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In this paper we study finite volume element approximations for two-dimensional parabolic
integro-differential equations, arising in modeling of nonlocal reactive flows in porous media.
These type of flows are also called NonFickian flows with mixing length growth. For simplicity we
only consider linear finite volume element methods, although higher order volume elements can
be considered as well under this framework. It is proved that the derived finite element volume
approximations are convergent with optimal order in H'- and L?-norm, and superconvergent in
a discrete H'-norm. By examining the relationships between finite volume element and finite
element approximations, we prove convergence in L*- and W!*-norms. These results are new
also for finite volume element methods for elliptic and parabolic equations. © 0000 John Wiley
& Sons, Inc.
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I. INTRODUCTION

In this paper we consider finite volume element discretizations of the following initial
value problem for the operator equation for u = u(t):

t
ur + Au —l—/ B(t, s)u(s)ds = f(t), u(0) = uo, (1.1)

0
where A is strongly elliptic differential operator and B is a second order elliptic differ-
ential operator in space. The operators 4 and B incorporate Dirichlet and Neumann
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boundary conditions. The problem (1.1) is an abstract form of an initial boundary value
problem for a parabolic integro-differential equation.

This model is very important in transport of reactive and passive contaminates in
aquifers, an area of active interdisciplinary research of mathematicians, engineers and life
scientists. From a mathematical point of view, the evolution of either a passive or reactive
chemical within a velocity field exhibiting on many scales defies representation using
classical Fickian theory. The evolution of a chemical in such a velocity field when modeled
by Fickian type theories leads to a dispersion tensor whose magnitude depends upon
the time-scales of observation. In order to avoid such difficulty a new class of nonlocal
models of transport have been derived. In this case, the constitutive relations involve with
either integrals or higher order derivatives which take multi-scales into consideration. We
refer the reader to [6] and [8] for deriving the mathematical models and for the precise
hypothesis and analysis.

Mathematical formulations of this kind arise naturally also in various engineering
models, such as nonlocal reactive transport in underground water flows in porous media
[7] and [9], heat conduction, radioactive nuclear decay in fluid flows [20], non-Newtonian
fluid flows, or viscoelastic deformations of materials with memory (in particular poly-
mers) [19], semi-conductor modeling [1], and biotechnology. One very important charac-
teristic of all these models is that they all express a conservation of a certain quantity
(mass, momentum, heat, etc.) in any moment for any subdomain. This in many ap-
plications is the most desirable feature of the approximation method when it comes to
numerical solution of the corresponding initial boundary value problem.

This type of equations have been extensively treated by finite element, finite differ-
ence, and collocation methods in the last ten year [4, 14, 15, 21, 26], while very little
results are known for finite volume method. The finite element method conserves the flux
approximately and therefore in the asymptotic limit (i.e. when the grid step-size tends to
zero) it will produce adequate results. However, this could be a disadvantage when rela-
tively coarse grids are used. Perhaps, the most important property of the finite volume
method is that it conserves exactly the flux (heat, mass, etc) over each computational
cell. This important property combined with its broad application, adequate accuracy
and easiness in the implementation had contributed to the recent renewed interest in the
method.

The discretization technique of the finite volume element method can be characterized
as an approximation in the framework of the standard Petrov-Galerkin weak formulation.
It involves two spaces: the solution space S, of piece-wise linear over the finite element
partition continuous functions, and the test space S; of piece-wise constant functions
over the finite (control) volume partition. The test space S; essentially ensures the local
conservation property of the method. In this respect, the finite volume element method
has the conservation property of the mixed finite elements. However, in contrast to the
mixed method it leads to definite but, in general, nonsymmetric problems.

To the best of the author’s knowledge, the finite volume element approximations of the
problem (1.1) have not been studied before. In this paper, we first introduce the concept
of finite volume element approximations, the domain portioning into finite elements and
finite (control) volumes, various discrete norms, notations, and state and derive some
auxiliary helpful results. The main efforts have been directed to characterize the finite
dimensional spaces Sp, and S} and to show the weak coercivity and the boundness of the
corresponding weak formulations of the bilinear form (associated with the operator .A)
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on Sy x S;. Once these fundamentals have been established, we derive and study several
semi-discrete and fully discrete (in time) schemes.

Our main goal is to analyze the convergence rates of the discretization schemes in
various norms under various conditions on the regularity of the solution. The main
results of the paper can be summarized in the following way. First we introduce the
finite volume element Ritz-Volterra projection, borrowing this concept from [4], and
study its properties. In §2 we derive L?- and H'- error estimates for the Ritz-Volterra
projection and obtain optimal in H'-norm convergence and super-convergence estimates
for the projection. These estimates play fundamental role in deriving optimal rates for
the error of the finite volume element method. Namely, we obtain optimal second order
estimate in L?-norm under the additional assumption that the solution u is in W3P((2)
for 1 < p < 2. This indicates that in term of regularity the estimate is sub-optimal.

Next, we study the error of the Ritz-Volterra projection in L*- and W' *°-norms by
exploiting the concept of regularized Green function and using its properties known from
the finite element method (see, e.g. [15, 18, 27]). These estimates are used to obtain
optimal order error estimates and superconvergence of the gradient of the approximate
solution. The regularity required for L> norm estimates is WP with p > 2, which
is worse than W2 but better than W . The trade off for this higher regularity
is that there is no logarithmic factor in L*°-norm estimates. The superconvergence in
Wh*_norm contains a logarithmic factor.

II. FINITE VOLUME ELEMENT METHOD

In this section we first formulate the mathematical problem and introduce all necessary
for the further consideration notation. Next we derive the finite volume element dis-
cretization of the model problem, obtain some auxiliary results, introduce Ritz-Volterra
projection and study its properties.

A. Problem Formulations and Notations

In this paper we consider the following initial boundary value problem: find v = u(z,t)
such that

t
ut—V-(AVu)—/ V- (BVu(s))ds = f, xz€Q, 0<t<T,
0

w(@,t) =0, zcd, 0<t<T, (2.1)
U(.’E,O) = ’U,()(CU), T € Qa

where 2 is a bounded convex polygon in R? with a boundary 99, A = {a; ;(z)} is a
2 x 2 symmetric and uniformly in Q positive definite matrix, B = {b; j(z,t,s)} is 2 x 2
matrix, and f = f(x,t) and ug(z) are known functions which are assumed to be smooth
so that problem (2.0) has a unique solution in a certain Sobolev space.

