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Abstract Various �nite volume element approximations for one�dimensional
parabolic integro�di�erential equations in ��D are derived and studied� These
types of equations arise in modeling reactive �ows or material with mem�
ory e�ects� Our main goal is to develop a general framework for obtaining
�nite volume element approximations and studying their error analysis� We
consider the lowest�order �linear and L�splines� �nite volume elements al�
though higher�order volume elements can be considered as well under this
framework� It is proved that �nite volume element approximations are con�
vergent with optimal order in H��norms� suboptimal in the L��norm and
super�convergent in a discrete H��norm�

Key words �nite volume method� parabolic equation� integro�di�erential
equation

� Introduction

Various processes in the natural sciences and engineering lead to the follow�
ing problem	 �nd u 
 u�x� t� such that

ut �Au�

Z t

�

B�t� s�u�s�ds 
 f� x � �� � � t � T� ���

u 
 u��x�� x � �� t 
 ��

Here � is a bounded domain in Rd �d 
 
� �� with a boundary ��� T � ��
A is a second�order strongly elliptic and positive de�nite operator� B is a
second�order di�erential operator with smooth coe�cients� and f and u�
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are known functions� Dirichlet or Neumann boundry conditions are incor�
porated in the de�nitions of the operators A and B� The problem ��� is an
abstract form of an initial boundary value problem for parabolic integro�
di�erential equation�

Mathematical formulations of this kind appear in various engineering
models� such as nonlocal reactive �ows in porous media ���� and ��
�� ra�
dioactive nuclear decay in �uid �ows ��
�� non�Newtonian �uid �ows� or
viscoelastic deformations of materials with memory ����� One very impor�
tant characteristic of all these models is that they all express a conservation
of a certain quantity �mass� momentum� heat� etc�� in any moment for any
subdomain� This in many applications is the most desirable feature of the
approximation method when it comes to numerical solution of the corre�
sponding initial boundary value problem�

In this paper� we consider a one�dimensional formulation of the problem
���	 namely� �nd u 
 u�x� t� such that

ut � �aux�x �

Z t

�

�b�t� s�ux�s��xds 
 f� � � x � �� � � t � T�

u��� t� 
 u��� t� 
 �� � � t � T� �
�

u�x� �� 
 u��x�� � � x � ��

where a 
 a�x� � a� � �� b 
 b�x� t� s�� f 
 f�x� t� and u��x� are known
functions which are assumed to be smooth so that problem �
� has a unique
solution in a certain Sobolev space� For more references concerning the
existence and uniqueness of the solution we refer the readers to ����� In
most of this paper� we assume that the unique solution �
� exists and is as
smooth as needed�

However� in many applications one needs to deal with piece�wise smooth
coe�cients a and b� In such problems� we assume that a has �nite jumps at
a �xed number of points� i�e� the left and right limits exist� In this case� we
also assume that the function b has jumps at the same points� Therefore� b
could be presented in the form b�x� t� s� 
 a�x�B�x� t� s�� where B�x� t� s� is
a smooth function�

In the last decade� various discretization methods based on �nite ele�
ment approximations in space and special quadratures in time have been
developed and studied for this type of problems �see� e�g� ���
��
��
��������
����� The main tools in the analysis are the Ritz and Ritz�Volterra projec�
tions� which were instrumental in deriving optimal oder error estimates in
Lp� 
 � p � �� and H��norms� in maximum�norm and super�convergence
estimates �see for details �����
��
����

The �nite element approximations do not conserve exactly the �ux over
each element �or volume�� In the asymptotic limit �i�e� for small step�sizes�
this is not a serious problem since the method is convergent� However� this
could be a disadvantage of the method when relatively coarse grids are
used since it then does not re�ect the local conservative properties of the
mathematical model� For many applications this property might be crucial
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and most desirable� Numerical methods which have this property for every
space cell are called locally conservative� Our main goal in this paper is
to derive discretization schemes for the above problem which are locally
conservative� This is done in the framework of the Petrov�Galerkin method�
namely� the solution space consists of continuous piece�wise linear functions
over a certain triangulation of the domain� while the test space consists of
piecewise constants over a di�erent �called dual or �nite volume� partition of
the domain� This approach has been applied consistently to various elliptic
and parabolic problems in the monograph of R� Li and Z� Chen �
���

We illustrate the main points of our approach on the following abstract
Petrov�Galerkin formulation� Let S and S� be a pair of Sobolev spaces�
a�u� v� be a bilinear form de�ned on S�S�� and f�v� be a linear form de�ned
on S�� We consider the problem of �nding u � S such that a�u� v� 
 f�v�
for all v � S�� assuming that the bilinear form a�u� v� is weakly coercive
and continuous on S�S� and the linear form f�v� is continuous on S�� i�e�

CjujjS � sup
v�S�

a�u� v�

jjvjjS�
� cjjujjS and jl�v�j � CjjvjjS� �

Here c� C are some constants and jj�jjS� and jj�jjS are some norms in S and
S�� respectively�

Both the �nite element and the �nite volume methods can be viewed as
particular approximations of this abstract framework� Namely� let Sh and
S�h be �nite�dimensional subspaces of S and S�� respectively� for which the
bilinear form a��� �� is weakly coercive and bounded for some norms in Sh
and S�h�

In the �nite element method� we set S 
 S� 
 H�
� � then introduce a

partition of the domain into �nite elements and construct the �nite element
spaces Sh 
 S�h � H�

� of piece�wise polynomials over the partition�
In the �nite volume method� we introduce two di�erent partitions of

the domain into �nite elements and �nite volumes� Then S� 
 L� and
the �nite�dimensional spaces Sh and S�h can be chosen as piece�wise linear
and piece�wise constants over the partitions of the domain� respectively�
so the bilinear form is well de�ned on Sh � S�h� In this case� the equality
a�u� v� 
 f�v� expresses the balance of some substance �mass� heat� etc�
over each subdomain of the partition� We shall call Sh solution space while
S�h is called a test space�

In this paper� the outlined general framework has been applied to the
class of integro�di�erential equations detailed above� The solution space Sh
is constructed from the �nite element approximation of S� i�e� the func�
tions are piece�wise polynomials over a certain partition Th of the interval
��� �� into �nite elements� The test space S�h consists of piece�wise constants
over a di�erent partition T �h of the interval ��� �� into subintervals called
�nite volumes� The main e�orts have been directed to characterize the ��
nite dimensional spaces Sh and S�h and to show the weak coercivity and the
boundness of the bilinear form a��� �� on Sh � S�h� Once these fundamen�
tals are established� next we derive the discretization schemes and study
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their approximation properties in various norms under certain smoothness
assumptions on the solution�

