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Abstract Various finite volume element approximations for one-dimensional
parabolic integro-differential equations in 1-D are derived and studied. These
types of equations arise in modeling reactive flows or material with mem-
ory effects. Our main goal is to develop a general framework for obtaining
finite volume element approximations and studying their error analysis. We
consider the lowest-order (linear and L-splines) finite volume elements al-
though higher-order volume elements can be considered as well under this
framework. It is proved that finite volume element approximations are con-
vergent with optimal order in H'-norms, suboptimal in the L2-norm and
super-convergent in a discrete H'-norm.
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1 Introduction

Various processes in the natural sciences and engineering lead to the follow-
ing problem: find u = u(x,t) such that
t
ur + Au +/ B(t,s)u(s)ds=f, =xze€, 0<t<T, (1)
0
u=up(z), =ze€f2, t=0.

Here 2 is a bounded domain in R? (d = 2,3) with a boundary 802, T > 0,
A is a second-order strongly elliptic and positive definite operator, B is a
second-order differential operator with smooth coefficients, and f and wg
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are known functions. Dirichlet or Neumann boundry conditions are incor-
porated in the definitions of the operators .4 and B. The problem (1) is an
abstract form of an initial boundary value problem for parabolic integro-
differential equation.

Mathematical formulations of this kind appear in various engineering
models, such as nonlocal reactive flows in porous media [11] and [12], ra-
dioactive nuclear decay in fluid flows [32], non-Newtonian fluid flows, or
viscoelastic deformations of materials with memory [30]. One very impor-
tant characteristic of all these models is that they all express a conservation
of a certain quantity (mass, momentum, heat, etc.) in any moment for any
subdomain. This in many applications is the most desirable feature of the
approximation method when it comes to numerical solution of the corre-
sponding initial boundary value problem.

In this paper, we consider a one-dimensional formulation of the problem
(1): namely, find u = u(z,t) such that

f, O<z<l, O0<t<T,

ur — (aug), + /0 (b(t, s)uz(s)).ds

w(0,t) =u(l,t) =0, 0<t<T, (2)
u(z,0) =up(z), 0<z<l,

where a = a(z) > ag > 0, b = b(x,t,s), f = f(z,t) and uo(z) are known
functions which are assumed to be smooth so that problem (2) has a unique
solution in a certain Sobolev space. For more references concerning the
existence and uniqueness of the solution we refer the readers to [30]. In
most of this paper, we assume that the unique solution (2) exists and is as
smooth as needed.

However, in many applications one needs to deal with piece-wise smooth
coefficients a and b. In such problems, we assume that a has finite jumps at
a fixed number of points, i.e. the left and right limits exist. In this case, we
also assume that the function b has jumps at the same points. Therefore, b
could be presented in the form b(x,t,s) = a(x)B(z,t,s), where B(x,t,s) is
a smooth function.

In the last decade, various discretization methods based on finite ele-
ment approximations in space and special quadratures in time have been
developed and studied for this type of problems (see, e.g. [6,25-27,29,33,36,
37]). The main tools in the analysis are the Ritz and Ritz-Volterra projec-
tions, which were instrumental in deriving optimal oder error estimates in
LP, 2 < p < 00, and H'-norms, in maximum-norm and super-convergence
estimates (see for details [6,7,25-27]).

The finite element approximations do not conserve exactly the flux over
each element (or volume). In the asymptotic limit (i.e. for small step-sizes)
this is not a serious problem since the method is convergent. However, this
could be a disadvantage of the method when relatively coarse grids are
used since it then does not reflect the local conservative properties of the
mathematical model. For many applications this property might be crucial
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and most desirable. Numerical methods which have this property for every
space cell are called locally conservative. Our main goal in this paper is
to derive discretization schemes for the above problem which are locally
conservative. This is done in the framework of the Petrov-Galerkin method,
namely, the solution space consists of continuous piece-wise linear functions
over a certain triangulation of the domain, while the test space consists of
piecewise constants over a different (called dual or finite volume) partition of
the domain. This approach has been applied consistently to various elliptic
and parabolic problems in the monograph of R. Li and Z. Chen [24].

We illustrate the main points of our approach on the following abstract
Petrov-Galerkin formulation. Let S and S* be a pair of Sobolev spaces,
a(u,v) be a bilinear form defined on Sx.S*, and f(v) be a linear form defined
on S*. We consider the problem of finding u € S such that a(u,v) = f(v)
for all v € S*, assuming that the bilinear form a(u,v) is weakly coercive
and continuous on S x S* and the linear form f(v) is continuous on S*, i.e.

Clul|s > sup a(u, )
veES* ||’U||5*

> ¢||ulls and [I(v)] < C]lv]

S

Here ¢, C are some constants and ||.||s+ and ||.||s are some norms in S and
S*, respectively.

Both the finite element and the finite volume methods can be viewed as
particular approximations of this abstract framework. Namely, let S;, and
Sy be finite-dimensional subspaces of S and S*, respectively, for which the
bilinear form a(.,.) is weakly coercive and bounded for some norms in S,
and Sj.

In the finite element method, we set S = S* = Hg, then introduce a
partition of the domain into finite elements and construct the finite element
spaces Sy, = S; C H} of piece-wise polynomials over the partition.

In the finite volume method, we introduce two different partitions of
the domain into finite elements and finite volumes. Then S* = L? and
the finite-dimensional spaces S; and S, can be chosen as piece-wise linear
and piece-wise constants over the partitions of the domain, respectively,
so the bilinear form is well defined on S; x Sj. In this case, the equality
a(u,v) = f(v) expresses the balance of some substance (mass, heat, etc)
over each subdomain of the partition. We shall call S} solution space while

4 is called a test space.

In this paper, the outlined general framework has been applied to the
class of integro-differential equations detailed above. The solution space Sp,
is constructed from the finite element approximation of S, i.e. the func-
tions are piece-wise polynomials over a certain partition T} of the interval
(0,1) into finite elements. The test space Sj; consists of piece-wise constants
over a different partition T} of the interval (0,1) into subintervals called
finite volumes. The main efforts have been directed to characterize the fi-
nite dimensional spaces Sp, and S} and to show the weak coercivity and the
boundness of the bilinear form a(.,.) on S x Sj. Once these fundamen-
tals are established, next we derive the discretization schemes and study
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their approximation properties in various norms under certain smoothness
assumptions on the solution.