Remark 2.1. One can add to the differential operator V - (AVu) a convection term of
the type V - (b u) with b = (by,by)T given vector. Most of the analysis and the construc-
tions derived in this paper will be valid in this case also, provided that the convective term
is treated in a right way (see, some details for such approximations of elliptic problems
in [16] and [17]).
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Remark 2.2. One may consider also Neumann and Robin boundary conditions on the
whole or on a part of the boundary 0). The construction of the finite volume approz-
imation and its analysis can be carried out with no additional difficulties. In fact, the
finite volume element method was introduced by Baliga and Patankar in [2] as an at-
tempt to approrimate the flux boundary conditions by finite differences in a consistent
and systematic way.

We use the standard notations for Sobolev spaces WP (Q) for 1 < p < oo of functions
having generalized derivatives of order s, integrable with power p in 2. The norm is
W#P(Q) is defined by

1/p

lulls.p.0 = llulls,p = / > IDufPdz |, for 1< p< oo
Q
lor|<s

with the standard modification for p = co. In order to simplify the notations we denote
W#2(Q) by H*(Q) and skip the index p = 2 and Q when possible, i.e. [|u|ls20 =
l[ul|s.0 = ||u|ls. We denote by H{(€2) the subspace of H'(Q) of functions vanishing on
the boundary 992. Finally, H~1(2) denotes the space of all bounded linear functionals
on H}(Q). For a function u € Hg () the functional f € H~1(Q) is defined by the inner
product (f,u) representing the duality pairing in H () and HJ ().

For functions defined on the cylinder Q x J, where J = [0,T], we shall also use the
notation of spaces of functions with finite norms. Namely, L?(X) will denote the Banach
space of functions equipped with the norm:

T I/P
(/ ||u||§dt> . 1<p<o
0

The problem (2.0) can be written in the form (1.1). First, introduce the operators
A:HNQ) — H1(Q) and B : H}(Q) — H~1(Q2) by the identities

(Au,v) = / AVu - Vudz, (Bu,v) = / B(t,s)Vu - Vudzx
Q Q

for any t, s € (0,T). With some abuse of the notations (-, -) denotes both the L?(Q)-inner
product and the duality pairing between H~1(Q2) and H}(Q).

B. Finite Volume Element Approximation

We assume that 2 is a convex polygonal domain. The domain (2 is split into triangular
finite elements K. The elements K are considered to be closed sets and the triangulation
is denoted by T},. Then Q = Uger, K and N}, denotes all nodes or vertices:

N, ={p: p is a vertex of element K € T}, and p € Q}.

In order to accommodate the Dirichlet boundary conditions we shall also need the set
of internal to © vertices, denoted by Ny, i.e. N) = N, N Q. For a given vertex z; we
define by II(i) the index set of all neighbors of z; in Np.

For a given triangulation T}, we construct a dual mesh T}, based upon 7} which
elements are called control volumes. In the finite volume methods there are various ways
to introduce the control volumes. Almost all approaches can be described in the following
general scheme: in each triangle K € T}, a point g is selected; similarly on each of the
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Vi

FIG. 1. Control volumes with medicenters as internal point and interface v;; of V; and Vj.

three edges T;z; of K a point z;; is selected; then ¢ is connected with the points z;; by
straight lines ;5.

Thus, around each vertex z; € Ny, we associate the control volume V; € T}, which
consists of the union of the sub-elements K € T}, which have z; as a vertex. Also let
7vi; denote the interface of two control volumes V; and Vj: v;; = V; NV, j € TI(i) (see
Figure 1 and 2).

We call the partition T} regular or quasiuniform if there exists a positive constant
C' > 0 such that

C~'h? < meas(V;) < Ch?,  for all VieTy.

Here h is the maximal diameter of all elements K € T}, In this paper we shall deal with
regular triangulations 77

The partition T} is said to be symmetric if x;; = v;; N @;x; is the middle point of the
line segment Z;7;, and z;; is the middle point of 7;; or +;; has two perpendicular axes
of symmetry and z;; is their intersection point.

There are various ways of introducing regular control volume grids 7. Widely used in
the finite volume element method are the following two partitions, which we shall employ
in our paper (see Figures 1 and 2).

In the first (and most popular) control volume partition the point ¢ is chosen to be
the medicenter (the center of gravity or centroid) of the finite element K and the points
x;; are chosen to be the midpoints of the edges of K (see Figure 1). This type of control
volumes can be introduced for any finite element partition 7}, and lead to relatively simple
calculations for both 2- and 3-D problems. Besides, if the finite element partition T}, is
locally regular, i.e. there is a constant C' such that Ch% < meas(K) < h%, diam(K) =
hi for all elements K € T}, then the finite volume partition T} is also locally regular.

In this paper we shall use also the construction of the control volumes in which the
point ¢ is the circumcenter of the element K, i.e. the center of the circumscribed circle
of K and z;; are the midpoints of the edges of K. This type of control volumes form
the so-called Voronoi meshes. Then obviously, ;; are the perpendicular bisectors of the
three edges of K (see Figure 2). This construction requires that all finite elements are
triangles of acute type, which we shall assume whenever such triangulation is used.

We are now ready to define the finite element space S} of linear elements:

Sp,={veC(Q): v|g islinear for all K € T}, and v|pg =0}
and its dual volume element space S;:

Sy ={veL*): v|ly isconstant for all V € T} and v|sq = 0}.
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Vi

Yij

FIG. 2.  Control volumes with circumcenters as internal points (Voronoi meshes) and interface v;; of
V; and Vj.