To the best of the author�s knowledge� the �nite volume element ap�
proximations of the problem �
� have not been studied before� We apply
the general framework outlined above to the problem �
� and use the pre�
vious results in the area of �nite volumes �see� e�g� ��������
��
���� �nite
di�erences �see� e�g� ����������� and �nite elements �see e�g� ���
��
�����
���� for elliptic and parabolic equations� What needs to be done in the con�
text of the general transient integro�di�erential equation is to add a time
discretization and to derive absolutely stable schemes� The stability of an
implicit scheme is a rather simple consequence of the construction and the
weak coercivity of the elliptic part� In order to obtain error estimates of
optimal order in both H� and L��norms� we had to introduce a new variant
of the Ritz�Volterra projection �in our context it should be called rather
Petrov�Volterra projection�� which was used by Cannon and Lin in ��� for
�nite element approximations to similar types of problems� Thus� the essen�
tial part of the analysis is reduced to the error estimates for the Ritz�Volterra
projection in various norms�

The error estimates of these schemes are local in the sense that the
constant grows exponentially with the time t� Long time stability is an im�
portant characteristic of the solution for many applications� Schemes which
re�ect this property have been studied in ��� and �
���� for smooth and
integrable kernels� respectively� In ���� the Ritz projection has been used�
while in ���
� semi�group theory� the Ritz�Volterra projection technique� and
resolvent estimates has been applied�

This paper is devoted to one�dimensional problems and uses �nite ele�
ments of the lowest order� Extensions to higher�order elements and other
types of schemes such as discontinuous Petrov�Galerkin methods are dis�
cussed in ����� In x�� we consider discretizations for which the space Sh con�
sists of linear �nite elements and L�splines� In x
� we present an important
part of our analysis	 extension of the concept of the Ritz�Volterra projec�
tion Vh introduced in ��� for �nite element discretizations to the framework
of �nite volume discretizations� Finally in x�� we estimate the error of the
�nite volume element approximations derived in the previous sections�

� The Lowest�Order Finite Volumes

��� Notations and Some Preliminary Results

We shall use the standard notations for Sobolev spaces W k�p for � � p � �
and Hk 
W k�� of functions de�ned on ��� �� for k an integer� The norm in
W k�p is de�ned as

kukk�p 


�Z �

�

kX
i��

jDi
xuj

pdx

���p

for � � p ��
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and with the standard de�nition for p 
�� The space H�
� consists of those

functions in H� which vanish at the endpoints x 
 � and x 
 ��
Next� we introduce a notation for the partition of the unit interval ��� ��

into N�subintervals by the points

� 
 x� � x� � x� � � � � � xj � � � � � xN 
 ��

We de�ne hj 
 xj � xj��� Ij 
 �xj��� xj �� j 
 �� 
� � � �� N � h 
 maxj hj � We
assume that the partition is quasi�uniform� i�e� there is a positive constant
c� � � such that hj � c�h for all j 
 �� 
� � � �� N � This partition is denoted
by Th 
 �Nj��Ij and the subintervals Ij are called �nite elements�

The dual partition T �h is now constructed as follows� Set xj���� 
 �xj���
xj��
� j 
 �� 
� � � �� N �

� 
 x� � x��� � x��� � � � � � xj���� � � � � � xN���� 
 ��

Then T �h 
 �Nj��I
�
j � where I

�
j 
 �xj����� xj������ j 
 �� 
� � � �� N � �� I�� 


��� x���� and I�N 
 �xN����� xN �� The subintervals I
�
j are often called �nite

volumes�
The space S�h of piece�wise constant functions over T �h is de�ned by

S�h 
 fv � L���� �� 	 vjI�
j
is constant� j 
 �� ���� N��� and vjI�

�
�I�

N

 �g�

Over this partition of the domain� we shall introduce two di�erent spaces for
Sh	 one is based on the linear �nite element interpolant over the partition
Th and the second one is based on the so�called L�splines� i�e� local solutions
of the di�erential equation Lu 	 �aux�x 
 � on the partition Th� While
the solution space of piece�wise linear functions can be used for smooth
coe�cients a�x�� the second one� based on L�splines� produces schemes with
harmonic averaging of the coe�cient a�x� and can be used for problems with
rough coe�cient a�x�� A detailed description of these spaces is given below�
We assume that the space Sh consists of continuous functions which� over
each interval of the partition Th� are either linear functions or L�splines�
The functions in Sh are entirely determined by their values at the points
xj � Then a local basis of �hat��functions �j�x� exists� i�e� �j�xj� 
 � and
�j�xi� 
 � for i 

 j�

The characteristic function �j of I
�
j 
 �xj����� xj������ de�ned by

�j�x� 


�
�� xj���� � x � xj�����

�� otherwise�

form a basis for the space S�h� Thus� for any uh � Sh and vh � S�h we have

uh 


N��X
j��

uj�j�x� and vh 


N��X
j��

vj�j�x�

with uj 
 uh�xj� and vj 
 vh�xj��
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The existence of a local basis allows us to introduce easily the inter�
polation operators	 Ih 	 C���� �� � Sh as Ihu 


PN��
j�� u�xj��j�x� and

I�h 	 C���� ��� S�h as I�hu 

PN��

j�� u�xj��j�x�� We shall need various semi�

norms in the spaces H�
� and H�

� �H
�� which are related to the partition Th�

Namely� we de�ne

jjwjj��h 


�
�N��X

j��

hjw
�
j

�
A
���

� jwj��h 


�
� NX

j��

�wj � wj���
�h��j

�
A
���

�

jjwjj��h 

�
jwj���h � jjwjj���h

����
� jjjwjjj� 
 �Ihw� I

�
hw�

����

jwj���h 


�
� NX

j��

w�
x�xj�����hj

�
A
���

�

Here ��� �� denotes the standard L��inner product of functions de�ned on
��� ��� Obviously� the semi�norms jj�jj��h and jjj�jjj� are equivalent norms
on Sh with constants of equivalence independent of h� Similarly� j�j��h and
j�j���h are equivalent norms on Sh� The norms k�k��h and k�k��h use only the
values of the function at the grid points and therefore kuk��h 
 kIhuk��h
and kuk��h 
 kIhuk��h�

Since the functions wh from Sh have generalized derivatives� their norm
kuhk� is well de�ned and there are independent of h constants c�� c� � �
such that

c�jjwhjj��h � jjwhjj� � c�jjwhjj�� wh � Sh�

A basis for the �nite volume element approximation will be the integral
equality obtained by integrating �
� over the volume I�j 
 �xj����� xj������
which expresses conservation of the physical quantity �mass� heat� etc� over
each �nite volume in T �h � Restricting this equality to u in the space Sh we
get the following