To the best of the author’s knowledge, the finite volume element ap-
proximations of the problem (2) have not been studied before. We apply
the general framework outlined above to the problem (2) and use the pre-
vious results in the area of finite volumes (see, e.g. [3,8,17,24,28]), finite
differences (see, e.g. [31,34,35]) and finite elements (see e.g. [6,24-29,33,
37]) for elliptic and parabolic equations. What needs to be done in the con-
text of the general transient integro-differential equation is to add a time
discretization and to derive absolutely stable schemes. The stability of an
implicit scheme is a rather simple consequence of the construction and the
weak coercivity of the elliptic part. In order to obtain error estimates of
optimal order in both H' and L?>-norms, we had to introduce a new variant
of the Ritz-Volterra projection (in our context it should be called rather
Petrov-Volterra projection), which was used by Cannon and Lin in [6] for
finite element approximations to similar types of problems. Thus, the essen-
tial part of the analysis is reduced to the error estimates for the Ritz-Volterra
projection in various norms.

The error estimates of these schemes are local in the sense that the
constant grows exponentially with the time ¢. Long time stability is an im-
portant characteristic of the solution for many applications. Schemes which
reflect this property have been studied in [1] and [2,37] for smooth and
integrable kernels, respectively. In [37] the Ritz projection has been used,
while in [1,2] semi-group theory, the Ritz-Volterra projection technique, and
resolvent estimates has been applied.

This paper is devoted to one-dimensional problems and uses finite ele-
ments of the lowest order. Extensions to higher-order elements and other
types of schemes such as discontinuous Petrov-Galerkin methods are dis-
cussed in [15]. In §1, we consider discretizations for which the space S}, con-
sists of linear finite elements and L-splines. In §2, we present an important
part of our analysis: extension of the concept of the Ritz-Volterra projec-
tion V}, introduced in [6] for finite element discretizations to the framework
of finite volume discretizations. Finally in §3, we estimate the error of the
finite volume element approximations derived in the previous sections.

2 The Lowest-Order Finite Volumes
2.1 Notations and Some Preliminary Results
We shall use the standard notations for Sobolev spaces W*? for 1 < p < oo

and H*¥ = W2 of functions defined on (0, 1) for k an integer. The norm in
WkP is defined as

1k 1/p
lalle = ( [y |D;u|vdx> for 1< p < 00
0 =0
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and with the standard definition for p = co. The space H consists of those
functions in H' which vanish at the endpoints = 0 and = = 1.

Next, we introduce a notation for the partition of the unit interval [0, 1]
into N-subintervals by the points

O=zp <1 <I:2 < - <zTj < -<zy=1L1

We define hj =Tj; —Tj-1, [j = [37]'_1,37]'], ] = 1,2,' . ',N, h= max; hj. We
assume that the partition is quasi-uniform, i.e. there is a positive constant
co > 0 such that h; > coh for all j =1,2,---, N. This partition is denoted
by Tp, = U;-Vzlfj and the subintervals I; are called finite elements.

The dual partition 7} is now constructed as follows. Set x;_1 /o = (z;_1+
.’I}])/Q, .] = 1727' ' '7N7

0:1'0<1’1/2<1’3/2<“'<1’j_1/2<“'<Z’N_1/2:]..

Then T = U;-V:OIJ’-*, where I7 = [z;_1/2,%j1172], = 1,2,-- N =1, I§ =
[0,21/5] and I}, = [¥n_1/2,2n]. The subintervals I7 are often called finite
volumes.

The space S}, of piece-wise constant functions over 7} is defined by
S;={veL*0,1): v|rs is constant, j =1,--,N—1, and v|zur = 0}

Over this partition of the domain, we shall introduce two different spaces for
Sp: one is based on the linear finite element interpolant over the partition
T} and the second one is based on the so-called L-splines, i.e. local solutions
of the differential equation Lu = (auy); = 0 on the partition T}. While
the solution space of piece-wise linear functions can be used for smooth
coefficients a(x), the second one, based on L-splines, produces schemes with
harmonic averaging of the coefficient a(z) and can be used for problems with
rough coefficient a(z). A detailed description of these spaces is given below.
We assume that the space S}, consists of continuous functions which, over
each interval of the partition 7}, are either linear functions or L-splines.
The functions in Sy, are entirely determined by their values at the points
xj. Then a local basis of “hat”-functions ¢;(z) exists, i.e. ¢;(z;) = 1 and
¢j(x;) =0 for i # j.
The characteristic function x; of I7 = [z; 12, %;1/2], defined by

( Lizjyp <2< xjy19,
X;(x) =
! 0, otherwise,

form a basis for the space Sj. Thus, for any u, € Si and v, € S} we have

N-1 N-1
up = Z ujpj(r) and v, = Z vix; ()
j=1 j=1

with w; = up(z;) and v; = vy (z;).
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The existence of a local basis allows us to introduce easily the inter-
polation operators: I, : Cy(0,1) — Sy as Inu = E;V:_ll u(z;)¢;(z) and
I : Cp(0,1) — Sy as Ifu = E;V:_ll u(z;)x;(x). We shall need various semi-
norms in the spaces H} and H} N H?, which are related to the partition T}.
Namely, we define

No1 1/2 N 1/2
ol = (o mud | o = (o]
j=1 j=1
_ 2 2 \1/2 _ *, \1/2
lwllin = (i p +llwllga) 5 lllwlllo = (Taw, lrw)™*,
1/2

N
wlin = | D walejo1y2)h
j=1

Here (-,-) denotes the standard L?-inner product of functions defined on
(0,1). Obviously, the semi-norms |[|.||o,r, and |||.||lo are equivalent norms
on Sp, with constants of equivalence independent of h. Similarly, |.|1,, and
|.|T 5, are equivalent norms on Sy,. The norms ||.|lo,» and ||.||1,» use only the
values of the function at the grid points and therefore ||ullo.n = [|Znullo,n
and [ully = [Tyl

Since the functions wy, from S;, have generalized derivatives, their norm
|lunlly is well defined and there are independent of h constants co,c; > 0
such that

collwrlli,p < Jwrlli < erllwrllo, wy, € Sp.