Obviously, S, = span{¢;(z) : z; € NP} and S; =span{x;(z) : z; € N7}, where ¢;
are the standard nodal linear basis function associated with the node z; and y; are the
characteristic functions of the volume V;. Let I}, : C(Q) — S}, be the interpolation oper-
ator and I} : C(2) — S} be the piece-wise constant interpolation operators, respectively.
That is

Ihyu = Z u(z;)pi(z), and ILju= Z uw(z;)xi(z).

z; ENp z; ENp

The semi-discrete finite volume element approximation uy, of (2.0) is a solution to the
problem: Find up(t) € Sy, for ¢ > 0 such that

t
(uht,vn) + A(up,vp) +/ B(t,s;un(s),vn)ds = (f,vn), wvn€S, (2.2)
0
U,h(O) = Up,n € Sh,

or
t
(un > Tion) + Alun, Tion) +/ B(t, s;un(s), ion)ds = (£, Tiun),  vn € Sn. (2.3)
0
Here the bilinear forms A(u,v) is defined

- Z v; AVu - ndS,, (u,v) € Hy N H? x S},
A(u,v) = zieN, OV (2.4)
AVu - Vodz, (u,v) € H} x H},
Q
where n denotes the outer-normal direction to the domain under consideration. The
form B(-,-) is defined in a similar way.

Remark 2.3. We use the same notation for the bilinear forms A and B defined in
two different ways on the pair of spaces H} x Hy and H} N H? x S}, correspondingly.
We hope that this will not lead to serious confusion while it simplifies tremendously the
notations and the overall exposition of the material.

There is one more reason to use this notation. Namely, we have the following important
result, due to [12, 16]:
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Lemma 2.1. If the matriz A is constant over each element K € Ty then for all
up, vy € Sy, the following equality holds true:
A(uh,vh) = A(uh,I;:’Uh).

Proof: Take K € T} and let V;, ¢ = 1,2,3 be the the three volumes intersecting K.
Then for up, v, € Sy, obviously we have

/ V(AVup) Ijvpde = Z/ AVup, -n Ijvpdx
K i O(ViNK)

0

AVuy, - n Iyvpde — Zvi / AVuy, - ndzx
0K ; AViNK

AVup -n vpdr — Z Ui/ AVuy, - ndz.
oK 7 aVinK

On the other hand,

0= / V(AVup) vpde = AVuyp -n vpde — / AVuy - Vopdz.
K K

oK
Summing over all elements of the partition 7, we get the desired result.

Next, we define the fully discrete time stepping schemes. Let At > 0 be a time-step
size and t, = nAt,n =0,2,---, g" = g(t,), and g™ = (g™ — g" 1)/ At.

The backward Euler scheme is defined to be the solution of u} € S, such that

ul — un—l n—1
(%, Tivn) + A(up, Tion) + Y wn kBt te;uf, Trvn) = (f", Tion), (2.5)
n

k=0
U?L(O) = Up,n € Sh,
where w), ; are the weights and the quadrature error is given by for any smooth functions

g and M and its error

tn

n—1
Qh(g) = M(tn: s)g(s)ds - Z wn,jMn,jg(tj)
0 =

satisfies

tr
lgn(9)] < CA / (lgl + g/ ).
0

C. Some Auxiliary Results

Here we recall several key properties of the bilinear forms defined in B..We first define
some discrete norms on Sj, and Sj:

lunlg.n = (un,un)on, with (up,vn)on = Z meas(V;)u;v; = (I up, Iop),
;ENp

unlen = Y D meas(Vi) ((w; —uy)/diz)”,

z; ENp x;€I1(4)

lunllfn = lTunlgp +lunliny sl = (a, Liun),
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where d;; = d(z;, z;), the distance between z; and ;.

In the lemmas below we assume that the matrix A(z) may have jumps, which are
aligned with the finite element partition 7} and over each element the entries of the
matrix A(z) are C'-functions. We also assume that T}, is e regular partition of (2.

Lemma 2.2.  (see, e.g. [3, 16]) There exist two positive constants Cy,Cy > 0, inde-
pendent of h, such that

Colvnlon < |lvnllo £ Cilvnlon,  vn € Sh,
Colllonlllo < llvnllo < Cilllvnlllo,  vn € Sh,
Collvnllin < llonllt < Cillvnllie,  vn € Sh.

Lemma 2.3.  (see, e.g. [3, 16]) There exist two positive constants Cy,Cy > 0, inde-
pendent of h, and hg > 0 such that for all 0 < h < hg

|A(up, Ipvp)| < Cillunlliwllonllie  wn, vn € Sk, (2.6)
A(uh,I,’:uh) > CUH’U‘hH%,h? Uh, Up € Sh. (27)

Now we introduce linear functionals {;;(u), which will be used in the error analysis of
the finite volume method:

lij (U) = — AV([}L’U, — U,) . nde, (28)

Yij
where v;; = V; N V.
The following estimate is a simple consequence of the Bramble-Hilbert lemma:

Lemma 2.4. (see, e.g. [3, 16]) If u € H*(Q) then there is a positive constant C > 0
independent of h, i and j such that for e;; = U{K | K N~v;; # 0, K € T},

|lij ()] < Ch||Allo,colul2,e:; - (2.9)

Lemma 2.5. Assume that T} is a regular, then there exists a positive constant C > 0,
independent of h, such that

|A(u — Inu, Iyvg)| < Chllull2|vnli,n, vh € Sh. (2.10)
Proof: ;From [3, 12, 16] we see that

A(u — Inu, Ifvy) = Z Z Ul/ (—AV(u — Iyu)) - ndS,

x; eNh JEI(d)

= Z Z w)v; + Lii(u Z Z Lij(w)(vi — vy)

z;ENp jEII(i) z;€ENp jEII(1)

so that it follows from Cauchy inequality and Lemma 2.3 that
1/2 1/2

|A(u — Tpu, Ijvp)| < C Z Z I;; Z Z v; — v;)?

z;ENp jEII(1) z;ENp jEII(1)
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< Chl[Allo,collull2|[vnl1,n-

In case of symmetric partitions and smooth solutions, due to the cancelation in the lo-
cal truncation error, one can get higher order approximations by the same finite elements.
Namely, we can prove:

Lemma 2.6.  Assume that T}, is a reqular and symmetric, then there exists a positive
constant C' > 0, independent of h, such that

|A(u — Ihu,I;:vh)| < C’h2||u||3|vh|17h, vp € Sh. (2.11)
Proof: By [16], we have in this case
1 ()] < CH* 2 |lullesy,  3/2< <3,

Thus, Lemma 2.6 follows as before.
In fact, if the triangulation T}, is regular and any two adjacent elements forms an
approximate parallelogram, then it can be proved that [13], [16]:

| A(u = Inu, Tvn)| < C* (lulls + |lull2.c0) [orlin, — vh € Sh.

