − 1,

(5.14)

which with (5.12) implies (5.5).
If 4r2 < 1 we find that r2ω2 = ω − 1 has two real zeros and one of them lies on

(0, 2), which is given by

ωr =
2

1 +
√

1 − 4r2
.(5.15)

We now proceed to show (5.6). For parameter ω satisfying r2ω2 ≥ ω − 1, denote
g(ω) = ω(2 − ω)/(1 − βω + r2ω2). A simple calculation shows that

g′(ω) =
(β − 2r2)ω2 − 2ω + 2

(1 − βω + r2ω2)2
.(5.16)
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We find that g′(ω) has one zero ω = 1 if β − 2r2 = 0 and two zeros

ω1 =
2

1 +
√

1 − 2(β − 2r2)
, ω2 =

1 +
√

1 − 2(β − 2r2)
β − 2r2

if β−2r2 �= 0. On the other hand, under the conditions of the theorem 1−2(β−2r2) ≥
1 − 2β + β2 = (1 − β)2, which implies that ω1 and ω2 are real. It is straightforward
to check that ω2 ≥ 2 if β − 2r2 > 0 and ω2 < 0 if β − 2r2 < 0. Therefore, g′(ω) has a
unique zero

ωβ,r =
2

1 +
√

1 − 2(β − 2r2)
(5.17)

on (0, 2). Furthermore, g′(ω) ≥ 0 for ω ∈ (0, ωβ,r) and g′(ω) ≤ 0 for ω ∈ (ωβ,r, 2)
regardless of the sign of β − 2r2.

If 4r2 > β, we find r2ω2
β,r > ωβ,r − 1. It turns out that for r2ω2 ≥ ω − 1 and

ω ∈ (0, 2) we have the maximum value

max g(ω) = g(ωβ,r) =
2√

1 − 2(β − 2r2) + 1 − β
.(5.18)

Note that even if 4r2 < 1, which implies that ωr given by (5.15) lies on (0, 2), the
inequality g(ωβ,r) ≥ g(ωr) holds.

If 4r2 ≤ β then 4r2 < 1 due to β < 1. In this case, it is readily seen that
r2ω2

β,r ≤ ωβ,r − 1 and ωβ,r ≥ ωr. Therefore, for r2ω2 ≥ ω − 1 and ω ∈ (0, 2)

max g(ω) = g(ωr) =
2
√

1 − 4r2

(1 − β)(1 +
√

1 − 4r2)
(5.19)

If there are some real ω such that r2ω2 < ω−1, it is straightforward to show that
4r2 < 1. Denote q(ω) = ω(2 − ω)/(1 − αω + r2ω2). Similarly, we can prove

sup q(ω) = q(ωr) =
2
√

1 − 4r2

(1 − α)(1 +
√

1 − 4r2)
(5.20)

if 4r2 ≥ α and

q(ωr) ≤ sup q(ω) = q(ωα,r) =
2√

1 − 2(α − 2r2) + 1 − α
(5.21)

if 4r2 < α. Applying (5.5) we find that

min
0<ω<2

(ρ(Sω)) ≤
√

1 − max
0<ω<2

(
max

r2ω2≥ω−1
(1 − β)g(ω), sup

r2ω2<ω−1
(1 − α)q(ω)

)
,

which together with (5.18), (5.19), (5.20) and (5.21) shows (5.6).
If α̃ and β̃ are the minimum and the maximum eigenvalues of D−1(E + E∗), re-

spectively, it follows from Lemma 5.2 that r ≥ 1
2 max(|α̃|, |β̃|). Applying Theorem 5.7

yields the following result immediately.
Corollary 5.8. Let A, D and E satisfy the conditions of Theorem 5.7. Assume

α and β are the minimum and the maximum eigenvalues of D−1(E+E∗), respectively,
and r ≥ r(D−1/2ED−1/2). Then for 0 < ω < 2 the inequalities (5.5) and (5.6) hold.
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For the method presented in this paper and the SOR method because the diagonal
of E + E∗ is zero, the matrix Ẽ + Ẽ∗ is neither positive definite nor negative definite.
Thus, α ≤ 0 and the case 4r2 < α never occurs. In general, however, one can
easily find Hermitian positive definite matrices A and D satisfying the conditions
of Theorem 5.7 such that 4r2(D−1/2ED−1/2) < minλ(D−1(E + E∗)). Applying
Theorem 5.7 to Stieltjes matrices we obtain the following result, which generalizes
some elegant results on the SOR method for Stieltjes matrices in [16], [18] and [22].