A basis for the finite volume element approximation will be the integral
equality obtained by integrating (2) over the volume I} = [z;_y/2,%j41/2],
which expresses conservation of the physical quantity (mass, heat, etc) over
each finite volume in 7}'. Restricting this equality to u in the space S; we
get the following

Tjy1/2 t
/ up e — (auh,m +/ b(t,s)uh7x(s)>
T 0

i—1/2

Tjy1/2 Tiq1/2
/ fdz, (3)
xr

Ti_1/2 j—1/2

U,h(O) = ug,p € Sh,

where ug , is an appropriate approximation of the initial data ug in Sj.
Now we introduce two different constructions of the space Sj.

2.2 Finite Volume Method with Linear Elements

The finite element space S}, consists of piece-wise linear functions, i.e.

Sp ={v € Cy(0,1) : v|g, is linear function for j =1,---, N}.
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Obviously, the functions

1—h-_1|a:—a:j|, zj1 <z <uzj,
¢j(x) = § 1+ hil |z —aj], 25 <@ < @y

0, otherwise,

forj=1,...,N — 1 form a basis for S},.
We define the bilinear forms a(-,-) and b(¢,s;-,-) on various pairs of
spaces. First, for u,v € H}(0,1) we use the standard definition

1 1
a(u,v) :/ au,v,ds and  b(t, s;u,v) :/ b(t, s)uzv.dx.  (4)
0 0

Next, for w € HJ(0,1) N H%(0,1) and vy, € S;, we extend the definition of
a(-,-) formally to

N-1

a(u,vp) Z aj— 1/2Uz Tj— 1/2) —aj+1/2uz($j+1/2)) Uj
Jj=1

Using summation by parts and taking into account that vy = vy = 0,
we come to the following definition of a(u,vy) and b(t, s;u,v) for u €
H(0,1) N H?(0,1) and vy, € S

N
a(u,vp) = Za] 12Uz (Tj-1/2) (v — V1), (5)

j=1

b(t, s;u,vp) = Zb] 172, 8)ua(zj_1/2)(v; —vj1).
j=1

For up € Sp the value up . (z;_1/2) is well defined, and this allows us to
use the definition (5) for (up,vn) € Sy x S as well. Thus, the semi-discrete
finite volume element method (3) can be rewritten as to find uy(t) € Sy for
t > 0 such that

t
mmm»mmwm+/memmmwzmmx on €55, (6)
0

with wp(0) = uo,p € Sh.
The so-called “lumped” mass semi-discrete approximation of (2) is: find
up(t) € Sp, such that

t
UMM%HWWMM+/MMWWMM%=M%% o € S5 (7)
0
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Taking into account the definition of I}, we see that this produces the
scheme

hj+hj < Ujy1 — U uj — Uj—l)
L S (O e Sl AL Bl i
2 gt j+1/2 hj+1 j—1/2 hj
t
uji1(s) —u;(s)
+ / <b- (t, s) L1~ Y15
0 j+1/2 h]‘+1
— b, /Q(t,s)w> ds
h;
=f;, for t>0 (8)

for j = 1,2,---,N — 1, where f; = f;;:l//; flx,t)dz, aj_1/2 = a(z;_1/2)
and b;_1/2(t,s) = b(x;_1/2,t,5) . Consequently, the above equation is the
standard three-point finite difference discretization of the problem (2).

We can rewrite these schemes as systems of ordinary differential equa-
tions. Let up = E;\;l u;(t)¢j(x) and U = (uy,us, - ,un—1)7, then the
vector-function U = U(t) satisfies:

MyU; + AhU(t) + /t Bh(t, s)U(s)ds = Fh(t), t > 0. (9)

Here the mass matrix M), is diagonal for the scheme (7) and tridiagonal for
the scheme (6) and Ap, and By, are symmetric tridiagonal matrices. We also
have to add an initial condition given in the form U(0), in which is related
to the initial approximation up(0) = ug p € Sk in (6).

In order to define the fully-discrete approximation of (2), we discretize
the time by taking ¢, = nAt, At > 0, n = 1,2,--- and using a numerical
quadrature for the integral

t n
/ g(s)ds = Y wnrg®, g = g(t),
0 k=1

where {wy, 1} are the integration weights and the following error estimate is
valid:

tn n tn
[ ads =3 wnaatte)] < 0t [ (lgl +1g'Dds,
0 k=1 0

Then the fully discrete backward Euler finite volume element approxi-
mation of (2) is: find u} € Sp, (n =1,2,---) such that for all v, € Sj;

u? —u ik
(hTth,vh> +a(up,vn) + Y wnkbnk(uf,vn) = (f",vn), (10)

k=0
forn =1,..., ug = ug,n, Where ug ; is some approximation of the initial

data and by, i (ul,vs) = b(ty,, te;ul, vg).
In a similar fashion, one can define the fully discrete “lumped mass”
scheme and Crank-Nicolson scheme.
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2.3 Finite Volume Method with L-spines

Now, we define the space S, in the following way:
Sp={veC(0,1): (avg)elr; =0, j=1,---,N, v(0)=v(1)=0}.

Here and in the text that follows further the solution of the equation
(auz)z = 0 is understood in a weak sense. Note that the velocity (flux)
Q(z) = —(auy)(x) has first derivative zero almost everywhere and therefore
is a constant function. Thus, if the coefficient a(z) has a jump at some point
then the first derivative u, should have also a jump at that point so that
their product is a continuous function. In order to introduce a basis in Sy,
we first define the following harmonic means of the coefficient a(x) over the

partition Tp:
-1
i ds
H
aj_1/2 j (/zjl a(8)>

for j =1,....N — 1; apparently, the following functions form a basis in Sp,:

w1 /z ds <z <

@iy /97— — or zj 1 <z < xj

IV Sy, a(s)’ ’
H 1 /zf“ ds f

a; — — or zj<z<Tjq
PP ) : s

0, otherwise,

¢j(x) = (11)

for j =1,...,N—1. On each subinterval of T}, the derivative of ¢;(z) exists
in generalized sense and has the following property:

(adje)(@jo1/2) = ajlyjo/hy,  and  (agje)(Tj11/2) = —ajly o /hjt1.