This means that almost symmetric grids have the same convergence rates (for smooth
solutions) as the symmetric ones.

For any fixed 0 < ¢t < J one can define the Ritz projection Rpu of function u(x,t)
where the operator R, : Ht N H? — S}, so that

A(u — Rpu, Ijvp) =0, forall vy € Sp. (2.12)

Remark 2.4. The results of the above lemmas can be summarized as follows:
(a) if the partition Ty, is reqular (quasiuniform) and u is H?-reqular, then

|lu — Rpully < Clullz;
(b) if the partition is regular and symmetric and u is H3-reqular, then
llu = Ryulli,n < Ch?|Julls.

However, these estimates for the Ritz-projection will lead to suboptimal error estimates
for the finite volume element solution of the integro-differential equation. In order to
obtain optimal estimates we need a projection which takes into account also the integral
term. This type of projection has been called by Cannon and Lin [4] Ritz-Volterra
projection and was used in the context of the finite element method.

D. Ritz-Volterra Projection and Its Properties

In this subsection we define the Ritz-Volterra projection, of a function defined on the
cylinder Q x J and study its approximation properties in various norms.

The Ritz-Volterra projection Vj, : L>®(H} N H?) — L>(S},) is defined for 0 <t < T
by

¢
A(u — Vyu, Ijvy) +/ B(t, s;u(s) — Vyu(s), Ifvp)ds = 0, vp € Sp. (2.13)
0
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Theorem 2.1.  Assume that the mesh T} is reqular and Diu € L*®(H?) for all 0 <
I <k for some integer k > 0. Then, the Ritz-Volterra projection Vyu is well-defined and
satisfies for all t > 0 and k > 0,

1Dk Vil < Ch | 3 1Dful +/ Z IDiu(s)lads | . (2.14)
j=0
In addition, if T} is also symmetric and Diu € L (H?), then we have
|| DL(Ihu — Viu)|)y < Ch? Z||D]u||3 +/ ZHDJ 8)||ads | - (2.15)
j=0
Proof: jFrom Lemma 2.3 and 2.5 we see easily that for w = Inu — Vyu € Sy,
col[Tnu — Vaul]? < A(Iyu — Viu, IFw) = A(u — Viu, IFw) + a(Ihu — u, [w)

= / B(t, s;u(s) — Vau(s), Inw)ds + A(Ipu — u, I} w)

/ B(t, s;u(s) — Inu(s), [yw)ds

—/ B(t,s; Inu(s) — Vyu(s), [yw)ds + A(Ipu — u, [yw)
0

IN

t t
o (lalla + [ Nulldse ) holl +€ [ 1t = Vialls ol
0 0

Thus,

t t
[[Inu — Vyullr < Ch <||u||2 +/ ||u||2d32> + C/ [[Tnw — Viyul|1ds
0 0

and then the case [ = 0 of (2.14) follows from Gronwall’s Lemma. The case [ > 1 can
be proved in a similar way [5, 10]. As far as the superconvergence estimate (2.15) is
concerned the proof is the same as before, instead of (2.10) we use (2.11).

Now we consider an estimate in L2-norm for the Ritz-Volterra projection which is
optimal respect to the order of convergence and requires W3 P-regularity of the solution.
Therefore, this estimate is suboptimal respect to the regularity of the solution and makes
sense for p close to 1. Namely we prove the following result:

Theorem 2.2. Assume that the partition T}, is a regular and for some p > 1 and an
integer k > 0, Diu € L>®(W3P(Q)) for 0 < < k. Then there exists a positive constant
C > 0 independent of h such that

10! (u—vhu>||<0h2z(||D ulls + / ||Dtu||3,pds) for 0<1<k (210

Proof: Note, that somewhat higher order regularity is required than the standard opti-
mal error estimates in the finite element method. Namely, we have assumed that « is in
W3P for p > 1 which is more than H? but less than H?>.
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We shall prove first (2.16) for k = 0, i.e. the estimate

t
= Viall < €82 (1o + [ lullps )
0
Let w € H} N H? be the solution of the operator equation Aw = u — V,u, i.e.
A(w,v) = (u — Vyu,v) forall v e Hy(Q).
Then choosing v = u — Vu we get
llu— Viul? = A(u — Viu, w) = A(u — Vyu, w — Iyw)
t
+A(u — Vyu, Inw — Ijw) + / B(t, s;u(s) — Vau(s), Inw — Iyw)ds (2.17)
0
/Btsu — Vhu(s), Inw — wds-{—/Btsu()—th(s),w)ds

= L+ o+ s+ Ji+ Js5.

We now estimate J; terms. For the first term .J;, we have from Theorem 2.6 for [ = 0
and regularity for elliptic problem Aw = u — Vju (that is ||w||2 < C||u — Vhul|) that

t
il = A — Vawyw — Lyw)| < OK? <||U||2+ / ||u||2ds) ol

t
B2 (||u||2 -/ ||u||2ds) 4= Vaul .
0

Similarly, for the last two terms J; and Js we have

IN

AR |/ (t, 530(s) — Viu(s), Inw — w)ds| <Ch2/ lla s || — Vi),

|J5] = |/ (t, s;u(s) — Vhu(s), w)ds|

/(u—Vh, “(t, s)w)ds
0

< c/ I — Vivul|ds|u — Viull,
where B*(t, s) is the adjoint operator of B(t, s).

We now consider the remaining two terms J» and J3. We again introduce A(z) as the
average value of A(z) over each finite element. Then

A(u — Vyu, [yw) = / AV (u — Vyu) - VIpwdz

= > /K(A — A)V(u — Vyu) - VIwds + ; /K AV (u — Vyu) - VIywdz

Z/ (A= A)V(u—Viu) - VIywdz =Y [ AV(u - Viu) - nlwdS
oK

- ; /K(V - AV (u — Vyu)) Tnwdz,
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and similarly that

A(u — Vyu, [jw) = Z AV (u — Vhu) - ndS w;
z;ENp,

—ZZ/ V(u - Viu) -0l wdS

K ;€N BVOK

-y T / V(u = Vi) -1 IwdS

K ;€N 8VOK

5 / V(u - Vyu) - n [FwdS

K ;€N 8VOK

2> / V(u - Vipu) -0 [FwdS

K z;ENy, BVOK

—Z/ V- AV(u — Vyu)) Ihwda:—z Av (u — Viu) -n IjwdS
Thus J3 can be expressed by

— Z/ (A — A)V(u— Vyu) - VIpwdz

Ty / V(u - Vpu) -0 [fwdS

s anK

—Z/ (V- AV (u — Vyu))(Ihw — Iw)dx
o K

—Z AV (u—Vyu) -n (Ihw — I;w)dS

= J31 + J32 + Ja3 + J3s.