Z xj����

xj����

uh�tdx�

�
auh�x �

Z t

�

b�t� s�uh�x�s�

	




xj����

xj����




Z xj����

xj����

fdx� ���

uh��� 
 u��h � Sh�

where u��h is an appropriate approximation of the initial data u� in Sh�
Now we introduce two di�erent constructions of the space Sh�

��� Finite Volume Method with Linear Elements

The �nite element space Sh consists of piece�wise linear functions� i�e�

Sh 
 fv � C���� �� 	 vjIj is linear function for j 
 �� � � �� Ng�
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Obviously� the functions

�j�x� 


���

���

�� h��j jx� xj j� xj�� � x � xj �

� � h��j��jx� xj j� xj � x � xj���

�� otherwise�

for j 
 �� � � � � N � � form a basis for Sh�

We de�ne the bilinear forms a��� �� and b�t� s� �� �� on various pairs of
spaces� First� for u� v � H�

� ��� �� we use the standard de�nition

a�u� v� 


Z �

�

auxvxds and b�t� s�u� v� 


Z �

�

b�t� s�uxvxdx� ���

Next� for u � H�
� ��� �� �H

���� �� and vh � S�h� we extend the de�nition of
a��� �� formally to

a�u� vh� 


N��X
j��

�
aj����ux�xj������ aj����ux�xj�����

�
vj �

Using summation by parts and taking into account that v� 
 vN 
 ��
we come to the following de�nition of a�u� vh� and b�t� s�u� vh� for u �
H�
� ��� �� �H

���� �� and vh � S�h	

a�u� vh� 


NX
j��

aj����ux�xj������vj � vj���� ���

b�t� s�u� vh� 


NX
j��

bj�����t� s�ux�xj������vj � vj����

For uh � Sh the value uh�x�xj����� is well de�ned� and this allows us to
use the de�nition ��� for �uh� vh� � Sh�S�h as well� Thus� the semi�discrete
�nite volume element method ��� can be rewritten as to �nd uh�t� � Sh for
t � � such that

�uh�t� vh� � a�uh� vh� �

Z t

�

b�t� s�uh�s�� vh�ds 
 �f� vh�� vh � S�h� ���

with uh��� 
 u��h � Sh�

The so�called �lumped� mass semi�discrete approximation of �
� is	 �nd
uh�t� � Sh such that

�I�huh�t� vh� � a�uh� vh� �

Z t

�

b�t� s�uh�s�� vh�ds 
 �f� vh�� vh � S�h� ���



� Richard E� Ewing et al�

Taking into account the de�nition of I�h � we see that this produces the
scheme

hj � hj��



uj�t �

�
aj����

uj�� � uj
hj��

� aj����
uj � uj��

hj

	

�

Z t

�

�
bj�����t� s�

uj���s�� uj�s�

hj��

� bj�����t� s�
uj�s�� uj���s�

hj

	
ds


 �fj � for t � � ���

for j 
 �� 
� � � �� N � �� where �fj 

R xj����
xj����

f�x� t�dx� aj���� 
 a�xj�����

and bj�����t� s� 
 b�xj����� t� s� � Consequently� the above equation is the
standard three�point �nite di�erence discretization of the problem �
��

We can rewrite these schemes as systems of ordinary di�erential equa�
tions� Let uh 


PN��
j�� uj�t��j�x� and U 
 �u�� u�� � � �� uN���

T � then the
vector�function U 
 U�t� satis�es	

MhUt �AhU�t� �

Z t

�

Bh�t� s�U�s�ds 
 Fh�t�� t � �� ���

Here the mass matrix Mh is diagonal for the scheme ��� and tridiagonal for
the scheme ��� and Ah and Bh are symmetric tridiagonal matrices� We also
have to add an initial condition given in the form U���� in which is related
to the initial approximation uh��� 
 u��h � Sh in ����

In order to de�ne the fully�discrete approximation of �
�� we discretize
the time by taking tn 
 n	t� 	t � �� n 
 �� 
� � � � and using a numerical
quadrature for the integralZ t

�

g�s�ds 


nX
k��


n�kg
k� gk 
 g�tk��

where f
n�kg are the integration weights and the following error estimate is
valid	

j

Z tn

�

gds�

nX
k��


n�kg�tk�j � C	t

Z tn

�

�jgj� jg�j�ds�

Then the fully discrete backward Euler �nite volume element approxi�
mation of �
� is	 �nd unh � Sh �n 
 �� 
� � � �� such that for all vh � S�h�

unh � un��h

	t
� vh

	
� a�unh� vh� �

n��X
k��


n�kbn�k�u
k
h� vh� 
 �fn� vh�� ����

for n 
 �� � � �� u�h 
 u��h� where u��h is some approximation of the initial
data and bn�k�u

k
h� vh� 
 b�tn� tk�u

k
h� vh��

In a similar fashion� one can de�ne the fully discrete �lumped mass�
scheme and Crank�Nicolson scheme�
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��� Finite Volume Method with L�spines

Now� we de�ne the space Sh in the following way	

Sh 
 fv � C��� �� 	 �avx�xjIj 
 �� j 
 �� � � �� N� v��� 
 v��� 
 �g�

Here and in the text that follows further the solution of the equation
�aux�x 
 � is understood in a weak sense� Note that the velocity ��ux�
Q�x� 
 ��aux��x� has �rst derivative zero almost everywhere and therefore
is a constant function� Thus� if the coe�cient a�x� has a jump at some point
then the �rst derivative ux should have also a jump at that point so that
their product is a continuous function� In order to introduce a basis in Sh�
we �rst de�ne the following harmonic means of the coe�cient a�x� over the
partition Th	

aHj���� 
 hj

�Z xj

xj��

ds

a�s�

���

for j 
 �� � � � �N � �� apparently� the following functions form a basis in Sh	

�j�x� 


�����

�����

aHj����
�

hj

Z x

xj��

ds

a�s�
� for xj�� � x � xj �

aHj����
�

hj��

Z xj��

x

ds

a�s�
� for xj � x � xj���

�� otherwise�

����

for j 
 �� � � � � N��� On each subinterval of Th� the derivative of �j�x� exists
in generalized sense and has the following property	

�a�j�x��xj����� 
 aHj�����hj � and �a�j�x��xj����� 
 �aHj�����hj���

Therefore� we come to the following simple representation for the �uxes at
the end�points of the �nite volumes of the partition T �h 	

�auh�x��xj����� 
 aHj����
uj � uj��

hj
� j 
 �� ���� N�

In order to introduce the �nite volume element method� we �rst de�ne
the bilinear forms a��� �� and b�t� s� �� �� on Sh � S�h	

a�uh� vh� 


NX
j��

�

hj
aHj�����uj � uj����vj � vj����

b�t� s�uh� vh� 


NX
j��

�

hj
bj�����t� s�

aHj����

a�xj�����
�uj � uj����vj � vj���

	