Therefore, we come to the following simple representation for the fluxes at
the end-points of the finite volumes of the partition T

Uj —Uj—1 .
(auh,w)(mjfl/Z) = aﬁl/Q%, j=1,...,N.
J

In order to introduce the finite volume element method, we first define
the bilinear forms a(-,-) and b(t, s;-,-) on S, x Sj:

N
1
a(up,vn) =Y Fa'f—l/2(uj — uj—1)(vj —vj-1),

N 1 CLH 12
. = E b _ IS (s — s s
b(t,S,’U,h,’Uh) - h] b]*l/Q(taS)a(xj_1/2)(u] U’]—l)(v] UJ—l) (12)

N
1
= Z h_ajl'{l/sz—l/z(ta s)(uj — uj—1)(vj —vj-1).
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Here we have used the fact that in the case of discontinuous coefficient,
a(z) and the kernel b(z,t, s) in the integral term is of the form b(x,t,s) =
a(x)B(xz,t,s), where B(x,t,s) is a smooth function of its arguments.

Then the semi-discrete finite volume method with L-splines is given
by (6) where the bilinear forms a(-,-) and b(t,s;-,-) are defined in (12).
Similarly, the “lumped” mass semi-discrete method and the fully discrete
backward Euler method are given by (7) and (10), respectively. This time
for the lumped mass approximation, we use the trapezoidal rule over each
finite element. It is obvious that the complexity of these schemes is the same
as those obtained by using linear elements.

This type of approximation of self-adjoint second-order ordinary differ-
ential equations was first used by Tikhonov and Samarskii (see, e.g. [34,35])
to construct finite difference schemes of arbitrary order of accuracy for equa-
tions with piece-wise coefficients. The interesting feature of these schemes
is that they have high order of accuracy on non-uniform meshes and for
equations with jumps in the coefficients. Further, this approach has been
extended in [16] to equations with coefficients in certain Sobolev classes.

Remark 1 Tt is obvious from the matrix presentation of the discretizations
(9) that M} and Aj, are symmetric and positive definite matrices and ma-
trix Bp(t, s) is symmetric and has entries that are uniformly bounded with
respect to the variables t, s. Therefore, both the semi-discrete and discrete
schemes have unique solutions, which are stable in L?-norm in z and L°-
norm in ¢ (see, e.g. [5]).

2.4 Some Auziliary Results and Inequalities

Before discussing the error estimates of the finite volume approximations
derived above we shall need some useful inequalities related to the bilinear
forms a and b and the finite element interpolant of the solution u(z,t).

Lemma 1 There exists positive constants Cy, Cy > 0, independent of h,
such that

a(wp, Iywy) > Colwn|7 4, wy, € Sh, (13)
la(w, Iyvp)] <

Proof. Let wy, = Z;\;l wj¢j(z) and vy = E;\;l vj$;(x); then for linear
elements we have

Cilwp|1,n [vr]1,n, Wh, U € Sh. (14)

U)] 1V — U1

]
a(wp, Iyvy) = Za] 1/2 , y
] J

Hence, (13) and (14) follow by taking Cy = a9 = min, a(z) and Cy = a; =
max, a(z). Note that this inequality is also valid for the scheme obtained
by using L-splines for the space Sp,. In this case, a;j;; /s is replaced by the
harmonic averages aﬁ_l /2 and the inequality follows in the same manner
with slightly differrent constants.
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Remark 2 The estimate (13) essentially implies that the bilinear form af(, )
is weakly coercive in S, x S; where S}, is equipped with the norm |-|;. Indeed,

sup a(wp,vp) > alwy, [ywp) > C’0|wh|ih.
UhES;

This guarantees the solvability of the discrete problem and its optimal sta-
bility.

Next, we study the properties of the interpolant I, u. Here we distinguish
two cases: (1) a(z) is a sufficiently smooth function (here it is enough to
assume that a € W* where k > 1); then the solution is at least in W*2;
(2) a(z) has a finite number of jump discontinuities and between these
points of discontinuity it is sufficiently smooth; the flux @ = —au, is a
smooth function. Now we consider these two cases in the next two lemmas.

Lemma 2 Let the space Sp, consist of piece-wise linear functions and u €
H& NWHEP for some 1 <p < oo and 2 < k < 3. Then there exists a positive
constant C' > 0, independent of h, such that

la(u — Inu, Iivp)| < CB* ulkplonli,g, v € Shy ¢ =p/(p—1).

Proof. Since

N
a(u — Iyu, Iivn) =Y aj_yp(u— ) (z5-12)(v; —vj-1)  (15)

=1

it is enough to estimate [(u) = (u — Ipu)z(x;j_1/2). Thus (15) follows from
the Bramble-Hilbert lemma by showing that the linear functional I(u) is
bounded in W*[z;_1,z;] for k > 2 and vanishes for polynomials of degree
2. To estimate the constant in the inequality (15) one can use a Taylor
expansion. In the case k = 3 this is

T T {/ (€ = ) e

j—1/2
Tj—-1/2 5
+ [T e e et (10
z;
Then, Cauchy-Schwarz inequality yields

N
la(u — Tnu, Tion)| < Ch* > [ulkp [vhxly < Ch2Julsplvnlyg,
=1

which completes the proof.
Note that if the coefficient a(z) has one continuous derivative, then using
the Sobolev norm of Q(z) = —a(x)u,(z) one gets

lul2,p < CJIQ1,p
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and the right hand side in the error estimate can be expressed through
the the Sobolev norm of the Q(z). This equivalent representation of the
error is not important for smooth coefficient a(x). However, this approach is
essential when the coefficient a(x) has jumps, the case treated by L-splines.
Below we show that the error is of first order in this case, too.