For J31, we see from Theorem 2.6 that

IN

T | ch||A||1,mZ/ IV (u = Viw)| |V Iywlde
K K

t
2 (1l + [ allds )l = Vil
0

and for J3s from inverse assumptions and Theorem 2.6 that

IA

1 -
|J32| = 3 Z Z (wi—wj)/ (A— AV (u— Ihu+ Inu — Vyu) - ndS
v

@i €Ny, jETL(3) i
t
<oy (||u||2,K+ / ||u||2,de) ol x
K 0
t
< ow <||U||2+/ ||u||2ds) lu— Vil
0
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For .J33, we notice that
/ (Inw — Ijw)de =0 for K €T,
K

so we can construct @ some quadratic interpolant (or approximant) of u on K, so that

|J33| =

> | (V-A-V(u—a)(Iyw - Lw)dz
K
K

IN

ChY_ lullsp.xll 1w = Liwllog < Ch* Y lulls pusel] [w]]10,x
K K

t
on? (||u||3,p+ / ||u||3,pds) lu — Vil

Here we have used the the fact that we are interested in p close to 1 and therefore ¢ > 2
and the interpolants are well defined and sable in W',
For J34, we have that

1 _ -
Jay = —252/ (A — Ag)V(u — Ipu) - n (Inw — Ifwp)dS
K ° K

IA

OKNOK'

Ch||All1,00 Z /8K IV (u — Ihu)| [Ihw — Tiw|dS < Ch?||ulla||u — Viull.
K

After employing the embedding ||u|l2 < C||ul|3,, we obtain from the above estimates
that

t
3] < On? (||u||3,p n / ||u||3,pds) u— Vi,

Similarly, it follows for Jy that

t
T4l < Ch2ju — Vil / ] 3.5

Now substituting all these estimates for J; into (2.16), we get

t t
= Vi < €8 (Il + [ llallpts) +C [ hu=Vialas,
0 0

which together with Gronwall’s inequality yields

t
= Viall < €82 (1o + [ lullps )
0
The proof for k£ > 1 is similar to the analysis above, so we omit it.

E. The Regularized Green Function and Its Estimates

We have shown optimal H! norm and superconvergence of the gradients for the Ritz-
Volterra projection associated with finite volume element approximations, as our main
goal is to study the finite volume element methods for parabolic integro-differential equa-
tions some kind of L? error estimates are desirable if not optimal both with respect to
the order of convergence and regularity of the solution.
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We consider L? error estimates and maximum norm error estimates for Ritz-Volterra
projection in next subsections. Our techniques are the regularized Green functions es-
timates and connection of the solutions of finite volume element and finite element ap-
proximations.

Following [15] we introduce the regularized Green function to the integro-differential
equation, which is used in maximum norm estimates and superconvergence for finite
element approximations parabolic integro-differential equations.

We define a function G*(t) = G(z,t;2) € L2(HL(Q), J;) N H?(Q)), where x = (z1,22)
is the space variable and z = (21, 2z2) is a point in 2, to be the solution of the equation

AGE (1) + / ' B*(r, )G (r)dr = & (x)d(t)  in Qx J, (2.18)

where ¢(t) € C*(0,T) and 0} (x) € Sy, is a smoothed d-function associated with the point
z and the operator B* is defined by (B*u,v) = [, BY(t,7)Vu - Vodz = B*(t,7 : u,v).
They are required to satisfy the following properties:

(6hsvn) = vn(2),  vn € Sh, ||¢||L1(0,T) <1, and

6(2)] < Ch~2,  supp(d}) C {3 |o — 2| < Ch}.

The solution of the auxiliary problem (2.18) plays the same role as the regularized
Green’s function used in the L*-error analysis for the finite element method of the elliptic
problem of second order [18, 27], though the function on the right hand side of (2.18) is
not precisely a regularized §-function in both space and time.

We note that the regularized Green function is ¢(t) dependent, this in fact allows us
certain flexibility to choose ¢(t) arbitrarily according to our needs.

Let G} (t) be the finite element approximation of the regularized Green’s function for
teJ,ie.,

T
AGH(t) - GE (1), x) + / B*(r,;G*(r) — Gi(r),x)dr =0, x € S,

Following [27], for a given point z € Q we introduce 9,G*(t) and its finite element
approximation 0,G; (t) defined for any w € Hj(9):

T
A@.G* () = 0.Gi (0.0 + [ B(r:0.G°(1)  0.G3(r) ) =0, x € S

t
The functions G*(t) and 9,G*(t) have the following property: for any w € Hg (£2)

T
Pow(2)6(t) = AGE(),w) + /t B* (7, t: G (7), w)dr, (2.19)

T
0.Pyw(z)p(t) = A(@ZGZ(t),w)—k/ B*(1,t;0.G* (1), w)dr, (2.20)
t
where P, is L? projection operator.
The following estimates for Ritz projection for regular triangulations T}, have been

proven in [15, 26]:

1GZ(#) = GR(B)]l11 < Chlog% (1+e@)), (2.21)
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10-G°(1) ~ 0.G; (s < O+ o)), te (222)
167 @l < G+ 160, 1<a<2 el (223)
10-G* (B)ll1 < Clog(1+16(0)),  t€ 7 (224

with constant C' independent of h, z, and ¢(t).

Remark 2.5. If B(t,s) = 0 then the above results are quite standard for the reqularized
Green function estimates with ¢(t) = 1. Estimates (2.21) and (2.22) are proved in [15]
and (2.22), (2.23), and (2.24) as well as other estimates are shown in [26].