Corollary 5.9. Let A and D be Stieltjes matrices and A = D − E − ET , where
E is a nonnegative matrix. Then

ρ(Sω) ≤

⎧⎪⎪⎨⎪⎪⎩
ρω + 2 − 2ω

2 − ρω
, if ρ2ω2 ≥ 4(ω − 1),

ρω + 2ω − 2
2 + ρω

, if ρ2ω2 < 4(ω − 1),
(5.22)

min
0<ω<2

ρ(Sω) ≤ ρ(Sωρ) ≤
√

ωρ − 1,(5.23)

where ωρ = 2/(1 +
√

1 − ρ2) and ρ = ρ(D−1(E + ET )).
Proof. Because D−1(E + ET ) is a nonnegative matrix we find that ρ is an eigen-

value of D−1(E + ET ) according to Theorem 2.1.1 in [3]. Furthermore, Lemma 5.6
shows ρ < 1. Let D = L̃L̃T be the Cholesky factorization of D. Then L̃ is an M-
matrix according to Lemma 5.4. Let r = r(D−1/2ED−1/2). It follows from Lemma 5.3
that r = r(L̃−1E(L̃T )−1) due to (L̃−1)T L̃−1 = D−1/2D−1/2. Since L̃−1E(L̃T )−1 is a
nonnegative matrix, Lemma 5.1 shows that

r = ρ

(
L̃−1E(L̃T )−1 + L̃−1ET (L̃T )−1

2

)
=

1
2
ρ((L̃T )−1L̃−1(E + ET )) =

ρ

2
.

Choosing α̃ = −ρ, β̃ = ρ and applying (5.5) of Theorem 5.7 show (5.22). Since r = ρ/2
and ρ < 1, we find −ρ ≤ 4r2 ≤ ρ. Then (5.23) follows from (5.6) of Theorem 5.7.

Note that for a Stieltjes matrix D there is a Stieltjes matrix G such that G2 = D
according to Theorem 6.15 in [1]. We can use G instead of D1/2 in the proof of
Corollary 5.9. Then G−1EG−1 is a nonnegative matrix and r = r(G−1EG−1) = ρ/2.
This provides another way to prove the corollary.

If we know there exists a real eigenvalue λ of Sω such that |λ| = ρ(Sω), the
estimate of ρ(Sω) becomes rather simple. Because λ is real it follows from (5.9) that

λ((x,x) − ω(x, Ẽ∗x)) = (1 − ω)(x,x) + ω(x, Ẽx).(5.24)

Adding (5.9) and (5.24) shows that

λ =
2(1 − ω) + ωy

2 − ωy
,(5.25)

where y = (x, (E + E∗)x)/(x,x) ∈ [α̃, β̃] with β̃ < 1. Since the right hand side of the
equation (5.25) is a increasing function of y, we have

ρ(Sω) = |λ| ≤ max
(2(1 − ω) + ωβ̃

2 − ωβ̃
,
2(ω − 1) − ωα̃

2 − ωα̃

)
.(5.26)
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6. Numerical examples. In this section we present some numerical results to
corroborate our observation. The problem considered is the Poisson equation{

∆u = 1, (x, y) ∈ Ω = (0, 1) × (0, 1),

u|∂Ω = 0
(6.1)

on two dimensions. The equation is discretized by a central difference scheme with a
uniform mesh size h. The mesh points are numbered in the lexicographic order. This
yields the following linear system

Ax = b,(6.2)

where A is a block tridiagonal matrix of the form

A = tridiag(Ai,i−1, Aii, Ai,i+1)

with Ai,i−1 = Ai,i+1 = −I and Aii = tridiag(−1, 4,−1). The number of the unknowns
of the system is N = (h−1 − 1)2.

The linear system (6.2) is solved by the SOR method and the new method. It
follows from [18] and [22] that A is a 2-consistently ordered matrix with respect to
(L,U). Because of A ∈ T2, for the new method the matrix splitting A = D − P − Q
is obtained in the way described in Example 3. Therefore, A is also a 2-consistently
ordered matrix with respect to (P,Q). The stopping criterion is

‖ri‖2/‖r0‖2 < 10−5,(6.3)

where ri = b − Ax(i) is the ith residual and the initial guess is x(0) = (1, 1, . . . , 1)T .
It is well known that the spectral radius of the Jacobi matrix of A is given by ρ(B) =
cos(hπ). Hence, the optimum parameter is given by ωopt(h) = 2/(1 + sin(hπ)) for
a given h. Table 6.1 shows the iteration numbers of the SOR method and the new
method for different parameter ω and different mesh size. To save the space O stands
for the SOR method and N stands for the new method in the table.

Table 6.1

The iteration numbers of SOR and the new method

ωopt(8) ωopt(16) ωopt(32) ωopt(64) ωopt(128) ωopt(256)
h−1 O N O N O N O N O N O N
8 19 17 33 31 64 61 127 124 251 245 496 484
16 80 84 36 34 64 62 128 124 254 248 499 489
32 294 320 154 174 69 69 128 124 256 246 507 487
64 1034 1149 554 653 291 358 132 129 256 248 512 490
128 3553 4022 1908 2323 1016 1325 495 679 259 258 512 492
256 11857 13742 6371 8049 3397 4676 1675 2506 841 1315 515 515

As we see for each optimum parameter the iterations of the new method and
the SOR method are approximately the same though there are some differences if
ω �= ωopt.

7. Conclusions. Using the matrices introduced in the present paper we can also
construct some other new iterative schemes based on other basic iterative methods.
However, these issues will not be addressed in this series. In part 2 of the series stair
matrices and their generalizations will be applied to construction of preconditioners
and preconditioned conjugate gradient methods.
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