Lemma 3 Let the space Sy, consist of L-splines and its basis be defined by
(11). Assume that Q@ € WP for 1 < p < oo. Then there exists a positive
constant C' > 0, independent of h, such that
la(u — Tnw, Tivn)] < CRIQLplonligs  vn € Sy
forq=p/(p—-1).
Proof. Here we have used the following convention:

a(u — Inu, Iyvy) = a(u, Ifvy) — a(Ipu, Iyvy),

where a(u, I;vy) is defined by (5) and a(Ipu, I vy) is defined by (12). Then
taking into account that

CRUSISR Ny (L
h]‘ hj zi_1 a(a:) ’

we get the following representation

N

a(u — Ipu, Iyvp) = — Z(Uf —v;i—)(Q). (17)

j=1

where

oLy % Q(x)
Q) = Qiapr =~ / 2

Obviously the expression (@) is a linear functional in @, which is bounded
for @ in the Sobolev space W!?(z;_1,z;) and vanishes for () being a con-
stant. Thus, by the Bramble-Hilbert lemma

2 1/p
Q)] < Chi=1r (/ |Q’(m)|”dm> .
Tj—1
Then, the Cauchy-Schwarz inequality yields the required estimate (17).

Remark 3 Tt is obvious from (17) that if the coefficient a(x) is smooth, then
af_lm =a;_1/> + Ch? and one easily gets the estimate (15).
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3 Optimal-Order Error Estimates for the Finite Volume Method

A key point in the error analysis of the finite element method for parabolic
problems plays the decomposition of the error into two parts: v — up =
(u — Rpu) + (Rpu — up), where Rpu € Sp, is the Ritz projection defined
by a(u — Rpu,vy) = 0 for all v, € Sp. A direct use of Ritz projection in
the finite element analysis of parabolic and hyperbolic integro-differential
equations, with two or more elliptic operators of the same order, leads to
suboptimal error estimates. In order to offset this deficiency Cannon and
Lin [6] introduced the so-called Ritz-Volterra projection Vju, which we shall
use as a main tool in the error analysis of the finite volume schemes.

3.1 Ritz-Volterra Projection Vj,

Here we introduce the Ritz-Volterra projection operator V; in the context
of the finite volume element method for the equation (2): namely, for u(t)
in H} N H? for any t > 0 we define its Ritz-Volterra projection Vyu € S,
for t > 0 by

t
a(u — Vhu,vy) +/ b(t,s;u(s) — Vau(s),vp)ds =0, v, € S;. (18)
0

Note, that Vju defined over the partition 7},. We begin our analysis with
the existence of the Ritz-Volterra projection and its error in the H'-norm.

Theorem 1 Let u(t) be in H}, let Q(t) = —a(x)uy(z,t) be in H' for all
t >0, and let u(t) be differentiable in t. Then the Ritz-Volterra projection
Viu of u defined by (18) ewists, is unique, and there is a positive constant
C > 0, independent of h, such that for t >0

[ut) — Viu(®) i = T — Vieuly < Ch (IIQ(t)Ih +f ||Q<s>||1ds) (19)
and

[ De(u(t) = Vau())n < Ch (IIQ(t)Ill + @)k +/0 IIQ(8)||1d8> (20)

Proof. This theorem gives an optimal-order convergence under minimal
assumptions on the regularity of the solution for both methods: the one
based on linear finite elements and the one based on L-splines. However,
the scheme based on linear finite elements requires smoothness of the co-
efficient a(z), while the scheme obtained by using L-splines has first-order
convergence for a discontinuous coefficient a(z).

The existence and uniqueness of the Ritz-Volterra projection follow from
Lemma 1. Indeed, let Viu = Y200 Vi(#)gj(z) and V = (Vi,Va, -+, Viv_1)7,
then V satisfies

ALV (1) +/0 But, $)V (s)ds = Fn(t),
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where Fy, = (Fy, Fy, -+, Fn_1)T, Fj = a(u, x;) +f0t b(t, s;u(s), x;j)ds. Since
Ap, is a non-singular matrix by Lemma 1 the theory of Volterra equations
implies that V (t) exists and is unique (see, e.g. [5]).

Denote by v, = Inu — Vu € Sp. Then the estimate (19) follows from
(15) of Lemma 2 and (17) of Lemma 3. Indeed,
Collvnll? = ColInu — Vyul} < a(Ipu — Viu, I} (Inu — Vau))

t
= a(Ipu — Vyu, Iyvy) + / b(t, s; Inu(s) — Vyu(s), Iyvs)ds
0
/ b(t, s; Inu(s) — Vyu(s), Iyvy)ds
= a(lpu — u,Ihvh)+/ b(t, s; Inu(s) — u(s), Ijvy)ds
0

t
—/ b(t, s; Inu(s) — Vyu(s), Iyvy)ds
0

c{h(||@||1+/0t||cz(s>||1ds) +/Ot|fhu(s>—vhu(s>|1ds}|vh|1,

and therefore,

[Tnu(t)=Vau(t)1 < Ch (IIQlll +/0 IIQ(8)||1d8)> +C/0 [ Inu(s)=Vhu(s)|1ds.

Thus Gronwall’s inequality implies (19).
To prove (20) we differentiate (18) with respect to time and obtain the
following identity for any v, € S}:

a((u — Vpu),vp) + b(t, t;u — Viu, vy)

/ be(t, s;u(s) — Vyu(s),vy)ds = 0.

Then by Lemma 2 and the above identity for v, = Di(Ipu — Vpu) we
get

co| De(Ipu — th)ﬁ < a(Di(Inu — Vyu), Iyvp)

= a(De(Ipu — u), Iy vp) + b(t, t; Inu — u, I vp)

t
+/ be(t, s; Inu(s) — u(s), Ivp)ds
0

t
—b(t, t; Inu — Vpu, Iyvn) + / b (t, s; Inu(s) — Vyu(s), Iyvy)ds
0

IN

¢
Ch <|Qt|1 +1QI1 +/0 |Q(S)|1d8> | Thvn|1

t
+ <|Ihu — Vhuls +/ [Thu(s) — th(s)|1ds> [Tnvp 1.
0
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Then by (19) we conclude that

t
\Du(Tnt = Vawls < Ch (|@|1 o+ [ |@<s>|1ds) |

which leads to (20).