NX
j��

�

hj
aHj����Bj�����t� s��uj � uj����vj � vj����

��
�
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Here we have used the fact that in the case of discontinuous coe�cient�
a�x� and the kernel b�x� t� s� in the integral term is of the form b�x� t� s� 

a�x�B�x� t� s�� where B�x� t� s� is a smooth function of its arguments�

Then the semi�discrete �nite volume method with L�splines is given
by ��� where the bilinear forms a��� �� and b�t� s� �� �� are de�ned in ��
��
Similarly� the �lumped� mass semi�discrete method and the fully discrete
backward Euler method are given by ��� and ����� respectively� This time
for the lumped mass approximation� we use the trapezoidal rule over each
�nite element� It is obvious that the complexity of these schemes is the same
as those obtained by using linear elements�

This type of approximation of self�adjoint second�order ordinary di�er�
ential equations was �rst used by Tikhonov and Samarskii �see� e�g� ��������
to construct �nite di�erence schemes of arbitrary order of accuracy for equa�
tions with piece�wise coe�cients� The interesting feature of these schemes
is that they have high order of accuracy on non�uniform meshes and for
equations with jumps in the coe�cients� Further� this approach has been
extended in ���� to equations with coe�cients in certain Sobolev classes�

Remark � It is obvious from the matrix presentation of the discretizations
��� that Mh and Ah are symmetric and positive de�nite matrices and ma�
trix Bh�t� s� is symmetric and has entries that are uniformly bounded with
respect to the variables t� s� Therefore� both the semi�discrete and discrete
schemes have unique solutions� which are stable in L��norm in x and L��
norm in t �see� e�g� �����

��� Some Auxiliary Results and Inequalities

Before discussing the error estimates of the �nite volume approximations
derived above we shall need some useful inequalities related to the bilinear
forms a and b and the �nite element interpolant of the solution u�x� t��

Lemma � There exists positive constants C�� C� � �� independent of h�
such that

a�wh� I
�
hwh� � C�jwhj

�
��h� wh � Sh� ����

ja�wh� I
�
hvh�j � C�jwhj��h jvhj��h� wh� vh � Sh� ����

Proof� Let wh 

PN��

j�� wj�j�x� and vh 

PN��

j�� vj�j�x�� then for linear
elements we have

a�wh� I
�
hvh� 


NX
j��

aj����
wj � wj��

hj

vj � vj��
hj

�

Hence� ���� and ���� follow by taking C� 
 a� 
 minx a�x� and C� 
 a� 

maxx a�x�� Note that this inequality is also valid for the scheme obtained
by using L�splines for the space Sh� In this case� aj���� is replaced by the
harmonic averages aHj���� and the inequality follows in the same manner
with slightly di�errent constants�
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Remark � The estimate ���� essentially implies that the bilinear form a��� ��
is weakly coercive in Sh�S

�
h where Sh is equipped with the norm j�j�� Indeed�

sup
vh�S�h

a�wh� vh� � a�wh� I
�
hwh� � C�jwhj

�
��h�

This guarantees the solvability of the discrete problem and its optimal sta�
bility�

Next� we study the properties of the interpolant Ihu� Here we distinguish
two cases	 ��� a�x� is a su�ciently smooth function �here it is enough to
assume that a � W k�� where k � ��� then the solution is at least in W k���
�
� a�x� has a �nite number of jump discontinuities and between these
points of discontinuity it is su�ciently smooth� the �ux Q 
 �aux is a
smooth function� Now we consider these two cases in the next two lemmas�

Lemma � Let the space Sh consist of piece�wise linear functions and u �
H�
� �W

k�p for some � � p � � and 
 � k � �� Then there exists a positive
constant C � �� independent of h� such that

ja�u� Ihu� I
�
hvh�j � Chk��jujk�pjvhj��q� vh � Sh� q 
 p��p� ���

Proof� Since

a�u� Ihu� I
�
hvh� 


NX
j��

aj�����u� Ihu�x�xj������vj � vj��� ����

it is enough to estimate l�u� 
 �u� Ihu�x�xj������ Thus ���� follows from
the Bramble�Hilbert lemma by showing that the linear functional l�u� is
bounded in W k���xj��� xj � for k � 
 and vanishes for polynomials of degree

� To estimate the constant in the inequality ���� one can use a Taylor
expansion� In the case k 
 � this is

ux�xj������
uj � uj��

hj


��


hj

�Z xj��

xj����

�� � xj���
�uxxx���d�

�

Z xj����

xj

�� � xj�
�uxxx���d�

�
� ����

Then� Cauchy�Schwarz inequality yields

ja�u� Ihu� I
�
hvh�j � Ch�

NX
j��

jujk�p jvh�xjq � Ch�juj��pjvhj��q �

which completes the proof�
Note that if the coe�cient a�x� has one continuous derivative� then using

the Sobolev norm of Q�x� 
 �a�x�ux�x� one gets

juj��p � CjjQjj��p
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and the right hand side in the error estimate can be expressed through
the the Sobolev norm of the Q�x�� This equivalent representation of the
error is not important for smooth coe�cient a�x�� However� this approach is
essential when the coe�cient a�x� has jumps� the case treated by L�splines�
Below we show that the error is of �rst order in this case� too�

Lemma � Let the space Sh consist of L�splines and its basis be de�ned by
���	� Assume that Q � W ��p for � � p � �� Then there exists a positive
constant C � �� independent of h� such that

ja�u� Ihu� I
�
hvh�j � ChjQj��pjvhj��q � vh � Sh�

for q 
 p��p� ���

Proof� Here we have used the following convention	

a�u� Ihu� I
�
hvh� 
 a�u� I�hvh�� a�Ihu� I

�
hvh��

where a�u� I�hvh� is de�ned by ��� and a�Ihu� I
�
hvh� is de�ned by ��
�� Then

taking into account that

uj � uj��
hj



�

hj

Z xj

xj��

Q�x�

a�x�
dx�

we get the following representation

a�u� Ihu� I
�
hvh� 
 �

NX
j��

�vj � vj���l�Q�� ����

where

l�Q� 
 Qj���� �
aHj����

hj

Z xj

xj��

Q�x�

a�x�
dx�

Obviously the expression l�Q� is a linear functional in Q� which is bounded
for Q in the Sobolev space W ��p�xj��� xj� and vanishes for Q being a con�
stant� Thus� by the Bramble�Hilbert lemma

jl�Q�j � Ch����p

�Z xj

xj��

jQ��x�jpdx

���p

�

Then� the Cauchy�Schwarz inequality yields the required estimate �����

Remark � It is obvious from ���� that if the coe�cient a�x� is smooth� then
aHj���� 
 aj���� � Ch� and one easily gets the estimate �����
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� Optimal�Order Error Estimates for the Finite Volume Method