Lemma 2.7. Assume that f(t), g(t) € L*(0,To) and there exists C > 0 such that for
any non-negative ¢(t) € C*°(0,T), 0 < T < Ty,

|/ f(t) dt|<0/ Y1+ o(t)dt, 0<T <Ty,

then, we have

@) <C {g(t) + /Otg(T)dT} , Vi€ (0,Tp),ae

Proof: Take p > 0 and let

2
suitote) = § @7 e (i)l = wol <
07 |t_t0| Z,LL,

where ¢, is any fixed point in (0,T") and C), = u/

1
exp (——2> dt. We see easily
lt]<1 1-t

that for almost all ¢y € (0,7),
T
fto) = lim [ f@8,(tt0)dt, [ € C(0.7)
n—0 Jq

Thus, if we take f,,(t) € C°°(0,T) such that f,(t) — f(t) as n — oo in L(0,T), then
the result is true for all f,,(¢). Therefore it is true for f(¢) via a limiting procedure.

F. L°-Error Estimates for Ritz-Volterra Projection

In this subsection we prove maximum norm error estimates for Ritz-Volterra Projection.
We first obtain some auxiliary results and then in Theorem 2.7 we prove the main result.

For any matrix function A(z), we introduce A(z) as a piecewise constant matrix
defined by

1
Alz) = ——— A(y)d KeT,.
(Z’) meas(K) A{ (y) Y, HANS €1y
First observe that

t
A(u — Vyu, Ijvy) + / B(t, s;u(s) — Vpu(s), Iyvp)ds
0
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- Z /av {AVU—Ihu) n+/ B(t, )V(U—Ihu)'nds}vi

z;ENp,
t
- Z / {A AV (Ihu — Viyu) - n+/(B(t,s)—B(t,s))V(Ihu—th)-nds}vi
eieNy, OV 0
_ Z/ {AV(Ihu—th n+/BtsV(Ihu—th) nds}vl—O
eieN, OV

By Lemma 2.1 the last term of the right hand side is equivalent to the standard
bilinear form since A and B are piece-wise constant on each elements in T}. Thus the
above identity can be rewritten as

t
A(Inu — Vpu,vp) + / B(t, s; Inu(s) — Vau(s),vs)ds
0

-y ¥ ( / zg.ds> (vi — v) (2.25)

z; ENp jEII(i)

'y v (z;;—u [ i5775) =)

z;€ENp jEII(i

FLAA 4 / LB-Bgs,
0

where
1= 1h= / AV (u — Iyu) - ndS,
Vij
ll’é—‘a = —lﬁ_‘a = / (A — A)V(Iyu — Vyu) - ndS,
Yij
LA-A Z / (A — AV (Iyu — Vyu) - Vopde,
KeTy,

and llB, lZB B and LB~B are defined similarly.

Assume that T}, is a regular and symmetric, then we have from Lemma 4.3 of [16] and
Holder inequality that

A1 < OR  Yulls,er; < CR P [ulls pe;, 2<p<oo, 1+1/p<s<3,

so that
1/p 1/q
> > L < | > >k SX -l
z; ENp jEII(4) z; ENp jEII(i) z; ENp jEII(i)

IA

Ch™Hlulls pllvnl[1.q,

where p and ¢ are two conjugate numbers. A similar estimate holds for the integral term
related to 1]}
We also find from Theorem 2.6 and inverse estimates that

1521 < ChllA]| comeas(yip)[|V (T = Viu) oo
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t
< ORIV (= Vil < €8 (1l + [ lullads )
0
which implies that

_ t
S Y A - | <o (||u||3+ / ||u||3ds)||vh||1,1

z; ENp, jETI(2)

Similarly,
_ t _ t
LA-4 —l—/ LBBas| < Cn? <||u||3 +/ ||u||3ds> [lvnllii-
0 0

Combining all estimates above we have that

/OT {A(Ihu — Vhu,vp) + /Ot B(t, s; Inu(s) — th(S),vh)ds} dt

T s
< on | (||u||s,p+ / ||u<T>||s,pdT)||vh||1,qu
0

T s
+Ch2/0 <||u||3+/0 ||u(T)||3dT> o l]1.1s. (2.26)

Theorem 2.3. Assume that T}, is reqular and symmetric, Diu € L>®(Hg N H3*NWHP)
for all 0 <1 < k for some integer k > 0, some real > 1 and p > 2. Then there ezists
positive C' > 0, independent of h, such that for all 0 <1<k

[
Chty <||D ullup + / || D u ||upds> . (227)
j=0

1D (u = Vi) o,

IA

1
_ 1
||DL(Ihu — Viu)|l1,00 < Ch* 110gEZ< u||,mo+/ || Diu (8)]]u,00ds )
—~

!
1
+Ch? logﬁ ( Tul|s +/ |D]u ||3ds> . (2.28)
=0

Proof: We first prove the estimate (2.27) for [ = 0. Let v, = G into (2.25), we obtain
using (2.19), integration by part, and interchanges of order of integration that

T s
< cwt | (||u||u,p+ / ||u<7>||u,pdr)||G7;||1,qu

T s
o / (||u||3+ / ||u<T>||3dr) G311 1ds

T
/0 (I — Viw) (2)(s)ds

< ont / ' (||u||u,p + / s ||u(¢>||u,pdT) (1+9)
o [ ' (||u||3 [ ||u<r>||3dr) (1+ ¢)ds
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As in the definition of Green function, T can be chosen to be any fixed point big than
t, we see from Lemma 2.7 that the above inequality can be replaced by

t s
Mo = Villo < Gyt [ (||u||u,p+ / ||u<T>||u,pdT)
t s
+Ch2/ <||u||3+/ ||u(T)||3dT> ds,
0 0
which is (2.27) for [ = 0.

For superconvergence estimate (2.28) we set v, = 0.Gj, in (2.25), and use Lemma 2.7
to obtain

= Viullroo < CHA='log - /(||u||uoo+/ u(r ||uoodf)

+Ch?log — /<||u||3 /||u ||3d7>ds

so that (2.28) follows for I = 0.