3.2 Error Estimate of the Finite Volume Element Method

In this section we derive an error estimate for the finite volume solution uy,
in the discrete H' norm. Namely, we prove the following theorem.

Theorem 2 Let u(t) and up(t) be the solution of problem (2) and its finite
volume element approzimation defined by (6), respectively. Then there exists
a positive constant C' > 0, independent of h, such that for t > 0

t 1/2
Clfu = unlls < Iluo — o ll s + <|Q<o>|1 ([ 1) ) (21)
0
Proof. As usual we decompose the error into two parts:
w—up = (u—Vau) + (Vau —un) = p(t) + 0(t).
Theorem 1 gives us an estimate for p(t):
t t
loOlln+ [ @ llads < 0 [ Q@I+ Q@I (@2

Now we estimate 6(¢). From (2), (6) and (18) it follows that 6(¢) satisfies
t
(atavh) + a’(eavh) +/ b(t58;0(8)7vh) = _(ptvvh)a vp € SI): (23)
0
To prove (21), we set v, = I;0;(t) and apply Lemma 1
* 2 1 d * * d t *
|||Ih6t|||0 + __a'(ev Ihe) = (ptalhet) - b(tv 870(8)7Ih0(t))d8
2 dt dt J,
t
+b(t, t;0(1), I;0(1)) +/ bi(t,s;6(s), I,6(t))ds
0
1, ., t
< ol + ¢ (ol + 16 + [ o))

t
+i/ bi(t, s:0(s), I:0(1))ds.
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After integration in ¢t we get

t t
AHmw%%+WE§C@mM+AGmW+W®m%>
t
+ / be(t, s;6(s), I;0(t))ds
0
1 t
s;m+c(wmﬁ+ﬁmmm+W@m@)

and then by Gronwall’s inequality

wwh§C<W®h+AHmH%>- (24)
Since
B0)]: < [Viu(0) — u(O)]s.n + [u(0) = un (0}l (25)

then (21) follows by inequality (19) and our assumptions.

4 Higher-Order Estimates for Linear Elements
4.1 Superconvergence in H'-norm for Ritz-Volterra Projection

Our next goal is to derive a higher-order error estimate for the Ritz-Volterra
projection based on linear finite elements. Namely, we prove

Theorem 3 Let Vyu be the Ritz- Volterra projection of u and assume that

u € H3>N Hy. Then there exists a positive constant C > 0, independent of
h, such that

WU%—Wﬂ@thLhMﬂ—W@MﬂhhSCM2OMK+AIM@b%>,

t>0, (26)
|ww—wﬂwmhscM(WB+A|wmwQ,
£>0. (27)

Proof. The proof follows from the same argument as that used in The-
orem 1 except that (15) of Lemma 2 will be used with p = ¢ = 2 and
k=3:

t
|u(t) — th(t)|1,h = |Ih’LL — th|1,h S Ch2 <|’LL|3 +/ |U(S)|3d8> s t Z 0.
0
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Since [v]1,, = |v|] j, for v € S, then by the triangle inequality and the
previous estimate we get

u(t) = Vau(®)[1p < [u(t) = Tnw()]]n + Hau(t) = Vau(®)] 5
< Ch?luls + [Tnu(t) = Vau(t)|i 4,

which combined with (27) gives the required result.

We remark that |- |7, is a discrete semi-norm for the gradient evaluated
at the points x;_;/5. In the engineering literature, these points are often
called optimal stress points. In the finite element terminology these are the
so-called superconvergence points for the gradient.

For smooth a(z) we can get the same error estimate for the solution of
the scheme based on L-splines. Indeed, in this case the estimate follows im-
mediately from the conclusions of Remark 3. In the case of rough coefficient
a(x) we believe that we cannot have superconvergence. This can be seen
from the presentation of the error in u — Inu by (17).

4.2 Error Estimates in L?-norm for Ritz-Volterra Projection

The error estimates (26) and (27) will produce estimates for the Ritz-
Volterra projection in L2-norm as well. However, in the case of linear el-
ements we can prove a second-order convergence in a weaker norm of the
solution u(x,t). Namely, we prove the following result:

Theorem 4 Let Viu be defined by (18) and assume that u € W31(0,1) N
H}. Then there ezists a positive constant C > 0, independent of h, such
that

[u(t) — Vau(t)|lo < Ch? <|u|371 +/0 |u(s)|371ds> , t>0. (28)

Proof. The proof is based on a duality argument. Let w € H? N Hg such
that

a(w,v) = (u — Vhu,v), v € Hy.
Then by the elliptic regularity ||w||z < Cllu — Vhullo. Then taking v =
u — Vpu in the above equation and using the Ritz-Volterra projection we
see that

llu = Vaullg

a(u — Vyu,w) = a(u — Vyu,w) + /Ot b(t, s;u(s) — Vau(s), w)ds
- bt ssu(s) — Viu(s), w)ds

= a(u — Vhu,w — Tyw) + /Ot b(t, 5:u(s) — Viu(s), w — Iyw)ds

+ a(u — Vyu, [yw — IJw) + /Ot b(t,s;u(s) — Viu(s), Inw — Iyw)ds

—/0 b(t, s;u(s) — Vau(s),w)ds.
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For the first two terms on the right hand side, we use Theorem 1 interpola-
tion estimates and elliptic regularity to get

t
a(u — Vyu,w — [yw) + / b(t, s;u(s) — Viu(s),w — Ihw)ds
0

1/2
—Wi-1y2
<Ch <|u|2+/ (s |2ds> Z/ T) do
< Ch? <|u|2 +/ |u(s)|2ds> [lu — Vhullo-
0
Here we have used again the Bramble-Hilbert lemma to estimate the integral

term by ||w||2 and the elliptic regularity ensuring that ||w||z < Cllu—Vyullo.
Using integration by parts for the last term we get

/ b(t,s;u(s) — Vyu(s), w)ds
< |/ = Vau(s), (bwz ). )ds|
<C/ l[u(s) = Vhu(s)|lods||w]|2

<C</ [lu(s) — Vhu( )||0ds> [l — Vihullo.