A key point in the error analysis of the �nite element method for parabolic
problems plays the decomposition of the error into two parts	 u � uh 

�u � Rhu� � �Rhu � uh�� where Rhu � Sh is the Ritz projection de�ned
by a�u � Rhu� vh� 
 � for all vh � Sh� A direct use of Ritz projection in
the �nite element analysis of parabolic and hyperbolic integro�di�erential
equations� with two or more elliptic operators of the same order� leads to
suboptimal error estimates� In order to o�set this de�ciency Cannon and
Lin ��� introduced the so�called Ritz�Volterra projection Vhu� which we shall
use as a main tool in the error analysis of the �nite volume schemes�

��� Ritz�Volterra Projection Vh

Here we introduce the Ritz�Volterra projection operator Vh in the context
of the �nite volume element method for the equation �
�	 namely� for u�t�
in H�

� � H� for any t � � we de�ne its Ritz�Volterra projection Vhu � Sh
for t � � by

a�u� Vhu� vh� �

Z t

�

b�t� s�u�s�� Vhu�s�� vh�ds 
 �� vh � S�h� ����

Note� that Vhu de�ned over the partition Th� We begin our analysis with
the existence of the Ritz�Volterra projection and its error in the H��norm�

Theorem � Let u�t� be in H�
� � let Q�t� 
 �a�x�ux�x� t� be in H� for all

t � �� and let u�t� be di
erentiable in t� Then the Ritz�Volterra projection
Vhu of u de�ned by ���	 exists� is unique� and there is a positive constant
C � �� independent of h� such that for t � �

ju�t�� Vhu�t�j��h 	 jIhu� Vhuj� � Ch

�
jjQ�t�jj� �

Z t

�

jjQ�s�jj�ds

	
�����

and

jDt�u�t�� Vhu�t��j��h � Ch

�
jjQ�t�jj� � jjQt�t�jj� �

Z t

�

jjQ�s�jj�ds

	
��
��

Proof� This theorem gives an optimal�order convergence under minimal
assumptions on the regularity of the solution for both methods	 the one
based on linear �nite elements and the one based on L�splines� However�
the scheme based on linear �nite elements requires smoothness of the co�
e�cient a�x�� while the scheme obtained by using L�splines has �rst�order
convergence for a discontinuous coe�cient a�x��

The existence and uniqueness of the Ritz�Volterra projection follow from
Lemma �� Indeed� let Vhu 


PN��
j�� Vj�t��j�x� and V 
 �V�� V�� � � �� VN���

T �
then V satis�es

AhV �t� �

Z t

�

Bh�t� s�V �s�ds 
 Fh�t��
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where Fh 
 �F�� F�� � � �� FN���
T � Fj 
 a�u� �j� �

R t
�
b�t� s�u�s�� �j�ds� Since

Ah is a non�singular matrix by Lemma � the theory of Volterra equations
implies that V �t� exists and is unique �see� e�g� �����

Denote by vh 
 Ihu � Vhu � Sh� Then the estimate ���� follows from
���� of Lemma 
 and ���� of Lemma �� Indeed�

C�kvhk
�
� 
 C�jIhu� Vhuj

�
� � a�Ihu� Vhu� I

�
h�Ihu� Vhu��


 a�Ihu� Vhu� I
�
hvh� �

Z t

�

b�t� s� Ihu�s�� Vhu�s�� I
�
hvh�ds

�

Z t

�

b�t� s� Ihu�s�� Vhu�s�� I
�
hvh�ds


 a�Ihu� u� I�hvh� �

Z t

�

b�t� s� Ihu�s�� u�s�� I�hvh�ds

�

Z t

�

b�t� s� Ihu�s�� Vhu�s�� I
�
hvh�ds


 C

�
h

�
jjQjj� �

Z t

�

jjQ�s�jj�ds

	
�

Z t

�

jIhu�s�� Vhu�s�j�ds

�
jvhj��

and therefore�

jIhu�t��Vhu�t�j� � Ch

�
jjQjj� �

Z t

�

jjQ�s�jj�ds�

	
�C

Z t

�

jIhu�s��Vhu�s�j�ds�

Thus Gronwall�s inequality implies �����
To prove �
�� we di�erentiate ���� with respect to time and obtain the

following identity for any vh � S�h	

a��u� Vhu�t� vh� � b�t� t�u� Vhu� vh�

�

Z t

�

bt�t� s�u�s�� Vhu�s�� vh�ds 
 ��

Then by Lemma 
 and the above identity for vh 
 Dt�Ihu � Vhu� we
get

c�jDt�Ihu� Vhu�j
�
� � a�Dt�Ihu� Vhu�� I

�
hvh�


 a�Dt�Ihu� u�� I�hvh� � b�t� t� Ihu� u� I�hvh�

�

Z t

�

bt�t� s� Ihu�s�� u�s�� I�hvh�ds

�b�t� t� Ihu� Vhu� I
�
hvh� �

Z t

�

bt�t� s� Ihu�s�� Vhu�s�� I
�
hvh�ds

� Ch

�
jQtj� � jQj� �

Z t

�

jQ�s�j�ds

	
jIhvhj�

�

�
jIhu� Vhuj� �

Z t

�

jIhu�s�� Vhu�s�j�ds

	
jIhvhj��
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Then by ���� we conclude that

jDt�Ihu� Vhu�j� � Ch

�
jQj� � jQtj� �

Z t

�

jQ�s�j�ds

	
�

which leads to �
���

��� Error Estimate of the Finite Volume Element Method

In this section we derive an error estimate for the �nite volume solution uh
in the discrete H� norm� Namely� we prove the following theorem�

Theorem � Let u�t� and uh�t� be the solution of problem ��	 and its �nite
volume element approximation de�ned by ��	� respectively� Then there exists
a positive constant C � �� independent of h� such that for t � �

Cjju� uhjj� � jju� � u��hjj��h � h

�
jQ���j� �

�Z t

�

jQt�s�j
�
�ds

	����
��
��

Proof� As usual we decompose the error into two parts	

u� uh 
 �u� Vhu� � �Vhu� uh� 
 ��t� � 
�t��

Theorem � gives us an estimate for ��t�	

jj��t�jj��h �

Z t

�

jj�t�s�jj��hds � Ch

Z t

�

�jjQ�s�jj � jjQt�s�jj��ds� �

�

Now we estimate 
�t�� From �
�� ��� and ���� it follows that 
�t� satis�es

�
t� vh� � a�
� vh� �

Z t

�

b�t� s� 
�s�� vh� 
 ���t� vh�� vh � S�h� �
��

To prove �
��� we set vh 
 I�h
t�t� and apply Lemma �

jjjI�h
tjjj
�
� �

�




d

dt
a�
� I�h
� 
 ��t� I

�
h
t��

d

dt

Z t

�

b�t� s� 
�s�� I�h
�t��ds

�b�t� t� 
�t�� I�h
�t�� �

Z t

�

bt�t� s� 
�s�� I
�
h
�t��ds

�
�



jjjI�h
tjjj

�
� � C

�
jj�tjj

� � j
j�� �

Z t

�

j
�s�j��ds

	

�
d

dt

Z t

�

bt�t� s� 
�s�� I
�
h
�t��ds�
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After integration in t we get

Z t

�

jjjI�h
tjjj
�
�ds� j
j�� � C

�
j
���j�� �

Z t

�

�jj�tjj
� � j
�s�j���ds

	

�

Z t

�

bt�t� s� 
�s�� I
�
h
�t��ds

�
�



j
j�� � C

�
j
���j�� �

Z t

�

�jj�tjj
� � j
�s�j���ds

	
�

and then by Gronwall�s inequality

j
�t�j�� � C

�
j
���j�� �

Z t

�

jj�tjj
�ds

	
� �
��

Since

j
���j� � jVhu���� u���j��h � jju���� uh���jj� �
��

then �
�� follows by inequality ���� and our assumptions�

� Higher�Order Estimates for Linear Elements

��� Superconvergence in H��norm for Ritz�Volterra Projection

Our next goal is to derive a higher�order error estimate for the Ritz�Volterra
projection based on linear �nite elements� Namely� we prove

Theorem � Let Vhu be the Ritz�Volterra projection of u and assume that
u � H� �H�

� � Then there exists a positive constant C � �� independent of
h� such that

ju�t�� Vhu�t�j��h 
 jIhu�t�� Vhu�t�j��h � Ch�
�
juj� �

Z t

�

ju�s�j�ds

	
�

t � �� �
��

ju�t�� Vhu�t�j
�
��h � Ch�

�
juj� �

Z t

�

ju�s�j�ds

	
�

t � �� �
��

Proof� The proof follows from the same argument as that used in The�
orem � except that ���� of Lemma 
 will be used with p 
 q 
 
 and
k 
 �	

ju�t�� Vhu�t�j��h 
 jIhu� Vhuj��h � Ch�
�
juj� �

Z t

�

ju�s�j�ds

	
� t � ��
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Since jvj��h 
 jvj�
��h for v � Sh then by the triangle inequality and the

previous estimate we get

ju�t�� Vhu�t�j
�
��h � ju�t�� Ihu�t�j

�
��h � jIhu�t�� Vhu�t�j

�
��h

� Ch�juj� � jIhu�t�� Vhu�t�j
�
��h�

which combined with �
�� gives the required result�
We remark that j � j�

��h is a discrete semi�norm for the gradient evaluated
at the points xj����� In the engineering literature� these points are often
called optimal stress points� In the �nite element terminology these are the
so�called superconvergence points for the gradient�

For smooth a�x� we can get the same error estimate for the solution of
the scheme based on L�splines� Indeed� in this case the estimate follows im�
mediately from the conclusions of Remark �� In the case of rough coe�cient
a�x� we believe that we cannot have superconvergence� This can be seen
from the presentation of the error in u� Ihu by �����

��� Error Estimates in L��norm for Ritz�Volterra Projection

The error estimates �
�� and �
�� will produce estimates for the Ritz�
Volterra projection in L��norm as well� However� in the case of linear el�
ements we can prove a second�order convergence in a weaker norm of the
solution u�x� t�� Namely� we prove the following result	

Theorem � Let Vhu be de�ned by ���	 and assume that u � W ������ �� �
H�
� � Then there exists a positive constant C � �� independent of h� such

that

jju�t�� Vhu�t�jj� � Ch�
�
juj��� �

Z t

�

ju�s�j���ds

	
� t � �� �
��

Proof� The proof is based on a duality argument� Let w � H� � H�
� such

that
a�w� v� 
 �u� Vhu� v�� v � H�

� �

Then by the elliptic regularity jjwjj� � Cjju � Vhujj�� Then taking v 

u � Vhu in the above equation and using the Ritz�Volterra projection we
see that

jju� Vhujj
�
� 
 a�u� Vhu�w� 
 a�u� Vhu�w� �

Z t

�

b�t� s�u�s�� Vhu�s�� w�ds

�

Z t

�

b�t� s�u�s�� Vhu�s�� w�ds


 a�u� Vhu�w � Ihw� �

Z t

�

b�t� s�u�s�� Vhu�s�� w � Ihw�ds

� a�u� Vhu� Ihw � I�hw� �

Z t

�

b�t� s�u�s�� Vhu�s�� Ihw � I�hw�ds

�

Z t

�

b�t� s�u�s�� Vhu�s�� w�ds�
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For the �rst two terms on the right hand side� we use Theorem � interpola�
tion estimates and elliptic regularity to get

a�u� Vhu�w � Ihw� �

Z t

�

b�t� s�u�s�� Vhu�s�� w � Ihw�ds

� Ch

�
juj� �

Z t

�

ju�s�j�ds

	�� NX
j��

Z xj

xj��

�wx �
wj � wj��

hj
��dx

�
A
���

� Ch�
�
juj� �

Z t

�

ju�s�j�ds

	
jju� Vhujj��

Here we have used again the Bramble�Hilbert lemma to estimate the integral
term by jjwjj� and the elliptic regularity ensuring that kwk� � Cjju�Vhujj��
Using integration by parts for the last term we getZ t

�

b�t� s�u�s� � Vhu�s�� w�ds

� j

Z t

�

�u�s�� Vhu�s�� �bwx�x�dsj

� C

Z t

�

jju�s�� Vhu�s�jj�dsjjwjj�

� C

�Z t

�

jju�s�� Vhu�s�jj�ds

	
jju� Vhujj��

Now we estimate the remaining two terms� First we present them in the
form

a�u� Vhu� Ihw � I�hw� �

Z t

�

b�t� s�u�s�� Vhu�s�� Ihw � I�hw�ds




NX
j��

f

Z xj

xj��

�a� aj������u� Vhu�xdx

�

Z t

�

�b�x� t� s�� bj�����t� s���u� Vhu�xdxdtg
wj � wj��

hj

�

NX
j��

f

Z xj

xj��

aj�����uj � uj�� � hjux�xj������

�

Z t

�

�bj�����t� s���uj � uj�� � hjux�xj�����dsg�
wj � wj��

hj
	 N� �N��

The �rst term can be bounded using Lemma 
� the Sobolev embedding
inequality and elliptic regularity	

jN�j � Ch�jaj���

�
juj� �

Z t

�

ju�s�j�ds

	
jju� Vhujj��
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To estimate the term N� we use a Taylor expansion and Lemma 


jN�j � Ch�
�
juj��� �

Z t

�

ju�s�j���ds

	
jju� Vhujj��

Combining all these estimates we get

jju� Vhujj� � Ch�
�
juj� �

Z t

�

ju�s�j�ds

	