The case of [ > 1 can be shown in a similar way above. We now only prove (2.27) and
(2.28) for I = 1 by assuming that g = 3 for simplicity. Let p = u(t) — Vau(t), we find by
differentiating (2.13) that

t
A(pt, Iyvp) + B(t, t; p, Ifop) + / Bi(t,s;p(s), Iyvp)ds =0, v € Sh.
0

Now, we consider these terms individually. Observe that

Alpe, Iivp) = A(Dy(Inu — Vi), I vp) — Z > 1 (v
zlENh JEIL(%)

5 Z Z z]t Vi — )
-’L‘ENhJEH(z)

= A(Dy(Inu— Vyu),vp) + I + I + D, LA~A,

where l{;’t and l;‘; tA denote the time derivatives of l”, €.
l;‘;t Lij(w—Ipu) = — AV D;(u — Iyu) - ndS,
Yij
144 = —/ (A — A)VDy(Ihu — Vyu) - ndS,
Yij

DA =Y / A — A)VD,(Iyu — Vy) - Vopdz.
KeTy,

Clearly, we have from the same arguments above that

11| < Ch?[Jug]3,00||0n]|1,1

t
|12 < CRIDy (Inu = Vi) ||| [vall1 < CB? <|IUII3 + [Jue 3 +/ IIUI|3d8> [lvnll1,1
0

_ t
DL < OB (lulls + lJuells + | [ullsds ) l[onl]11-
0
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Similarly, we write

1
B(t,t;p, Iyvn) = B(t,t;Inu — Vau),vn) = 5 >y 150 (v — ;)
;€N jELL(i)

1 B(t,t)-B(t, o
2 > > 15070 (0, — ) 4+ D, LPE0 =B,
x; ENp, jEII(3)

The second, third and fourth terms of the above identity on the right hand side can
be bounded in the same way as the bounds for I; and I, while the first term can be
bounded as

|B(t,t; Inu = Vi), Iyon)| < CflTnw = Viulli,0o][on] |14

Ch?|[ulls collvnll11,

INIA

so that

t
|B(t,t; p, Tyon)] < Ch*(|[ulls 00 +/ [lull3,00)|[vnl]1,1-
0

Similarly we have that

t
/Bﬁﬁm@me%
0

We thus have

t
smewhm+/|whmw)mmm.
0

t
mm0w—WMwmscMQmmm+/Hmmwﬁnmul (2.29)
0

Recall from [27] that ¢~ is the regularized Green function for operator A and gj is its
finite element solution:

Alg® —gp,vn) =0 vn € Sp,
and
lilha <C and (19l < Clog .
Set v, = gj, in (2.29), we have that
IDe(Inw = Viu)llooo < CR? (IIUtIIs,oo + /Ot ||U||3,ood8> ;
where we have used

A(D(Inu — Vyu), g7) = Di(Ipu — Vyu)(2).

Thus we have shown (2.27) for [ = 1. For superconvergence of gradient, setting vy, = 0.9}
[27] in (2.29) we obtain

1 t
I1D(Thu = Vau)llico < Ch*log - (IIUtII3,oo+|IUII3,oo+/ IIUII3d8>-
0
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We remark that there is no logarithm factor in maximum norm estimate for Ritz-Volterra
projection associated with finite volume element approximation, which is different from
the standard sharp maximum norm estimate for Ritz projection [18, 27] and Ritz-Volterra
projection for finite element approximation, this may mainly be due to the higher order
regularities required.

[ll. ERROR ANALYSIS FOR THE SEMI-DISCRETE PROBLEM

In this section we develop error estimates for the semi-discrete finite volume element
method in various norms. The proofs are based on the results of Section II. for the error
in Ritz-Volterra projection. Namely, in Subsection A. we derive L? and H! error esti-
mates and in Subsection B. we derive maximum norm and superconvergence in maximum
estimates.

A. Error Estimates in L2- and H'-norms

In this section we prove error estimates for the finite volume element approximation in
L?-,in H'-norm, and an estimate for ||D;(u—u4)||. The last one is needed in maximum-
norm error estimates, derived in next sections.

Theorem 3.4. Assume that T}, is regular and u,Dyu € L (H} N W3P), for some
p > 1 and for all t > 0. Assume also that the approximation un(0) of the initial data
satisfy ||un(0) — uo|| < Ch?||ugl|2. Then there exists a constant, independent of h and u
such that for all t > 0

¢
= uall < 0 (ol + [ Hullpis) (3.)

0
Proof: Again we are interested in the case of p close to 1. Let u — up = (u — Vju) +

(Vhu —up) = p+ 6, where Vj, is the Ritz-Volterra projection defined and analyzed in §2,
so that we have

t
cMme+Aan@) (3.2)
t
mmm|scm(wmm+wmm+ﬁ|whm§, (3.3)

and 6 satisfies using (2.2) and (2.15) that

()]

IA

t
(0, Iyon) + A0, Irvp) +/ B(t,s;0(s), Iyvp)ds = —(pe, Iyvn),  vh € Sp. (3.4)
0

Set v, = 0 € S, to obtain

1d
2dt

N

t
1161115 + CollB1f; < C/O 16111 11811 + [lpe][ 116l

IN

t
C
S1E+C [ 1ellEds + ol o1,
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so that it follows from integration from 0 to £,

t t t t T
IMFﬁAWMMSCOW®W+AHMHMW+ZLAAIWﬂMm%>

Thus, Gronwall’s inequality leans to
2

t 1 t
o+ [ 161Rds < CloP + 5 sup 0GP+ ([ lllas)
0 2 0<s<t 0

and then, we have

t t
stc(mmm+cAHmwﬁscm(mmm+éummmﬁ.

Hence, Theorem 3.0 follows from (3.2)-(3.3) and the above inequality together with
triangle inequality.
Now we derive the error estimate for the discrete H'-norm, which can be interpreted
as suprconvegence of the gradient of the solution at some particular points.