Now we estimate the remaining two terms. First we present them in the
form

t
a(u — Vyu, Inw — T;w) + / b(t, s;u(s) — Vau(s), Inw — Ijw)ds
0

N e
= Z{/ (a— aj_l/Q)(u — Vhu)dx
i=1 Jwia
Wj—1

t PR
+/ (b, t, ) = bj-1/2(t,8)) (w = Viu)pdadt} L ——I=L
0 J

+Z{/ aj_ 1/2 j— Uj—1 — huw(m] 1/2))

wi;—
b [ sl = 51— ey ) 2T = Ny
0 J

The first term can be bounded using Lemma 2, the Sobolev embedding
inequality and elliptic regularity:

t
|Vy| < Ch2|a|1’oo <|u|2 +/ |u(s)|2ds> [lu — Viullo.
0
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To estimate the term N> we use a Taylor expansion and Lemma, 2

t
|N2| < Oh? <|u|3’1 +/ |u(s)|3,1ds> [lu — Vihullo-
0

Combining all these estimates we get
t

llu — Vhullo < Ch? <|u|2 +/ |u(s)|2ds>
0

t t
+Ch? <|u|3,1 +/0 |u(s)|3,1ds> + C/O [lu(s) — Vau(s)||ods

and the proof is complete by Gronwall’s inequality and |uls < Cluls,1.

Theorem 5 Assume that u(t) is sufficiently smooth. Then there is a con-
stant Cy, > 0, independent of h, such that the following estimates hold:

k t k—1
|DF (u — Viu)|;, < Crh {Z |Dluly + / Z |Diu(s)|2ds} , (29)
=0

=0 0

k t k—1
|Df (u = Vau)lo < Ch? {Z | Dyuls, +/ > |Diu(5)|3,1d5} , (30)
=0 0 =0

k tk—1
|DF (u — Vau)|i p < Cih? {Z |Dluls +/ Z |Diu(s)|3ds} . (31)
=0 0 =0

Proof. Using again the identity (21) for wy, = D(Inu — Vyu), we get
co|Ds(Tnu — Viu) 3 < a(Di(Inu — Viu), Iivg)

= a(D¢(Inu — u), Iyvp) + b(t, t; Inu — u, Ivp)

t
+ / be(t, s; Inu(s) — u(s), Iyvp)ds — b(t, t; Inu — Viu, Iy vy)
0
t
+ / be(t, s; Inu(s) — Vyu(s), Ijvp)ds
0
t
< ¢ (Juale +lul + [ fulo)lds) Fuonl
0

t
+ <|Ihu — Vhuly +/ [Tnu(s) — th(s)|1ds> [Thvpls.
0

Then by Theorem 1, we conclude that

t
|Di(Inu — Vau)|y < Ch <|u|2 + |ugl2 +/ |u(s)|2ds> .
0
Thus, the required estimate (29) for k = 1 follows from the above in-
equality and
|Dt(’LL - th)|1 S |Dt(u - Ihu)|1 + |Dt(Ih’LL - th)|1.

The estimates (30),(31), as well as those for higher time-derivatives, can be
proved using the same arguments.
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4.8 Error Estimates for the Finite Volume Element Method

In this section we obtain higher order error estimates for the finite volume
element approximation. The analysis is a modification of the finite element
analysis of integro-differential equations of parabolic and hyperbolic type
(see, e.g. [6,7,25-27]) and uses the Ritz-Volterra projection and the results
established in Lemmas 3 and 3, and Theorems 1-5.

Theorem 6 Let u(t) and up(t) be the solution of problem (2) and its finite
volume element solution defined by (6), respectively. Then there ezists a
positive constant C' > 0, independent of h, such that for t >0

t

= unll < € {lluo = waall 2 (Juolas + [ hue(olasds) ., 32
0
t

||u — uh||’1‘7h S C {|’LL0 — u0’h|1’h + h2 <|U0|3 + / |Ut(8)|3d8> } . (33)
0

Proof. Ee decompose the error by u — up = (u — Vau) + (Vau — up) =
p(t) + 6(t). From Theorem 5 we have

wwMyfwmmmscﬁme+fwmmw§,@@
wwm+ﬁmm@mwsm{mm+fwmmw) (35)
|wmu+AmMﬂmmscMQwha[wmm@) (36)

First, we see from (2), (6) and (18) that 6(t) satisfies (23). Since 6(t) €
Sh, we let v, = I;6 in (23) to obtain

1d

2dt

N

t
HW@M%+%Wﬁ_HmHWWH+C(AIﬂﬂh%>wwh

IA

t
Qa
S0 +C [0+ ol 161l

Now integrating from 0 to t, we find that

HWM%+AW@&%50@WW%+AHMMWW>

t T
+C/ / 10(s)|3dsdr,
o Jo

and then from Gronwall’s inequality that

HWM%+AW@@ksc@Ww%+Anmmwm)

1 t
< 3 500 1BIE + ClBONR +¢ ([ loolias)
0<s<t 0
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Thus we have easily that

|W@m+(A%@mwfm50@mwm+émm@wﬁ.@n
Since

1116€0)[Ilo < I[Vauo — uolllo + llluo — wonlllo < Ch?|uolsy + |[to — uo,nllo,

the required estimate (32) follows from the above analysis, (34), and the
triangle inequality.
Finally, from (24) and (34) we also have that

t t
s < ¢ (0OR + [ lnlas) <€ (BOR + 1 uolos + [ fuuk1)
0 0
and
6(0)[F 1, < Ch?|uols + [uo — uonl}
so that (33) follows from
lu —un|ip <lu—=Vauli, +[Vhu —unlin

and the above analysis. The proof is complete.