�Ch�
�
juj��� �

Z t

�

ju�s�j���ds

	
� C

Z t

�

jju�s�� Vhu�s�jj�ds

and the proof is complete by Gronwall�s inequality and juj� � Cjuj����

Theorem � Assume that u�t� is su
ciently smooth� Then there is a con�
stant Ck � �� independent of h� such that the following estimates hold�

jDk
t �u� Vhu�j� � Ckh

�
kX
l��

jDl
tuj� �

Z t

�

k��X
l��

jDl
tu�s�j�ds

�
� �
��

jDk
t �u� Vhu�j� � Ckh

�

�
kX

l��

jDl
tuj��� �

Z t

�

k��X
l��

jDl
tu�s�j���ds

�
� ����

jDk
t �u� Vhu�j

�
��h � Ckh

�

�
kX

l��

jDl
tuj� �

Z t

�

k��X
l��

jDl
tu�s�j�ds

�
� ����

Proof� Using again the identity �
�� for wh 
 Dt�Ihu� Vhu�� we get

c�jDt�Ihu� Vhu�j
�
� � a�Dt�Ihu� Vhu�� I

�
hvh�


 a�Dt�Ihu� u�� I�hvh� � b�t� t� Ihu� u� I�hvh�

�

Z t

�

bt�t� s� Ihu�s�� u�s�� I�hvh�ds� b�t� t� Ihu� Vhu� I
�
hvh�

�

Z t

�

bt�t� s� Ihu�s�� Vhu�s�� I
�
hvh�ds

� Ch

�
jutj� � juj� �

Z t

�

ju�s�j�ds

	
jIhvhj�

�

�
jIhu� Vhuj� �

Z t

�

jIhu�s�� Vhu�s�j�ds

	
jIhvhj��

Then by Theorem �� we conclude that

jDt�Ihu� Vhu�j� � Ch

�
juj� � jutj� �

Z t

�

ju�s�j�ds

	
�

Thus� the required estimate �
�� for k 
 � follows from the above in�
equality and

jDt�u� Vhu�j� � jDt�u� Ihu�j� � jDt�Ihu� Vhu�j��

The estimates ���������� as well as those for higher time�derivatives� can be
proved using the same arguments�
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��� Error Estimates for the Finite Volume Element Method

In this section we obtain higher order error estimates for the �nite volume
element approximation� The analysis is a modi�cation of the �nite element
analysis of integro�di�erential equations of parabolic and hyperbolic type
�see� e�g� �����
��
��� and uses the Ritz�Volterra projection and the results
established in Lemmas � and �� and Theorems ����

Theorem � Let u�t� and uh�t� be the solution of problem ��	 and its �nite
volume element solution de�ned by ��	� respectively� Then there exists a
positive constant C � �� independent of h� such that for t � �

jju� uhjj� � C

�
jju� � u��hjj� h�

�
ju�j��� �

Z t

�

jut�s�j���ds

	�
� ��
�

jju� uhjj
�
��h � C

�
ju� � u��hj��h � h�

�
ju�j� �

Z t

�

jut�s�j�ds

	�
� ����

Proof� Ee decompose the error by u � uh 
 �u � Vhu� � �Vhu � uh� 

��t� � 
�t�� From Theorem � we have

jj��t�jj� �

Z t

�

jj�t�s�jj�ds � Ch�
�
ju�j��� �

Z t

�

jut�s�j���ds

	
� ����

jj��t�jj� �

Z t

�

jj�t�s�jj�ds � Ch

�
ju�j� �

Z t

�

jut�s�j�ds

	
� ����

jj��t�jj���h �

Z t

�

jj�t�s�jj
�
��hds � Ch�

�
ju�j� �

Z t

�

jut�s�j�ds

	
� ����

First� we see from �
�� ��� and ���� that 
�t� satis�es �
��� Since 
�t� �
Sh� we let vh 
 I�h
 in �
�� to obtain

�




d

dt
jjj
�t�jjj�� � a�j
j

�
� � jj�tjj jjI

�
h
jj� C

�Z t

�

j
�s�j�ds

	
j
�t�j�

�
a�


j
j�� � C

Z t

�

j
�s�j��ds� jj�tjj jjj
jjj��

Now integrating from � to t� we �nd that

jjj
�t�jjj�� �

Z t

�

j
�s�j��ds � C

�
jjj
���jjj�� �

Z t

�

jj�tjj jjj
jjj�

	

�C

Z t

�

Z �

�

j
�s�j��dsd��

and then from Gronwall�s inequality that

jjj
�t�jjj�� �

Z t

�

j
�s�j��ds � C

�
jjj
���jjj�� �

Z t

�

jj�tjj jjj
jjj�

	

�
�



sup
��s�t

jjj
�s�jjj�� � Cjjj
���jjj�� � C

�Z t

�

jj�t�s�jjds

	�
�
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Thus we have easily that

jjj
�t�jjj� �

�Z t

�

j
�s�j��ds

	���
� C

�
jjj
���jjj� �

Z t

�

jj�t�s�jjds

	
� ����

Since

jjj
���jjj� � jjjVhu� � u�jjj� � jjju� � u��hjjj� � Ch�ju�j��� � jju� � u��hjj��

the required estimate ��
� follows from the above analysis� ����� and the
triangle inequality�

Finally� from �
�� and ���� we also have that

j
�t�j�� � C

�
j
���j�� �

Z t

�

jj�tjj
�
�ds

	
� C

�
j
���j�� � h��ju�j��� �

Z t

�

jutj���ds�

	
and

j
���j���h � Ch�ju�j� � ju� � u��hj
�
��h

so that ���� follows from

ju� uhj
�
��h � ju� Vhuj

�
��h � jVhu� uhj��h

and the above analysis� The proof is complete�
In order to estimate the error of the lumped mass �nite volume element

approximation ���� we need an estimate for error of the quadrature which
produced the lumped approximation� This error is estimated in the following
lemma	