Theorem 3.5. Assume that T}, is reqular and u, Dyu € L (HL N H?3), for all t > 0.
Assume also that the approzimation up(0) of the initial data satisfy ||up(0) — uo]| <
Ch?||uo||2- Then there exists a constant, independent of h and u such that for all t > 0

t
||th - uh||1,h < Ch? <||U0||3 +/ ||Ut||3d8> . (35)

0
Proof: We first note that ||u — up|l1,n < ||[Inu — Vaullin + ||Vae — upl|1,n. Obviously

[l Inw — Vhul|i,n = |[Inu — Vhullp and this term has been already estimated in Theorem
2.6. Therefore, we need to show that

t
Vi = unll < O (Juall + [ falads)
0

Set vy, = 0; in (3.4), it is easy to see that

t
Il + 5 551618 = (e Ti60) = [ Bt 5006, Tiou(0)ds
0

IN

1 1 d [* .
Sl + SlIellE + 5 [ Ble.s6(). Ligends (30
0
t
Bt 160, 1;0(0) — 5 [ Bult556(5), 130(0)ds,
0

where By(t, s;-, ) is the bilinear form of time-differentiation in t of B(t,s;-,-) . We thus

obtain from integration that
o (1o + [ tiodeas)

t
| eupas + el
0
t
+/Bts€ IhO()ds+C/ 116]2ds
0

t
o (16 + [ limlias) + 3101 + [ teiias,

IN

IN
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By applying Gronwall’s inequality, we have

t t
[ it 01 < ¢ (16O + [ ladas)
Noticing that
6ollr < [[Viuo — uoll1 + |Juo — un(0)[|1 < Ch*|Jugl|s

it follows from Theorem 2.6 that

t
IWEémf@wm+AHw%%>

In the following we shall estimate ||D:(u — up)|| = ||et]|, which is used to obtain
maximum norms.

Theorem 3.6. Under assumptions of Theorem 3.0 and the initial spatial approxima-
tion is chosen such that up(0) = Vyug. Then we have for e(t) = u(t) — up(t),

t
lleel] < Ch? (J|uolls + |l |s,p) +/0 ([uells + utells,p) ds. (3.7)

Proof: By differentiating (3.4), it follows,
(B, Tnvn) + A(O:, I vn) (3.8)

t
_ —(ptt,I,’:vh)—Bt(t,t;H,I,’:vh)—/ Bu(t, 5:0(s), [xvn)ds,
0

and then, by setting v, = 6;, we have

1d

1 t
5 7 10:11 + CollBe Tt < Tlpeell 11641 +§Co||9t||f+0||9llf+/0 16113 ds

Thus, it is to see from integration from 0 to ¢ and the arguments similar to the proof of
Theorem 3.0 that

t t 1/2
16:11> < C {116 ON* + | [ lpsel Pds + 1611 ds :
0 0

Since §(0) = 0 and using our assumption, we have from (3.4) that
(6:(0), Iivn) = =(p(0), Ijvn),  vn € Sh
so that
[16:O)1 < llpe (0)]] < Ch2|luo]]s.

We now see 6¢(t) is bounded by the right hand side of (3.7). Therefore, (3.7) is proved
by noticing |le|| < {lp|| + |6:]-

B. L>®- and W1*-Error Estimates

In this subsection the maximum norm error estimates and superconvergence of the gradi-
ent in maximum norm are derived here first time for finite volume element methods, that
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is, these results are even new for finite volume methods for elliptic equations. The key
feature is that the relationship between finite element and finite volume element approx-
imations derived in §2 for Ritz-Volterra projection and the regularized Green function.

Theorem 3.7. Assume that the conditions of Theorem 3.0 are satisfied and Diu €
L>®(H} N H>NWHP) for p > 2 and 1 < p < 3. Then there is a constant C > 0,
independent of h and u, such that

t t
u— unllose < CH (||u||u,p N / ||u||u,pds) L on (||u||3 n / ||u||3ds) (3.9)
Proof: Rewrite (3.4) as

t
A8, I vp) +/ B(t,s;0(s), Iyvp)ds = (e, I;vp),  vp € Sh.
0

or equivalently using Lemma 2.2 that

t
A0, vp) +/ B(t,s;0(s),vn)ds = (es, Iyvp) + L(0,vn), vp € Sh. (3.10)
0

where
t _
LO,v,) = = Z Z <lA A / 15_3(0)d5> (v; —vj)
2, ENy, jEI 0
+LA(07vh) + LB(9>Uh)7
and

1A-4) = / (A — A)V - ndS

ij

15-5(9) = / (B(t,s) — B(t,s))V0 - ndS,

ij

Z/ A—A)V6 - Vo dr

KeTy

LBO,v,) = / (Z/ (B— B)V# - Vvhd:v>d
KeT

On the other hand, we have

2 S| < ORIV Y -

szNh JE z; ENy jEII
Ch|IVO||sollvrllra < ClIVO[[[vall1,1

—
=
<

>
~
I

IN

IN

and similarly,

P X [ e w)

z;ENp, jEII

IA

t
c / 161 sl [on 1.
0

t
¢ (Iwel+ [ 1196lds ) ol
0

|LA(07 Uh) + LB (67 Uh)|

IA
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Thus, we obtain by substituting v, = Gj in (3.10) and using the above estimates
together with integration form 0 to 7" and (2.20) that

T T t
/0||et||||Gz||ds+0/0 (||e||1+/0||0||1ds)||Gz||1,1dt

/0T||et||(1+¢(8))ds+c/0T <||¢9||1 +/0t||9||1d5> (1+ ¢)dt.

So that Lemma 2.7 leads to

IN

T
/0 B(z, t)6(t)dt

IN

t t
Blloe < lleel + | ledids +Clilly +C [ el
0 0

Therefore, (3.9) follows from Theorem 2.7, the above inequality and the triangle in-
equality.

Theorem 3.8. Under assumption of Theorem 3.2.1 and u € W3 we have for some
constant C > 0, independent of h and u, such that

1 t
Wi = wnlhoe < O Hog g (bl + [ ulluds) — @10)

1 t
+Ch? logﬁ <||u||3 +/ ||u||3ds> .
0

Proof: Setting vy, = 9,G} in (3.10), we see that (3.11) follows from Lemma 2.7 and the
above analysis.

Remark 3.6. Theorems 3.0 and 3.0, show that || Iyu—us||1,00 = O(h?log 1) provided thatu €
3.

Theorem 3.9. Let u and u}} be the solutions of (2.0) and (2.2), respectively. Then we
have some some constant C' > 0, independent of h, At and u, such that

t
lu(t) - uf ()] < CW? (||uo||3,p+ / ||ut||3,pds) (3.12)
tnO
+0at [ (lual + llull s,
’ t 1/2
() = Ol < CH* (lluollc + [ Nl s (.13
tno 1/2
+OA ( / <||utt||2+||ut||%>ds) ,
Thu"™ —up|li,c0 = Chz(log%) if  u,uy € C°. (3.14)

Proof: The proof is similar to the standard finite element arguments [5, 14, 15] using
the results obtained in the previous sections, so we omit the details.
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