In order to estimate the error of the lumped mass finite volume element
approximation (7), we need an estimate for error of the quadrature which
produced the lumped approximation. This error is estimated in the following
lemma:

Lemma 4 There exists a positive constant C > 0 such that

|(wn, — Iiwn, Iivp)| < Ch2lwply |only for all  wp, vy € Sp. (38)

Let
N-1 N-1 N-1
wh = Y widj,  vn= Y vid;, I = Y vjx;
j=1 j=1 j=1
we find from a simple calculation that
N—1 N—1 N-1 aii1)s
(wp, — Ijwp, Ijvg) = Z vj(w, — Ijwp, x5) = Z vj (Z / (wp, — I,jwh)dw>
=1 j=1 k=1 Y %k-1/2
= /3(hy + hisr) h h hi+h
. - . - . -
= . vj (%w]‘ + §JUJJ;1 + ]ijH — %ug)
Jj=1
1= w w wj —w
L = Wi i T Wi,
8 = hjt1 J h; J
1w —w;
=3 %h?(uj ~vj—1) < Ch*|wp|ifopr
j

1

J

We are now ready to state and prove the error estimates for the lumped
mass method.
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Theorem 7 Assume that u(t) and up(t) are the solution of problem (2)
and its lumped mass finite volume element solution defined by (7). Then
there exists a positive constant C > 0, independent of h, such that for t > 0

t 1/2
||u—uh||osc{||uo—uo,h||+h2 (|uo|§,1+ / |ut(s>|§,1ds) }(39)
0
t 1/2
||u—uh||1sc{||uo—uo,h||1+h(|uo|%+/ |ut(s>|§ds) } (40)
1]
t 1/2
||u—uh||1hsc{|uO—uo,h|r,h+h2 (|uO|§+ / |ut<s>|§ds) }.<41>
0

Proof. As before, we write u —up, = (u—Viu) + (Vau—up) = p(t) +6(¢).
Then the estimates for p is the same as in Theorem 5, and € satisfies now

(B, 0p) +a(B,vr) + [ b(t,s;0(s),vn) = —(p*,vn), wvn €S;. (42)
0

with p* = us — I;Dchu = Dt(u - th) + (Dchu - I;Dchu) = p1+ p2.
Set v, = I8 in (42) to obtain

| =

30N + a0, 5:0) < (o1 + o, 0) +.C ([ o) oo

<

t

Since |(p1, I0)| < ||De(uw — Vaw)l| |]16]]lo, Lemma 4 and Theorem 5 provide
¢
(2,56 < O Vil < O (fuk + [ futo)hds ) i,
0

where we have used |Vyul|r < C(|uly + f(f |u(s)|ds). Thus, we obtain easily
that

N | =
&|g‘

t
Qa
B3 +aolel? < 16 +11ID:Cu = Vil 11l +C | 165

¢
+Ch* <|u|§ +/ |u(s)|§ds> )
0

The rest of the proof is the same as that of Theorem 6 for the estimate (32).
The remaining estimates (40) and (41) are established in a similar way.

Theorem 8 Assume that u(t) and uj(t) are the solutions of problem (2)
and its backward Euler finite volume element solution (10), respectively.
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Then there exists a positive constant C' > 0, independent of h, such that for
0<t, <T

tn
utt) = uillo < C { lluo = ol + 7 (Juokss + [ fua(o)l. s
0

+C’At/0 " (e ()|s + [uee(s)])ds, (43)

tn 1/2
HMm%thsc{mm—mﬂh+thb+(A|m@mw) )}
+C’At/0 " (e ()|s + [uee(s)])ds, (44)

tn
mmrmeSCQw—wun+M(MB+/|Mﬂm§}
0

+CAt/0 " (e ($)]1 + e (s)])ds. (45)

Proof. Let u(ty) — uff = p™ + 6™, where p" = u(t,) — Vhu(ty) and 6™ =
Viu(ty) — up, then from (18) and (24) we have

n—1
(00", vp,) + a(6™,vp) + Z Atby, 1 (0™, 0n),= —(7",v1) + ¢" (vn), vy € S,
k=1
(46)
where
7" = 0p™ + ur(t,) — Ou(ty),
n—1 t
q"(vy) = Z Atby k(Vau)(tr), vn) —/ b(tn, s; Vhu(s), vy)ds.
k=1 0

Set v, = I;;6™ in (46) and use Cauchy inequality and numerical quadrature
error estimate to get

11671113 = 116" 1113 B2 m Tegmy s g reamy | S o repm
R +col0™F < (7", I;6") + ¢ (1;67") — Y Atby i (6", I;6")
k=1
c n—1
0 hn n n n
<1 F+C A+ |I7 ] 1116™lo
k=1

2

tn
+C (At/ |Dchu(s)|1ds>
0

Thus, using Theorem 5 for the last term on the right hand side, summing
on n and then employing Gronwall’s inequality, we obtain

tn 2 n—1
16|l < € {|||90|||3 + <At/0 |DtU(8)|1dS> } + > At 116"l
k=1
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. 2
1 k(2 S

< m Atl|T"

< 21S,?an|||9 lllo +C (1;1: ¢

tn 2
+0{|||0°|||3+ (At/ |Dtu<s>|1ds> }
0

from which it follows that

n—1

tn
116"[llo < C (Z Adl|| + |||9°|||E‘§+At/0 |Dtu(3)|1d3> :

k=1

A simple calculation together with Theorem 5 shows that

n—1 tn tn
At Z ||Tn|| S C <h2/ |u|3’1ds + At/ |Utt(8)|d8>
k=1 0 0

and []|6°]]lo < Ch?|ug|s,1 + ||uo — wo,nl|, hence (43) follows from the above
analysis and Theorem 5. The proof of (44) and (45) are done in a similar
fashion.

Remark 4 (a) The lumped mass finite volume element approximations can
be analysed in a similar way. (b) If second-order numerical quadrature for-
mulae are used to discretize the time integral terms, then a Crank-Nicolson
type scheme will have optimal-order convergence in both space and time.
Finite element schemes of this type have been abalyzed in [6,7,10,27,33].
(c) For storage saving and computational speed up, some combined numer-
ical quadrature rules proposed in [10] and [33] can be ed as well. The error
analysis can be done in the framework developed in this section by using
the error estimates from [10] and [33].
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