Lemma � There exists a positive constant C � � such that

j�wh � I�hwh� I
�
hvh�j � Ch�jwhj� jvhj� for all wh� vh � Sh� ����

Let

wh 


N��X
j��

wj�j � vh 


N��X
j��

vj�j � Ihvh 


N��X
j��

vj�j

we �nd from a simple calculation that

�wh � I�hwh� I
�
hvh� 


N��X
j��

vj�wh � I�hwh� �j� 

N��X
j��

vj

�
N��X
k��

Z xk����

xk����

�wh � I�hwh�dx

�




N��X
j��

vj

�
��hj � hj���

�
wj �

hj
�
wj�� �

hj��
�

wj�� �
hj � hj��



wj

	



�

�

N��X
j��

vj

�
wj�� � wj

hj��
h�j�� �

wj � wj��

hj
h�j

�



�

�

N��X
j��

wj � wj��

hj
h�j �vj � vj��� � Ch�jwhj�jvhj��

We are now ready to state and prove the error estimates for the lumped
mass method�
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Theorem 	 Assume that u�t� and uh�t� are the solution of problem ��	
and its lumped mass �nite volume element solution de�ned by ��	� Then
there exists a positive constant C � �� independent of h� such that for t � �

jju� uhjj� � C

�
jju� � u��hjj� h�

�
ju�j

�
��� �

Z t

�

jut�s�j
�
���ds

	����
�����

jju� uhjj� � C

�
jju� � u��hjj� � h

�
ju�j

�
� �

Z t

�

jut�s�j
�
�ds

	����
� ����

jju� uhjj
�
��h � C

�
ju� � u��hj

�
��h � h�

�
ju�j

�
� �

Z t

�

jut�s�j
�
�ds

	����
� ����

Proof� As before� we write u�uh 
 �u�Vhu���Vhu�uh� 
 ��t��
�t��
Then the estimates for � is the same as in Theorem �� and 
 satis�es now

�
t� vh� � a�
� vh� �

Z t

�

b�t� s� 
�s�� vh� 
 ����� vh�� vh � S�h� ��
�

with �� 
 ut � I�hDtVhu 
 Dt�u� Vhu� � �DtVhu� I�hDtVhu� 
 �� � ���

Set vh 
 I�h
 in ��
� to obtain

�




d

dt
jjj
�t�jjj�� � a�
� I�h
� � ��� � ��� I

�
h
� � C

�Z t

�

j
�s�j�ds

	
j
�t�j��

Since j���� I
�
h
�j � jjDt�u� Vhu�jj jjj
jjj�� Lemma � and Theorem � provide

j���� I
�
h
�j � Ch�jVhuj�j
j� � Ch�

�
juj� �

Z t

�

ju�s�j�ds

	
j
j��

where we have used jVhuj� � C�juj� �
R t
�
ju�s�jds�� Thus� we obtain easily

that

�




d

dt
jjj
�t�jjj�� � a�j
j

�
� �

a�


j
j� � jjjDt�u� Vhu�jj jjj
jjj� � C

Z t

�

j
�s�j��ds

�Ch�
�
juj�� �

Z t

�

ju�s�j��ds

	
�

The rest of the proof is the same as that of Theorem � for the estimate ��
��
The remaining estimates ���� and ���� are established in a similar way�

Theorem 
 Assume that u�t� and unh�t� are the solutions of problem ��	
and its backward Euler �nite volume element solution ���	� respectively�
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�

Then there exists a positive constant C � �� independent of h� such that for
� � tn � T

jju�tn�� unhjj� � C

�
jju� � u��hjj� h�

�
ju�j��� �

Z tn

�

jut�s�j���ds

	�

�C	t

Z tn

�

�jut�s�j� � jutt�s�j�ds� ����

jju�tn�� unhjj� � C

�
jju� � u��hjj� � h

�
ju�j� �

�Z tn

�

jut�s�j
�
�ds

	�����

�C	t

Z tn

�

�jut�s�j� � jutt�s�j�ds� ����

jju�tn�� unhjj
�
��h � C

�
ju� � u��hj

�
��h � h�

�
ju�j� �

Z tn

�

jut�s�j�ds

	�

�C	t

Z tn

�

�jut�s�j� � jutt�s�j�ds� ����

Proof� Let u�tn� � unh 
 �n � 
n� where �n 
 u�tn� � Vhu�tn� and 
n 

Vhu�tn�� unh� then from ���� and �
�� we have

��
n� vh� � a�
n� vh� �

n��X
k��

	tbn�k�

n� vh��
 ���n� vh� � qn�vh�� vh � S�h�

����
where

�n 
 ��n � ut�tn�� �u�tn��

qn�vh� 


n��X
k��

	tbn�k��Vhu��tk�� vh��

Z t

�

b�tn� s�Vhu�s�� vh�ds�

Set vh 
 I�h

n in ���� and use Cauchy inequality and numerical quadrature

error estimate to get

jjj
njjj�� � jjj
n��jjj��

	t

� c�j

nj�� � ��n� I�h


n� � qn�I�h

n��

n��X
k��

	tbn�k�

n� I�h


n�

�
c�


j
nj�� � C

n��X
k��

	tj
nj�� � jj�njj jjj
njjj�

�C

�
	t

Z tn

�

jDtVhu�s�j�ds

	�
�

Thus� using Theorem � for the last term on the right hand side� summing
on n and then employing Gronwall�s inequality� we obtain

jjj
njjj�� � C

�
jjj
�jjj�� �

�
	t

Z tn

�

jDtu�s�j�ds

	��
�

n��X
k��

	tjj�njj jjj
njjj�
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�
�



max
��k�n

jjj
kjjj�� � C

�
n��X
k��

	tjj�njj

��

�C

�
jjj
�jjj�� �

�
	t

Z tn

�

jDtu�s�j�ds

	��
�

from which it follows that

jjj
njjj� � C

�
n��X
k��

	tjj�njj� jjj
�jjj�� �	t

Z tn

�

jDtu�s�j�ds

�
�

A simple calculation together with Theorem � shows that

	t
n��X
k��

jj�njj � C

�
h�
Z tn

�

juj���ds�	t

Z tn

�

jutt�s�jds

	

and jjj
�jjj� � Ch�ju�j��� � jju� � u��hjj� hence ���� follows from the above
analysis and Theorem �� The proof of ���� and ���� are done in a similar
fashion�

Remark � �a� The lumped mass �nite volume element approximations can
be analysed in a similar way� �b� If second�order numerical quadrature for�
mulae are used to discretize the time integral terms� then a Crank�Nicolson
type scheme will have optimal�order convergence in both space and time�
Finite element schemes of this type have been abalyzed in ��������
������
�c� For storage saving and computational speed up� some combined numer�
ical quadrature rules proposed in ���� and ���� can be ed as well� The error
analysis can be done in the framework developed in this section by using
the error estimates from ���� and �����
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